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HIGHER SOBOLEV REGULARITY
FOR THE FRACTIONAL p—LAPLACE EQUATION
IN THE SUPERQUADRATIC CASE

LORENZO BRASCO AND ERIK LINDGREN

ABSTRACT. We prove that for p > 2 solutions of equations modeled by the fractional p—Laplacian improve
their regularity on the scale of fractional Sobolev spaces. Moreover, under certain precise conditions, they
are in Wllo’f and their gradients are in a fractional Sobolev space as well. The relevant estimates are stable
as the fractional order of differentiation s reaches 1.
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1. INTRODUCTION

1.1. Aim of the paper. Let 2 < p < oo and let Q € RY be an open set, consider a local weak solution u
of the p—Laplace equation
—Ayu =0, in Q.

This means that u € W,5?(Q) and verifies

/<|Vu|p72 Vu,V)de =0,
Q
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2 BRASCO AND LINDGREN

for every ¢ € WP with compact support in €. Thus the operator —A,, arises from the first variation of the
WP Sobolev seminorm. A classical regularity result by Uhlenbeck asserts that (see [29, Lemma 3.1])

Vu|™2 Vu e Wh2(Q).

loc

This in turn implies the following higher differentiability for the gradient itself
2

(1.1) Vue WP (Q), for every 0 < 7 < —,
p

see also [23, Proposition 3.1] for a more comprehensive result.
In this paper we want to tackle this regularity issue for weak solutions of nonlocal and nonlinear equations
like the fractional p— Laplace equation

(1.2) (~Ay)*u=0,

and prove the analogue of (1.1). Here 0 < s < 1 is given. In order to clarify the content of this paper, it is
useful to recall that various different definitions of fractional (or nonlocal) p—Laplacian have been recently
proposed (see for example [3], [8] and [26]). The definition considered in this paper is the variational one.
That is, if for every open set E C R we define the W*? Gagliardo seminorm

ju(@) — u(@)|P ) ’
Ul s.p = —————dxdy ,
lw ) (/E g |z —y[Ntsp

then the operator (—A,)® arises as the first variation of

p

U [u]WS_,p(RN).

This is in analogy with the case of —A,, which formally corresponds to the case s = 1. Operators of this
type were, to best of our knowledge, first considered in [2] and [15]. A weak solution u of (1.2) verifies

/ / |u(z) — u(@)[P~2 (u(z) — u(y))

|z —y|NHep

(¢(@) ~ o)) dwdy =0,

for every ¢ € WP with compact support. The reader worried about the sloppiness of this definition is
invited to jump to Definition 1.3 below. There one may find the precise description of the equation and the
definition of weak solution.

We point out that for ease of readability for the moment we just focus on the operator (—A,)®. But
indeed we will treat more general operators, where the singular kernel (z,y) +— |z — y| =N ~*? is replaced by
some slight generalizations of the latter.

Very recently the operator (—A,)® has been much studied and the low regularity of solutions is now quite
well understood. The first important paper on the subject is [10] by Di Castro, Kuusi and Palatucci. There
local Holder regularity for solutions of (1.2) is proved by building De Giorgi-type techniques for the nonlocal
and nonlinear setting, in a similar spirit as it was first done for the case p = 2 by Kassman in [16]. In the
companion paper [11], the same authors also proved the Harnack inequality for solutions of the homogeneous
equation. As for the inhomogeneous equation

(1.3) (—A,)u=f,
it is unavoidable to mention the impressive paper [18] by Kuusi, Mingione and Sire, where very refined
pointwise estimates of potential type are proved. These lead for example to local continuity of the solution
under sharp assumptions on f (see [18, Corollary 1.2]). It is worth mentioning that [18] considers a general
measure datum f, not necessarily belonging to the natural dual Sobolev space. In this case, the concept
of solution has to be carefully defined. Finally, Iannizzotto, Mosconi and Squassina in [14] (see also [13])
succeeded in proving global Hélder regularity for the solution of the Dirichlet problem

(—Ap)°u = f, inQ,
u = 0, inRN\Q,
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under appropriate assumptions on the data f and Q (see [14, Theorem 1.1]).

On the contrary, as for higher differentiability of solutions, the picture is less clear. Some results on this
subject are contained in the recent papers [9, 17] and [25] (see also [19]). We postpone comments on these
papers, let us now proceed to present our main result.

1.2. Some expedient definitions. In order to neatly state our contribution, we need some definitions.
The first one is very similar to that of nonlocal tail of a function, introduced in [10]. Since the two definitions
differ slightly, we prefer to introduce a different notation and terminology. In what follows, the writing
F € E means that both F and E are open sets of R", such that the closure of F is a compact set contained
in E.

Definition 1.1. Let 1 < p <00, 0 < s <1 and ¢ € LY (RN). For every open and bounded set E C RV,

we set .
: 2 L) ’
Snail(y; z, E) := ||E|~ /R - yN e dy| xeFE.

N\E |fL‘ —
In the definition it is intended that Snail();x, E) = +oo if the integral is not finite.

Definition 1.2 (Special spaces). Let 1 < p < o0, 0 < s < 1 and Q C R™ be an open set. Given
Y e LY (RN), for every F € E € Q we define

(V) ar(rip) = ([E || dw+/FSnaﬂ(w;x7E)p dw) '

For 0 <t <1, we also define the associated Nikol’skii-type quantity

1

P P

(1.4) (Dyyre(p.p) = sup (/ Snall( t,a:,E) dm) ,
R 0<|h|<L d(F.E) Al

where we set d(F, E) := dist(F,RY \ E). Accordingly, we define the vector spaces
XP(Q) = {1/1 €LV (RN) i () yo(pig) < +00, for every F € E € Q}

and
VEP(Q) = {w € XP(Q) : ()ytr(p.p) < +oo, forevery FEFEE Q}

In (1.4) it is intended that |h|° = 1, so that for ¢ = 0 we have Y2P(Q) = XP(Q).
With the symbol WP (Q2) we denote the completion of C§°(Q2) with respect to the norm

= |[YlLeq) + [ulwsr ()
Definition 1.3 (Operator and local weak solutions). Let 1 < p < oo and 0 < s < 1. We consider a
measurable function K : RY — [0, +00) satisfying

1
(1.5) —|z|N+Sp < K(2) <A|z|/NT5P for all z € RN,

for some A > 1. Given f € LlOC(Q), we say that u € WP(Q) N XP(Q) is a local weak solution of

(1.6) (A, g)u=f inQ,
if
(I~ (ux) ~ u(y)) .
(17) [, ] e (¢la) = ol dody = [ fod.

for every ' € Q and every ¢ € W;P(€'). It is intended that the test functions ¢ are extended by 0 outside
Q" in (1.7). The assumptions on u and K guarantee that the double integral in the left-hand side of (1.7) is
absolutely convergent.

In the case K(2) = |z|V5P, we will simply write (—A,)* in place of (—A, x)*.
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1.3. Main results. The following is our main result. The parameter ¢ below measures the degree of dif-
ferentiability of the solution “at infinity”. The value t = 0 is admitted as well, thus the differentiability “at
infinity” is not necessary to improve the local one. The case of the p—Laplacian formally corresponds to
taking s =t =1 in (1.11) below. In this case, the result boils down to the aforementioned one (1.1).

Theorem 1.4 (Higher differentiability). Let p>2,0<s<1 and 0<t<s. Letu e W7
a local weak solution of

(©2) NYP(2) be

(—A, k)u=f, in 2,
with f € W;’O’fl (Q) and K wverifying (1.5). For every ball Br € Q we define
Ar1,£)i= (B2 Wy + =5 1o )
(1.8) + §<“>§;’<B% i) TR (u >y;P(BzR,B7R)
# 80 (B (0= i+ 5y 10 = )

Then we have:

T
t+sp
p—1’
and for every ball Bg € ) there holds the scaling invariant estimate

e WP (Q), for every s <71 <

loc

C1
(19) (W3 < T Ar £,

for some C; = C1(N,p,s,A,t,7) > 0;

it) if|[t+sp>p—1|we set

1+t
I':= htHsp Jrsp’
p
then

ue W, r(9Q) and Vue WP(Q), foreveryr <T —1,
and for every ball Br € ) there hold the scaling invariant estimates

C
(1.10) IVl ) < o Ar(s ),

and
2-T) P -1)"
[VU]WTP(BR/Q) S (F* 1 77_)7_ Rp(1+7_) AR(u7f)

for some Cy = Co(N,p,s,A,t) >0 and C3 = C3(N,p,s, A, t) > 0.

(1.11)

Remark 1.5 (Behaviour of the constants). Let us fix £y > p, then for every 0 <t <s < 1

estimates (1.10) and (1.11) can be replaced by

C b
(1.12) VUl sy, ) < Wo=p)F (1-s) %’
and
2-T)?T-1)" C Ar(u, f)
(1.13) [VU]W”’(BR/z) = T—-1-7)7 (bo — p)P (1=s) RI;(HT) ’

such that

with C' > 0 depending on N,p and A only. In particular, the estimates are stable for s /1.



HIGHER SOBOLEV REGULARITY 5

Remark 1.6 (Holder continuity via embedding). By using Morrey-type embeddings for fractional Sobolev
spaces (see [1, Theorem 7.57]), we get that a local weak solution u € WP (Q) N YP(Q) is locally Holder
continuous for p > 2,0 < s <1 and 0 <t < s such that

-1
t+sp>LN, if t+sp<p-—1,
p
or

t+sp>N-—-1, if t+sp>p-—1.
For example, in dimension N = 2 this is always the case if p > 2 and s > (p — 1) /p.
Before proceeding further, let us illustrate some particular cases of the previous result. We start with the

case where our solution w is a priori known to be globally bounded, a situation that is quite natural if u is
constructed through viscosity methods (see [20]).

Corollary 1.7 (Bounded solutions). Let p > 2 and 0 < s < 1. Let u € WP (2) N L>(RY) be a local weak
solution of (1.6), with f € Ws’p/(Q) and K verifying (1.5). Then

loc
) i

u € W2P(Q), for every T < P
p

loc j’

i) if|s > (0= 1)/ ]
p—1

u € Wl{;cp(Q) and Vu € WT’p(Q), for every T < s — T

loc

Proof. The result follows from the simple observation that
L®(RY) € XP(Q) = Y)7(Q),
see (2.12) below. Thus we can apply Theorem 1.4 with ¢t = 0. O

An important case is that of nonlocal Dirichlet boundary value problems for the operator (—A,)®. Indeed,
since the “boundary datum” g is imposed on the whole complement R™ \ 2, the solution u naturally inherits
differentiability properties “at infinity” from g. We can tune the parameter ¢ accordingly and improve the
result. As in [6], we use the notation W™ () to denote the completion of C§°(€2) with respect to the norm

U= [Wlwer@yy + 19l Le )

Corollary 1.8 (Dirichlet problems). Let p > 2 and 0 < s < 1. Let  C RY be an open and bounded set.
Given f € WP (Q), g € WP(RN) and K wverifying (1.5), we consider the (unique) solution u € W5 (RN)
of the problem

u = g, inRN\Q

This means that u coincides with g in RN \ Q and verifies (1.7) for every test function ¢ € WS”’(Q). Then
we have:

i) ifls<(-1)/p+1)]

{(—Ap,K)Su = [ inQ,

p+1

ue Wlor(Q), for every s <1 < T
D

loc

ii) if[s > (p—1)/(p+1)]

ptl p-1
=

ue WhP(Q) and Vue WEP(Q),  for every T <s

loc loc
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Proof. 1t is sufficient to observe that

WP (RY) € YIP(Q),

see (2.13) below. Thus we can apply Theorem 1.4 with ¢t = s. O

1.4. Comments. Some comments are in order, we start with some words on the proof of Theorem 1.4.

(1.14)

(1.15)

(About the proof) The starting point of the proof of Theorem 1.4 is standard, we differentiate equation
(1.7) in a discrete sense. Then by testing the equation against fractional derivatives of the solution,
i.e. quantities like

u(z + h) — u(x)
|h[” ’

we establish a Caccioppoli-type inequality for finite differences of the solution (see Proposition 3.1).
For the p—Laplacian this is a “one shot” estimate, i.e. by taking ¢ to be the exponent dictated by the
hypothesis u € Wllo’f we directly reach (1.1) from this Caccioppoli-type inequality. On the contrary,
in the nonlocal case this estimate may in general be iterated. The number of possible iterations
depends of course on s, namely on how close it is to 1. Then the initial information v € W;>”
can be recursively improved. At each step the differentiability gain is on a “hybrid scale”, which
mixes two different ways of measuring fractional derivatives. Roughly speaking, at each step we are
estimating the W*? seminorm (i.e. s derivatives on the Gagliardo scale) of a finite difference (1.14)
(i. e. ¥ derivatives on the Nikol’skii scale). The main point of the iteration is to identify the resulting
quantity as the norm of s+ ¢ derivatives of the solution, measured again on the Nikol’skii scale. We
point out that this is a genuine Besov-type estimate (see Lemma 3.3).

(The right-hand side) As for the right-hand side f, the hypothesis W;>” "is certainly too strong and
we could improve the differentiability of the solution under weaker assumptions. On the other hand,
we prefer to avoid further complications in the statement (and the proof) of Theorem 1.4, thus for
the moment we do not try to relaxe it.

It is natural to expect that a suitable variant of Theorem 1.4 holds true also for very weak solutions
with measure data, by using perturbative and approximation arguments as in [22, Section 6].

(Previous results) Let us now make some comments on the aforementioned papers [9, 17, 19] and
[25]. Let us start with the linear case, corresponding to the choice p = 2. In [17] and [19], the
authors consider general linear elliptic nonlocal equations like

(u(x) = u(y)) /
\uk\t) —u\y)) ) — dzr dy = , for every ¢,
/]RN /]RN K(z,y) (QO( ) gdy)) ! T ygp
where 1
JeLFthand Lo -y N < Kny) < Ao -y N

They prove that a solution u € W*2(RV) is indeed in W*T%2+%(RY) for some
0<d=06(N,s,00,A) <1—s,

see [17, Theorem 1.1]. This result is based on different techniques, namely it is obtained by means of
a suitable fractional Gehring Lemma (see [17, Theorem 1.2]). We may notice that as a consequence
of Theorem 1.4, in our case as well we can improve both the differentiability and the integrability
exponent, just by using a standard interpolation argument.
In [9] it is still considered the equation (1.15), under the additional assumptions
1 1 |h|®
elL? and - <C .
d Kethyth)  Kag| = e ylves
Observe that the previous condition on K covers for example the case of kernels of the type K(x,y) =
K(x —y). Then [9, Theorem 2.2] shows that the solution gains “almost” s—derivatives, i.e. u €
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leo‘z ™2 for every 7 > 0. The proof relies on differentiating twice the equation in discrete sense.
Though limited to linear equations, we may notice that the result of [9] is stronger than our Theorem

1.4 in the case p = 2. Indeed, if we consider Theorem 1.4 for p = 2 and s > 1/2 and we do not assume
West/2-, 2

loc

differentiability “at infinity” of the solution, i.e. we taking ¢ = 0, then we obtain u €
for every T > 0.

As for the general case p > 2, in [25] the author considers a “regional” version of (1.3), i.e. the
equation

/ / |u(x) — u|x _|P |2N(+S(:) —u(y)) ((p(x) — gp(y)) dxdy = /chp, dx for every ¢,

where f belongs to the dual space of W*~¢(P~1:2(Q), for some & > 0. In [25, Theorem 1.3] it is
proved that there exists 9 = eo(s,p, ) such that for £ < &g, a solution u € W*P(Q) is indeed in
Wers p(Q)

loc

e (Limit as s /' 1) Finally, we conclude this list of comments by stressing that estimates (1.12) and
(1.13) display the correct dependence on the parameter s, at least in the asymptotical regime s 7~ 1.
Indeed, we recall that for a function u € W we have the pointwise convergence

|u(z) = u(z)|”
lim (1 / / dedy =Cy [VulP dz,
5/1 Br JBr \CU - |N+ ¥ Jss

see [4, 5]. Moreover, we also have the I'—convergence of the two functionals displayed above with
respect to the strong LP topology, see [7] and [24]. Thus, in the standard case K(z) = |z|V P the
estimates of Theorem 1.4 can be used to prove that solutions of the fractional p—Laplace equation
converge strongly in Wllo’f to solutions of the usual p—Laplace equation as s ' 1, under suitable
assumptions. For example, let Q C RY be an open and bounded set, we note u, the unique solution
of
(—A,)’°us = fs = T / , in u=0, inRY\Q.
—s

By using (1.12) and (1.13) it is possible to show that us converges strongly in LP(Q) N Wllof(Q) to
the unique solution of

—-Ayu=f, inQ, u=0, on 9.

1.5. Plan of the paper. In Section 2 we introduce all the definitions and the functional analytic stuff that
will be needed throughout the whole paper. The core of the paper is Section 3, where the fundamental
estimates are settled down. These are the Caccioppoli-type inequality of Proposition 3.1 and the Besov-
Nikol’skii differentiability improvement of Lemma 3.3. The proof of Theorem 1.4 is then contained in
Section 4. In the same section we also briefly comment the case of more general equations of the type

(—Ap)*u= f+A[u|"%u

see Subsection 4.5. We then conclude the paper with a couple of appendices: while the material of Appendix
B is standard, Appendix A contains the proof of an embedding property of Besov-type spaces (Proposition
2.4), which is crucially exploited in the proof Theorem 1.4.

Acknowledgements. We thank Assia Benabdallah for a useful discussion on heat kernels. An informal
discussion with Sunra Mosconi and Marco Squassina has lead to an improvement of Theorem 1.4, we wish to
thank them. We are grateful to Matteo Cozzi for pointing out to us his paper [9]. Part of this work has been
done during a visit of the first author to Stockholm and of the second author to Marseille. The following
institutions and their facilities are kindly acknowledged: Department of Mathematics of KTH (Stockholm),
FRUMAM (Marseille) and CPT (Marseille). The second author has been supported by the Swedish Research
Council, grant no. 2012-3124.
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2. PRELIMINARIES

2.1. Notation. Let 1 < p < oo and 0 < a < 1. For an open set Q C RY, we denote by W*P(Q) the usual
fractional Sobolev space defined as the set of functions such that

[Vllwer @) = [W]lwer@) + 1] Lr@) < +o0.

The quantity [-]wa.» is the WP Gagliardo seminorm, i.e.

[Ylwer@) = (/Q M dx dy)zl) .

o |z—yNtor

The local variant W,;2F(Q) is defined in a straightforward manner. Given h € RV \ {0}, for a measurable
function ¢ : RN — R we introduce the notation

Yn(z) == P(x +h) and on(x) = Yn(x) — ().

We recall that for every pair of functions ¢,y we have

(2.1) on(p ) = (Onp) ¥ + @n (0n1).
We also remind the notation &7 for the second order differences of a function, i.e.
(22) Spp(x) = on(Op(@)) = Yz +2h) — 29 (x + h) + P(x).

2.2. Besov-type spaces. The following spaces defined in terms of second order differences will be impor-
tant’.

Definition 2.1 (Besov-Nikol’skii spaces). Let 1 < p < oo and 0 < a < 2. We say that 1 € B&P(RY) if

L
[l

P
/ [P dx < 400 and [w]’éa,p(RN) = sup / dr < +o0.
RN < RN

|h|>0

In this case, we set
191

We now need a couple of simple preliminary result for B&P. The first one states that it is indeed sufficient
to control second order difference quotients for small translations. This is not surprising, we omit the proof.

BNy = [|¥]l Lo @y + W] e @y

Lemma 2.2 (Reduction to small translations). Let 1 < p < oo and 0 < o < 2. If b € BELP(RYN) then for
every hg >0
Y

||

0<|h|<ho

(2.3) [Vlsar@yy < [ sup
Lr(RN)

+3h" ||1/)||LP(RN)] ~

In the case 0 < o < 1, second order difference quotients control first order ones?. This is the content of
the next result.

IWe recall that it is possible to consider the more general Besov space Bg"p(RN), built up of L? functions such that

P z i
/ / P R R
X —— 0.
N \ JrN |h |

For q = p, we obtain the usual fractional Sobolev space WP (RY). Also observe that our notation for Besov spaces is not the
standard one: we prefer to adopt this in order to be consistent with that of WP,

624
|h|*

2Actually, it is easy to see that they are equivalent in this range. Since we do not need the other estimate, we omit it.
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Lemma 2.3. Let 1 <p<oo and 0 < a < 1. Ifp € BLP(RYN) then

Optp < C

(2.4) sup ||——
|hl* LP(RN) I-a

|h|>0

[Vl + 19l o)

for some universal constant C' > 0. For every hg > 0, we also get

Ot S
Bl [l

(2.5) sup
0<|h|<ho

+ (ho® +1) ||w||Lp(RN>] :

< su
LP(RN) l-a 0<|h|<ho Lr(RY)

Proof. We will deduce the required estimate (2.4) by using some elementary manipulations, see also [28,
Chapter 2.6]. We start by observing that for every measurable function ¢ we have

() = & (Sante) — ().
Thus for every h € RN \ {0} we get

buts
A~

dopp
|h|®

UG
o]

(2.6)

)

Lr(RN)

|

LeN) 2

|

Loy 2

and observe that the second term on the right-hand side is uniformly bounded by the hypothesis. For the
first one, we observe that if we set b’ = 2h

6 6 ’ 6 / 5 ’
e B L e = Ty [
|h| LP(RN) ‘h| Lp(RN) 0<|h/|<% |h| LP(RN) <|n| |h| Lr(RN)
o On ¢ o
N ke
0<|h/|<3 | | LP(RN)
By using this estimate in (2.6), we get
ont 1 S a am on ¢
sup i < 5 Sup # +4% [¥ll o gy + 2 ' sup hila .
0<|h|<} Al LP(RN) 0<|h|<} || LP(RN) o<|h/|<3 | LP(RN)

By recalling that o < 1, the last term can be absorbed in the left-hand side and thus we get (2.4).
Finally, estimate (2.5) can be obtained by combining (2.4) and (2.3). O

The following result on Besov spaces will play a crucial role. For the reader’s convenience, we give a proof
of this result in Appendix A. The proof is essentially taken from Stein’s book [27] and is based on the so-called
thermic extension characterization of Besov spaces (see [28, Chapter 2.6] for such a characterization).

Proposition 2.4. Let 1 < p < 0o and 1 < a < 2. We have the continuous embedding BLP(RN) —
WLP(RN). In particular, for every ¢ € BLP(RYN) we have Vip € LP(RN), with the following estimate

C
(2.7) VYl e @yy < CllYll Loy + @-1) [¥]gP (mVY 5

for some constant C' = C(N,p) > 0. Moreover, we also have

ony C

2.8 sup ||m—V—— S <
28) T |y = @) (@ = 1)

|h|>0

still for some C = C(N,p) > 0.

[V By @Yy,

Remark 2.5. The previous result is false for the borderline case o = 1, see [27, Example page 148] for a
counterexample.
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2.3. Gagliardo seminorms and finite differences. We still need a couple of basic facts on fractional order
Sobolev spaces. The following results are well-known, but here we want to stress the explicit dependence of
the constants on the differentiability index.
Proposition 2.6. Let 1 <p< oo and 0 < a < 1.
e (Global case) For every ) € W*P(RN) there holds
K p

(2.9) sup h—iﬁ

|h|>0 |h|

for a constant C = C(N,p) > 0;

< C (1= a) Wy oy

Lr(RN)

e (Local case) Let @ C RN be an open set. Let v € W2P(Q), then for every ball Bg € Q and every
0 < ho < dist(Bg,09)/2 we have

o) ||” ho"? (R4 ho)m”
(1= @) Wliyan(ppyg) |~ + W 1L (B | -

/= <C
[h]®
for a constant C = C(N,p) > 0.

(2.10) sup
0<|h|<ho

L?(Br)

Proof. An elementary proof of (2.9) can be found for example in [6, Lemma A.1]. In order to prove (2.10),
we first take a standard Lipschitz cut-off function 7 such that

2
0<n<1, n =1 on Bpg, n=0on RV \ B \Vn|§h—.
0

R+5p0

Then we observe that ¢n € W*P(RN), thus by using the discrete Leibniz rule (2.1), (2.9) and the properties
of n we get

P P P
ony < or-1 n(1n) Lol up onn
0<|h|<ho |h|a L?(BRr) 0<|h|<ho ‘h|a L?(BRr) 0<|h|<ho |h| L»(BRr)
<C (1 — OZ) W}n}wa P (RN) + Cho P H¢||Lp (BRthy)"
We now decompose the Gagliardo seminorm as follows
[w n]Wa p(RN) [w n]Wa p(B +h + 2 / |pN£a)p d.’l? dy
mtho) BRryng RN\BRJrhO -yl r

n(y)|”
< Wl C [ Y ()P dz dy
WerBrino) BR+hO BRr+hy Ix - ‘N+ap
_ @)
+2 / dz dy.
BN\Brn, |T— |o —y[N+er
By using the Lipschitz character of n, we can now easily get (2.10). (I
Proposition 2.7. Let 1 <p < oo and 0 < a < B < 1. Let ¢p € LP(RY) be such that for some hy > 0 we
have
sup < +o0.
0<|h|<hg |h|’8 P(RN)
Then there holds
h(()ﬁ*a)p hO ap
wer (RY) B—a o<inj<ho 1M | Lo @n Lo(aY)

for some constant C = C(N,p) > 0.
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Proof. The proof is elementary, we give it for completeness. Let us assume that the right-hand side of (2.11)
is finite, otherwise there is nothing to prove We have

|6nt ()| / / [6n¥p (@) [P
- " dvdh + " dwdh
Wl = /{h|<ho} /RN W””‘p (h1=ho} JrN |h|N“”’

009 () [P ) dh 1 / 1
< dz + ot )P 2
/{h|<ho} </]RN |h|FP |h|N_(B_"‘)” o1z ) {In|>ho} [RIN TP

OMTO g [l
- (B 0<|h|<ho ‘h|ﬁ Lp(RN) Lr@®™)”
The constant C' above depends on N and p only. This concludes the proof. (I

2.4. Special spaces. In this subsection, we present some basic properties of the spaces X?(Q) and Y5P(Q)
we introduced in Definition 1.2. We recall the notation

d(F,E) := dist(F,RY \ E).

Lemma 2.8 (Inclusions). Let 1 <p <00, 0<s<1 and Q C RN an open set. Then we have the following
inclusions

(2.12) LYRN) c xP(Q), for every q > p,
(2.13) WHP(RN) ¢ Yir(Q), for every 0 <t <,
(2.14) WEP(Q) N YEP(Q) € WIP(RY), for every 0 < 7 < s.

Proof. The first inclusion (2.12) stems from the simple observation that for every F' € F € Q and ¢ €
L4(RY), by Jensen inequality we have

a—-p

||1/JHLQ (RN\ E) (/ / |z — y\—#(Nﬂp) dxdy) < +o00.
F JRN\E

Similarly, for the second inclusion (2.13) we observe that for every F' € E € 2

o [ Ont P
sup / Snail (S; a:,E) dr < — sup /
0<|h|<L d(F,E) JF R d(F, E)NTSP <L a(rE) JRN\E

and the last term is bounded by the W*? seminorm of u, thanks to (2.9).
Finally, we prove (2.14). Let ¢ € W2P(Q) N Y3P(Q2). We take an open ball B € €2, then by (2.10) we have

loc

Sn ||
|hl*

/ Snail(¢; z, F)

ontp [P
|h[*

dy,

(2.15) sup

1
< 400, where hy < = dist(Bgr, 09).
0<|h|<ho 2

P(BRr)

Also, by using definition (1.4) with BR/2 € Bgr we get

o L ]
sup
0<|h|<2 Br RN\Bpr

|h|s |z — y[NFsp
thus in particular for every open and bounded set 2 C O C RN we have

dy dzr < +o00,

C RN
(2.16) T sup < +oo.
(diam Q)N+ P 0<ihl< B Th|* »(O\Br)
By joining (2.15) and (2.16), we get the conclusion from Proposition 2.7. O

The following monotonicity properties will be needed in the proof of Theorem 1.4.
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Lemma 2.9 (Monotonicity). Let 1 < p < oo and 0 < s < 1. For an open set  C RN, we consider two

pairs of sets Fy} €@ By € Q and Fy € Es € Q) such that
Fy C Fy and FE, C Es.

Then for every ¢ € XP(2) we have

sp sp
[\ & . |F1||Es| ™
2.17 / Snail(y; z, B4 )P dx < ( Snail(y; x, Bs)P do + —— 1 —— Y|P dy| .
@17) ) ( & | B P ( 2) d(Fy, EV)NTP g\ g, 1

In particular, we get

, B\ [Py Bl .
(2.18) <¢>X;(F1;El)<(|E2|> <1+W WYar (R

Proof. The proof of (2.17) is elementary. We have

|P

Snail(¢; x, E1)P de = |E ¥ // dzx dy
. ( 1) | 1| BN\ By |x_y|N+9p

¥ % y)|P
Es| ™ / / dx dy
Fi JRN\E, |$—y\N+SP

W S
By~ / / dx dy
| Fy JE\E, |x— |N+Sp

)
(1)
<<1|>N Snail(y; , F2)? da
(1)

Fa

VBB
g [
d(F1, EV)NTsP gk,

3. BASIC ESTIMATES

Throughout the whole 5ection, we denote by u € WP(Q) N YLP(Q) a local weak solution of (1.

loc

right-hand side f € W22 (Q () and K satisfying (1.5). Thus for every ' € Q and any ¢ € W;"(Q

loc
function u satisfies (1.7). For notational simplicity, we will set

(3.1) dz dy,

1

dp = ——

K(z —y)
where K verifies the hypotheses of Theorem 1.4. We also set

J,t)=[tP™2t  and V(1) =t|"T ¢
and then define the nonlinear function of the solution V, : RN x RY — R by
p=2

(3.2) Vp(z,y) = Vp (u(@) —u(y)) = |u(z) —uy)] = (u(z) —u(y)).

By a slight abuse of notation, for every h € RY \ 0 we will use the following convention

nVp(2,y) = (Vp)y, (2,y) = Vp(,y) = Vp (un(z) — un(y)) = V; (u(z) — u(y)).

(]
6), with
"), the
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3.1. Caccioppoli-type inequality. We start with the following general estimate containing a free param-
eter of differentiability . This is an iterative scheme which improves the differentiability of u. We notice
that the case s =t =y = 1 formally corresponds to the result (1.1) for the p—Laplacian.

Proposition 3.1 (Differentiability scheme). Letp >2,0<s <1 and 0<t<s. We take B, € BR €Q a
pair of concentric balls and fix

1
0<hy < 1 mim{dis’c(BR;aﬂ)7 R—r, 1}_

We take n a standard C? cut-off function such that

0<n<1, n=1 on B,, n=0 on]RN\B¥, |V7]\§Rcfr, |D277|§(RC_7NT)2.
For every h € RN \ {0} such that |h| < ho and every s <y < 1 we have
lah(un)r <( R >” C 1 Snu ||?
5 Ve N7/ A=) s (B2 (R o sy,

R P —y—t P 1 p
JrC(R—r) ho ([u}ws,umhoﬁs(l_s)}zsp““LP<BR+ho>

LC (BT (REIVT 1 w?
s \R—r R—r (R—s)sPp qu(B#wmvBRJrho)

C Snfll”
RsP |hls

|h|*
for a constant C = C(N,p,A) > 0.

Proof. We take a test function ¢ € W™ (B(g4r)/2)- By testing (1.7) with ¢_j, for h € RV \ {0} with || < hg
and then changing variables, we get

(3.4) Lo [ (otunta) =) (960) = o)) duto) = [ o

We recall that p is the singular measure defined in (3.1). We now subtract (1.7) from (3.4), thus we get

o) [ ] (@) =) = )~ uw)) (¢le) = o) duo) = [ dufpd

for every ¢ € Wi*(B(g4r)/2)- Finally, we insert in (3.5) the test function

(u)? +C(1—-s)7T R

+ Jiﬁ’p(B%;BR)

L?' (Br)

o 5hu p
SD - |h|,y+t 77 )

where 7 is the cut-off function of the statement. We now divide the double integral in (3.5) in three pieces:

(ol (@) = un(v) = Jy(u(@) = u(y)))
w=f ) T (

nu(x) n(2)” = druly) n(y)” ) du(z. ).

(o (un(a) = un(w)) = Jp(u(x) — u(w)) )
Iy = /BR /RN\BR T Snun () n(x)” du(z,y),

and

(ol (@) = un(®) = Jp(uz) — u(w)) ,
L - /| i rauly) 1) du(, ),

We estimate each term separately.
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Estimate of Z;. For the first, we start observing that

(5hu(x) — 5hu(y)>

Snu(e) n(@)” — dnuly) n(y)” = 5 (n@)” +n(wy”)
<5hu(x) + 5hu(y))
+ 5 (n(z)” =n(y)?).

Thus we get

(Jp(uh(x) —up(y)) — Jp(u(z) — u(y))) (((5hu(aj)) n(x)? — (Shu(y)) n(y)p)
> (Jp(uh($) —up(y)) — Jp(u(z) — u(y))) <5hu($) _ 5hu(y)> <W>

n(x)? —n(y)?
|

Jolun(@) = un(y)) = Jylu(e) = u))| (19nu(@)] + Sru(y)])

The first term has a positive sign and we will keep it on the left-hand side. For the negative term, we proceed
as follows: we use (B.2), the definition (3.2) of V,, Young inequality and (B.1) to get

n(x)” —n(y)?
2

Ty(un(@) = un(y)) = Jy(u(z) — uv))| (18ne(@)] + 6u(y)])

<222 (o) = wn o) 5 + fule) = u(y)| %)

< 8wVl )| (1onuta)| + [anay) ) 1T

<< (june) ~ @) +Jula) — u(p)|*5*)”

X (|onu(@) 2 + 1dnu(y) ) |n(@)% = n(y)
+CelonVlw,y)? (n(@) +n(y)”)

< & (june) — "= + (o)~ u)| ') (Sn)? + 51u)P) o)t (o)
+ Ce (Jylun(a) = un(y)) = Jp(ul@) = u(w))) (dnu(@) = dnuy) ) (n(@)” +n(y)"),

2

(NS}

where C' = C(p) > 0. By putting all the estimates together and choosing e sufficiently small, we then get

1 Jp(up(x) —u —Jp(u(z) —u » P
nxg [ R / R (un (@) h(ﬁ’)} B =) (5,0(0) - yu(w)) (n(2)? + (0)") dp(a)

|
0 [ () )5 @) )l %) [t

|Onu(@)|® + [dnu(y)|?
|h|v+t

s
Wk

—n(y)

du(z,y),
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for some constant C' = C(p) > 0. We can further estimate from below the positive term by using (B.4).
This leads us to

z>1//

Snu(z)  Snuly)|”

(n(@)? +n(y)") du(x, y)

a+t "r+f
L
3 6 pP=2 pP=2 2 P r 2
(36) e [ () - @I + o) - w5 @)~ niw)*
Br J/Bpgr
|0nu(@)|* + [dnu(y)|?
) ||+ dp(, y)-
We now observe that if we set for simplicity
é
A= hug) and B = On Qi(iyt)7
|h|™® |h| ">

then by using the convexity of 7 — 7P, we have

() — B = |(a - B) I |y gy 1L o2y e oapp 4 miw))

+ 272 (JAP + |BIP) [n(2) — n(y)I”.

Thus from (3.6) together with the assumption (1.5) on K, we get the following lower bound for 7;

WeP(Bg)
O/BR /BR lun () — un(y)| = +|u(x)—u(y)|7)2 ’Ti(x)g *77(21)%

5hu 24 (5hu 2
< )|h'y+t W) du(z, y)

Sau(@)F 1w\ () — n()l?
O/B/B< W ~+ AP ) Ja g W,

(3.7)

where C' = C(p,A) > 0. We need to estimate the last two integrals. For the first one, by using Holder’s
inequality, again the assumption (1.5) on K, the Lipschitz character of  and some simple manipulations we
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get
p—2 p—z 2 P P
L[ (@) =)l + futa) = u) ) [ofa) - niw)®
Br J Br

Snu(z)]? + |dhuly)|?
LRI

p—2
p

<c [ L (o) =l 4 o) =t 2) du(x,w]

UBR /BR |Gl }Jﬁitfgu( Yl (@)% —ns[

3

dp(z, y)]

< Cul?. 2 l 5hu(x)p ;d d ’
= WP (BRrtng) /BR |h|’YT+t (LR |(E7y‘N+p(5*1) y) :Z;|
< % (7)) gy d]
~R?2s \R—r WeP(Bryng) |1 — g Br |h|w+t

5hu P

’v+t ?

R \" C 1
p
<C[U]WSVP(BR+;"O)+<R—T'> RP1—s LR |h|

for some C' = C(N,p,A) > 0. Thus, from (3.7) by observing that |h| < hop < 1 and that (y +1¢)/2 < ~, we

get
P
1194
L =5 %n
R L f
?(Br)
(3.8) C [u)?, R\’ ¢ 1 / 5}‘7” 3 d
U WSvP(BRJrhO) R —r (R _ T)Sp s (1 _ S) B |h‘7 X
|Onu(x Onu@)”\ In(x) —n(y)”
-C dx d
/BR /B < |h|v+t ) e e
where we also used that R*P > (R — r)*? and that s (1 — s) < (1 — s). By the Lipschitz character of 5, the
last integral is estimated by
) ) P - p
/ / (I nu(z H - hu(zi)tl > n(=) z(i)l d dy
BrJBr \ [P || |z —y|Ntsp
(3.9) P p
c e (B 1 e,
T (R—=r))r \R—7r) s(1—=s) Jp. |7 ’

for some C = C(N,p) > 0. Observe that we again used the trivial estimates R°? > (R — r)°? and
s(s—1) < (s—1), together with hg < 1 and (y+¢)/p <.
It is only left to observe that from the discrete Leibniz rule (2.1), we get

p p p
1) 0 )
|h| > WeP(Bg) A7 Ws.»(BR) |h| 5 W (Bg)

(5hu
’y+t

77‘|
A7 Jwen (B

R \" np " v 1 .
C (R_ 7") (R—T)p <[U]W5’p(BR+}LO) + (1 _ S) RSp ||uLP(BR+;LO)> :

IN

C

_l_
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Observe that by the hypothesis ho/(R —r) < 1 and hg < 1. To get the last estimate, we used the Lipschitz
character® of V7 (recall that n € C2).
By combining this and (3.9), from (3.8) we finally get

p
7, > é 5h(1ﬂ)]
|h| ’ We.P(BR)
3.10 R\ i (1w 1 »
( ) -C (R — T) hy ([U]WS”’(BR+hO) + W Hu||Lp(BR+ho)
C R P 1 / §hu P
— —| dz.
(R—r)s? \R—r s(1—s5) Jp,||h]

Estimate of Z,. By recalling that 7 is supported on B(gy)/2, we have

I > */ /
B(r+r)/2 /JRN\Bg

Then we observe that by basic calculus
[ ) — an () = Ty () = ()| < (0= 1) (fun (@) = un ()|~ + ) — uly)*?)
< |(un(x) = un(y)) — (u(z) — u(y))|
< (=1 (Jun(@) = un() P~ + |u(z) —uly)|P?)
< (|6nu(@)] + |dnu(y)])-

Iyun(a) = (1) = (o) ~ ulo)| PN 0o dute. ).

Using once again the assumption (1.5) on the kernel K, we get

2

— p—2 _ p—2 5
5> _c ( / (&) WP 4 Ju(z) — uly) dy) L]
(3'11) B(R+T>/2 RN\Bg |x o y| |h"T
_ p—2 _ p—2 6 5
o [ ) @) Sl ), ) |8 e,
NN v g 7 IR
where C' = C(p, A). We now estimate each term on the right-hand side separately: for the first one, we have
2
_ p—2 _ p—2 5
[ (], mEwer e e ) e,
B(rtry2 \/RV\Br |z —y|NHer |h| ™2~

P
_ p—2 _ p—2 P2
([ ([, memmer e - )T,
B(riry2 \JRN\Bg | —y|NEsp

P 5
X (/ dm) .
B(R+r)/2

1
16rm(z) — Spn(y)| < |z — /O ‘Vn(ﬂc +t(y—a)+h) = Vn(z+t(y—2)|dt < |z —y||h]|D?n] oo

3We used that
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Then by Jensen’s inequality? and with some simple manipulations, we get

P

_ p—2 _ p—2 p—2
[ ([, 0w ),
Brir \JRN\Bg |z —y|NFsp
2

1
<C / / o) 24,12 ————— dydz,
( RSp) By RN\BR el ) |z —y|Ntsp

for some C'= C(N,p) > 0, where we recall the definition of V,, given in (3.2). For the second term in the
right-hand side of (3.11), we have

_ p—2 _ p—2
[ ([ )=t )= ) g, |85
Brir \J/RN\Bg |z —y|NFep |hl A
— p—2 _ p—2 4 E
([ ([ memwert o et b)),

Brir \/RN\Bg | —y|Ntsp |h|

/ 6hu($)pdm

Bre | R

By proceeding similarly as before, i.e. by using Jensen’s inequality we also have

/

P
Jun (@) = un ()P~ + |u(z) — ()P | dnuly)
s —| dy dx
Brir \JRN\Br |z —y|Ntsp |h|
2
_1 p—2 _ p—2 '
Lo\ (lun(@) = un@)IP=2 + Ju(@) = w@P2)" | 5u0)
<C ( ) / / N : dy dx.
s ReP Bry, JRN\Bg |z — y|NFop |h
Thus from (3.11) we get the following lower-bound
(3.12)
p=2 2
P p P
dy dx Opu
mee () ([ [ (omteme) i )7 (|
? <5R5p) BR+7‘ RN\BR ) |z —y|NVHer Bryr IM%
2

’

1 p—2 p*2p
LG (lun(@) = un@)P = + Ju(@) - u(y)lP~2)
() ([, ] :
s ReP Bri, JRN\Bg |z — y|NFsp

8 /
BR+7‘
2

By a further application of Holder’s inequality with exponents

.
7

5hu(y) ‘p dy dw) !

[hf*

6hu P

W dz

£/zp—1 and =

4With respect to the measure |z — y|~N ~5P dy which is finite on RV \ Bpg, for every € B pir .
2
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the second term in the right-hand side of (3.12) is estimated by

.
7

Snu(y) ’p/ dy dz r
|

AL Ty

p/
Lo () = u)l =+ fute) - ut)p=2)
By JRN\Bg
dy dzx
<C / / nl? + Vol?) ——
By RN\BR Pl ) |z —y[Ntsp

/ / P dy dz
BR+-, RN\BR

|z —y|NFsp
By using this estimate, we obtain for Z, the following lower bound

p—2

5h’LL
Ihlt

2
1 P k) 2 2
nemo (o) ([ [l o) ([ [, 2L
sReP Brer | [R5 Bag Jem\Bn |x—y| 5P
5hu

(3.13) o (Y /
s Rsp BRryr
/ / Snuly ’p dy dx
Brys JRN\Bg |

R[] o —y[NEeP
Observe that the last term is the integral of a nonlocal quantity containing a difference quotient u. By
recalling Definition 1.2 and using that 0 < |h| < hg, we get®

~/BR+r /RN\BR

pdx / / Vo)l + Dal® o
Brge JE¥\Br |$_ y[Ntsp

1
P

B[

5hu
Ihlt

1 C Spu P
dy d Sna. B d
|x—y|N+sp V= Rep /B (W,x R) !
2

C

< P
~ Rsp <u>y§’p(3¥§BR)'

(3.14)

50bserve that
1 R—
= dist (BRH,RN \ BR) — 27" S h,
2 2 4
thus we have

P
sup / Snail( T BR) dr < (u)?,
0<|h|<ho Y B pir |h|t’ ysp(B#;BRy
T2

by the very definition of the latter.
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Finally, for the common V, term in (3.13), we have

dyd x)|P +
Brgr ]RN\BR |z —y|Ntsp By JEN\Bp |33— |N+sp
p p
+0/ [,
Brgr JRV\Br |z —y|Ntsp
<= u|P dx
s (R—r) /]3R+T+h |

1\
+C <> / Snail (u; z; Br)? dx
# Jmgp

1\°?
R} Jpng

for some C' = C(N,p) > 0. Moreover, by the monotonicity properties of Snails encoded in Lemma 2.9, we

have N
. R+ R+ hy 5P
. P p
/BM Snail (v; x; Bg)? dx < C (R_J ( R_r) (u)r P(Bage i)’

2
With a simple change of variables and by observing that

Briryj2 —h C B(ryr)j24hy  Br—h C Brin,,
still by Lemma 2.9 we get again

P
/ Snail (up; z; Bg)* dmzCRsP/ / %dydm
Brir Brir —h JRN\(Br—h) [T —y|NTsP
2 2

N sp
R+m\Y (R+ho )
S O (R—’]") ( R—T ) <u>X (BR+r‘+} 7BR+h0)

By keeping everything together and recalling Definition 1.2, we get

)2+ V2 R+r\"N [R+ho\*" C
dy dzx < P
(3.15) /Bm /]RN\BR Ix— Ty VSR R—r s(R—s)SP<u>X (BRpr g Brino)’

still for C = C(N,p) > 0. By using (3.14) and (3.15) in (3.13) in conjunction with Young’s inequality, we

finally end up with
C 1 opu C 1
SR S % PR B
(R_r)ép S BR+7 |h‘ + (R_r)ép s BR+7-
2 2

R+r\" (R+h\* C , c .
_ jra— R_r S(R*T) < >X (BR+T+h ’BR+h0) _ﬁ«u)y;,P(B%;BR).

Estimate of Z3. This is estimated exactly in the same manner as Zo. We thus get
TREED

I. > C 1/ C 1/

5 —_—— — x—if

YT (R-r)pP s Bage | 0] (R—1)"s Jp,,.
2

_R+rNR+h0 C e, _C
R—r R—r s(R—r)sp u (BR“M \Bring) RSP Uy:,p(3¥;BR).

5hu P

W dx

(3.16)

Il
K

5hu de

(3.17)




HIGHER SOBOLEV REGULARITY 21

Conclusion. From (3.4) we have

5hu
I, < |Z2\+|Zs\+/ﬂ\5hf| ‘W n? dx
R Suf [P’ 1 Shu |P
< Tl + 5]+ -7 TR [ dot s | || o
e o | THI =R Jy, [P

Thus by using (3.10), (3.16) and (3.17) we get the conclusion, by recalling that |h| < ho < 1 and that
ytHt—s=<7,
which follows from the hypothesis t < s < 7. O

Remark 3.2 (Correction factor). Observe that the nonlocal terms (u) yr and (u)y:.» in the right-hand side
(3.3) do not contain the correction factor (1 — s)~1, as it is natural. Indeed, if we multiply (3.3) by (1 — s)
these terms have to disappear in the limit s 1, which corresponds to the equation becoming local.

3.2. Improving Lemma. The proof of Theorem 1.4 is based on a combination of Proposition 3.1 and of
the following result, which is valid for general functions. This simple result is useful in order to handle the
left-hand side of (3.3). Here second order differences and Besov spaces come into play.

Lemma 3.3 (Besov-Nikol’skii improvement). Letp > 2, 0< s <1 and 0 <t <s. Let B, € Bgp € Q) be a
couple of concentric balls. We take n a standard C? cut-off function such that

CN

_ _ N CN 2
0<n<1l, n=1 onB, 7=0 onR"\Bry, [|Vnl< o=, IDUIS(R_T)z.

Let us assume that for some v such that s <~ <1 and some

1
0< hg < 1 min{dist(BR;GQ), R—r, 1},

we have
p
1)
MFY = [ h(':ler?Z)‘| < +OO
0<|h|<ho |h| P Wer (Br)

Then, by setting for simplicity

t
(3.18) = w7

p
we have the Besov-Nikol’skii estimate

-r

(3.19) [0y < C (1= ) My 15" ]

for some C = C(N,p) > 0. In particular, we have the following estimates, for a possibly different constant
C=C(N,p) > 0:

. y[F=1]

(3.20) wp [ < O [(1_5)/\4 +ho P ull }
. o<ihi<ho LA [ Lo,y = (L =T)P T L?(Breng) ]
. if,forevery0<7'<1
onpu P C _
(3:21) sup ||l < e (1= ) My g g,y |
o<nCaa [T | ogs,, = T v+ b Nl
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« [T>1]

(3.22) IVl < IV ey < ey (1= ) My + 557 [l
and for every 0 <7 <I' —1
-1 p
63 Nilbsn, < oy (o) [ 98+ 16l |-
Proof. By using the hypothesis and (2.9) with the choice
_ Onlun)
U

for every 0 < |h| < hg we get
P
1
¢ <5h(3ﬁ)>| dx <C(1—-3s)M,, for every ¢ € RV \ {0}.

/RN n|% )| el T

If we now choose & = h, recall (2.2) and take the supremum over 0 < |h| < hg, we obtain

52 ?
sup / (%ﬁl)‘ dz < C(1—5) M,
0<|h|<ho JRN

|h| 7
By joining (2.3) and the previous estimate we have

-T
[n gy < C |1 =) My g Pl |
where we used the expedient notation (3.18). This proves (3.19). We then treat each case separately.
Case . We now use Lemma 2.3 for U = un), then from (3.19) we get

n(un) ||’ ¢ ~r b
AT < a-1y {(1 —s) M, + (1 + hy p) ||u||Lp(BR+h,O) :

(3.24) sup
0<|h|<ho

Lr(RN) (1-T
By using the discrete Leibniz rule (2.1), the triangle inequality and the Lipschitz character of 1, we have

5h(“’7) b C p—Tp D
" 1l Loy " (R—r)P fo = Pl Bring)

(5hu P

[

(3.25) ‘

<c‘

Lr(By)

for C = C(p) > 0. Then (3.20) follows by using the previous estimate in (3.24) and observing that hy <
(R —r) and that hg < 1.

Case . Let 7 < 1, we begin with the following remark

52 (un)l|”
|h|

0<|h|<ho Lr(RN)

By using (2.5) on the left and (3.19) on the right, we get

Sn(un) ||” <_©
Al LP(RN) (L—7)p

(A8 (1= ) My 4 (hg 7P+ hg” + 1) Jlull,

sup BR+h0)} ,

0<|h|<ho

possibly with a different constant C = C(N, p) > 0. Finally, we use again (3.25) to remove the dependence
on 7 and the fact that hy < 1.
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Case . We first observe that due to the restrictions on the parameters, we always have I' < 2. Then
we use Proposition 2.4 with ¢ = un and from (3.19) we get

1—s)M _
IV e, < €[S + @05 Nl 5,0 -

By recalling that n = 1 on B, and observing that (I' — 1) < 1, we get (3.22). As for (3.23), we observe that
still by Proposition 2.4 we also have
SnV(un) < C

T ey = =TT =17
If we now apply Proposition 2.7 to the compactly supported function ¢ = V(u7) and the exponent 8 =T'—1
we get

(1—8) My +hg "7 ||l

sup
0<|h|<ho

P
LP(BRJrho)} ’

[VU]’éVT,p(Br) < [V(u n)]@vf,p(mw)

h((JF—l—‘r)p
<C|—=——— sup
r-1-r 0<|h|<ho

6V (un) |I” o ¥

hO
T + IV )z, ;
|h|r_1 Lr(RN) T Lr(RY)

for every 0 < 7 < I' — 1. The right-hand side is now estimated by appealing to the previous two estimates,
thus we conclude the proof with standard manipulations. O

4. PROOF OF THEOREM 1.4

Let R > 0 and Br € Q, we want to prove the estimates (1.9) and (1.10)-(1.11) on the ball Bg/,. Without
loss of generality, we can assume that Bp is centered at the origin. Observe that if we consider the rescaled
functions

ugp(x) =u(Rx) and fr(z) = R°?P f(Rx), reRQ,
then up € W P(R™1Q) N YEP(R™1Q) is a local weak solution in the rescaled set R~! ), with right-hand
side fr. Thus we just need to estimate
t+sp
-1’

[urlwrr(B, ) for every 7 <

or
t+sp p-—1

p

[Vurllze(s, ) + [Vurlwre(B, ) for every T <

The desired results will be then obtained by scaling back.

4.1. The general scheme. As explained in the Introduction, the desired estimates are proved by means
on an iterative scheme. First of all, we define the sequence

i +t+sp
(4.1) Yo =S, Yi+1 = %
We observe 7; is strictly increasing and
. t+sp
4.2 1 ;= .
(4.2) =
We take any index ig € N\ {0} such that
Yio—1 < 1,
the precise choice of iy will be done below. We define the decreasing sequence of radii
3 11
=== — i€ {0,...,00}.
L R U

Accordingly, we consider the concentric balls B, and observe that

B?"(J = B3/4 and B = B1/2.

Tig
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We point out that by construction, we have

1 1 r; .
(43) Ty —Tig1 = 471'07 5 <r; <1, and m < 41ig.
Then we define
1
4.4 ho =
(44) %7 1004,

thus with such a choice we have
1
ho < 1 min {dis‘c(B”,a(R_1 Q)),ri — Tit1, 1}, 1=0,...,9— 1.
Finally, for every i € {0,...,i9 — 1} we choose a standard cut-off function n; € C3(B,,) such that

0<n <1, =1 onbB,, , 17,=0 oanN\BriJrri+17
2

IV?%| < CiN = 4CN ’L'O and |D2’Iﬂ < N

5 =16cn i
Ty — Tit1 (ri = Tiv1)

By taking into account (4.3) and (4.4), for every 0 < |h| < ho by Proposition 3.1 with simple manipulations
we get (recall the definition of hg and that 7o > 1)

[%(UR 7i) ’

|h”T+”

p
o

- (1—3)320

OhuR
‘h|71

‘| WeP(By,) L?(Br;)

, 1
D—"Yi—1 p p
+ OZO <[UR]WS’p(BT‘i+hD) + s (1 — S) ||UR||LP(BT7;+hD)>

45 || onfr P
(4.5) +C(1—s)7T hff
|h| L?'(Br,)
C N+2p, \p
+ ; ) <UR>X£(B ”Jr;i_*_l +h0’BTi+h0)

+ C(ur) .., i=0,...,io— 1.

s (B ritritl ;Bri)’
2

for some C'= C(N,p) > 0. Before going on, we try to simplify the previous estimate.

By construction By, p, C By for every i =0, ..., iy, then by Proposition 2.6 (local case) we get
a1 onfr v C , , 1 ,
4.6 (1—-s)7T sup < —(1—s" fRP . +———|IfzI%, ’
(4.6) LS v T ) |Urlty 5y + 5757 o

where we used again that hg < 1. Also, by the monotonicity properties of Lemma 2.9

p :N+p p
(4.7) <“R>x;’(3”+ri+lMO,B,MO) < Cig " (ur)yr 5y )

2

Finally, by observing that

Ty —Ti+1 - 1
4 164,

IN

%dist (B%,RN\B”) - L dist (B%RN\B%),

1 p—
16 2
by (2.17) with the choices

KIZBTH'THU ElzBria K, = Bs, E; =B
P

)

W
oo~



HIGHER SOBOLEV REGULARITY 25

we get
) .+ [ Onur g
(ur) i p B B.) sup Snail ﬁ;x’BTi dz
Vs ( TitTig1 Tz‘) Ti—Tid1 B |h’|
48) gt O<hl< ==t P ritrigs
.8
P
N4 Onur
S <UR>§)t,p(BB.B7)+CZO b sup hlt ’
s 357 0<|h|< & |l L?(Bz)
8

for some C'= C(N,p) > 0. The last local term can be further estimated by Proposition 2.6 (local case) as
follows (recall that ¢ < s)

p
I e ST L
By using (4.6), (4.7), (4.8) and (4.9) in (4.5) and observing that
ho—p’ < Cig (N+P)7 izov—%—t < Cig (Ner)7 ié\fﬂ) < ig(Nﬂ?)’
for every 0 < |h| < hg we obtain
P
(4.10) [W] < C v |%ur ’ + iy ™M Ay (ug, fr),  i=0,...00 1,
10 I P (I—s)s % Nl e s,,)

where A; is the quantity defined in (1.8). In what follows, for simplicity we just write A; in place of
A1 (ug, fr). Observe that A; < 400, thanks to the assumptions on u and f.
We now set

P
6 i . .
M, = sup [W] , 1=0,...,7 — 1,
e T U )
and claim that
(4.11) M, < +oo, for every i =0,...,i9 — 1.

This is true by a finite induction: for i = 0, by combining (4.10) and Proposition 2.6 (local case) we get

C 2P 1
M’Yo < 0

v P 3 (N+p)
i Tg [[UR]WS‘p(Bl) + m HU‘R”LP(BI) +C1i Ay,

where we used again that By,4n, C Bi. Thus the claim is true for i = 0. Also, by using the definitions (1.8)
and (4.4), we can infer

C
(4.12) M., < ?02-3(1\#17) A,
where as usual Cy = Co(N,p) > 0.
Let us now assume that M., < 400 for an index®i € {0,...,i90—2}, then we can use Lemma 3.3. Namely,
by combining (3.20) and (4.10) we get
Ci2? CiP . it 3 (N
M. < 0 _ 0 Yit1p 0 p C'(+p)A,
Vigl — s (1 — ’Yi—i—l)p Yi + (1 — 'Yi+1)p 0 s (1 — 5) HuRHLP(Bl) + () 1

where C is a possibly different constant still C' = C'(N,p) > 0 and we used the relation between +; and 7;41.
This in turn shows that M < 400 and thus the validity of (4.11).

Yi+1
As before, at first we try to simplify the previous estimate. Observe that
P
—Yit1p o p 2p . _
ho m”uHL”(Bl)SCZO Ai, 1=0,...,%0— 2,

60f course, if 49 = 1 there is nothing to prove.
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where we used the definition (4.4) of hg and the fact that v;41 < 7;,—1 < 1. From the previous discussion
and (4.12) we thus obtain the iterative scheme

1

C
M, < ?Oig(NJFP) A
(4.13) O, 2P 3 (N+p)
1% M + CQ )
s(I—v)? " " (T=7iq1)?

where C; = C1(N,p) > 0 and Cy = Co(N,p) > 0. It is intended that the second estimate in (4.13) is void
when 79 = 1.

M A, fori=0,...,ig — 2,

Yit+1 —

4.2. Case t+sp < (p—1). We fix a differentiability exponent
t+sp
p—1’
as in (1.9), then the index ig € N\ {0} above is chosen so that

s<T<

T < < 1.

This is possible thanks to (4.2). We observe that ;41 < v, < 1 for every i = 0,...,i9 — 1. By using this
observation in (4.13) and iterating, we get

i0—1
4 igp Co 3 (N+p)
) <| — —
M'ylof1 —= (S(]_ _’Y»L'O)p s ) Al

io—2 2p  \° 3 (N+p) io [ 3(N+p) \
X s ) | |Gl = (2) ()

i—0 s (1 - ’7i0)p (1 - rYio)p s (1 - 7i0)p
where C5 = max{Cy, C1, Cq, 1}. We are ready to perform the final step. We use again Lemma 3.3, then
(3.19) and (4.14) yield the Besov-Nikol’skii estimate

(4.14)

CS Z.g(N-H,) 10 s
[ur mo—l]fgwo,p(w) <C s L—)? (L—s5)Ar+hy HURH]Zp(Bl)
The left-hand side is estimated from below thanks to (2.4), thus we get
o (ur iy 1) ||” C Cy g™ Y -
sup w < —— 73071) (1—s) Ay + hyo? ”uR”ip(Bl)
0<|h|<ho |h|Yio LP(RN) (1 — i) s (1 =)
By recalling that ig has been chosen so that v;, > 7, by applying Proposition 2.7 we get
(Yig—T) P 3(N+p) \ " —Yig P
ho *° C Cs i °
) P 0 3 o _ 0 P
o mo_l]WT’p(RN) : Yie =T (1= )P ( s (1- %‘o)p> d=e)dt T HuRHLT’(Eh)

On the other hand 7;,—1 =1 on B% = By /3 and by definition of hg

h_%ﬂop (1 o 8)
O funlfy s, < C

i A

Thus we conclude with the estimate (we use that 7 > s and again hy < 1)

1 04 ig(N+p) to+1
p
(415) [UR]WT”’(BI/” = ('Yio - T) ? (1 - ryio)p (1 N S) Al’
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where Cy > 0 as usual depends on N and p only. We now scale back in order to catch the desired estimate
for w in Br/;. By recalling the definition (1.8) of A;, from (4.15) with a simple change of variables we
exactly get (1.9). The constant C; appearing in (1.9) is given by

1 Cy ig(Ner) o
C = — .
P (i - s (M=)

4.3. Case t+sp > (p— 1). We still consider the sequence {v;}ien defined by (4.1). Observe that in this
case

t
lim v; = +sp > 1.

1— 00 p—l

Then this time the index ig € N\ {0} is chosen so that

:’Yi0—1+t+=9p >

Yig—1 < 1 and Yio » 1,
which is feasible. From the scheme (4.13), by using that viy1 < vi,—1 < 1fori=0,...,ig — 2, we get
Cs 0 i3 (N+P) o
4.16 M, <= —0 | A,
(4.16) o = (2) (O_%l)p 1

exactly as in (4.14) and the constant C3 is the same. We need to make a distinction between two possible
cases

Yip > 1 or Yip = 1.

Case . Since v;, > 1, we can apply (3.22) of Lemma 3.3 and get (recall that kg < 1)

IVl 2y < 19 7y 2) 2
C —PYig
< (= 1) (L=s) My, +hg
which shows that ||Vug||rr(s,,,) < +oo. By using (4.16) in the previous estimate and the definitions of hg
and of Aj, we end up with

[l )]

I9urll 5, 2y < 19 i) [ e,

(4.17) o <C5 B (V4

S ('Yio - l)p S (1 — ’Yio—l)p> (]‘ - S) Alv

where C5 = C5(N,p) > 1. By going back to the original solution u with a scaling, we get (1.10) with the

constant Coy given by
io+1
c 1 Ce ’Lg (N+p) 0
2 = I 5
(vio =1)P s (1 —73p-1)P

and Cg = Cg(N,p) > 0 as usual. We still need to prove the fractional differentiability of the gradient.
Observe that if we directly apply estimate (3.23) of Lemma 3.3 with v;,_1, we would get the weaker result

[Vugrlwro(B, ) < +00, for every 7 < 7;, — 1.

Thus, we have to proceed differently. We start by observing that for the compactly supported function
UN;,—1 We have
‘5h(uR77i0—1) b

B < IV (R g1 170 vy -

Lr(RN)
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By using again (3.25) we also obtain

Shur||”

4.18 sup
(4.18) ]

0<|h|<ho

<C HV(UR 777;0*1)“1[7/17(]]{1\7) + Ch(;p ||UR||Z£p(Bl)-

LP(BTiofl)

We can now use Proposition 3.1 in the limit case v = 1, this gives

p
On(up m;—
Ml = sup [h( RE 1)]
) TR PP
C ) P
< — igp sup ontR + Cig (N+p) A
(1—-s)s 0<|h|<ho |h‘ LP(By, —1)

By combining (4.18) and (4.17), M; can be further estimated by

io+1
05 Zg (N+p) 0 A
s (1 =1ip-1)? (o — 1)P

Then by using estimate (3.23) of Lemma 3.3 for v = 1 and the previous inequality for My, we get

q i0+1
BT C C 5, (cf) B\ N
)P (

C 4
Ml = 7Z0p
S

p <
Vsl < T =7 o= |5 \ s 0-mm Yo =17

-
+h0 pHuRHip(Bl) ’

where I' = (1 + ¢ + sp)/p. The usual elementary manipulations used so far then give

042
[Vurly e-D)r@-n (e g™ N\ 1-s
URIWr (B, ,5) = T-1-7)7 5 (1 —=y-1)P (Vie — 1)P .

By scaling we get (1.11) as desired, with the constant C3 given by

i0+2
c 07 Z-g(N-H)) 0 1
3=\ 5
s (1 =ig—1)P (Vie — 1)P

and C7 > 0 depending on N and p only. This concludes the proof in the subcase ~;, > 1.

Case . This case is subtle, due to the fact that BL? ¢ W1P. Rather than jumping directly from

the ball B;, , to the final one B,, as before, we need to slightly “rectify” the scheme.
First of all, we introduce the intermediate new ball

Bno € B := B"'i0—1+37'i0 c B1-130+r,i0,1 c BT1071.
I 2

Then we replace the cut-off function n;,_1 € C? (Br,,) with the new one 7 such that

0<n<l, n=1 onB, n=0 OHRN\B%JF%,I,
Tigtrip-t

/ /

Vi < — N and D7) < 07N2
Tio—l - Tio (Tio—l - Tio)
Finally, we set
P
vi Sn(upn)
M’Yzio—l = sup Tig—1+t

0<|h|<ho |h| > WSvP(E)
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We now proceed by iteration as in the proof (4.16), but in the last step we replace (4.13) with
~ Crig” Cyig M7
M, <—"9 M, =0 A
Yig—1 — S (1 _ ’Yio—l)p Yig—2 + (1 _ 'Yio—l)p 1

The latter can be proved as before by combining (3.20) and (4.10). Thus this time we get

- Co\ [ B\
) < | — —_ .
M%O_l o < S ) <(1 _’yio—l)p Al

An application of estimate (3.21) of Lemma 3.3 gives’

P
C —

<—— |(1=s)M,, _, +hy" |url?, :
Lp(g) (1*5)17 |:( ) Yig—1 0 H RHL (Bl)

for an arbitrary 0 < 8 < 1. We now apply Proposition 3.1 with balls B,, & E, this would give as at the
beginning of the proof

6huR
sup 7|h|f8

0<|h|<ho

P
) C S p
7'1(”5137) < i2P ”“f +Ci2MF A0 < || < ho,
05 e (9)S bl Loy
where 7 is as usual a C? cut-off function, such that n =1 on B, = Bi/2. By choosing B < 1 such that
t
Britsp
p

we are then reduced to the previous subcase 7;, > 1. The proof can then be concluded accordingly. We
leave the technical details to the reader.

Remark 4.1 (The number of iterations ip). All the estimates above crucially depends on the number of
iterations ip € N\ {0}. In particular, all the constants blow-up as ig goes to co. It is thus useful to recall

that if we set
t+sp

-1’

k= k(t,s,p) =

the sequence {v; };en has the following explicit expression
1 t4spe (1 1 1
vi=— s+ +pz<‘>,s+n<1,>, ieN.
P’ po= A\ P P’

Then in the case’t—l—sp <(p-1)

| the exponent i is given by (recall that s < 7 < k)

In(x — ) — In(k — 7) }

io—min{iEN D>
Inp

while in the case ’ t+sp>(p—1)

, this is given by

iozmin{iEN:iz

In(k —s) —In(k — 1)
Inp } '

and we have In ) n D
n(k —s) — In(k —
Yip =1 — np e N\ {0}.

7"Observe that by construction the difference of the radii of the two balls B and Brio—l is such that

Tig—1 +37 _ 3, o _ 3
4 =5 (rio—1 71“’)_161'0

Tig—1 — > 4 hg.
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4.4. Robust estimate for s /' 1. We now reprove (1.10) and (1.11), this time for s sufficiently close to
1 and with an exact control on the constants. In other words, we want to prove the estimates (1.12) and
(1.13) claimed in Remark 1.5. We still denote by ug the scaled solution. Let us thus fix £y > p and consider
0 <t < s <1 such that

t+sp+1)>4o.
Observe that sequence {v; }ien defined is (4.1) is such that
_t+s(p+1) > by
p p
thus i = 1 and we can conclude in one step, i.e. there is no need to iterate the estimate, exactly like in the
case of the local p—Laplacian. By using estimate (3.22) of Lemma 3.3 and (4.19), we immediately get

(4.19) > 1

)

C _
IVurllzoa,) < 19 un )l < o [(1=8) Moy 057 url o,
This leads directly to (recall (4.12) for M)
[Vurlioo,,) < o (1) A
RIL#(Br) = (0 p)p Lt

By scaling back we get (1.12). As for the fractional differentiability of Vu, we can reproduce the final step
of the case t + sp > (p — 1) above. That is, we use (4.18), i.e

Spur ||
Al

sup
0<|h|<ho

< ClIV(ur o= p@yy + Cho? lurlfsp,)
L¥ (B, )

then Proposition 3.1 in the limit case v = 1 and once more estimate (3.23) of Lemma 3.3. We omit the
details.

4.5. A note on more general lower order terms. We spend some words on the case of the more general
equation

(4.20) (—A, k)’u = f+ ®(u),

where ® : R — R is a locally Lipschitz function. This in particular embraces the case of eigenfunctions of
(—Ap)%, corresponding to f =0, K(z) = |z|N**P and ®(t) = A [t|P~2¢ for some A > 0. This nonlinear and
nonlocal eigenvalue problem has been first introduced in [21]. For more general nonlinearities ®, we address
the reader to [12] for the existence theory.

It is not difficult to see that Theorem 1.4 still holds for local weak solutions u € WP () N YLP(Q) of
(4.20) such that

u € L5 ().
Indeed, the only difference with the proof of Theorem 1.4 is the presence of the additional term in the

right-hand side of (3.3)
5hu
| 1ot - st [t e

This is of course a lower-order term, indeed it can be estimated as follows for 0 < |h| < hg < 1

(4.21) /I‘I’(Uh) u)] ’|h|v+t fdvsl /BR+

where
L= sup [®'(¢)] and M = |lul| o (By)-
fe[_MaM]

onu

vEt

[h|™=

Onu |
|h[7

2
dr <CLRN +C
Br

dx,
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The last term in (4.21) already appeared in the right-hand side of (3.3). Thus, the proof of Theorem 1.4 can
be reproduced verbatim. Accordingly, estimates (1.9), (1.10) and (1.11) still hold for bounded local weak
solutions of (4.20), with the term Ag(u, f) defined in (1.8) replaced by

AR (u, f) == Ag(u, f) + LRY,

and L is as above. Remark 1.5 about the quality of the relevant constants still applies.

APPENDIX A. PROOF OF PROPOSITION 2.4

The proof is essentially the same as [27, Chapter 5, Section V, Propositions 8 & 9’]. The only difference

is the use of the heat kernel, in place of the Poisson’s one®.

Proof. We introduce the heat kernel

foalw) = (47r1t)2‘] P (_Zl:> ’

then we set

W) = Ky (z) = exp (2N by ay.
ol =Krvle) = e [ e (<) w)

(4mt)* at
Observe that by the semigroup property of the heat kernel we have
Kirs = Ki % Ks,
thus we get
(A1) QVMJ = (VKy/3) * 91/)
. gt V= t/2 g2 )

where V denotes the gradient with respect to the x variable. In order to estimate the right-hand side of
(A.1) for t > 0, we observe that”

C 0

X
VICt/g(a:) = 7 Kt/2($)a HV’Ct“Ll(RN) < %; on a’ct(y) dy =0
P B P 1 BE
a’ctm(ﬁ) = alct/z(*x)a ‘875 ’Ct/2($)‘ < 27’@&/2(1’) T NJ.

Thus we get

G0 =5 [ 5 Kuato) [pla+9) + 0l —9) - 20()] dy

From this, by Minkowski inequality we obtain

; /
S —
LP(RN) 2 Jry

1 0
< 5 Wluzomny [ | Sato)| bl ay

9
ot

d
Lr(RN) y

0
Hat%/Q

/ct/z(y)’ [0y + vy — 24|

\
N

iW]B‘”’ RN / ICt/2(y) @_N ly|* dy.
4t BETEY) t

IA

8In [27] the space BLP is noted by A%,
9We have

&Kt (I) = ’Ct (LE)

d lz2 N
42 2t
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With a simple change of variables, this gives

< ClYlszr@y) (/RN Ki(z) ‘\ZI2 - N‘ IZI“dz> p5-L

0
Ewtﬂ

Lr(RN)

Observe that for 1 < a < 2
/ K1(2) 217 — N2 dzg/ K1(2) || ~ N |z\dz+/ K1(2) |21 — N 12 dz,
RN {lz<1} {lz>1}
and the last two terms depend only on IV, so that in conclusion

o o
(4-2) Hé%%fz < Cllpar@vyt?

Lr(RN)
for some C'= C'(N) > 0. Then from (A.1) and (A.2) we obtain for every ¢ > 0
s

(A.3) 5 VU < C[Y]par@nyt 2 .

0
S ||VICt/2HL1(RN) Hatl/}t/Q

Lr(RN) Lr(RN)

We now integrate the previous inequality on the interval (s, 7), by Minkowski inequality again we get

0
7 Vb

9 T
||V¢T - vwsHLp(]RN) = ‘ / 5th dt S/ 9 dt
(A.4) S t LP(RN) s t LP(RN)
2C a—1 a—1
< 22 ) ga =)
T a-—1 GES (RY) (T N )

Since a > 1 by assumption, this shows that {Vi;}o<¢<1 is a Cauchy net in the complete space LP(RY).
Thus there exists a sequence {tx }ren C (0,1) converging to 0 as k goes to 0o, such that {V, }ren converges
strongly in LP. The limit function is the distributional gradient of . Finally, this shows that V¢ € LP(RY).
Moreover, by taking the limit in (A.4), we get the estimate

2C 2C
VYl e @yy < VY1l Lo@yy + P [W]gar@yy < CllYlr@yy + ~_1 [¥]BeP (&Y
which is (2.7).
Once the existence of Vi in LP is established, we can now prove (2.8). We first need a decay estimate on
the hessian D?1);. For this, we observe that

_ K@) [:r ®x

Q

|D2ICq ()] -

<=5 o IdN] and D KCe|| 11y <

Then of course we have

C
(A.5) [ D3¢l Lo vy < 7 |1l e @y -
Similarly as before, we can write

0 0
EDQW = (D*Ky)2) * <at¢t/2) )

then for every t > 0 we get

a—4
< ClYlper@emyt 2 .

fs
ot Lr(RN)

0
< HDQK:t/QHLl(]RN) H@twtﬂ

Lr(RN)

By integrating this estimate between s and T > s, as above we get

C a—2 a—2
102, ey < ID*orll o) + 5= Wlsgren) (75 —T°7).
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By recalling that o < 2, using (A.5) and taking the limit as T' goes to oo, we get the desired decay estimate

c a=2
(A.6) [ D>t o mvy < 54 [Y]ger@yy s 2 .

Let h € RV \ {0}, by using that 1, converges to 1 as t goes to 0, we have

t
0
(A7) 0V = 6, Vihy — / 75 (6nV1)s) ds.
0
By using the smoothness of 1;, we can write
Ikl g4 h || h h
) = — — 1) dr= D? —7) —d

o= [ g (o ) dr= [0 (o ) g

which implies

|h‘ C a—2
10T ulrany < [ 1D llnuy dr < 5 Wl 1177
0 -

thanks to (A.6). On the other hand, by triangle inequality and invariance of the LP norm by translations,
we have

9
Os

a=3
< C[’(ﬁ]ggo,p(RN)S 2,
Lr(RN)

0
Has (6hv"/}s) V"/}s

<2

Lr(RN)

where we also used (A.3). We can now use the two previous estimates in conjunction with (A.7), so to get
¢
0
155y < WnTlusem, + | [ 55 G700 as
0

h a=2 ¢ a=3 h a=2 2 a—1
SC[w]B:O»P(RN) |:2|—at 2 +/O s2 ds] Zc[lﬂ]B;P(RN) %t 2 +mt 2

for some C'= C(N) > 0. The previous estimate holds for every ¢ > 0 and the right-hand side is minimal for
t = |h|?/4. With such a choice we thus get

oV C
T ey = B ey @) e

as desired. O

Lr(RN)

APPENDIX B. POINTWISE INEQUALITIES
For p > 2 we define the functions J, : R =+ R and V,, : R — R by
L) =tP"2t,  and V() =" ¢
Lemma B.1. Let p > 2, for every a,b € R we have

(B.1) (30~ 50) @02 01 (2) i - o1

Proof. Since J,(a) — J,(b) and a — b share the same sign, we can assume without loss of generality that
a >b. If a = b there is nothing to prove. Let us assume that a > b, then we have

() = 50) (0= 0) = = 1) ([ 1p=2ar) (o= vy

b 2 2
> (p-1) </ |t|”zdt> —(p-1) (;) V(@) — Vy(B)]2.

which concludes the proof. (Il
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Lemma B.2. Let p > 2, for every a,b € R we have

P02 4 2R (V(a) —
(B.2) Tola) = Jp®)] < 252 (Ial + 11" ) Vyla) = V0]

Proof. For a = b there is nothing to prove. Let us consider the case a # b, without loss of generality, we can
suppose that a > b. We set

Git)=1t|""t, teR,

by basic calculus we have

G <|a|pT_2 a) e, (|b|¥ b) < max {G’ (\a|‘%2 a) e (\b|"%2 b)} (vp(a) - vp(b)).

By observing that

G (107" ) = 12,

we get the conclusion. O

Lemma B.3. Let p > 2, for every a,b € R we have
(B.3) Vi(@) =V, (0)* > |a—bJP.
In particular, we also get
2\ 2
(B.4) () = H0) (0= 0) = 0= 1) (2] faop

Proof. Observe that if a = 0 or b = 0, the result trivially holds. Thus let us suppose that a b # 0 and observe
that the function F': R — R defined by

H(t) = [t 7" 1,

is 2/p—Holder continuous. More precisely, we have

[H(t) — H(s)| < [t—s]?,  tseR

By applying the previous with

t="Vp(a) and s =Vp(b),

we get (B.3). The last inequality (B.4) follows by combining (B.1) and (B.3). O

(1]
2]

(3]
(4]

(5]
g
(8]
[9]
(10]

[11]

REFERENCES

R. A. Adams, Sobolev spaces. Pure and Applied Mathematics, 65. Academic Press, New York-London, 1975. 5

F. Andreu, J. M. Mazé6n, J. D. Rossi, J. Toledo, A nonlocal p—Laplacian evolution equation with nonhomogeneous
Dirichlet boundary conditions, SIAM J. Math. Anal., 40 (2009), 1815-1851. 2

C. Bjorland, L. Caffarelli, A. Figalli, Non-Local Gradient Dependent Operators, Adv. Math., 230 (2012), 1859-1894. 2
J. Bourgain, H. Brezis, P. Mironescu, Limiting embedding theorems for W5? when s — 1 and applications, J. Anal.
Math., 87 (2002), 77-101. 7

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential
Equations. A Volume in Honor of Professor Alain Bensoussan’s 60th Birthday (eds. J. L. Menaldi, E. Rofman and A.
Sulem), IOS Press, Amsterdam, 2001, 439-455. 7

L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458. 5, 10

L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p—Laplacian, to appear on
Discrete Contin. Dyn. Syst. (2015), available at http://cvgmt.sns.it/paper/2649/ 7

E. Chasseigne, E. Jakobsen, On nonlocal quasilinear equations and their local limits, preprint (2015), available at
http://arxiv.org/abs/1503.06939 2

M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces, preprint (2015), available
at http://www.ma.utexas.edu/mp_arc/c/15/15-50.pdf 3, 6, 7

A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p—minimizers, to appear on Ann. Inst. H. Poincaré
Anal. Non Linéaire (2015), doi:10.1016/j.anihpc.2015.04.003 2, 3

A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836. 2



(12]
(13]
(14]
(15]
(16]
[17]
(18]
(19]
20]

(21]
(22]

23]
[24]
[25]
[26]
[27]

28]
(29]

HIGHER SOBOLEV REGULARITY 35

A. Tannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional p—Laplacian problems via Morse theory,
to appear on Adv. Calc. Var. (2015), available at http://arxiv.org/abs/1403.5388 30

A. Tannizzotto, S. Mosconi, M. Squassina, A note on global regularity for the weak solutions of fractional p—Laplacian
equations, preprint (2015), available at http://arxiv.org/abs/1504.01006 2

A. Tannizzotto, S. Mosconi, M. Squassina, Global Holder regularity for the fractional p—Laplacian, preprint (2014),
available at http://arxiv.org/abs/1411.2956 2, 3

H. Ishii, G. Nakamura, A class of integral equations and approximation of p—Laplace equations, Calc. Var. Partial
Differential Equations, 37 (2010), 485-522. 2

M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential
Equations, 34 (2009), 1-21. 2

T. Kuusi, G. Mingione, Y. Sire, Nonlocal self-improving properties, to appear on Anal. PDE, 8 (2015), 57-114. 3, 6

T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. 2
T. Kuusi, G. Mingione, Y. Sire, A fractional Gehring lemma, with applications to nonlocal equations, Atti Accad. Naz.
Lincei Rend. Lincei Mat. Appl., 24 (2014), 345-358. 3, 6

E. Lindgren, Holder estimates for viscosity solutions of equations of fractional p—Laplace type, preprint (2014), available
at http://arxiv.org/abs/1405.6612 5

E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826. 30

G. Mingione, The Calderén-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl.
Sci., 6 (2007), 195-261. 6

G. Mingione, The singular set of solutions of non-differentiable elliptic systems, Arch. Rational. Mech. Anal., 166 (2003),
287-301. 2

A. Ponce, A new approach to Sobolev spaces and connections to I'—convergence, Calc. Var. Partial Differential Equations,
19 (2004), 229-255. 7

A. Schikorra, Nonlinear commutators for the fractional p—Laplacian and applications, preprint (2015), available at
http://arxiv.org/abs/1506.02380 3, 6, 7

Y. Sire, E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equations,
34 (2009), 765-784. 2

E. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30. Princeton
University Press, Princeton, N.J. 1970. 9, 31

H. Triebel, Theory of function spaces. II. Monographs in Mathematics, 84. Birkhauser Verlag, Basel, 1992. 9

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. 2

(L. Brasco) AIX-MARSEILLE UNIVERSITE, CNRS

CENTRALE MARSEILLE, 12M, UMR 7373, 39 RUE FREDERIC JoLiIOT CURIE
13453 MARSEILLE, FRANCE

E-mail address: lorenzo.brasco@univ-amu.fr

(E. Lindgren) DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY
10044 STOCKHOLM, SWEDEN
E-mail address: eriklin@kth.se



	1. Introduction
	1.1. Aim of the paper
	1.2. Some expedient definitions
	1.3. Main results
	1.4. Comments
	1.5. Plan of the paper

	2. Preliminaries
	2.1. Notation
	2.2. Besov-type spaces
	2.3. Gagliardo seminorms and finite differences
	2.4. Special spaces

	3. Basic estimates
	3.1. Caccioppoli-type inequality
	3.2. Improving Lemma

	4. Proof of Theorem 1.4
	4.1. The general scheme
	4.2. Case t+sp(p-1)
	4.3. Case t+sp>(p-1)
	4.4. Robust estimate for s1
	4.5. A note on more general lower order terms

	Appendix A. Proof of Proposition 2.4
	Appendix B. Pointwise inequalities
	References

