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Abstract

Polycrystalline aggregates lacking four independent systems for the glide of dislocations
can deform in a purely viscoplastic regime only if additional deformation mechanisms
(such as grain boundary sliding, diffusion, . . . ) are activated. We introduce an im-
plementation of the self-consistent scheme in which this additional physical mechanism,
considered as a stress relaxation mechanism, is represented by a nonlinear isotropic vis-
coplastic potential. Several nonlinear extensions of the self-consistent scheme, including
the second-order method of Ponte-Castañeda, are used to provide an estimate of the
effective viscoplastic behavior of such polycrystals. The implementation of the method
includes an approximation of the isotropic potential to ensure convergence of the attrac-
tive fixed-point numerical algorithm. The method is then applied to olivine polycrystals,
the main constituent of the Earth’s upper mantle. Due to the extreme local anisotropy
of the local constitutive behavior and the subsequent intraphase stress and strain-rate
field heterogeneities, the second-order method is the only extension providing qualita-
tive and quantitative accurate results. The effective viscosity is strongly dependent on
the strength of the relaxation mechanism. For olivine, a linear viscous relaxation (e.g.
diffusion) could be relevant; in that case, the polycrystal stress sensitivity is reduced
compared to that of dislocation glide, and the most active slip system is not necessarily
the one with the smallest reference stress due to stress concentrations. This study re-
veals the significant importance of the strength and stress sensitivity of the additional
relaxation mechanism for the rheology and lattice preferred orientation in such highly
anisotropic polycrystalline aggregates.
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1. Introduction

Physically-based scale transition models are essential to establish the relation be-
tween the microstructure of polycrystalline aggregates and their effective viscoplastic
properties. The accuracy of predictions is a key parameter to understand and model
texture evolutions and the induced effective anisotropy. On the one hand, full-field ap-
proaches based on crystal plasticity have been proposed to compute the response of
specific microstructures, using the Finite Element Method (see, e.g. Sarma and Dawson,
1996; Bhattacharya et al., 2001; Kanit et al., 2003) or Fast Fourier Transforms (FFT;
acronyms used in this paper are listed in Table 1) (see, e.g. Moulinec and Suquet, 1998;
Lebensohn, 2001). Despite the development of novel and very efficient methods such
as FFT, the size of simulated representative volume is limited, and computations are
CPU demanding. On the other hand, mean-field approaches such as those based on
the self-consistent (SC) scheme, rely on a statistical description of the microstructure
and are very powerful for the prediction of the effective behavior and the development
of Lattice Preferred Orientation (LPO) at large overall strain. For nonlinear behavior,
the main drawback is the necessary linearization of the local constitutive behavior that
can critically affect the results consistency (see Ponte Castañeda and Suquet, 1998, for
a review).

In this work, we will focus on the effective viscoplastic behavior of polycrystals lacking
four independent slip systems. The vast majority of minerals constituting the Earth’s
mantle, such as olivine and pyroxenes, belongs to this class of materials (Karato, 2007).
Similarly, many synthesized materials, such as semi-crystalline polymers (see,e.g. Bow-
den and Young, 1974; Argon, 1997; Seguela, 2007), do not exhibit four independent slip
systems. It is worth noting that five independent slip systems are necessary to accom-
modate any arbitrary plastic strain at the local (i.e. grain) scale - this is the so-called
von Mises criterion. However, SC estimations (Hutchinson, 1977; Nebozhyn et al., 2000)
but also full-field computations (Castelnau et al., 2008a; Lebensohn et al., 2011) have
shown that four independent systems are sufficient to ensure the polycrystal to deform
as a whole, i.e. to guarantee a finite flow stress for any prescribed overall strain-rate.

The kinematic constraints induced by the lack of four independent slip systems lead
to an indetermination of part of the deviatoric stress tensor. Only few attempts in the
literature tried to address this issue. Parks and Ahzi (1990) proposed an ad hoc formula-
tion, using Lagrange multipliers to determine unknown stress components, allowing the
polycrystal to undergo viscoplastic strain with less than four independent slip systems.
In the geophysical community, the purely kinematic model proposed by Ribe and Yu
(1991), and extended by Kaminski and Ribe (2001) to include recrystallization effects,
is widely spread and used; this relatively simple and intuitive formulation, which does
not permit an estimation of the effective flow stress, also allows olivine polycrystals to
deform with less than four independent slip systems, in qualitative contradiction with
full-field results. Finally, a number of papers, e.g. (Wenk et al., 1991; Tommasi et al.,
1999, 2000; Blackman et al., 2002) have applied the tangent (TGT) extension of the SC
scheme (Lebensohn and Tomé, 1993) to olivine polycrystals; for purely numerical pur-
pose, these authors introduced an artificial additional slip system with a large resistance
to slip. It turns out that the TGT model incorrectly predicts a finite effective flow stress
with only three independent slip systems (Castelnau et al., 2008b,a, 2010), a limitation
that also affect microstructure evolutions at large strain (Castelnau et al., 2009).
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Within the SC scheme, initially proposed for linear (e.g. thermo-elastic) polycrystals,
all grains exhibiting the same crystal orientation are treated as a single (mechanical)
phase. The SC scheme describes the statistical interaction between each phase and the
surrounding polycrystal using the analytical solution of Eshelby (1957) to account for the
interaction between an ellipsoidal inhomogeneity within a homogeneous linear matrix.
The behavior of the surrounding polycrystal can then be obtained using the consistency
conditions. Note that, at large strain, microstructure evolutions predicted by the SC
scheme still suffer inconsistency due to an incomplete knowledge of the intragranular
strain field, as illustrated in Castelnau et al. (2006) for the case of strain-hardening.

For nonlinear polycrystals, a linearization of the local constitutive behavior is nec-
essary, leading to the definition of a N-Phase Linear Comparison Polycrystal (NPLCP).
The standard thermo-elastic SC solution can then be applied to the NPLCP, from which
the behavior of the original nonlinear polycrystal can be derived. This linearization step
is not trivial, this is why several extensions of the SC scheme have been proposed in the
literature, e.g. the secant (SEC) (Hill, 1965; Hutchinson, 1976), tangent (TGT) (Moli-
nari et al., 1987; Lebensohn and Tomé, 1993), or affine (AFF) (Masson et al., 2000)
methods. These three methods do not account for the intraphase field heterogeneities
for the definition of the NPLCP, and are thus limited in accuracy for moderate local
anisotropy and nonlinearity. In the TGT extension, often denoted as the “VPSC model”
in the literature, the thermo-elastic nature of the NPLCP has not been fully recognized;
therefore the model unrealistically convergences towards the uniform stress bound (Static
bound) at large stress sensitivities, as detailed in Masson et al. (2000); this limitation
has been corrected by the AFF extension.

More accurate estimations can be obtained with the variational procedure (VAR)
(Ponte Castañeda, 1991; de Botton and Ponte Castañeda, 1995) and the second-order
(SO) estimate (Ponte Castañeda, 2002; Liu and Ponte Castañeda, 2004). These two
methods are accurate up to the second order Taylor expansion of the mechanical contrast,
and are thus denoted as ‘second-order’ methods. The improved accuracy results from
the additional use of the second order moment of the mechanical fields, which depends
on the intraphase field fluctuations, to define the NPLCP. Both extensions exhibit very
interesting features, such as compliance with rigorous upper bounds for the effective
potential, which are generally violated by other homogenization procedures (Gilormini,
1995).

At present, scale transition models providing an accurate estimation of the viscoplas-
tic behavior of polycrystals lacking four independent slip systems are still lacking. Indeed,
current solutions involve either inappropriate homogenization schemes or use of artifi-
cial additional slip systems. The aim of the present work is to improve the nonlinear
extensions of the SC scheme for polycrystals lacking four independent slip systems by
introducing an isotropic stress relaxation mechanism. In the present work, the additional
mechanism is represented by a nonlinear and isotropic viscoplastic potential in the local
constitutive relation. The physical meaning of such a choice will be discussed in section
4 for the case of olivine.

This new scheme is then applied to the case of (Mg,Fe)2SiO4 olivine, the main mineral
of the Earth’s upper mantle, in order to test the effect of the flow stress and stress
sensitivity of this additional isotropic stress relaxation mechanism on the overall behavior
of the polycrystal. In particular, we will show the importance of the stress sensitivity of
the additional mechanism on the overall stress sensitivity of the polycrystal.
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Table 1: List of Acronyms

FFT Fast Fourier Transform
LPO Lattice Preffered Orientation
SC Self-Consistent Model
SEC Secant Estimate
TGT Tangent Estimate
AFF Affine Estimate
VAR Variational Estimate
SO Second-Order Estimate
NPLCP N-Phase Linear Comparison Polycrystal

This paper is organized as follow. First, section 2 describes the constitutive model
used at the grain scale and the linearization extensions of the SC scheme. Section 3 is
devoted to the algorithm used to solve the self-consistent equations and to compute field
statistics. Section 4 presents an application to the case of olivine.

Notations are based on the following conventions. Scalars are in italics (a,A, α),
vectors are underlined bold-face (a ,A ,α ), second-order tensors are bold-face and un-
derlined once by a tilde (a∼,A∼ ,α∼), and fourth-order tensors are bold-face and underlined
twice (a∼∼,A∼∼ ,α∼∼). Tensor (dyadic) products are indicated by ’⊗’, twice contracted ten-
sor scalar products by ’:’ (A∼ : B∼ = AijBij), and four times contracted product by ’::’
(A∼∼ :: B∼∼ = AijklBijkl). Superscripts .T and .−1 denote transpose and inverse, respectively.
The expression ∂a∼φ corresponds to the differentiation of φ with respect to a∼.

2. Model

2.1. Local behaviour
The local behaviour is assumed to be incompressible, therefore the Eulerian strain-

rate tensor ε∼ is deviatoric. Incompressibility also involves that the Eulerian strain-rate
exclusively depends on the deviatoric part of stress tensor; the Cauchy stress will be
considered as deviatoric and denoted σ∼ . For a given stress σ∼ , the local constitutive
response is defined by

ε∼ = ∂σ∼u
(r) (x ,σ∼) (1)

where u(r) is the stress potential for the single crystals at position x with lattice orienta-
tion Q

∼

(r) expressed with respect to a given external reference frame. Each single crystal
stress potential u(r) is decomposed into several components φ(r)

(k) (k = 1, . . . ,K) describ-
ing the response of each of the K slip systems, and another term φ

(r)
(0) which describes

the response of the incompressible isotropic relaxation mechanism:

u(r) (σ∼) = φ
(r)
(0) (σe) +

K∑
k=1

φ
(r)
(k)

(
τ

(r)
(k)

)
. (2)
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The convex function φ
(r)
(0) (σe) depends on the von Mises equivalent stress σe, while

φ
(r)
(k)

(
τ

(r)
(k)

)
depends on the resolved shear stresses τ (r)

(k) on system (k), defined by

σe =
√

3
2σ∼ : σ∼ , τ

(r)
(k) = µ

∼

(r)
(k)

: σ∼ (3)

where µ
∼

(r)
(k)

= 1
2

(
n

(r)
(k) ⊗m

(r)
(k) +m (r)

(k) ⊗ n
(r)
(k)

)
are the Schmid tensors expressing the

orientation of the slip system with respect to the reference frame. Here, n (r)
(k) and m (r)

(k)
denote the unit vectors normal to the slip plane and along the slip direction of the
system (k) in phase (r), respectively, for a crystal with orientation Q

∼

(r). We consider
slip potentials and relaxation potential given by a power-law

φ
(r)
(k) (τ) = γ0

(τ0)(k)

n(k) + 1


∣∣∣τ (r)

(k)

∣∣∣
(τ0)(k)

n(k)+1

(4)

φ
(r)
(0) (σe) = ε0

σ0

n(0) + 1

(
σ

(r)
e

σ0

)n(0)+1

(5)

where n(k) ≥ 1 and (τ0)(k) > 0 are the stress sensitivity and reference flow stress for
the slip system (k), respectively, and n(0) ≥ 1 and σ0 > 0 are the stress sensitivity and
reference flow stress for the isotropic relaxation mechanism.

2.2. Basic features of mean-field theories
Mean-field theories are limited to a statistical description of the microstructure. All

grains are sorted in a set of N phases, each with a given lattice orientation characterized
by the rotation tensor Q

∼

(r) (r = 1, . . . , N). Grain shape are assumed to be ellipsoidal on
average with identical aspect ratios for all phases (see Willis, 1977, for the mathematical
description of microstructure). We denote Ω the region occupied by the polycrystal, and
Ω(r) the subregions occupied by the mechanical phase (r). The characteristic functions
χ(r)(x ) describing the geometry of Ω(r) is equal to 1 if the position vector x lies in Ω(r),
and zero otherwise. Volume averages over Ω are denoted by 〈.〉, and volume average
over Ω(r) by 〈.〉(r). Volume fraction c(r) =

〈
χ(r)〉 of phase (r) also characterizes the

crystallographic texture of the polycrystal.
The effective viscoplastic response of the polycrystal may be written in the form (see

e.g. Ponte Castañeda and Suquet, 1998, for a comprehensive review):

ε∼ = ∂σ∼
Ũ , Ũ

(
σ∼
)

= stat
σ∼∈S (σ∼)

〈
u
(
x ,σ∼

)〉
= stat
σ∼∈S (σ∼)

N∑
r=1

c(r)
〈
u(r) (σ∼)〉(r)

(6)

where Ũ is the effective stress potential for the polycrystal, and the set of statically
admissible stresses is assigned by S

(
σ∼
)

=
{
σ∼ ,divσ∼ = 0 in Ω,

〈
σ∼
〉

= σ∼
}
. In relation

(6), ε∼ =
〈
ε∼
〉
and σ∼ =

〈
σ∼
〉
are the average strain-rate and the average stress, respectively.

Let us assume the existence of a NPLCP which has the same microstructure as the
nonlinear polycrystal of interest. This NPLCP, which local behavior is of a linear thermo-
elastic type and to which the linear SC scheme applies, is an approximation of the actual
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nonlinear polycrystal. This assumption leads to the definition of a linear local stress
potential u(r)

L

(
σ∼
)
for phase (r)

uL
(
x ,σ∼

)
=

N∑
r=1

χ(r) (x )u(r)
L

(
σ∼
)
, u

(r)
L

(
σ∼
)

= 1
2σ∼ : M∼∼

(r) : σ∼ + e∼
(r) : σ∼ (7)

where M∼∼
(r) and e∼(r) are the viscoplastic compliance and the eigen-strain-rate of phase

(r), respectively. The effective potential ŨL of the NPLCP may be written in the form
(Laws, 1973; Willis, 1981)

ŨL
(
σ∼
)

= 1
2σ∼ : M̃∼∼ : σ∼ + ẽ∼ : σ∼ + g̃ (8)

where M̃∼∼ , ẽ∼ and g̃ are the effective compliance, eigen-strain-rate and energy under zero
applied stress, defined by

M̃∼∼
=

N∑
r=1

c(r)M∼∼
(r) : B∼∼

(r), ẽ∼ =
N∑
r=1

c(r)e∼
(r) : B∼∼

(r), g̃ =
N∑
r=1

c(r)e∼
(r) : b∼

(r) . (9)

Here, B∼∼
(r) and b∼(r) are the phase average concentration tensors depending on the mi-

crostructure, and the mean stress in phase (r) of the NPLCP reads (Ponte Castañeda
and Suquet, 1998)

σ∼
(r)
L =

〈
σ∼
〉(r)
L

= B∼∼
(r) : σ∼ + b∼

(r) . (10)

For the self-consistent scheme, the expressions for B∼∼
(r) and b∼(r) in a general context of

anisotropy can be found e.g. in Brenner et al. (2004) or Lebensohn et al. (2011). The
field statistics in the NPLCP are obtained by differentiation of effective potential ŨL
with respect to appropriate parameters

σ∼
(r)
L = 1

c(r)
∂e∼

(r)ŨL
(
σ∼
)
,
〈
σ∼ ⊗ σ∼

〉(r)
L

= 2
c(r)

∂M∼∼
(r)ŨL

(
σ∼
)
. (11)

It is interesting to note that, rigorously, the stress and strain-rate distributions (and
thus their moments) in the NPCPL are a priori not identical to those in the nonlinear
polycrystal. For the sake of simplicity, we assume here that both match with each other

σ∼
(r) ≈ σ∼

(r)
L ,

〈
σ∼ ⊗ σ∼

〉(r) ≈ 〈σ∼ ⊗ σ∼〉(r)L . (12)

This is an inherent assumption of all standard homogenization schemes used here, while
for Ponte Castaneda’s formulation, it is the only numerically tractable solution – which
has been shown in a number of papers to provide results in very good agreement with
reference results from full-field methods.

The knowledge of σ∼(r) for all crystal orientations (r) allows investigating of the so-
called “interphase” heterogeneities, i.e., the variation of the phase average stress with
respect to the crystal orientation. Deeper insight into the stress distribution can be
obtained from the second moment

〈
σ∼ ⊗ σ∼

〉(r). Its expression for the SC scheme can be
6



found in (Bobeth and Diener, 1987; Kreher, 1990; Brenner et al., 2004; Lebensohn et al.,
2011). Note that the variance of the stress within a given crystal orientation can be
estimated from the covariance tensor of stress fluctuations C∼∼

(r)
σ∼

inside phase (r) as

C∼∼
(r)
σ∼

=
〈
σ∼ ⊗ σ∼

〉(r) − σ∼(r) ⊗ σ∼
(r) (13)

which is related to the width of the stress distribution within phase (r). Similar relations
can be derived for the strain-rate statistics.

2.3. Different possible linearizations
The difficult part of the problem consists in finding the linearization procedure lead-

ing to the optimal choice of the NPLCP. As stated earlier, the local behavior at the phase
level, equation (7), can be linearized in different ways, and results of the homogeniza-
tion scheme unfortunately depend on this choice. Within the secant (SEC) (Hill, 1965;
Hutchinson, 1976) and affine (AFF) (Masson et al., 2000) linearization procedures, the
phase average strain-rate is assumed to be defined as

ε∼
(r) = ∂σ∼φ

(r)
(
σ∼

(r)
)
. (14)

The SEC approximation leads to an ’elastic-type’ linearized behavior

ε∼
(r) = M∼∼

(r)
SEC : σ∼

(r), e∼
(r)
SEC = 0∼ , (15)

whereas the AFF one is based on the simple and intuitive idea of a linear behaviour
tangent to the nonlinear one (’thermo-elastic-type’ linearized behavior)

M∼∼
(r)
AFF = ∂2

σ∼σ∼
φ(r)

(
σ∼

(r)
)
, e∼

(r)
AFF = ε∼

(r) −M∼∼
(r)
AFF : σ∼

(r) . (16)

The main limitations of these procedure are discussed in details e.g. in Bornert and
Ponte Castañeda (1998) and Masson et al. (2000). One of them is the violation of
rigorous upper bounds for the effective behavior. More generally, the affine extension is
known to overestimate the overall viscosity, i.e. to predict too stiff effective behaviors.
This negative feature can be alleviated by means of the energy formulation originally
proposed by Ponte Castañeda (1996) (see, e.g. Bornert et al., 2001). The SEC procedure
generally provides results even stiffer than the AFF one.

In the case of the tangent (TGT) approximation (Molinari et al., 1987; Lebensohn and
Tomé, 1993), the moduli are, formally, the same as in the AFF case: M∼∼

(r)
TGT = M∼∼

(r)
AFF

and e∼
(r)
TGT = e∼

(r)
AFF . However, instead of using these moduli, Molinari et al. (1987) used

the associated secant compliances to estimate the effective compliance, in combination
with the tangent-secant relation M̃∼∼ TGT = nM̃∼∼ SEC (Hutchinson, 1976). Besides the
inconsistency described in Masson et al. (2000), this procedure is by construction limited
to power-law deformation mechanisms that all exhibit the same stress sensitivity n.

An “optimal” solution has been obtained in the context of the VAR procedure of
Ponte Castañeda (1991), which was extended to polycrystals by de Botton and Ponte
Castañeda (1995). Here, the stress potential u(r) (see equations (2, 4, 5)) can be written
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in term u(r) = g(r) (σ∼ ⊗ σ∼) where g(r)
(
X∼∼

)
is a scalar function defined in the space of

symmetric fourth-order tensors X∼∼ . The VAR procedure which is also called “generalized
secant” linearization by Suquet (1995), leads to (Ponte Castañeda and Suquet, 1998) :

M∼∼
(r)
V AR = ∂X∼∼

g(r)
(〈
σ∼ ⊗ σ∼

〉(r))
, e∼

(r)
V AR = 0∼ (17)

The detailed expressions of the compliance tensorM∼∼
(r) are given in the Appendix A for

each linearization procedures.

2.4. The second-order theory
The case of the second-order method of Ponte Castañeda (2002) is treated in this

specific section since it requires a specific numerical treatment, described below. The
thermo-elastic form (7) is considered as for the local stress potential u(r)

L

(
σ∼
)
, where the

phase compliance M∼∼
(r) and eigen-strain-rate e∼(r) are defined by four parameters α(r)

(k),
β

(r)
(i) , e

(r)
(k) and d(r)

(i)

M∼∼
(r) =

K∑
k=1

α
(r)
(k)µ∼

(r)
(k) ⊗ µ∼

(r)
(k) +

5∑
i=1

β
(r)
(i) a∼

(r)
(i) ⊗ a∼

(r)
(i) , (18)

e∼
(r) =

K∑
k=1

e
(r)
(k)µ∼

(r)
(k) +

5∑
i=1

d
(r)
(i)a∼

(r)
(i) . (19)

Here, the set of tensors a∼
(r)
(i) forms an orthonormal basis of deviatoric symmetric tensors

such as :

σ∼ =
5∑
i=1

σ(i)a∼(i), a∼(i) : a∼(j) = δij . (20)

Note that the number of independent parameters (α(r)
(k), β

(r)
(i) ) in the compliance tensors

M∼∼
(r) can be at most equal to the number of independent parameters (e(r)

(k), d
(r)
(i) ) in the

eigen-strain-rate tensor (Idiart and Ponte Castañeda, 2005).

2.4.1. Linearization of the slip potential
For sake of clarity we will omit in the following the indices (.)(r)

(k) that relate to the
slip system (k) in the phase (r). The parameters α and e are determined from a linear
expansion of the difference function (φ − ψ)(τ) between the nonlinear potential φ and
the quadratic potential ψ (τ) = 1

2ατ
2 introduced by Liu and Ponte Castañeda (2004)

φ (τ)− ψ (τ) ≈ eτ − eτ̂ + φ (τ̂)− ψ (τ̂) , (21)

where the parameters τ̂ and e are determined by an extension of Legendre’s transform
for non-convex function :

e = ∂τφ (τ̂)− α (τ̂) = ∂τφ (τ)− α (τ) . (22)
8



The advantage in this approximation is that the degree of freedom α still exists to rewrite
the nonlinear potential φ. Indeed, the spatial average over phase (r) of the nonlinear
potential φ can be approximate by

〈φ (τ)〉 ≈ stat
α

{
1
2α
〈
τ2〉+ e (τ − τ̂) + φ (τ̂)− 1

2ατ̂
2
}

(23)

under the assumption that the parameters α, τ̂ and e are constant within phase (r).
Here τ = 〈τ〉, and the stationarity condition with respect α leads to〈

(τ − τ)2
〉

= (τ̂ − τ)2 (24)

which allows determining τ̂ , and the conditions (22) give:

α = ∂τφ (τ̂)− ∂τφ (τ)
τ̂ − τ

and e = ∂τφ (τ̂)− ατ̂ . (25)

2.4.2. Linearization of the isotropic relaxation potential
As above, we omit in the following the indices (.)(r)

(0) that relate to the relaxation
mechanism in the phase (r) and we introduce another quadratic function

ψ(σ(1), . . . , σ(5)) =
5∑
i=1

1
2β(i)σ

2
(i) (26)

with σ(i) defined in (19). First, as above, the difference function (φ −
ψ)(σ(1);σ(2), . . . , σ(5)) is approximated by its expansion with respect to σ(1)

(φ− ψ)
(
σ(1);σ(2), . . . , σ(5)

)
≈ d(1)σ(1) − d(1)σ̂(1) + (φ− ψ)

(
σ̂(1);σ(2), . . . , σ(5)

)
(27)

where the parameters σ̂(1) and d(1) are given by :

d(1) = ∂σ(1)φ
(
σ̂(1);σ(2), . . . , σ(5)

)
−β(1)σ̂(1) = ∂σ(1)φ

(
σ(1);σ(2), . . . , σ(5)

)
−β(1)σ(1) (28)

with σ(i) for i ≥ 2 considered as variables.
Next, the difference function (φ − ψ)(σ̂(1), σ(2), . . . , σ(5)) is expanded the same way,

now considering σ(2) as a variable. After having repeated this process for all independent
variables σ(i) successively, we obtain

(φ− ψ)
(
σ∼
)
≈ (φ− ψ)

(
σ̂∼
)

+
5∑
i=1

d(i)
(
σ(i) − σ̂(i)

)
(29)

where
d(i) = ∂σ(i)φ

(
σ̂∼
)
− β(i)σ̂(i) = ∂σ(i)φ

(
σ∼
)
− β(i)σ(i) . (30)

The differentiation of the function φ respect to σ(i) is

∂σ(i)φ
(
σ∼
)

= 3
2∂σe

φ (σe)
σ(i)

σe
. (31)
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Finally, the spatial average over phase (r) of the potential of the relaxation mechanism
is given by

〈
φ
(
σ∼
)〉
≈ stat

β(i)

{
1
2

5∑
i=1

[
βi

〈
σ2

(i)

〉
+ d(i)

(
σ(i) − σ̂(i)

)]
+ (φ− ψ)

(
σ̂∼
)}

. (32)

Here σ(i) =
〈
σ(i)
〉
, and the stationarity condition with respect to β(i) leads to〈(

σ(i) − σ(i)
)2〉 =

(
σ̂(i) − σ(i)

)2 (33)

and the conditions (30) give:

β(i) =
∂σ(i)φ

(
σ̂(i)
)
− ∂σ(i)φ

(
σ(i)
)

σ̂(i) − σ(i)
and d(i) = ∂σ(i)φ

(
σ̂∼
)
− β(i)σ̂(i) . (34)

2.4.3. The homogenization procedure
The various linearizations recalled before are applied in the expression of the effective

potential (6). Interchanging the stationarity operations with respect to the stress σ∼ and
the variables α(r)

(k) and β(r)
(i) leads to the approximation of effective stress potential

Ũ
(
σ∼
)
≈ stat
α

(r)
(k),β

(r)
(i)

rstat
e

(r)
(k),d

(r)
(i)

{
ŨL
(
σ∼
)
−

N∑
r=1

c(r)V (r)

}
(35)

where the rstat operation is used to enforce the conditions (22, 30) to determine the
paramater e(r)

(k) and d(r)
(i) . V (r) is independent of the stress tensor σ∼ , its expression is

V (r) = stat
τ̂

(r)
(k),σ̂

(r)
(i)

{
K∑
k=1

[
u

(r)
L

(
τ̂

(r)
(k)

)
− φ(r)

(k)

(
τ̂

(r)
(k)

)]
+
[
u

(0)
L

(
σ̂(r)
e

)
− φ(r)

(0)

(
σ̂(r)
e

)]}
(36)

and

ŨL
(
σ∼
)

= stat
σ∼∈S (σ∼)

〈
uL
(
x ,σ∼

)〉
= stat
σ∼∈S (σ∼)

{
N∑
r=1

c(r)
〈
u

(r)
L

(
σ∼
)〉(r)

}
. (37)

The approximation (35) implies that the estimates of effective potential ŨL of the NPLCP
may be used to generate corresponding estimates of effective potential Ũ of the origi-
nal nonlinear polycrystal. The effective behaviour and field statistics in the nonlinear
polycrystal are given by those in the NPLCP plus certain “correction” terms (Idiart and
Ponte Castañeda, 2005). As mentioned earlier, for the sake of numerical tractability,
these “correction” terms are neglected here.

The parameters α(r)
(k), β

(r)
(i) , e

(r)
(k) and d

(r)
(i) are given by the optimality conditions (24,25)

and (33,34). Moreover, the covariance tensor of stress fluctuations C∼∼
(r)
σ∼

inside the phase
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Figure 1: Influence of loading directions εi for two choices of the tensor basis (FB SO and MB SO) used
within the framework of the Second Order extensions of the SC estimate on (a) the normalized equivalent
macroscopic stress σe/σ(1)

0 and (b) the intra-phase heterogeneity of stress ωσ for phase (1), as a function
of the volume fraction c(2) of the second phase, with a reference stress contrast σ(2)

0 /σ
(1)
0 = 10 and a

stress sensitivity n = 3.5. Reference results of the second order estimate of Idiart and Ponte Castañeda
(2005) (IPC) are also indicated.

(r) of NPLCP is directly linked with optimality conditions (25,34)(
τ̂

(r)
(k) − τ

(r)
(k)

)2
=
〈(

τ
(r)
(k) − τ

(r)
(k)

)2
〉(r)

= µ
∼

(r)
(k) : C∼∼

(r)
σ∼

: µ
∼

(r)
(k) (38)

(
σ̂

(r)
(i) − σ

(r)
(i)

)2
=
〈(

σ
(r)
(i) − σ

(r)
(i)

)2
〉(r)

= a∼
(r)
(i) : C∼∼

(r)
σ∼

: a∼
(r)
(i) (39)

where, for consistency, the positive (negative) value of τ̂ (r)
(k) and σ̂(r)

(i) in relation (38,39)
should be selected for τ (r)

(k) and σ(r)
(i) positive (negative).

2.4.4. On the choice of deviatoric tensor basis
The choice of orthonormal basis for expressing the deviatoric tensors has not been

discussed yet. The first naive choice is a fixed basis independent of phases and fields
statistics, denoted the ’fixed basis’ model (FB SO Model). Tensors a∼

(r)
i introduced in

equations (18-19) are identified to the deviatoric symmetric tensors, for instance the
Lequeu’s basis {α∼ i} recalled in Appendix B (Lequeu et al., 1987) . As it will be seen
below, the FB SO model introduces an artificial anisotropy. The second choice is the
eigentensor basis of C∼∼

(r)
σ∼

. This is the solution that was proposed by Idiart et al. (2006)
in a case for which the principal directions could be known in advance. Doing so, the
maximum information of local field statistics is used. However, using this ’mobile basis’
model (MB SO Model), the necessary eigen-decomposition within the linearization step
is harmful to the attractive fixed-point algorithm convergence (see section 3.1).

To illustrate these issues, we consider a two-phase composite with an isotropic mi-
crostructure and phases characterized by a single isotropic and incompressible power-law
behavior

u(r) (σ∼) = φ(r) (σe) = σ
(r)
0

n+ 1

(
σe

σ
(r)
0

)n+1

. (40)
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We consider a stress sensitivity n = 3.5 and a reference stress contrast σ(2)
0 /σ

(1)
0 = 10.

The effective behavior of such a composite is isotropic as well. Computations have been
performed for three different strain-rate directions :

ε∼1 = εe

√
3
2α∼1 ; ε∼2 = εe

√
3

2
(
α∼1 +α∼2

)
; ε∼3 = εe

√
3
10
(
α∼1 +α∼2 +α∼3 +α∼4 +α∼5

)
all corresponding to the same equivalent effective strain-rate εe =

√
2
3ε∼ : ε∼ = 1. As for

the MB SO model, the numerical convergence of the fixed point algorithm could not be
reached when new eigen-vectors were calculated within the convergence loop; we therefore
used an approximate solution in which the eigen vectors were calculated only once, at
the beginning of the convergence process. Figure 1a shows the evolution of normalized
equivalent macroscopic stress σe/σ(1)

0 vs. the volume fraction c(2) of phase (2). Results
of FB SO and MB S0 models are compared with those of the reference second order
estimation from Idiart and Ponte Castañeda (2005) (IPC SO Model), which is isotropic
by construction (in the IPC SO model, the principal axes of the compliance tensor of the
linear comparison composite M∼∼

(r) in the phase (r) are aligned with the average stress
σ∼

(r) inside each phase; the linearization thus follows the macroscopic loading direction
σ∼). For the first loading direction aligned with the tensor axes α∼1, all models gives
very similar responses. For other loading directions, which are linear combinations of
tensor axes α∼ i, the results of MB SO model well match the reference predictions of IPC
SO Model. On the contrary, the FB SO Model underestimates σe/σ(1)

0 . This model
also artificially introduces a mechanical anisotropy, as evidenced in Figure 1b where the
evolution of the intra-phase heterogeneity of stress for phase 1, ω(1)

σ =
√
〈σ2
e〉

(1)
/σ

(1)
e is

plotted as function of c(2): results depends on the loading direction. The introduction
of a fixed basis for the linearization does not allow to using the complete statistical
informations contained inside the covariance tensor of stress fluctuations C∼∼

(r)
σ∼

. Finally,
the requirement of isotropy imposes an eigen-decomposition of C∼∼

(r)
σ∼

for the SO extension
of SC scheme, which is an issue for numerical convergence.

2.5. New second order linearization estimate for the isotropic potential
In this section, instead of using directly the isotropic potential φ(0) (σe) as in previous

sections 2.4.2 and 2.4.4, with associated isotropy and numerical issues, we make use of
an approximation of this potential, ensuring isotropy and rapid numerical convergence of
the homogenization code. To that end, φ(0)(σe) is decomposed into a sum of potentials
associated to fictitious deformation mechanisms which ’orientation’ are fixed with respect
to the crystal (as for slip systems). Note however that it is impossible to decompose an
isotropic incompressible potential as a sum of slip system potentials; but in a special case
of a (two-phase) porous material subjected to anti-plane loadings, the isotropic potential
can be decomposed as a sum of slip system potentials, as shown by Idiart and Ponte
Castañeda (2007).

In a more general case, the isotropic potential can be written as an integral over the
space of deviatoric symmetric unit tensors (S4) :

φ(0) (σe) = σ0ε̇0
n(0) + 1

(
σe
σ0

)n(0)+1
=
∫
S4
ϕ (σk) dk∼, σk = σ∼ : k∼ (41)
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where S4 is isomorphic to unit sphere of R5, k∼ is a unit deviatoric symmetric tensor and
ϕ (σk) has a similar form as a slip system potential :

ϕ (σk) = %
[
n(0)

] σ0ε̇0
n(0) + 1

∣∣∣∣σkσ0

∣∣∣∣n(0)+1
(42)

with the normalization constant %
[
n(0)

]
= (n(0)+4)(n(0)+2)

8π2 . The above continuous inte-
gral on S4 can be approximated by its discretized expression

φ(0) (σe) =
∫
S4
ϕ
(
σ∼ : k∼

)
dk∼ ≈

P∑
p=1

C(p)ϕ
(
σ(p)

)
(43)

where σ(p) = σ∼ : k∼(p) is the projection of stress tensor σ∼ over the nodes k∼(p) associated
to the integral discretization and C(p) is the corresponding integration weight. So the
potential φ(0) (σe) is approximated by a sum of potentials ϕ(r)

(p) = C(p)ϕ
(
σ(p)

)
having a

similar form as a standard slip system potential. But note that these potentials differ
from real slip systems since k∼ does not have the shape of a Schmid tensor. Note also
that the activation of the accommodation mechanism does not generate any evolution of
the crystallographic texture, unlike dislocation slip systems (see section 4.5).

The linearized potential used in the following is based on the present approximation
and it is built by a linearization of each potential ϕ(r)

(p) :

u
(r)
L

(
σ∼
)

=
P∑
p=1

[
1
2β(p)σ

2
(p) + d(p)σ(p)

]
. (44)

The same approximation introduced by Liu and Ponte Castañeda (2004) and used for
slip systems (§2.4.1) is also used for the spacial average of the potential ϕ(r)

(p) :〈
ϕ(p)

(
σ(p)

)〉(r)
≈ stat

β(p)

{
1
2β(p)

〈
σ2

(p)

〉(r)
+ d(p)

(
σ(p) − τ̂ (p)

)
+ φ(p)

(
τ̂ (p)

)
− 1

2β(p)τ̂
2
(p)

}
(45)

where σ(r)
(p) =

〈
σ(p)

〉(r) and β(p), d(p) and σ̂(p) are given by:

β(p) =
∂σ(p)ϕ(p)

(
σ̂(p)

)
− ∂σ(p)ϕ(p)

(
σ(p)

)
σ̂(p) − σ(p)

and d(p) = ∂σ(p)ϕ(p)
(
σ̂(p)

)
− β(p)σ̂(p) , (46)

(
σ̂(p) − σ

(r)
(p)

)2
=
〈(

σ(p) − σ
(r)
(p)

)2
〉(r)

= k∼
(r)
(p) : C∼∼

(r)
σ∼

: k∼
(r)
(p) . (47)

Note that, for consistency, the positive (negative) value of σ̂(p) in the relation (47) should
be selected for σ(r)

(p) positive (negative).
The quality of this discretized second-order estimation (DIS SO Model) depends on

the quality of the integral approximation (43). The details of this discretization into 1073
potentials are given in section (3.2). Figures 2 show the good agreement between DIS
SO and the reference IPC SO model, and the very good respect of isotropy requirement,
which is an improvement over the FB SO model. Moreover the convergence of the point-
fixed algorithm is ensured unlike the MB SO model.
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Figure 2: Influence of the loading direction εi on (a) the normalized equivalent macroscopic stress
σe/σ

(1)
0 and (b) the intra-phase stress heterogeneity ωσ (1) in phase (1), as a function of the volume

fraction c(2), with a mechanical contrast σ(2)
0 /σ

(1)
0 = 10 and a stress sensitivity n = 3.5. The discritized

Second Order (DIS SO) extension of the SC scheme is compared to the reference results of Idiart and
Ponte Castañeda (2005).

3. Algorithmic setting of the constitutive model

3.1. Attractive fixed-point algothim
Under these assumptions, the set of nonlinear equations to compute the statistics

of local fields and the macroscopic response could be summarized for all linearization
schemes by

Localization procedure
∀r t∼

(r) =
〈
σ∼
〉(r) = B∼∼

r
(
c(s),M∼∼

(s), e∼
(s), . . .

)
: σ∼ + b∼

(r)
(
c(s),M∼∼

(s), e∼
(s), . . .

)
Second order moment
∀r T∼∼

(r) =
〈
σ∼ ⊗ σ∼

〉(r) = T∼∼
(r)
(〈
σ∼
〉(r) ; c(s),M∼∼

(s), e∼
(s), . . .

)
Linearization procedure
∀r M∼∼

(r) = M∼∼
(r)
(
t∼
r,T∼∼

(r)
)

and e∼
(r) = e∼

(r)
(
t∼
r,T∼∼

(r)
)

Microscopic response
∀r ε∼

(r) = M∼∼
(r)
(
c(s),M∼∼

(s), e∼
(s), . . .

)
: σ∼

(r) + e∼
(r)
(
c(s),M∼∼

(s), e∼
(s), . . .

)
Macroscopic response
ε∼ = M̃∼∼

(
c(s),M∼∼

(s), e∼
(s), . . .

)
: σ∼ + ẽ∼

(
c(s),M∼∼

(s), e∼
(s), . . .

)
An iterative algorithm is used to solve this system of nonlinear equations. The macro-

scopic strain-rate (ε∼) and the statistics of local fields (ε∼(r), σ∼
(r);

〈
σ∼ ⊗ σ∼

〉(r), . . . ), which
are associated to the macroscopic stress (σ∼), are computed by an attractive fixed-point
algorithm described in Table 2. In Table 2, the macroscopic stress tensor is prescribed,
but the algorithm can be easily modified for a prescribed macroscopic strain-rate, or for
mixed stress/strain-rate inputs.

The initialization step is of paramount importance for attractive fixed-point algo-
rithm convergence. A uniform stress state (static bound) is used for SEC, AFF, TGT
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Table 2: Implementation of the homogeization model

1. Initilization : ∀r t∼
(r) ⇐ σ∼

(r)
ini; T∼∼

(r) ⇐
〈
σ∼ ⊗ σ∼

〉(r)
ini

2. WHILE max (ε1, ε2, ε3, ε4) ≥ ε0 (convergence crietrium)
(a) Linearization process

∀r M∼∼
(r) ⇐M∼∼

(r)
(
t∼
r,T∼∼

(r)
)

; e∼
(r) ⇐ e∼

(r)
(
t∼
r,T∼∼

(r)
)

(b) Localization process

∀r σ∼
(r) ⇐ B∼∼

r
(
c(s),M∼∼

(s), e∼
(s), . . .

)
: σ∼ + b∼

(r)
(
c(s),M∼∼

(s), e∼
(s), . . .

)
(c) Compute field statistics

ε∼⇐ M̃∼∼

(
c(s),M∼∼

(s), e∼
(s), . . .

)
: σ∼ + ε̃∼

(
c(s),M∼∼

(s), e∼
(s), . . .

)
(effective)

∀r ε∼
(r) ⇐M∼∼

(r)
(
t∼
r,T∼∼

(r)
)

: σ∼
(r) + e∼

(r)
(
t∼
r,T∼∼

(r)
)

(1st moments)

∀r
〈
σ∼ ⊗ σ∼

〉(r) ⇐ T∼∼
(r)
(
σ∼

(r); c(s),M∼∼
(s), e∼

(s), . . .
)

(2nd moments)

(d) Compute error criterion

ε1 =

∥∥σ∼ −∑ crσ∼
(r)
∥∥
∞∥∥σ∼∥∥∞ ; ε2 =

∥∥ε∼−∑ crε∼
(r)
∥∥
∞∥∥ε∼∥∥∞

ε3 = max
(r)

{∥∥t∼(r) − σ∼
(r)
∥∥
∞∥∥σ∼∥∥∞
}

; ε4 = max
(r)


∥∥∥T∼∼ (r) −

〈
σ∼ ⊗ σ∼

〉(r)
∥∥∥
∞∥∥∥〈σ∼ ⊗ σ∼〉(r)

∥∥∥
∞


(e) Local variables updating

∀r t∼
(r) ⇐ Θσ∼

(r) + (1−Θ) t∼
(r) with Θ ∈ [0; 1]

∀r T∼∼
(r) ⇐ Θ

〈
σ∼ ⊗ σ∼

〉(r) + (1−Θ)T∼∼
(r)

3. Postprocessing

extensions of SC estimate while the solution of AFF (respectively SEC) model is used
for SO (respectively VAR) extension of SC estimate.

Convergence is attained when all four errors {ε1, ε2, ε3, ε4} are smaller than a given
threshold ε0 (typically taken equal to 10−4). The two first errors (ε1, ε2) ensure that
the averages of local fields converge toward the macroscopic fields, whereas the next two
errors (ε3, ε4) ensure the solution stability. Here, the stability implies that, when the
solution local fields are reused in the linearization step, the same local fields are found
after the homogenization process. The norm ‖.‖∞ of deviatoric tensor is used to define
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errors : ∥∥t∼∥∥∞ = max
1≤i≤5

{|ti|} with t∼=
5∑
i=1

tiα∼ i (48)

where
{
α∼1, . . . ,α∼5

}
is Lequeu’s orthonormal basis of deviatoric tensors (Appendix B).

This definition is extended to fourth-order tensor such as T∼∼ =
∑5
i,j=1 Tijα∼ i ⊗ α∼ j and

Tij = Tji, by ∥∥∥T∼∼∥∥∥∞ = max
1≤i,j≤5

{|Tij |} . (49)

The adaptive parameter Θ regulates the convergence rate of attractive fixed-point al-
gorithm. The Θ value is automatically updated according to error variations to ensure
convergence.

In the post-processing step, activities of deformation mechanisms (§ 4.4) and some
statistical fields, such as

〈
ε∼⊗ ε∼

〉(r) are computed. The phase orientations Q
∼

(r)
∆t are also

updated after a given step time ∆t by assuming uniform lattice rotation-rates Ω∼ (r) over
the rth phase

Ω∼
(r) = Ω∼

(r)
ellipsoid −Ω∼

(r)
p (50)

where Ω∼
(r)
ellipsoid is rotation-rate tensor of the ellipsoidal domain associated to the phase

(r), given e.g. in Lebensohn et al. (2011), and Ω∼
(r)
p is the plastic rotation-rate tensor

Ω∼
(r)
p =

N∑
k=1

γ̇
(r)
(k)

1
2

(
n

(r)
(k) ⊗m

(r)
(k) −m

(r)
(k) ⊗ n

(r)
(k)

)
(51)

with the slip-rate γ̇(r)
(k) on slip system (k) in the phase (r). Note that strain due to

activation of the accommodation mechanism (corresponding to k = 0 in the above equa-
tion) does not induce any plastic rotation. Texture evolution of polycrystals along a
given strain path can be computed by using this algorithm successively along different
strain increments. Finally, the shape of ellipsoidal inclusions is updated with respect to
the increment of the macroscopic deformation gradient ∆F∼ t = ∆tL∼ t.F∼ t obtained by an
explicit approximation of macroscopic velocity gradient tensor L∼ t.

3.2. Dicretization of isotropic incompressible potential
The accuracy of this discretized second-order estimation (DIS SO Model) depends on

the quality of the integral approximation (43). A decomposition of the integral defined on
S4 in two successive integrals defined on the surface sphere S2 is used in order to apply
the efficient numerical integration developed by Bazant and Oh (1986). The method
requires fewer integration points than the classical Gauss approximation for a same degree
of approximation; and moreover, it gives the smallest difference between minimal and
maximal values of integrals for all directions of σ∼ .

Consider a unit deviatoric symmetric tensor k∼ = (k1, . . . , k5) in Lequeu’s tensor
basis. Its components can be described by a generalized system of spherical coordinates
{θ1, θ2, θ3, θ4} :

k1 = cos (θ4) cos (θ3) cos (θ2) cos (θ1) , k2 = cos (θ4) cos (θ3) cos (θ2) sin (θ1)
k3 = cos (θ4) cos (θ3) sin (θ2) , k4 = cos (θ4) sin (θ3) , k5 = sin (θ4) .
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The symmetry of potential ϕ(σk) with respect to k∼ (ϕ (σ−k) = ϕ (σk)) leads to

φ(0) (σe) =
∫
S2

?

(∫
S2

?

ϕ (σk) π
2

3 cos2 (θ3) cos2 (θ4) dm2

)
dm1 (52)

where S2
? is the semi-sphere, such as (∀i θi ∈

[
−π2 ,

π
2
]
) and dm1 = cos (θ2) dθ1dθ2 and

dm2 = cos (θ4) dθ3dθ4 are the surface elements of S2. A 13th degree approximation with
orthogonal symmetries of integral over unit semi-sphere is used :

φ(0) (σe) ≈
π2

3

37∑
n=1

37∑
m=1

CnC
?
mϕ
(
σ∼ : k∼

n,m
)

(53)

where Cn and C?m = Cm cos2 (θm1 ) cos2 (θm2 ) are integration weights. The angle θni is the
nth value of the angle θi and the discretization direction k∼

n,m corresponds to the unit
deviatoric tensor associated to (θn1 , θn2 , θm1 , θm2 ) in the generalized system of spherical
coordinates. The values of discretization angles (θni ) and associated weights (Cn) are
given in Figure 3.

Note that some weights C?m are vanishing, thus decreasing the number of interpolation
points from 37×37 = 1369 to 1073. Removing these vanishing terms, a change of indices
p = (n,m) with C(p) = π2

3 CnC
?
m leads to the final expression of potential approximation:

φ(0) (σe) ≈
1073∑
p=1

C(p)ϕ
(
σ∼ : k∼(p)

)
. (54)

This is not the most powerful approximation: it is possible to find a 13th degree
approximation with less interpolation points, for example by generalizing the procedure
used by Bazant and Oh (1986). Nevertheless, with a maximal relative error of about 10−4

for a nonlinear potential n(0) = 3.5, it is better than the 13th degree Gauss approximation
which has a maximal relative error of the order of about 0.1 for the same potential and
with more than twice as many interpolation points (74 = 2401). Note also that using
1073 interpolation points as in equation (54) is not critical for the CPU time, as most of
it is spent for integrating the Eshelby tensor and its derivative.

4. Application to olivine aggregates

4.1. Constitutive relations
(Mg0.9,Fe0.1)2SiO4 olivine (orthorhombic, space group Pbnm) is the main constituent

of the Earth’s upper mantle and is stable up to pressures and temperatures in excess of
13GPa and 1760K. It is an interesting material from a mechanical point of view since
it only has six slip system families, listed in Table 3, but only three independent slip
systems; therefore an additional plastic relaxation mechanism is required. The lack of slip
systems in many mineral phases, including olivine, raises a fundamental question that is
usually avoided in the literature, e.g. by using ad hoc micromechanical models, or tackled
by introducing artificial slip systems. The real accommodation mechanisms occurring
in olivine are largely unknown yet: grain boundary sliding, Coble or Nabarro-Herring
diffusion, dislocation climb, or even disclinations as proposed recently by Cordier et al.

17



Figure 3: The right table gives the list of integration weights on unit semi-sphere S2
?. The left figure shows

the location of integration points on one eighth of the unit sphere (Bazant and Oh, 1986). The type 1
points are the intersections of sphere with the axis; the type 2 points are in the middle on the arc between
two type 1 points; the positions of types 3 and 4 points are defined by the angles γ = 0.3140901570977
rad and β = 0.4938054766135 rad respectively and the type 5 point is the intersection of the arcs between
the opposite points of type 1 and type 2. Points on the other semi-sphere are obtained by symmetry.

Slip system [100](010) [001](010) [001](100) [100](001) [100]{021} [001]{110}
τ0 1.00 0.46 1.14 1.40 1.14 1.40

Table 3: Olivine CRSS taken from Raterron et al. (2014) at 360 km depth along a 20 Ma oceanic
geotherm. Note that CRSS values are normalized with respect to that of [100](010), that serves as a
reference.

(2014). The implication of diffusive phenomenon is often involved, e.g. diffusion could be
a good candidate for the accommodation of grain-boundary sliding and therefore could
control the deformation rate. We are not yet at a stage where these potential mechanisms
can be introduced into the SO model. Therefore, for sake of simplicity, we assume that
the unknown accommodation mechanism can be represented by an isotropic potential.
This work aims to inferring what could be the effects of accommodation mechanisms in
real olivine, in order to provide a guideline for future specific experimental studies.

We assume here that potential φ(k) given in Eq. 4 can be used at slip system level,
with γ̇0 = 10−15s−1 and identical stress sensitivities n(k) = 3.5 for all slip systems (Bai
et al., 1991). Accordingly, the slip-rate γ(k) on system (k) reads

γ(k) = ∂τ(k)φ(k)
(
τ(k)
)

= γ0

∣∣∣∣∣ τ(k)

(τ0)(k)

∣∣∣∣∣
n(k)−1

τ(k)

(τ0)(k)
(55)

In this section, we investigate the influence of parameters n(0) and σ(0) of the isotropic
relaxation mechanism on the rheology of polycrystalline olivine. The effective polycrystal
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behavior can be expressed as a power law

εeq
ε̃0

=
(
σeq
σ̃(0)

)ñ
(56)

where ñ and σ̃(0) are respectively the effective stress sensitivity and reference stress. The
reference macroscopic strain-rate ε̃0 is taken equal to both the reference strain-rate of the
relaxation mechanism and the reference shear-rate for slip, i.e. ε̃0 = ε0 = γ̇0 = 10−15 s−1.

The macroscopic law (56) is an approximation which corresponds to a linearization
of ln εeq with respect to ln σeq for geological conditions (εeq ≈ 10−15s−1). Note, however,
that the polycrystal macroscopic behavior will not follow a power-law if the relaxation
mechanism stress exponent differs from that of the individual slip systems.

We have tested the various extensions of the SC scheme on an olivine polycrystal made
of 500 random crystal orientations (or mechanical phases), so that the effective behavior
of the polycrystal is isotropic. We perform computations with an effective equivalent
strain-rate εe = ε0 under uniaxial tension. Results are discussed below.

4.2. Influence of the relative strength of the isotropic relaxation mechanism
In this section, we first consider the case for which all stress sensitivities are identical.

Then, we will investigate the effect of having different stress sensitivities.

4.2.1. Case n(0) = n(k) = 3.5
In this section, we investigate the effect of the relative strength of the isotropic relax-

ation mechanism in the case where all deformation mechanisms exhibit the same stress
sensitivity n(0) = n(k) = 3.5. Results are presented in Figure 4 as a function of σ(0)/τ

?,
where σ(0) is the strength of the isotropic mechanism and τ? =

√
3/2 × τ0[100](010) is a

normalization stress. This value of τ? is the stress for which both the isotropic mecha-
nism and slip along [100](010) have the same strain-rate for a shear stress that is aligned
with [100](010).

Figure 4a shows the normalized effective stress σ̃(0)/τ
? as predicted by the SEC, AFF,

TGT, VAR and SO extensions of the SC scheme, vs. normalized reference stress σ(0)/τ
?.

We observe:

• For a soft isotropic relaxation mechanism (σ(0)/τ
? < 1), all extensions of the SC

scheme are similar. In this case, the contribution of dislocation slip is negligible and
the polycrystal behaves as an homogeneous material with no mechanical contrast
between the grains.

• The TGT extension of the SC scheme shows a saturation of σ̃(0)/τ
? at moderate

values of σ(0)/τ
? ≈ 20. It thus behaves qualitatively as the Static bound (uniform

stress field), but at a higher flow stress. An important consequence is that the
TGT extension allows the polycrystal to deform when σ(0)/τ

? →∞ with only three
independent slip systems, but this behavior is inaccurate and departs significantly
from full-field computations (Castelnau et al., 2008a,b).

• For σ(0)/τ
? & 10, predictions of AFF, SEC, VAR and SO formulations follow a

scaling law, with σ̃(0)/τ
? proportional to

(
σ(0)/τ

?
)γ . While the AFF and SEC
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Nonlinear isotropic relaxation mechanism (n(0) = 3.5)
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Figure 4: Effect of the normalized reference stress σ(0)/τ
? for several extensions of the SC scheme. Static

and Taylor bounds are also indicated, for comparison.
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flow stress increases rapidly leading to γ ≈ 0.77, an overestimated growth-rate,
those of the VAR and SO procedures lead to γ ≈ 0.52. In the case where only
dislocation slip was considered, this value was in prefect agreement with full-field
results (Castelnau et al., 2008a,b).

Figure 4b shows the evolution of the normalized equivalent effective strain-rate of
the relaxation mechanism εreeq/εeq with σ(0)/τ

?. Predictions of the Taylor bound show a
saturation of εreeq/εeq at ≈ 0.4, at moderate values of σ(0)/τ

? ≈ 20. In this approximation,
the contribution of slip systems to strain can not exceed 60%. Predictions of the AFF,
SEC, VAR and SO formulations and Static bound show a scaling law for values σ(0)/τ

? &

100 with εreeq/εeq proportional to
(
σ(0)/τ

?
)−δ. The exponent δ is larger for the Static

and TGT estimates (δ ≈ 3.5, i.e. a value similar to n(0)) than for the AFF, SEC, VAR
formulations (δ ≈ 0.73 to 0.79). Predictions of the SO extension lead to an intermediate
value, δ ≈ 1.6.

Figures 4(c,d,e,f) present the evolution with σ(0)/τ
? of the overall normalized

equivalent stress and strain-rate heterogeneities Σ (σe) /σe, Σ (εe) /εe, Σ
(
εsle
)
/εsle and

Σ (εree ) /εree , defined as

Σ (σe) =
√〈

(σe)2
〉
− (σe)2

, Σ
(
ε(.)
e

)
=

√〈(
ε

(.)
e

)2
〉
−
(
ε

(.)
e

)2
(57)

where the superscript (.) can be replaced by sl (resp. re or nothing) to define the effective
strain-rate associated to all slip systems (resp. associated to relaxation mechanism or
associated to both). These quantities are related to the standard deviation of stress and
strain-rates in the polycrystal, combining the field fluctuations inside the grains together
with the fluctuations between different grains. Note that normalized results are presented
in Figure 4c-f (and also in the forthcoming figures), with a normalized factor depending
on the considered model. For example, Σ (σe) /σe for the AFF model has been calculated
using the AFF estimate for σe. The discrepancies concerning the effective flow stress and
effective strain-rate of relaxation mechanism, already discussed above, have thus to be
taken into account to compare non-normalized values. As for Σ (εe) /εe, since the same
εe has been prescribed for all models, plots of Σ (εe) /εe and Σ (εe) exhibit similar shapes.

Figures 4(c,d,e,f) show that stress and strain-rate heterogeneities increase with the
reference stress for the SEC, AFF, VAR and SO extensions of SC scheme. Again, the
TGT approach exhibits a very different response, with a saturation at small σ(0)/τ

? values
of ≈ 5 − 10. At large σ(0)/τ

?, the TGT approach predicts heterogeneities Σ similar to
those of the Taylor and Static bounds for stress and the strain-rate. By construction,
the Static and Taylor bounds lead to Σ (σe) = 0 and Σ (εe) = 0, respectively.

Fig. 4f shows that strain-rate heterogeneities of the relaxation mechanism increase
faster than strain-rate heterogeneities along slip systems (Fig. 4e).

It is interesting to note that for small values of σ(0)/τ
?, the polycrystal behavior

is close to homogenous with almost no heterogeneities of equivalent stress (Fig. 4c),
equivalent strain-rate (Fig. 4d), nor equivalent strain-rates in the relaxation mecha-
nism (Fig. 4d). Nevertheless, heterogeneities in slip system strain-rates do exist with
Σ
(
εsle
)
/εsle ≈ 1.73 for all estimates. This is also the strain-rate heterogeneity predicted

by the Static and Taylor bound, as stress and strain-rate fields both becomes homoge-
neous.
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Linear isotropic relaxation mechanism (n(0) = 1)
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Figure 5: Effect of the reference stress σ(0)/τ
? for several extensions of the SC scheme, for the case of a

linear viscous relaxation mechanism ((n(0) = 1). Static and Taylor bounds are shown for comparison.

4.2.2. Case n(0) = 1;n(k) = 3.5
We now consider the case in which the relaxation mechanism is linear viscous:

n(0) = 1. The slip systems remain non-linear with n(k) = 3.5. This case is of prac-
tical interest since linear diffusion creep (e.g. Nabarro-Herring) could be an efficient
relaxation mechanisms occurring in the Earth in combination with dislocation creep.
Note that the TGT extension of SC scheme cannot be used here since the stress expo-
nent n(0) is different from the stress exponent for slip systems. Figure 5 presents the
influence of σ(0)/τ

? on the normalized effective reference stress, the normalized effective
equivalent strain-rate of the relaxation mechanism, the heterogeneities of stress field, and
the effective stress sensitivity ñ.

Results for the effective stress are similar to those of Fig. 4, albeit with different
growth rates with γ ≈ 0.5 for the AFF and SEC estimates and γ ≈ 0.4 for the VAR and
SO approximations. It can be observed that the SO estimation is the only SC extension
respecting the VAR upper bound. Stress heterogeneities are for n(0) = 1.0 (Fig. 5c) are
approximately half of those obtained for n(0 = n(k) = 3.5 (Fig. 4c)

The contribution of relaxation mechanism to the overall strain-rate is much larger
for n(0) = 1.0 (Fig. 5b) than for n(0) = 3.5 (Fig. 4b). Here, δ ≈ 0.6 for VAR and SO
estimates, δ ≈ 0.5 for SEC and AFF approximations, and δ = 1 = n(0) for the Static
bound.

The effective stress sensitivity of the polycrystal ñ (Eq. 56) is shown in Fig. 5d.
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The Static bound predicts ñ ranging between n(0) and n(k), depending on the activated
deformation mechanisms. For the Taylor bound, ñ lies close to n(0). Other models predict
ñ ranging between n(0) and 2, depending on the strength of the isotropic mechanism.

Interestingly, for all but the Static bound, the value of ñ remains smaller than 2,
whatever the strength of the isotropic mechanism. This result is of great practical im-
portance: a polycrystal with less than four independent slip systems and a linear relax-
ation mechanism, and slip systems with a stress sensitivity of n(k) = 3.5 cannot exhibit
an overall stress sensitivity of ñ ≈ 3.5, whatever the strength of the relaxation mecha-
nism. This observation is in contradiction with many published results for olivine, where
ñ = n(k) = 3.5 is usually assumed or observed (Bai et al., 1991; Hirth and Kohlstedt,
2003). The additional relaxation mechanism in olivine is poorly known but, according to
our calculations, it should exhibit a nonlinear behavior, i.e. it should be different from
the standard diffusion creep.

4.3. Influence of relaxation stress exponent n(0)
In this section, we test the influence of the stress exponent n(0) of the relaxation

mechanism on the overall behavior of the aggregate. Fig. 6 presents the polycrystal
properties as a function of n(0). Note that, by definition, the TGT model can only be
calculated for n(0) = 3.5.

Figure 6a shows the effective stress exponent ñ for the various extensions of the SC
scheme for a normalized relaxation reference stress σ(0)/τ

? = 1000. All curves cross at
ñ = n(k) = n(0) = 3.5, when all mechanisms share the same stress exponent. For the
Static bounds, ñ shows no dependence with n(0) since the easiest mechanism controls the
effective behavior. At the opposite, ñ is egal to the exponent of the toughest mechanism
n(0) for the Taylor bounds. The AFF and SEC models (superimposed on the figure) also
predict an overall stress sensitivity essentially proportional to n(0) with a slope ≈ 0.8.
On the other hand, the VAR and SO extensions of SC scheme feature similar non-linear
evolutions of ñ with n(0). For n(0) < 3.5, ñ is found larger than that predicted by AFF
and SEC models, whereas the opposite is observed for n(0) > 3.5.

Figure 6b shows the normalized equivalent effective strain-rate of the relaxation mech-
anism εreeq/εeq. The AFF, SEC and VAR models predict relatively large values ranging
between 10−1 and 10−3. The SO model predicts a much lower contribution of the re-
laxation mechanism, lower than 10−8 for n(0) = 10. For comparison, for Taylor bound,
∼ 40% of the strain is produced by the isotropic relaxation mechanism, whatever the
value of n(0).

Figure 6c shows the normalized effective reference stress σ̃0/τ
?. The VAR and SO

extensions are similarly weakly dependent on n(0). As above, only the SO estimate
respects the VAR upper bound, AFF and SEC estimates providing an effective stress 5
to 10 times larger.

Figures 6(d,e,f) present the overall normalized stress and strain-rate heterogeneities
Σ (σe) /σe, Σ

(
εsle
)
/εsle and Σ (εree ) /εree . For the Static and Taylor bounds, heterogeneities

are small and independent of n(0). For the SC extensions, and in particular the SO
model, heterogeneities increase with n(0) and can be quite large, resulting in significant
stress and strain heterogeneities in the aggregate. In this case, activation of deformation
mechanisms might be very localized in the material, probably next to grain boundaries
where field heterogeneities are generally larger than in grain interior. Such an observation
could be used as a guide for future experimental work.
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Normalized reference stress σ(0)/τ
? = 1000
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Figure 6: Effect of the stress sensitivity n(0) of the isotropic relaxation mechanism for several extensions
of the SC scheme. Static and Taylor bounds are shown for comparison.
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Linear isotropic relaxation mechanism (n(0) = 1)
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Figure 7: Effect of the relaxation strength σ(0)/τ
? on the activity of all deformation mechanisms. (a)

Absolute activity. (b) Efficient activity. Results from the SO extension of the SC scheme.

4.4. Mechanism activities
Two kinds of activity are defined to compare the contribution of the different types

of deformation mechanism (dislocation slip and relaxation) to the overall polycrystal
deformation. We define on one hand the phase average strain-rate tensor ε∼

(r)
(s) for the slip

family (s) and the associated equivalent strain-rate ε(r)
(s)eq

ε∼
(r)
(s) =

∑
k∈s

〈
γ̇(k)

〉(r)
µ
∼

(r)
(k) (for s > 0) and ε

(r)
(s)eq

=
√

2
3ε∼

(r)
(s) : ε∼

(r)
(s) . (58)

and on the other hand the equivalent strain-rate of the relaxation mechanism

ε
(r)
(0)eq

=
√

2
3ε∼

(r)
(0) : ε∼

(r)
(0) . (59)

The first activity, called here the ’absolute activity’ and denoted A(s), represents
the global equivalent strain-rate produced by each deformation mechanism (slip system
family for s ≥ 1, and isotropic relaxation mechanism for s = 0):

A(s) = 1
A0

N∑
r=1

c(r)ε
(r)
(s)eq

, where A0 =
S∑
s=0

A(s) . (60)

The second activity is the projection on the macroscopic response of the strain-rate due
to the deformation mechanism (s); it is called the ’efficient activity’, denoted A?(s), and
defined as

A?(s) =
N∑
r=1

c(r)
ε∼

(r)
(s) : ε∼
ε∼ : ε∼

, s ∈ [0, S] . (61)

Note that both activities are normalised, i.e.
∑S
s=0A(s) =

∑S
s=0A

?
(s) = 1. We have

defined these two activities in order to address the effect of local strain heterogeneities
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Figure 8: Olivine pole figures obtained from the Static bound and the SO self-consistent scheme for olivine
aggregate at strain γ = 0.5 and 360 km depth along a 20-Ma ocean geotherm; equal-area projection.
The direction of shear is indicated.

(absolute activity) and the impact of a mechanism on the macroscopic deformation (ef-
ficient activity). For example, if a given mechanism generates opposite strains in two
phases, the absolute activity will be large and the efficient activity will vanish.

Figure 7a shows the evolution of the absolute activities with σ(0)/τ
?. First of all,

the absolute activity of the relaxation mechanism decreases quickly with σ(0)/τ
?; it is

less than 5% for σ(0)/τ
? > 100 and 2% for σ(0)/τ

? > 1000. At relatively small value
of σ(0)/τ

? ≈ 10, the absolute activity of the easiest system [001](010) becomes larger
than that of the isotropic mechanism. An unexpected result of the simulation is the
high absolute activity of [100]{021} slip family despite its high CRSS. This is due to the
heterogeneity of the stress field.

Figure 7b shows the evolution of the efficient activities with σ(0)/τ
?. The efficient

activity of the relaxation mechanism remains dominant for the whole range. The ef-
ficient activities of slip systems remain smaller than 10%. Despite its low CRSS and
large absolute activity, the efficient activity of [001](010) slip is relatively small. Indeed,
efficient activities are not correlated with the CRSS. Finally, at relatively large σ(0)/τ

?,
the absolute activity of the isotropic relaxation mechanism is weak although its efficient
activity remains dominant.

4.5. Crystallographic texture evolution
Figure 8 shows the LPO predicted by the SO extension of SC scheme and Static

bound estimates with linear relaxation mechanism (n(0) = 1, σ(0)/τ
? = 1000) for simple

shear corresponding to an equivalent strain of 0.5. Here, the static bound is used for
comparison as this rather intuitive model is often used in the geophysical community,
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for example to infer the in-situ deformation history of a specimen that might explain the
observed texture. The Static bound which favours the easiest deformation mechanism
leads to align the olivine [001] axis with the shear direction and the (010) plane with
the shear plane strain, due to the large activation of the easiest system [001](010). The
obtained pole figures are close to the so-called C-Type texture according the classifica-
tion of Jung and Karato (2001). The texture obtained with the SO extension is less
marked, with a much weaker alignment of the [100] axes with the shear direction. This
texture corresponds to a mixed Type-A and C-Type texture of Jung and Karato (2001).
This sensitivity of texture evolution to the used micromechanical model results from the
complex stress and strain-rate heterogeneities discussed above.

5. Conclusion

Our study introduces a novel treatment of the effective viscoplastic behavior in poly-
crystals lacking four independent slip systems, in which a relaxation mechanism is ac-
counted for. The method is implemented into several nonlinear extensions of the SC
scheme, including the SEC, AFF, TGT, VAR and SO order estimates. Two extensions
of the SO estimate introduced by Liu et al. (2003b) have been proposed: the first is
based on the use of a tensorial basis to linearize the isotropic relaxation mechanism as
in Idiart et al. (2006); the second is based on an approximation of the potential of the
relaxation mechanism. The main limitation of the first strategy is that results depend
on the choice of the tensor basis; the criteria for isotropic and numerical convergence can
not be met simultaneously. Although the second strategy introduces a new approxima-
tion, it satisfies the isotropy criterion while ensuring the convergence of the attractive
fixed-point algorithm.

The case of olivine, a mineral phase of geophysical interest, is presented as an illus-
trative example. The main results can be summarized as follow:

• The SO extension of the SC scheme predicts a very large strain-rate heterogeneity
of the relaxation mechanism.

• All non-linear extensions of the SC scheme predict that when using a linear viscous
relaxation process, the effective stress sensitivity of the polycrystal is significantly
smaller than those of the slip systems (set to n(k) = 3.5).

• The relaxation mechanism significantly influences the effective reference stress of
the polycrystal even if its absolute activity is very small.

• The SO extension predicts that for σ0/τ
? > 100, the isotropic relaxation mechanism

is very efficient to accommodate the macroscopic strain although it is less active
than all other dislocation slip systems.

• The SO extension of SC scheme predicts different textures than those provided by
the static bound.

For geophysical applications,our study highlights the strong effects of the intergran-
ular mechanical interactions arising inside a polycrystal. Capturing correctly these in-
teractions, as done with the SO extension of SC scheme, is a prerequisite condition for
making correct connections between processes at the slip system level and the overall
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polycrystal response. In agreement with previous studies (Liu et al., 2003b,a; Leben-
sohn et al., 2007), this leads to an improved description of LPO development compared
to those provided by classical TGT SC and Static bound estimates (Wenk et al., 1991;
Tommasi et al., 1999, 2000; Blackman et al., 2002; Chastel et al., 1993; Dawson and
Wenk, 2000).

Here, we replace the fictitious <110>{111} slip system used in previous studies by
a more realistic isotropic relaxation mechanism. In can be noticed that, when using the
SO SC scheme, the present results are qualitatively similar to those obtained previously
in Castelnau et al. (2006, 2008a,b, 2009, 2010) with <110>{111} slips. In the future the
present model will be improved by implementing other mechanisms such as dislocation
climb (Lebensohn et al., 2010) or disclinations (Cordier et al., 2014) with a refined input
from experimental data. This model could also be applied to other important crystalline
phases present in the Earth mantle such diopsides, garnets, etc., as well as multiphase
materials (e.g. Raterron et al., 2014).
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Appendix A. Expressions of linearized compliance tensor
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Here K∼∼ is the fourth order deviatoric projection tensor, such as σ∼ ′ = K∼∼
: σ∼ .

Appendix B. Lequeu tensor basis

Lequeu et al. (1987) have defined the following orthonormal basis for symmetric
deviatoric tensor

α∼1 =
√

2
2 (e 2 ⊗ e 2 − e 1 ⊗ e 1) , α∼2 =

√
6

6 (2e 3 ⊗ e 3 − e 1 ⊗ e 1 − e 2 ⊗ e 2) ,

α∼3 =
√

2
2 (e 2 ⊗ e 3 + e 3 ⊗ e 2) , α∼4 =

√
2

2 (e 3 ⊗ e 1 + e 1 ⊗ e 3) ,

α∼5 =
√

2
2 (e 1 ⊗ e 2 + e 2 ⊗ e 1) .
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