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ERROR CONTROL FOR THE DETECTION OF RARE AND WEAK SIGNATURES IN
MASSIVE DATA

Céline Meillier, Florent Chatelain, Olivier Michel, Hacheme Ayasso

GIPSA-lab, Grenoble Alpes University, France

ABSTRACT
In this paper, we address the general issue of detecting rare
and weak signatures in very noisy data. Multiple hypothe-
ses testing approaches can be used to extract a list of com-
ponents of the data that are likely to be contaminated by a
source while controlling a global error criterion. However
most of efficients methods available in the literature are de-
rived for independent tests. Based on the work of Benjamini
and Yekutieli [1], we show that under some classical positiv-
ity assumptions, the Benjamini-Hochberg procedure for False
Discovery Rate (FDR) control can be directly applied to the
result produced by a very common tool in signal and image
processing: the matched filter. This shows that despite the de-
pendency structure between the components of the matched
filter output, the Benjamini-Hochberg procedure still guaran-
tee the FDR control. This is illustrated on both synthetic and
real data.

Index Terms— source detection, matched filter, error
control, FDR, massive data

1. INTRODUCTION

In this work we consider the case of noisy observation data of
some sources whose responses are faint and sparse in the ob-
servation domain. The normalized signatures of these sources
are supposed to be known but their position and their intensity
must be estimated. This is the case, for instance, of images
containing unresolved sources whose response is the point
spread function (PSF) of the optical device. We suppose that
these sources contribute to a low proportion of data samples
(i.e. the pixels in the image case), while the other samples
are just corrupted by Gaussian noise. We want to detect the
largest number of samples belonging to a source while con-
trolling the number of false discoveries, i.e. samples that con-
tain only noise but were detected as a source contribution.

This leads to consider the following statistical linear ob-
servation model:

Y = Ha+ ε, (1)

where Y ∈ Rd is the observation vector (for an image, Y
correspond to the vectorized image), ε ∈ Rd is a white noise
vector (measurement, environment, etc), H ∈ Rd×n is a de-
sign matrix. It may be a dictionary of possible sources and

a ∈ Rn the intensity vector. A few coefficients ai of a are
expected to be non zero, and correspond to the intensities of
the few sources that are observed.

Model selection procedures are widely used to tackle this
detection problem. They are commonly designed to mini-
mize a penalized least-squares criterion â = argminα ||Y −
Ha||22 + λPen(a), where the penalization Pen(a) (e.g. `1
norm, `0 pseudo-norm or AIC criterion, etc) is chosen to en-
force sparsity. This can be viewed as a soft, or hard, thresh-
olding of the least squares estimator of the intensity vector.
However a global error control cannot be guaranteed. This
control is of particular interest for the detection of rare and
weak sources, since this provides an interpretable criterion
to achieve the tradeoff between the detection power and the
number of false detections.

Deciding which samples may belong to a source can be
formulated as a multiple hypotheses test on the intensity vec-
tor coefficients:{

H(i)
0 : ai = 0 (noise only)
H(i)

1 : ai > 0 (source + noise)

Thresholding the intensity vector is then equivalent to reject
the H(1)

0 , . . . ,H(n)
0 hypotheses for a given significance level

or error criterion. When the threshold value is set to corre-
spond to a significance level α valid for a single test, it does
not take into account the large number of tests. This may re-
sult in situations where most of the detections over the n tests
correspond to false alarms. Applying a Bonferonni correc-
tion [2] for the n tests yields a significance level of α/nwhich
ensures to control the probability α of making even one false
alarm. However this naive procedure is highly conservative
and most of the true H(i)

1 are missed. This underlines that
simple thresholding procedures are not efficient when a large
number of tests is performed. This is why some authors have
focused on more powerful procedures to monitor a global er-
ror rate. A very popular and attractive procedure, introduced
by Benjamini and Hochberg [3], is to control the false dis-
covery rate (FDR), i.e. the expected proportion of true null
hypotheses rejected among all the rejected tests. The FDR
control procedures have been recently studied in many differ-
ent fields: astronomy [4,5], in functional neuroimaging [6] or
in genomics [7]. Note that in [8] the authors propose a vari-
able selection procedure, called the knockoff filter, designed



to control the FDR criterion in the statistical linear model (1)
that we are considering. However in the case of massive data,
both the prohibitive number of tests (n ∼ 108 in the proposed
application of this paper) and the strong local correlations be-
tween the test statistics make the building of knockoffs im-
possible.

In our case, the sources are very faint. Since their signa-
ture is assumed to be known, the matched filter is a classical
approach to increase their detectability. This strategy is used
in many application fields: in biology [9] for improving the
segmentation of blood vessels from the background of retina
images; in astronomy, for detection of point sources in cos-
mic microwave background images [10]. However, matched
filtering introduces correlations between the output compo-
nents and consequently between tests. Most of the FDR con-
trol procedures are designed in the case of independent tests.
Note that a log-factor correction to the Benjamini-Hochberg
(BH) procedure is proposed in [1]. This allows to control the
FDR criterion under any arbitrary dependency structure. Un-
fortunately, this correction appears to be too conservative to
be useful in practice.

Finally, detection of rare and weak signals in massive
data issue can be split in two steps: 1) finding a list of sam-
ples/pixels that probably belong to sources with a global error
control and then 2) identifying sources based on these discov-
eries with dedicated algorithms. In this paper, we focus on
the first step to perform the screening of samples that may be
affected by a source. In [1] the authors also show that under
some assumption on the dependency structure, the BH proce-
dure can still be applied. Based on this result, we show that
under classical assumptions on the positivity of the source
responses, the BH procedure for FDR control can be directly
extended to the matched filter output.

2. PROBLEM FORMULATION

2.1. Model

The source signatures are assumed to be sparse and their pro-
file is convolved with the response of the measuring instru-
ment. The observation data can be decomposed into sources
contribution and additive Gaussian noise:

Y =
∑

j

sj + ε

where sj is the response of the instrument to the jth source
and ε is the background noise. The source response can be
modeled as:

sj(r) =
∑

i

aj,ih(r − ri)

where aj,i is the jth source intensity at position ri, i ranges
over the source support, r is a coordinate in the data domain
and h is the `2-normalized profile of the instrument response.

Sources are assumed to be sparse, thus their support is as-
sumed to be small. Note that data can be multidimensional
(for an image, the coordinate r represents the cartesian coor-
dinates (x, y)).

2.2. Assumptions

The major assumptions concern the positivity of the sources
response: aj,i > 0 for all i ranging over the jth source sup-
port and for all sources j, and the response of the instrument
is non-negative: ∀r, h(r) > 0. Note that this last assumption
can be relaxed. If h contains a few negative coefficients, a
sub-optimal matched filter will be applied based on the posi-
tive truncated template h+(r) = h(r) if h(r) > 0, h+(r) = 0
otherwise, which yields template non-negativity.

We also assume that the additive noise vector ε is Gaus-
sian distributed: ε ∼ N (0, σ2Id) where σ2 is known. Without
loss of generality, let σ2 = 1.

2.3. Detection strategy

As the number of sources and their positions are unknown, we
have to test the d possible locations and we have to estimate
the coefficients of the vector a. In our case, the source detec-
tion strategy consists on using the linear model (1), where H
is the n×n matrix (in this case n = d). H is defined column-
wise. Each column is a shifted version of the `2-normalized
response h, center at position i, 1 6 i 6 n. The intensity co-
efficients ai =

∑
j aj,i, obtained by summing all the source

intensities at a given position ri, are stored in the 1×n vector
a = [a1, · · · , an]T . This leads to test the presence of a source
at each position ri:
• if ai > 0 there is a source contribution at position ri,

• if ai = 0 there is no source at this location.

2.4. Matched filter and positive covariances

In order to increase the sources SNR, the optimal matched
filter is defined as the inner product with the response h to
be detected. In the matrix formulation, applying this is per-
formed by the following operation:

HTY = HTHa+HT ε (2)

Note that matrix H has interesting properties:
P1. H is sparse, the number of non null coefficients in each

column is small compared to d.

P2. (HTH)i,i = 1 ∀ 1 6 i 6 n.

P3. H is a non-negative matrix: H > 0 (i.e. all the matrix
entries are non-negative) since the profile h is positive.

From (2), the HTY vector is Gaussian distributed:

HTY ∼ N (µ,Σ) (3)

where:
• µ = HTHa > 0,

• Σ = HTH > 0.



3. MULTIPLE HYPOTHESES TESTING AND FDR
CONTROL

3.1. Multiple hypotheses testing formulation

Considering the matched filter output HTY = X for read-
ing simplicity, from prop. P2 and (3), each component Xi is
Gaussian distributed:

Xi ∼ N (µi, 1), ∀ 1 6 i 6 n

We now consider the following binary test for each Xi:
{
Hi0 : µi = 0 (no source)
Hi1 : µi > 0 (contribution of source),

where the number of tests equal to n = d can be huge for
massive data.

3.2. P-values and Benjamini-Hochberg procedure

In the case of n independent test statistics, Benjamini and
Hochberg [3] proposed a procedure that controls the FDR at
a level π0q 6 q, where π0 = n0

n and n0 is the number of tests
that are true H0 (when π0 is unknown, the FDR is controlled
at nominal level q):
1. Evaluate the n p-values pi, i = 1 · · ·n.

2. Let p(0) = 0 and p(i), i = 1 · · ·n, the ordered p-values:
p(0) < p(1) 6 p(2) 6 · · · 6 p(n).

3. Define k = argmax
i

(
p(i) 6 q in

)

4. RejectH(1)
0 , · · · ,H(k)

0 .
To apply the Benjamini-Hochberg (BH) procedure to

our case, we consider the p-values pi = 1 − FH0(Xi) =
FH0

(−Xi) where FH0
is the cumulative density function of

the test under the null hypothesis, i.e the cumulative density
function of the standard normal distribution. By construc-
tion the p-value pi is uniformly distributed on [0, 1] under
the null hypothesis Hi0 while it is stochastically lower, i.e.
Pr(pi < t) > t for 0 6 t 6 1, under the alternative hypothe-
sisHi1.

3.3. Threshold a Gaussian vector with BH procedure

Benjamini and Yekutieli [1] proposed an extension of the BH
procedure to dependent tests under the positive regression de-
pendency on a subset (PRDS) assumption (see [1, p1168] for
details). They showed if Σ > 0, i.e. if all the matrix entries
are non-negative, then X ∼ N (µ,Σ) is PRDS. We propose
to threshold the matched filter output, which is, from (3), a
Gaussian vector, with BH procedure under PRDS assumption.
This yields the following proposition.

Proposition. If the matched filter output is Gaussian, X =
HTY ∼ N (µ,Σ), with a non-negative covariance Σ > 0,
then the corresponding p-values are PRDS.

From [1], if a vector is PRDS on any subset with and if f is a
monotone function then the vector Y = (f(X1), . . . , f(Xn))
is also PRDS. This is true in particular for the p-values that
are decreasing function of the Gaussian vector X: pi = 1 −
F (Xi), where F is the cumulative density function of the test
under the null hypothesis. Thus we state the following propo-
sition.

Proposition. Applying the BH procedure allows to threshold
the matched filter output while controlling the FDR.

In our case, the matched filter result X = HTY is
PRDS because of (3) and the BH procedure allows to con-
trol the FDR at level q n0

n 6 q by thresholding the p-values.
Rejecting H(1)

0 , · · · ,H(k)
0 by the BH procedure is equiv-

alent to decide X(1), X(2), · · · , X(k) are significative, i.e.
µ(1) > 0, µ(2) > 0, · · · , µ(k) > 0, where the notation
X(1), X(2), · · · , X(k) stands for the tests corresponding to
the ordered p-values p(1) 6 p(2) 6 · · · 6 p(k).

3.4. Example

3.4.1. Matched filtering

Below is a simulation of a source detection problem using the
FDR control on the matched filter output. Consider a two-
dimensional noisy image containing three identical sources
of known profile with a -5dB SNR. Figure 1(a) shows three
sources without noise in a 100×100 pixels image. Figure 1(b)
illustrates the difficulty to detect these sources in presence of
Gaussian noise. Figure 1(c) is the matched filter output and
figure 1(d) shows the ordered p-values graph computed on the
filtered image and the theoretical repartition under H0. The
closer to zero the p-value is, the more likely to belong to a
source the corresponding pixel is. These p-values must be
thresholded while controlling an error control criterion.

Figures 1(e) and 1(f) compare the performance of naive
thresholding at different significance levels α and the perfor-
mance of the matched filter output thresholding with the BH
procedure for different FDR levels.Threshold naively the cor-
responding p-values at a classical level α = 0.05 (model by
the red thresholding on figure 1(d)) leads to a large number of
false detections (see figure 1(e)). In this case, more than 50%
of the selected pixels are actually pure noise pixels. Control-
ling the FDR seems to be more appropriated to screen the pix-
els that may be affected by a source while limiting the errors.
Moreover the few false detected pixels should be eliminated
by source identification dedicated algorithms.

3.4.2. Performances

Among the n = 104 tests, the proportion of true H0 is π0 =
0.97. We apply BH procedure for different FDR and differ-
ent noise levels (-5dB 6 SNR 6 30dB). For each case, 1000
simulations are performed to measure the rate of false dis-
coveries actually obtained by thresholding the matched filter



(a) Without noise (b) Noisy image (SNR = -5dB)

(c) Matched filter output
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Fig. 1: Example of sparse source detection problem: (a) three
source responses (b) noisy observed image (c) matched filter
output (d) p-values vs their rank orders (blue curve), theoret-
ical p-value quantiles under the null vs rank order i (y = i/n
green curve), α = 0.05 threshold for a single test (horizon-
tal red line in the zoom) (e) thresholding using respectively
different significative levels α based on a single test, and (f)
using the BH procedure for different FDR levels q

output. The BH procedure controls the FDR at π0q 6 q. Fig-
ure 2 shows the false discoveries rate for a given control q,
and the power of this procedure. The actual FDR are close
to the control level π0q, and for q 6 0.2 the powers are very
similar. Therefore the same power can be maintained here
with a low false discoveries rate.

4. APPLICATION TO THE GALAXY DETECTION

Finding faint and unresolved (or poorly resolved) objects in
massive data (large images, hyperspectral cubes, etc) while
controlling FDR is a current issue in astronomy. This problem
can actually be recasted in the framework described in the
previous section.
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Fig. 2: False (left) and true (right) discoveries rate estimated
on 1000 simulations of the noisy image containing three
sources for different FDR and different SNR. True discovery
is a trueH1 test correctly identified.

4.1. Data description
The Multi Unit Spectroscopic Explorer (MUSE) is a second
generation VLT instrument [11]. MUSE has a field of 1 × 1
arcmin2 sampled at 0.2×0.2 arcsec2 and spectra are sampled
at 1.25 Å for wavelength ranging from 4800Å to 9300Å. The
MUSE instrument is able to record more than 90000 spectra
by image. Classical dimensions of a MUSE data cube are
300 × 300 × 3600 pixels. Different kinds of galaxies are ex-
pected to be found in the MUSE data cube. Some are very
bright or spatially extended ones and easy to detect. The real
challenge consists on detecting distant galaxies with a very
low intensity and low spatial extension,whose spectral char-
acteristics reduces to a single emission line of a few Å wide.
Then the response of such a source should be close to the 3D
point spread function (PSF) of the MUSE instrument.

4.2. 3D matched filter

The MUSE PSF spectrally varies, so does the point source re-
sponse. The matched filter has to include this variability for
improving the detection. The intensity profile hλ is a three-
dimensional positive kernel, defined for all of the 3600 spec-
tral bands. The correlation induced by the matched filter in-
volves 13× 13× 7 pixels, which is the size of the PSF kernel
hλ.

4.3. 3D thresholding procedure

The matched filter and BH procedure are applied on the
MUSE view of the Hubble Deep Field South (HDFS)1 [12].
In order to improve the tractability of dedicated detection
algorithm [13], a first step is proposed, whose objective is to
provide a screening of the candidate pixels. Figure 3 actually
represents a projection (integrating all wavelengths) of the
3D thresholding procedure result for a FDR set to q = 0.1.
A lot of regions of low spatial and spectral extension are re-
jected by the BH thresholding procedure, actually 3.7% of the
three-dimensional data cube have been screened. These pix-
els can now be proposed to the source finder algorithm [13]
as candidates for faint galaxy centers. Note that this data cube

1All the material is available at http://muse-vlt.eu/science/
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Fig. 3: Projection of the threshold data cube. The color scale
indicates the number of activated wavelengths for each spatial
position r, i.e. the number of spectral components classified
inH1 for each position r (FDR = 0.1).

contains also spatially and spectrally extended bright galaxies
which are highlighted by the matched filter, that explains the
large dark sources on figure 3. Among these bright galaxies,
pixels belonging to sources of low spatial and spectral exten-
sion are also detected. The procedure is robust to the spectral
variability of the sources.

4.4. Discussion

In the MUSE data case, the proportion π0 is not known, so
the theoretical upper bound π0q is unknown. Then the BH
procedure guarantees a FDR control upper bounded by the
chosen value q. As π0 is expected to be close to one for this
application, these bounds are almost the same. Otherwise the
proportion π0 can also be estimated to obtain a sharper bound.
Some approaches have been derived in the literature (see for
instance [14, 15] and [16]) that guarantee FDR control π̂0q in
the case of independent tests. Note that in [15], the control is
asymptotically guaranteed under local dependency between
tests. This is for instance the case of the matched filter output
when the source responses are sparse.

Another point is worth being mentioned. For the MUSE
data, an independent chi-squared distributed estimator S2 of
the noise variance is provided with the data. Normalizing the
MUSE data cube with S leads to a studentized vector Y/S
whereas in the previous sections we consider an equivariate
normal distributed vector. From [1], Y/S is not PRDS but the
BH procedure can be used for controlling FDR provided that
q < 0.5 which is the case in practice. This result is used for
producing the map shown on Figure 3.

5. CONCLUSION

Based on positivity assumption for the matched filter re-
sponse, we show that applying the BH procedure to threshold

the matched filter output allows to control the FDR despite
the dependency. We use this result for building a 3D map of
pixels that may belong to faint galaxies of low spatial exten-
sion in massive hyperspectral data. This map of candidate
pixels may actually be used as an input of galaxy detec-
tion algorithm [13], allowing to control both the FDR and
computational tractability.
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