3rd FRENCH-JAPANESE workshop on DIAMOND POWER DEVICES, Nimes 7-10th July 2015 Interplay of bonding and electronic properties at diamond interfaces

P. Muret, A. Traoré, G. Chicot

Institut Néel, CNRS Grenoble & Université Grenoble-Alpes, France

Outline :

1. What quantities govern the potential barrier height at metal/oxygenated (100) oriented diamond interfaces ?

2. Interface states and bonding at dielectric /oxygenated (100) oriented diamond interfaces

3. Conclusions

1.1. Assessment of ideal barrier heights at Schottky interfaces

The non-ideal current density under junction voltage V_j of the Schottky diode with a barrier height Φ_B^0 at $V_j = 0$ and a non-ideality factor n is:

$$J_z = \alpha A^{**} T^2 \exp\left(-\frac{e_0 \Phi_B^0}{k_B T}\right) \left[\exp\left(\frac{e_0 V_j}{n k_B T}\right) - 1\right]$$
(1)

Alternatively, it can be expressed as an ideal thermoionic current density with a voltage and temperature dependent barrier height $\Phi_B(T, V_j)$, due to barrier inhomogeneities, image force lowering, etc:

$$J_z = \alpha A^{**} T^2 \exp\left(-\frac{e_0 \Phi_B(T, V_j)}{k_B T}\right) \left[\exp\left(\frac{e_0 V_j}{k_B T}\right) - 1\right]$$
(2)

Whenever the reverse current can be neglected, one gets from the two previous equations:

$$\frac{k_B T}{e_0} \frac{d(\ln J_z)}{dV_j} = \frac{1}{n(T, V_j)} = 1 - \frac{d\Phi_B(T, V_j)}{dV_j} = 1 + \frac{d\Phi_B(T, U)}{dU}$$
(3)

where U is the band bending inside the depletion zone. The ideality factor is therefore voltage dependent in general.

But if there is a voltage range near V_b and band bending U_b where this dependence is negligible, extending over U_b/K , integration of the second and fourth expressions gives:

$$\Phi_B^{app}(T, U_b) = \Phi_B^{ideal} - \frac{U_b}{K} \frac{n(T, U_b) - 1}{n(T, U_b)}$$
(4)

3

1.2. Ideal barriers in Zr / initially oxidized (100) diamond surfaces

I, II & III are distinct samples

two different ideal barriers in the unique sample I ;
almost the same ideal barrier in two different samples (groups of data IA & IIA)

annealing at 450°C reduces the barrier by 1.4 V in average, and strongly decreases the ideality factor

(eV)

 $\mathbf{e}_{0}\Phi_{\mathsf{B}\mathsf{p}}^{\mathsf{hom}}$

Metal- or interface-induced states (assumed gap independent of the metal)

$$e_0 \Phi_{Bp}^{hom} = \Phi_0 + S_\phi \left[(I_{SC} - \Phi_0) - \phi_m \right] \text{ where}$$
$$S_\phi = \frac{A_\phi}{1 + (e_0^2 / \varepsilon_i \varepsilon_0) D_{is} d_{di}} > 0$$

Inappropriate

Bond-induced interface dipole

With $I_{SC}(S) = E_G + \chi + \Delta \chi(S)$,

Ideal barrier heights Δq the charge transfer on the metal side, d_{bd} the bond length and N_{bd} the number of bonds:

$$e_0 \Phi_{Bp}^{hom} = (I_{SC}(S) - \phi_M) - e_0 \Delta q \, d_{bd} \, N_{bd} / (\varepsilon_i \, \varepsilon_0)$$

If one defines the abscissa $W_{SM} = (I_{SC}(S) - \phi_M)$, the slope is:

$$\frac{d(e_0 \, \Phi_{Bp}^{hom})}{dW_{SM}} \, = \, 1 \, + \, \frac{d(e_0 \, \Delta q \, d_{bd} \, N_{bd}/(\varepsilon_i \, \varepsilon_0))}{d\phi_M}$$

The more electronegative metal (& ϕ_m), the less Δq , \Rightarrow second term < 0

The bond-induced dipole model is able to explain both positive and negative slopes. Strong change of the bonds C-O and C-metal at interface occurs after annealing.

2.1. Electrical properties of MIS structures (oxide states)

$$V_G = V_{FB} - \frac{1}{C_{ox}} \left(Q_{SC} + Q_{is} \rfloor_{\phi_{s0}}^{\phi_s} \right) + \phi_s \tag{1a}$$

where the theoretical flat band voltage V_{FB} is defined at $\phi_{s0} = 0$:

$$V_{FB} = \Phi_{MS} - \left(Q_{is}(0) + \overline{Q_{ox}}\right) / C_{ox}$$
(1b)

In the depletion regime after delay d and with $q = -|e_0|$ for a p-type semiconductor:

$$(C_{MIS}^{HF})^{-2} - (C_{ox})^{-2} = \frac{2}{q\varepsilon_{SC}N_{di}}[V_{FB} - Q_{is}^d(\phi_s)/C_{ox} - V_G]$$
(2)

The pulse HF capacitance method performs each measurement with a constant initial condition, as close as possible to flat band, after a constant delay d:

2.2. Electrical properties of MIS structures (interface states)

The probable origin of interface states:

Unsaturated bonds, mainly due to reconstructed or dangling carbon orbitals likely remain and are responsible for interface states within the bandgap.

Current directions of research:

Improvement of the crystalline quality of the insulator and increase of its bandgap (maybe other candidates such as SiO₂ or CaF₂ would show better properties);
 pre- and post-treatments of the interface (thermal annealing or plasma treatment under various gas containing O, F, H species) dedicated to the decrease of interface states.

Conclusions

Methods able to investigate interface properties have been implemented.

Bonding at interface controls the most important quantities like potential barriers and interface states. Progress toward a fully operative MOS transistor are going on.

Aknowledgements to :

A. Maréchal, Thanh-Toan Pham, C. Rivière, D. Eon, E. Gheeraert, J. Pernot,

J. Pinēro, M. P. Villar, D. Araujo

Researchers from AIST and NIMS

Thank you to the organizers and attendants