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Rémi Girauda,b,c,d,e,∗, Vinh-Thong Taa,b,e, Nicolas Papadakisc,d, José V.
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Abstract

Automatic segmentation methods are important tools for quantitative analy-

sis of Magnetic Resonance Images (MRI). Recently, patch-based label fusion

approaches have demonstrated state-of-the-art segmentation accuracy. In this

paper, we introduce a new patch-based label fusion framework to perform seg-

mentation of anatomical structures. The proposed approach uses an Optimized

PAtchMatch Label fusion (OPAL) strategy that drastically reduces the compu-

tation time required for the search of similar patches. The reduced computa-

tion time of OPAL opens the way for new strategies and facilitates processing

on large databases. In this paper, we investigate new perspectives offered by

OPAL, by introducing a new multi-scale and multi-feature framework. Dur-

ing our validation on hippocampus segmentation we use two datasets: young
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adults in the ICBM cohort and elderly adults in the EADC-ADNI dataset. For

both, OPAL is compared to state-of-the-art methods. Results show that OPAL

obtained the highest median Dice coefficient (89.9% for ICBM and 90.1% for

EADC-ADNI). Moreover, in both cases, OPAL produced a segmentation ac-

curacy similar to inter-expert variability. On the EADC-ADNI dataset, we

compare the hippocampal volumes obtained by manual and automatic segmen-

tation. The volumes appear to be highly correlated that enables to perform

more accurate separation of pathological populations.

Keywords: Patch Matching, Segmentation, Late Fusion, Hippocampus,

Patch-Based Method.

1. Introduction

Magnetic Resonance Imaging (MRI) has become an essential tool in medical

analysis, especially in the study of the human brain. The segmentation of MRI

brain structures is a necessary step for many clinical applications. The manual

segmentation of structures in MRI by clinical experts is still considered as the5

gold standard. However, manual labeling is a highly tedious and very time

consuming task. Moreover, the manually generated segmentations are subject

to inter- and intra-rater variability. Therefore, designing fast, accurate and

reliable automatic segmentation methods is a challenging work in quantitative

MRI analysis.10

In the past decade, several paradigms were proposed to automatically per-

form brain segmentation. First, atlas-based methods involving nonlinear regis-

tration of a labeled atlas to the subject were proposed [1, 2]. Once the atlas is

matched to the subject image, the segmentation is achieved by warping the atlas

labels to the target image space. Such atlas-based methods have been widely15

used due to their robustness and the ease of integration of expert priors. How-

ever, atlas-based methods may not sufficiently capture inter-subject variability

due to the one-to-one mapping assumption between the atlas and the subject

anatomy. Consequently, atlas-based methods are subject to registration errors
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since in general such mapping does not exist.20

In order to minimize registration errors, template warping techniques based

on a training library of manually labeled templates were introduced. The sim-

plest method based on a library of training templates is the best-template ap-

proach [3]. The main idea is to reduce the anatomical distance between a

selected template and the subject to be segmented in order to improve reg-25

istration accuracy. First, the most similar template is selected in the training

library. Then, this template is nonlinearly registered to the subject. Finally, the

estimated nonlinear transformation is applied to the manually segmented labels

in the selected template to obtain the final segmentation. While the selection

of the most similar template compared to an a priori fixed atlas may improve30

segmentation results, the best template strategy is still subject to registration

errors and leads to sub-optimal results.

A significant improvement has been obtained with the introduction of multi-

template approaches. Such methods merge information from several similar

training templates instead of using a single template to achieve better segmen-35

tation. In such methods, the registration errors resulting from inter-subject

variability are considered as a random variable, thus reducing segmentation er-

ror by using several atlases [4, 5]. Since its introduction, many approaches have

been proposed to improve the label fusion step, such as preselection of most

similar template following by majority voting [6, 7, 8], intensity models [9, 10],40

fusion techniques with local weighted label fusion [11, 12, 13] or systematic bias

correction using a learning-based method [14]. Multi-templates matching ap-

proaches demonstrated competitive segmentation accuracy at the expense of an

important computational burden resulting from multiple nonlinear registrations,

i.e., up to several hours.45

Recently, a nonlocal patch-based label fusion (PBL) method [15] has been

proposed for reducing the computational burden of multi-templates based meth-

ods. Instead of performing multiple nonlinear registrations, the PBL method

relies on the comparison of patches (centered neighborhood around a voxel)

which only requires an affine alignment of the subject and the training tem-50
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plates. The patch comparisons performed between the current image patch and

training patches, are used to assign a weight to the manual labels according to

patch similarity. The search for similar training patches is based on a nonlocal

strategy in order to better capture registration inaccuracies and to efficiently

handle the inter-subject variability. PBL overcomes the one-to-one mapping55

assumption of multi-template warping methods thanks to a well-defined one-

to-many mapping model. Finally, the PBL approach produces state-of-the-art

segmentation accuracy with limited computation time, i.e., several minutes.

Since its introduction, the PBL approach has been intensively studied and

many improvements have been proposed. First, PBL can be combined with60

other methods such as multi-template warping [16], active appearance models

[17] or level sets [18]. Moreover, other improvements have been proposed using

multi-resolution framework [19], discriminative dictionary learning and sparse

coding [20], or generative probability models [21]. However, PBL still suffers

from several limitations. First, the search for similar patches is still compu-65

tationally expensive. Although preselection of templates and patches [15] or

multi-scale strategies [19] have been proposed, an important amount of com-

putation remains dedicated to the search for similar patches in the training

library. Secondly, the template preselection step can prevent finding the most

similar patches existing in the library. By selecting training templates according70

to a global similarity measure between the subject and the template, the tem-

plate preselection step is likely to remove relevant parts of the training library,

possibly leading to sub-optimal results. Finally, in PBL, patch comparisons are

performed between the current patch and training patches. The relevance of the

match is then weighted depending on the similarity between the two patches.75

However, weights are assigned to a large number of training patches including

many dissimilar patches. Beyond inefficient computations dedicated to estimate

negligible weights, these dissimilar patches can decrease the segmentation ac-

curacy [20]. Sparsity-based methods tend to limit this issue but suffer from an

important computational burden [20, 21].80

In this paper, we first introduce a new Optimized PAtchMatch for Label
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fusion (OPAL) to address the limitations of previous PBL approaches in terms

of computation time and search strategy of similar patches. The OPAL method

is able to find, in significantly less computations, similar patches over the en-

tire training library without template or patch preselection. Originally, the85

PatchMatch (PM) [22] algorithm was introduced to efficiently find patch corre-

spondences between two 2D images. For each patch within the first image, an

approximate nearest neighbor (ANN) is found within the second image. The

algorithm is based on a cooperative and randomized strategy resulting in very

low computation time, enabling near real-time processing. PM has been applied90

to medical imaging for super-resolution of cardiac MRI [23], but most PM ap-

plications concern 2D image editing problems. In this work, we investigate the

use of PM for anatomical structures segmentation using multi-templates train-

ing library. Thanks to our Optimized PM (OPM) algorithm, OPAL produces

segmentations in a few seconds compared to previous PBL methods. Beyond95

computation time efficiency, OPAL complexity only depends on the size of the

area to be processed within the subject. Consequently, our method does not

require any preselection, since the search of most similar patches is achieved

over the entire training library. Without training template or patch preselec-

tion, similar patches can be found within the whole template library leading to100

higher segmentation accuracy.

The drastically reduced computation time of OPAL opens the way for new

strategies and efficient processing of very large databases. In this paper, we

investigate new perspectives offered by OPAL by introducing a new multi-scale

and multi-feature framework. In our approach, several scales and features are105

analyzed at the same time before performing the label fusion. First, the OPM

is achieved with different patch sizes on each feature. Then, we perform a late

fusion of these independent estimators, each one providing different information

on structure characteristics. The description of the structures indeed depends

on the considered patch size or the image features used. By using multi-scale110

and multi-feature searches, the diversity of selected matches is improved which

increases the segmentation accuracy.
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The main contributions of this work are: (i) An adaptation of the PM algo-

rithm to label fusion for anatomical structure segmentation in 3D MRI, includ-

ing acceleration techniques such as constrained initialization, parallel processing115

and optimized distance computation; (ii) A novel late fusion strategy of multi-

scale and multi-feature estimator maps; (iii) An extensive OPAL validation on

hippocampus segmentation on two datasets with comparison to state-of-the-art

methods in terms of computation time and segmentation accuracy; and (iv) A

comparison of the ability to separate populations, based on hippocampal vol-120

umes obtained with manual and automatic segmentation.

2. Methods

2.1. Fast Nearest Neighbor Matching

In the PBL method, the first step consists in finding, for each patch of

the subject to segment, relevant matches, i.e., approximate nearest neighbors125

(ANN), within the training template library. The two main issues of this method

are the relevance of the selected patches and the computational burden dedicated

to this search. In this work, we propose a fast patch-based nearest neighbor

matching algorithm to find highly similar patches, thus addressing the compu-

tational costs usually associated with classic PBL techniques.130

2.1.1. The PatchMatch Algorithm

The original PM algorithm [22] is a fast and efficient approach that computes

patch correspondences (matches) between two 2D images (e.g. A & B). The

key point of this method is that good matches can be propagated to the adjacent

patches within an image. This propagation, combined with random matches,135

leads to a very fast convergence with limited computational burden. The core of

the algorithm is based on three steps: initialization, propagation, and random

search. The initialization consists in randomly associating each patch of A with

a corresponding patch in B, in order to obtain an initial ANN field. The two

following steps are then performed iteratively in order to improve the ANN140
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field. The propagation step uses the assumption that when a patch p centered

on xi = (x, y) ∈ A matches well with a patch q centered on xj ∈ B, then the

adjacent patches of p ∈ A should match well with the adjacent patches of q ∈ B.

The iterative process follows a scan order (from left to right, top to bottom)

on even iterations and is reversed on odd iterations. Therefore, only recently145

processed pixels are selected to propagate good matches to their neighbors. For

example, on even iterations, for a patch located at xi = (x, y) ∈ A, only the

neighboring patches centered on (x− 1, y) and (x, y − 1) are considered during

the propagation step. Let x′j ∈ B be the match of the patch centered on position

(x−1, y) ∈ A. The candidate to improve p correspondence is the patch centered150

on x′j + (1, 0) ∈ B.

Next, the random search step consists of a random sampling around the cur-

rent ANN to escape from local minima. The candidates are randomly selected

within an exponentially decreasing search window centered on xj. The propaga-

tion of good matches within the iterative process combined with random search,155

provides a very fast convergence of the algorithm in practice.

2.1.2. Optimized PatchMatch Algorithm

In contrast to [22] where two 2D images are considered, OPAL finds the

patch correspondences between a 3D image S and a library of n 3D templates

T = {T1, . . . , Tn}. One advantage of the PM algorithm is that its complexity160

only depends on the size of image A to process and not on the size of the

compared image B, i.e., T in the OPAL case. This important fact enables

OPAL to consider the entire image library T without any template preselection

step at constant complexity in time. Moreover, for each patch in S, OPAL

computes the best k-ANN matches in T and not only one match as done in [22].165

The OPAL algorithm is explained in detail in the next section and Figure 1

proposes a schematic overview. To clearly illustrate our Optimized PatchMatch

(OPM) key steps, in Figure 1, only three templates are considered as template

library T , two iterations are performed and 3D MRI volumes are displayed in

2D.170
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As in the original paper, the metric used to compare the distance between a

patch centered on xi ∈ A and a patch centered on xj ∈ B, is a sum of squared

differences (SSD),

dist(xi,xj) =
∑
σ∈Ωs

(A(xi + σ)−B(xj + σ))2, (1)

where Ωs is the index coordinate set of the s×s 2D patch, centered on (0, 0),

considering s as the patch size.

2.1.3. Constrained Initialization

In the PM original paper [22], the initialization consists in assigning, for each

patch located at (x, y) ∈ A, a random correspondence which can be located ev-175

erywhere at (x′, y′) ∈ B. In the case of multi-templates method based on 3D

MRI, the natural extension of this initialization step is to assign, for each patch

of the 3D image of the subject to segment S located at xi = (x, y, z) ∈ S, a ran-

dom patch correspondence located at xj = {(x′, y′, z′), t} where t ∈ {1, . . . , n}

is the index of the template Tt within the template library T . However, as we180

deal with linearly registered MRI volumes, we propose to constrain the random

initial position (x′, y′, z′) to be within a fixed search window centered around

the current voxel position (x, y, z). Then, for each voxel in S, an index template

t is assigned using i.i.d. random variable within {1, . . . , n}. Consequently, each

patch in S is associated to a unique random match among all templates of the185

library T . Considering the important number of patches in S, all templates are

very likely to be reached at least once. Moreover, although the corresponding

template is randomly selected during the initialization step, all matches can

move from a template to another during the following iterative process. Fig-

ure 1(a) illustrates the initialization step. For each patch in S (only three are190

displayed), the fixed search window for the random initialization is depicted in

dotted lines in the different training templates.

This constraint has two advantages. First, it improves the matching con-

vergence, making good use of the linear registration between training template

and the subject. Second, limiting the initialization to a fixed window prevents195
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(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.
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the algorithm from finding similar patches in terms of intensity (low SSD) that

are spatially far, leading to potential segmentation errors. As a consequence,

our constrain initialization reinforces spatial proximity between voxels in S and

their matches in T and makes the algorithm converge faster.

As in the original PatchMatch algorithm, after this constrained initializa-200

tion, propagation and random search steps are performed iteratively in order to

improve the patch correspondence.

2.1.4. Propagation Step with Fast Distance Computation

The propagation step of OPM is the 3D extension of the one proposed in

[22]. For each patch located at (x, y, z) ∈ S, an ANN improvement is per-205

formed by testing if the shifted ANN of its 6 directly adjacent patches located

at (x±1, y, z), (x, y±1, z) and (x, y, z±1) provides a better match. In order to

converge faster and to propagate good correspondences, the original PM only

tests recently processed neighbors during this step. Consequently, in 3D, only

three adjacent neighbors are tested at each iteration, according to the raw scan210

order. Figures 1(b) and 1(d) illustrate this step, where the blue dotted lines cor-

respond to the test of shifted adjacent neighbors in T , in order to improve the

current blue patch correspondence. In this example, the best match for the blue

patch moves from template T1 to T2 with iteration #1 and from T2 to T1 with

iteration #2. The propagation step is a core stage of the OPAL algorithm since215

it allows a patch correspondence to move over all the templates in T . Thus, the

ANN of the current voxel can move from one template to another one, since the

ANN of the adjacent voxels are not necessarily in the same template.

Moreover, the computational burden of these tests can be extremely reduced

in the propagation step. Indeed, we propose an acceleration technique based on220

the observation that the ANN of the adjacent patches are known. As neighbor

patches are overlapping, we use a shifted SSD instead of computing the whole

distance between the current patch and the shifted ANN of its adjacent patch.

Hence, only the non overlapping coordinates are considered, i.e., the two squares

at 3D patches extremities, since there is a one voxel shift in only one of the225
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three dimensions. The exact SSD between the current patch and the shifted

correspondence is thus obtained in the fastest way. The patch overlapping is

illustrated in Figure 1(b), where the blue square overlaps the green and pink

ones. The distances on the overlapping areas do not need to be re-computed.

2.1.5. Constrained Random Search230

In the original PM algorithm [22], the random search step is performed

on all dimensions. In contrast to the original method, OPAL deals with a

library of images. Therefore, we modify the random search step to take into

account this aspect. In order to ensure spatial consistency, OPAL performs the

random search only in the current template containing the current best patch235

correspondence (i.e., t is fixed, and we random on (x′t, y
′
t, z
′
t) ∈ Tt) within a

search window decaying by a factor 2. The process stops when the window

is reduced to a single voxel. The decaying search window size is empirically

defined as the size of the initialization window. Figures 1(c) presents examples

of such fixed template random search where the decaying search windows are240

represented in dotted blue lines.

2.1.6. Multiple PM and Parallel Computation

Contrary to [22] that only estimates the best match with PM, OPAL com-

putes k-ANN matches in T . These ANNs are then used to perform the label

fusion. In the literature, an extension of the original PM algorithm to k-ANN245

case has been proposed in [24]. The suggested strategy is to build a stack of

the best visited matches. At each new tested match, the distance is compared

to the one of the worst ANN among the stack. If there is an improvement in

terms of SSD, the worst ANN is replaced by the new match. However, to par-

allelize such an approach, the current image S must be split into several parts.250

Since PM uses propagation of good matches between adjacent patches, any split

would lead to boundary issues. Therefore, in OPAL, we decide to implement the

k-ANN search through k independent OPM, denoted as k-OPM. This leads to

a more efficient and simple multi-threading. Consequently, each thread can run
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an OPM without any dependencies to the other ones. Figure 1(f) illustrates the255

result of the multiple OPM steps with k = 3. One can note that k independent

OPM can lead to the same ANN for a given voxel. The redundancy of the same

ANN in the ANN map is not an issue, since each contribution is weighted during

the patch-based label fusion step. During our validation, for the considered size

of training libraries, we experimentally observed that such multiple selections260

of the same ANN is a rare phenomena.

2.2. Patch-based Segmentation

After convergence of the multiple OPM, the position and the distance of the

k-ANN is known. Therefore, a patch-based label fusion step can be used to

produce the final segmentation. In such a method, labels are fused according265

to their relevance to compute an estimator map of the subject to segment. In

contrast to the original PBL method [15], where only the central voxel informa-

tion was considered, OPAL segmentation is performed in a patchwise manner,

using the whole training patch as done in [16, 21, 25]. Moreover, as recently

proposed in [25], OPAL uses a bilateral kernel for weight computation in order270

to reinforce spatial coherency. Figure 2 illustrates the patch-based label fusion

process and the computation of the estimator map and is detailed below.

Figure 2: Core of OPAL method: optimized PatchMatch and patch-based label fusion on

image intensities. For every voxel of the subject to segment, a search for similar patches of

size s×s×s is carried out by OPM. A patch-based label fusion is then performed to generate

a label estimator map. See text for more details.
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2.2.1. Patchwise Label Fusion

At the end of the matching process, the k-ANN are estimated for all the

patches in S. Thus, the location and the SSD between the patches of S and

their k-ANN in T are known. To obtain the final segmentation, we use the

Patch-based label fusion (PBL) method presented in [15]. In contrast to [15],

that considers all the patches within a fixed number of preselected templates,

OPAL only uses the k most similar patches (limiting segmentation error) over

the entire library (increasing segmentation accuracy). As previously mentioned,

when the same ANN is selected several times by independent PM, it will be taken

into account several times during the label fusion. Considering a 3D patch P(xi)

at voxel position xi = (x, y, z) ∈ S, and Ki = {xj,t} the set of its k-ANN match

positions, its label fusion L(xi) is defined by,

L(xi) =

∑
xj,t∈Ki

ω(xi,xj,t)l(xj,t)∑
xj,t∈Ki

ω(xi,xj,t)
, (2)

where ω(xi,xj,t) is the weight assigned to l(xj,t), the binary label given by the

expert at voxel xj,t = {xj, t} ∈ T .275

The weight ω(xi,xj,t) depends on the similarity between the patches P(xi) ∈

S, the patch contributing to the labeling of xi, and the ANN patch P(xj,t) ∈ T .

This weight is defined as,

ω(xi,xj,t) = exp (1− ‖P(xi)− P(xj,t)‖22
h(xi)2

), (3)

where h(xi)
2 = α2 min

xj,t∈Ki

(‖P(xi) − P(xj,t)‖22 + ε), with ε a small constant to

ensure numerical stability, and α a normalization constant. With the parameter

h(xi), the distance of the current contribution is divided by the minimal distance

among all k-ANN contributions.

Most nonlocal label fusion methods perform voxelwise aggregation, which

can provide a lack of regularization on final segmentation. Therefore, to further

improve segmentation quality, the label fusion is performed over the whole patch

as done in [16, 21, 25] and not only using the central voxel. The patchwise
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labeling is then computed as follows,

L(P(xi)) =

∑
xj,t∈Ki

ω(xi,xj,t)l(P(xj,t))∑
xj,t∈Ki

ω(xi,xj,t)
. (4)

This way, 3D patches P(xi) ∈ S are labeled at the same time. At the end, the280

label estimator for voxel xi is obtained by averaging all neighbors contributions

from overlapping blocks containing xi to obtain the estimator map F .

2.2.2. Bilateral Kernel

In addition to the patchwise strategy, a spatial filtering is performed during

segmentation in order to reinforce spatial coherency of the selected k-ANN. The

spatial filtering exploits the observation that structures of interest are spatially

close due to the linear registration. Therefore, good patch candidates should

be similar in term of intensity and spatially not too far. Therefore, as done in

NICE [25], each ANN contribution to patchwise labeling is also weighted by the

spatial distance between patch centers xi ∈ S and xj,t = {xj, t} ∈ T ,

ω(xi,xj,t) = exp (1− (
‖P(xi)− P(xj,t)‖22

h(xi)2
+
‖xi − xj‖2

σ2
)), (5)

where σ2 is a normalization constant.

2.3. Late Aggregation of Multi-Scale and Multi-Feature Estimators285

Due to the high computational cost of previously published multi-templates

methods, most were designed in a mono-scale and mono-feature context. Re-

cently, multi-scale [19, 26, 27], and multi-feature [28, 29] approaches have been

investigated. These studies show the advantage of such frameworks. However,

since these methods require a non negligible computation time, they are based290

on either multi-scale [19, 26, 27] or multi-feature [28, 29] estimation but not both

at the same time. Moreover, these methods perform early feature aggregation:

all the considered scales or features are fused into a single vector before perform-

ing patch comparison. However, early fusion is not necessarily the best strategy.

Usually used for computation time consideration, early fusion has been shown295

to be less efficient than late estimator fusion/aggregation [30]. Moreover, the
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use of both multi-scale and multi-feature should improve segmentation accuracy.

Leveraging the computational efficiency of OPAL, we propose to investigate a

new framework to simultaneously perform multi-scale and multi-feature analysis

with late aggregation of estimators. Figure 3 illustrates the whole OPAL method300

and the late fusion of multi-feature and multi-scale label estimator maps.

Figure 3: OPAL method. Fusion of multi-feature and multi-scale label estimator maps. The

algorithm is applied with Ns different patch sizes, on Nf different features, so N = Ns×Nf

estimator maps are computed and merged to provide the final segmentation. See text for

more details.

2.3.1. Multi-scale Estimators

In patch-based methods, the structure description highly depends on the size

of the patch. The patch size needs to be large enough to capture the local ge-

ometry and to prevent discontinuities in the segmentation. However, using very305

large neighborhoods may reduce the probability of finding similar patches in

the library. Although the optimal patch size can be determined by experiments

for a given dataset, multi-scale approaches may significantly improve segmen-

tation accuracy as shown in recent multi-scale label fusion approaches [26, 27].

In these papers, the ANN search consists in finding the candidate minimizing310

the distance for every scale at the same time. Therefore, such a strategy se-

lects a consensual candidate providing the best similarity on average over all the

considered scales. In contrast to these previous works, we propose to perform
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fully independent multi-scale ANN searches where a candidate providing the

best similarity is obtained for each scale. With this method, k-OPM are inde-315

pendently computed for multiple patch sizes si, i ∈ {1, . . . , Ns}. Consequently,

in our context, multi-scale refers to the simultaneous use of patches of different

sizes, and the images are considered with their initial resolution. In Figure 3,

the ANN search by OPM and PBL are performed on each feature for Ns patch

sizes.320

2.3.2. Multi-feature Estimators

Similarly, the search for similar patches by OPM can also be carried out

independently on different features (edges, textures, etc.). During our tests

with different potential features, we found that using the gradient norm (i.e.,

first intensity derivative) in addition to the original MRI intensities increases325

the segmentation accuracy. Therefore, we use both these features. Figure 3

shows how OPAL is applied to the Nf features extracted from the subject S

to segment. The resulting estimator maps are then merged a posteriori as

explained in the next section. As for the multi-scale aspect, our framework

contrasts with recent multi-feature methods [29] where the ANN search consists330

in finding the best candidate for every feature at the same time. In our method,

the independent searches improve the ANN diversity of the selected matches.

2.3.3. Late Aggregation of Estimators

Label estimator maps are independently computed from PBL on multi-scale

and multi-feature ANN searches. The last step is the aggregation of these

estimator maps to generate the final segmentation. Here, OPAL is applied on

Nf features, with Ns different patch sizes, so N = Ns×Nf estimator maps F i

with i ∈ {1, . . . , N} are computed to generate the final segmentation. The final

estimator map F is then computed by averaging the estimator maps by a late

fusion [30],

F =

∑N
i=1 F i

N
. (6)
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In the end, the final label decision is taken as follows:

M(xi) =

1, if F(xi) ≥ 0.5,

0, otherwise.

(7)

3. Materials

3.1. Datasets335

During our experiments on hippocampus segmentation, two different datasets

have been considered. We used images from elderly adults obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [31] and images

from young adults obtained from the International Consortium for Brain Map-

ping (ICBM) dataset [32]. Our goal was to demonstrate the robustness of our340

OPAL framework using data from different sources with different preprocessing

pipelines.

EADC-ADNI. This dataset was used to evaluate the performance of our ap-

proach. The European Alzheimer’s Disease Consortium and Alzheimer’s Disease

Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi def-345

inition of manual hippocampus segmentation from MRI that can be used to

validate automated segmentation algorithms [33]. The EADC-ADNI dataset

is based on ADNI MRI scans [31] which were acquired on General Electric,

Philips, and Siemens scanners using a 3D MPRAGE T1-w sequence as rec-

ommended by the MRI Core of the ADNI consortium. The ADNI acquisition350

protocol is based on sagittal 3D MP-RAGE sequence (TR=2400ms, minimum

full TE, TI=1000ms, FOV=240mm, voxel size of 1.25×1.25×1.2mm3). Im-

ages were then reconstructed at a voxel size of approximately 1×1×1.2mm3.

As part of the EADC-ADNI, 100 MRI of the ADNI dataset have been man-

ually labeled according to the harmonized protocol and are freely available355

(www.hippocampal-protocol.net). The definition of the harmonized proto-

col has been designed to reduce inconsistencies of manual segmentation pro-

tocols as detailed in [33]. The mean Dice value for repeated manual seg-

mentations between experts has been estimated to 89% ([88%; 92%]) accord-
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ing to [34]. All the images were preprocessed using the volBrain pipeline360

(http://volbrain.upv.es). The first preprocessing step is based on the adap-

tive nonlocal mean filter [35]. Denoised MRI are then coarsely corrected for

inhomogeneity with N4 [36]. Afterwards, an affine registration to MNI space

is achieved using ANTS [37]. In the MNI space, a fine inhomogeneity correc-

tion is performed using SPM8 routines [38]. Finally, an intensity normalization365

procedure is applied to the images [39]. The whole preprocessing pipeline is

performed in less than 5min per subject.

ICBM. We used a part of the International Consortium for Brain Mapping

(ICBM) dataset [32] which consists of 80 MR images of young and healthy indi-

viduals with manual segmentations following the Pruessner’s protocol [40]. The370

MRI scans were acquired with a 1.5T Philips GyroScan imaging system (1mm

thick slices, TR=17ms, TE=10ms, flip angle=30 ◦, FOV=256mm). The esti-

mated intra-class reliability coefficient was of 90% for inter- (4 raters) and 92%

for intra-rater (5 repeats) reliability. All the images were preprocessed through

the following pipeline: estimation of the standard deviation of noise [41]; denois-375

ing using the optimized nonlocal means filter [42]; correction of inhomogeneities

using N3 [43]; registration to stereotaxic space based on a linear transform to

the ICBM152 template (1×1×1mm3 voxel size) [44]; linear intensity normaliza-

tion of each subject on template intensity; image cropping around the structures

of interest; and cross-normalization of the MRI intensity between the subjects380

with [39]. As for EADC-ADNI preprocessing, the whole pipeline requires less

than 5min per subject.

3.2. Quality Metric and Compared Methods

The proposed method was validated through a leave-one-out cross validation

procedure for both datasets. The segmentation accuracy was estimated with

the standard Dice coefficient (also called kappa index) introduced in [45] which

compares the expert-based segmentation with the automatic segmentation. For
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two binary segmentations M1 and M2, the Dice coefficient D is computed as,

D(M1,M2) =
2 | M1 ∩M2 |
| M1 | + | M2 |

. (8)

For each subject, the Dice coefficient of left and right hippocampus are aver-

aged and the values in Tables 1, 2 and 3 correspond to the median Dice over all385

the dataset. The associated computation times include ANN map computation

for every feature with every patch size, PBL on every estimator map and final

segmentation of both left and right hippocampus. During our validation pro-

cess, we investigated the impact of parameters such as the initialization search

window size, the patch size, the number of neighbors (i.e., number of OPM),390

and the impact of multi-scale and multi-feature approaches on segmentation

accuracy and computation time.

The results obtained by OPAL were compared to the published results on the

ICBM dataset of the original Patch-Based Label fusion method (PBL) [15], a

Sparse Representation Classification method (SRC) [20], and a dictionary learn-395

ing method, denoted as Discriminative Dictionary Learning for Segmentation

(DDLS) [20]. Mean Dice coefficients of left and right hippocampus results of

EADC-ADNI dataset were compared to the results obtained with a Random

Forest approach [34], and two multi-templates based approaches, BioClinica

Multi-Atlas Segmentation algorithm (BMAS) [46], and Learning Embeddings400

for Atlas Propagation (LEAP) [47].

3.3. Implementation Details

OPAL was implemented in MATLAB using multi-threaded C-MEX code.

Our experiments were carried out using a server of 16 cores at 2.6 GHz with

100 GB of RAM. Default parameters are set to process both ICBM and ADNI405

datasets. These parameters offer a good trade-off between segmentation accu-

racy and computation time. In the following results, OPAL is processed with 3

inner iterations of OPM and the number of threads on each feature is equal to k.

In (5), parameters α and σ are empirically set to 2. In the multi-feature setting,
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estimator maps are computed from image intensities and gradient norm inten-410

sities. In the multi-scale setting, OPAL is processed with 3×3×3 and 5×5×5

voxels patch sizes on each feature. Finally, the number of selected matches per

voxel for each estimator is by default set to k = 10 ANNs, and the size of the

initialization search window is set to 13×13×13 voxels.

4. Results415

4.1. Influence of Parameters

First, as mentioned in 2.1.3, the initialization search window reinforces spa-

tial coherency between voxels in S and their matches in T . By setting the

optimal search window area, the algorithm converges faster since more relevant

matches are found, thus leading to a higher segmentation accuracy. This op-420

timal window size is empirically estimated according to the dataset. Figure 4

shows the Dice coefficient for several initialization window sizes on both studied

datasets. For ICBM, a plateau is reached for a search window of 7×7×7 voxels,

while an area of 13×13×13 voxels leads to better segmentation results for the

EADC-ADNI dataset. This second dataset requires a larger search window size425

since it contains higher anatomical variability due to the presence of patholo-

gies. Therefore, in the following, the initialization window is by default set to

13×13×13 voxels.

Figure 4: Influence of the initialization search window on Dice coefficient for the ICBM (left)

and the EADC-ADNI (right) datasets.
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Figures 5 and 6 show the influence of the number of ANN (i.e., k) and of

the patch size on the segmentation quality and on the computation time. With-430

out the multi-scale approach, we found out that patches of size 5×5×5 voxels

provide the best results on both datasets. This patch size indeed gives accept-

able description for structures of different scales, as already observed in [15, 20].

With our multi-scale approach, we can automatically take advantage of different

patch sizes that provide better results. By merging estimator maps generated435

from 3×3×3 and 5×5×5 voxels patch sizes, we reach a Dice coefficient of 89.9%

for the ICBM dataset, with default settings. (i.e., k=10 ANNs, multi-scale,

multi-feature and initialization window set to 13×13×13 voxels). By adding

estimator maps from 7×7×7 voxels patch sizes and increasing the number of

k-OPM, we even reach a 90.1% Dice coefficient. For the EADC-ADNI dataset,440

we reach a 90.1% Dice coefficient (90.05% with default parameters). For both

datasets, the segmentation step is performed in less than 2s of processing per

subject. These results highlight the importance of taking into account the di-

versity of information obtained from various patch sizes. We noted that the

median Dice coefficient reaches a plateau around 10-ANN. It is interesting to445

note that this number is coherent with the suggested number of templates in

multi-template matching methods [7]. As expected, bigger patches and larger

number of ANN require higher computation time. Consequently, our experi-

ments suggest that using k = 10 ANNs on each feature offers a good trade-off

between segmentation accuracy and computation time.450

Different settings were compared using paired t-test on Dice coefficients.

The results in Tables 1 and 2 present the impact of each contribution on Dice

coefficient and computation time during the segmentation process. For both

datasets, the use of multi-feature and multi-scale significantly improved the

segmentation accuracy compared to mono-scale and mono-feature method, as455

assessed by p-values. Moreover, in all studied cases, multi-scale and multi-

feature approaches improved results of mono-scale and multi-feature method.

This demonstrates the complementary nature of the multi-feature and multi-

scale strategy.
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Figure 5: Median Dice coefficient according to the mono-scale and multi-scale patch sizes and

the number of neighbors (left), and the corresponding computation time (right) for the ICBM

dataset. These results are obtained with default multi-feature settings, i.e., MRI gradient

norm in addition to the original MRI intensities.

Figure 6: Median Dice coefficient according to the mono-scale and multi-scale patch sizes

and the number of neighbors (left), and the corresponding computation time (right) for the

EADC-ADNI dataset. These results are obtained with default multi-feature settings, i.e.,

MRI gradient norm in addition to the original MRI intensities.

Estimator maps for several features and several patch sizes are shown in460

Figure 7, for a subject of the EADC-ADNI dataset. First, bigger patch sizes

produce smoother estimator maps. Smaller patches are able to better capture

finer details at the expense of noisier estimator maps. Second, the estimators

based on gradient norm better define edge structure but are less robust to noise.

Finally, the aggregation is able to produce a good trade-off between considered465

scales and features.

Figure 8 presents segmentation results of best, median and worst subjects
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obtained on the EADC-ADNI dataset. First, we can see that automatic method

produces a smoother segmentation than expert. The patchwise label fusion

obtains consistent segmentation along the edge, but tends to fill holes present470

in manual segmentation. Some of these holes appear to be hippocampal CSF

while others seem to be expert inaccuracies.

OPAL on ICBM Median Dice Mean Dice p-value Comp. Time

Mono-scale, Mono-feature 89.4% 89.1 ± 1.85% < 10−14 0.27s

+ Multi-feature 89.8% 89.6 ± 1.68% 0.0131 0.53s

+ Multi-scale 89.9% 89.7 ± 1.70% × 0.92s

Table 1: Influence of multi-scale and multi-feature in terms of segmentation accuracy and com-

putation time on the ICBM dataset. Mono-scale and mono-feature results are obtained with

PBL from 5×5×5 voxels patch size ANN search on MRI intensities. Multi-feature considers

the MRI gradient norm in addition to the original MRI intensities. Multi-scale adds estimator

maps computed from 3×3×3 voxels patch sizes on each feature. The given computation times

correspond to the mean segmentation processing time of one subject.

OPAL on EADC-ADNI Median Dice Mean Dice p-value Comp. Time

Mono-scale, Mono-feature 89.4% 89.2 ± 1.55% < 10−25 0.49s

+ Multi-feature 89.7% 89.6 ± 1.45% < 10−8 0.95s

+ Multi-scale 90.1% 89.8 ± 1.46% × 1.51s

Table 2: Influence of multi-scale and multi-feature in terms of segmentation accuracy and

computation time on EADC-ADNI dataset. Mono-scale and mono-feature results are ob-

tained with PBL from 5×5×5 voxels patch size ANN search on MRI intensities. Multi-feature

considers the MRI gradient norm in addition to the original MRI intensities. Multi-scale

adds estimator maps computed from 3×3×3 voxels patch size on each feature. The given

computation times correspond to the mean segmentation processing time of one subject.

4.2. Comparison with State-of-the-Art Methods

The performances obtained by OPAL are compared to other methods ap-

plied to the same dataset in Tables 3 and 4. The presented values are the results475

published by the authors. The provided computation times are the times dedi-

cated to segmentation step only but do not include template preselection while
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Figure 7: 2D visualizations of estimator maps for several features and several patch sizes for

the EADC-ADNI dataset. With patches of size 5×5×5 voxels, estimator map decision is more

stable for every voxel (higher intensity within the hippocampus volume). With patches of size

3×3×3 voxels, some areas are more accurately segmented, see for instance the peak on top

on the hippocampus image.

only OPAL does not require it. Therefore, the computation times are under-

estimated except for OPAL.

On the ICBM dataset, compared to the original PBL [15], OPAL improves480

segmentation accuracy by 1.7 percentage points (pp) while being 700× faster.

Compared to the most accurate method on this dataset, based on dictionary

learning (DDLS [20]), OPAL obtained higher Dice coefficients for computation

times 1000× faster and with a p-value inferior to 10−12 obtained from a paired

t-test on the OPAL and DDLS sets of Dice coefficients. In addition, for a given485

Dice coefficient of 89.0% (equivalent to the DDLS method accuracy) OPAL
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requires less than 0.22s on the ICBM dataset (4000× faster than DDLS method).

On the EADC-ADNI dataset, OPAL results are compared to other methods

only in terms of segmentation accuracy, since computation times are not pro-

vided by the authors in their publications. The results presented with OPAL490

on EADC-ADNI in Table 4 are obtained in 1.51s processing per subject. In

all studied cases, OPAL produced the best segmentation accuracy with a mean

Dice coefficient of 89.8% (median Dice of 90.1%). The Dice values show that

OPAL outperforms recently proposed methods on EADC-ADNI. Indeed, com-

pared to a Random forest approach [34], OPAL improves segmentation accuracy495

by 13.8pp and compared to recent multi-template approaches OPAL obtained a

gain superior to 2.2pp, with a p-value inferior to 10−25 obtained from a paired

t-test on the OPAL and LEAP sets of Dice coefficients.

Method on ICBM Median Dice 95% interval Comp. Time

Patch-based (PBL)[15] 88.2± 2.19% [87.7; 88.7]% 662s (×700)

Multi-templates (MTM)[7] 88.6± 2.05% [88.2; 89.0]% 3974s (×4300)

Sparse coding (SRC)[20] 88.7± 1.94% [88.3; 89.2]% 5587s (×6000)

Dictionary learning (DDLS)[20] 89.0± 1.90% [88.5; 89.4]% 943s (×1000)

OPAL 89.9± 1.70% [89.6;90.3]% 0.92s

Table 3: Method comparison in terms of segmentation accuracy and computation time (per

subject) for the ICBM dataset.

Method on EADC-ADNI Mean Dice 95% interval

Random Forest [34] 76.0± 7.00% [74.6; 77.4]%

Multi-templates (BMAS)[46] 86.6± 1.70% [86.3; 86.9]%

Multi-templates (LEAP)[47] 87.6± 2.07% [87.1; 88.0]%

OPAL 89.8± 1.46% [89.5;90.1]%

Table 4: Method comparison in terms of segmentation accuracy for the EADC-ADNI dataset.

Since none of the selected publications mention their computation times, the comparison only

focus on the mean Dice coefficient. The selected result for OPAL method was obtained in

1.51s processing per subject.
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4.3. Complementary Results

Automatic segmentations as priors. Recently, several works have proposed500

to use automatic segmentations as priors in order to accurately segment a new

subject. A way to improve segmentation accuracy consists in increasing the

size of the template library. In order to do this, subjects without expert seg-

mentations are automatically segmented and added to the template library of

manually segmented subjects [19]. The Multiple Automatically Generated Tem-505

plates (MAGeT) approach has been proposed in [48] and works by propagating

segmentations to a template library, composed of a subset of unlabeled subjects,

via transformations estimated by nonlinear registrations. The resulting segmen-

tations are then used as template library to segment a new subject. Similarly,

the LEAP method [47] proposes to propagate the label segmentation to unla-510

beled subjects by iteratively segmenting the closest subjects in terms of joint

entropy. These approaches lead to segmentation accuracy improvement, since

the diversity of the dataset used to segment a subject is increased.

As mentioned in section 2.1.2, the computation time and complexity of

OPAL only depends on the size of the subject to segment. This important515

fact enables us to extend the library size with no impact on the complexity

of the algorithm. New subjects without manual expert segmentations can be

automatically segmented and added to the template library in order to improve

its diversity. Consequently, the segmentation accuracy of a new subject may

be improved, since more relevant matches can be found within the template520

library.
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Figure 9: Addition of new segmented subjects to the template library. The automatic seg-

mentation of new subjects provided without manual expert segmentations can be added to the

template library in order to increase its size and diversity. Consequently, later segmentations

may benefit from more numerous and potentially better training templates.

Therefore, we propose an experiment where automatically segmented sub-

jects from the standardized ADNI1 dataset [49] are randomly selected and added

to the EADC-ADNI template library as illustrated in Figure 9. The Dice co-

efficient is still computed with a leave-one-out procedure on the EADC-ADNI525

subjects with provided expert-based segmentations. Figure 10 shows the impact

of increasing the library size, on the segmentation accuracy and computation

time.

Adding new templates to the library with automatic segmentations as priors

enables us to improve the segmentation accuracy. Indeed, since the dataset is530

extended with new subjects, its diversity is increased and more relevant matches

can be found within the template library. Most importantly, the computation

time results in Figure 9 highlight the important fact that OPAL complexity only

depends on the size of the subject to segment and not on the size of the template

library. Adding subjects to the database improves the segmentation accuracy535

at the expense of a very little setback on computation time (due to memory

storage and data transfer). With 50% of supplementary training templates, the

computation time is only increased by 6%.
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Figure 10: Influence of the addition of automatic segmented ADNI subjects to the EADC-

ADNI dataset on the segmentation accuracy (left) and the corresponding computation time

(right). The results obtained with 100 subjects (dotted line) correspond to the selected results

in Table 2.

Clinical application. Finally, we propose to show the performance of our

method on a clinical application, by comparing population separation accuracy540

using manual segmentation of the EADC-ADNI harmonized protocol (HarP)

[33] and the OPAL segmentation. The area under the ROC curve (AUC) is

computed on hippocampal volumes in the MNI space for both manual and

OPAL segmentation results on the three groups of the EADC-ADNI dataset,

AD (Alzheimer’s Disease, N=37), MCI (Mild Cognitive Impairment, N=34) and545

NC (Normal Controls, N=29). As shown in Table 5, the segmentation results

provided by OPAL enable to better separate groups with a higher AUC. The

Pearson’s correlation is also computed between the HarP and OPAL hippocam-

pal volumes of segmentations. In Figure 11, the hippocampal volumes distri-

bution for each group are represented. The correlation between hippocampal550

volumes of HarP and OPAL segmentations is also illustrated.
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EADC-ADNI HarP OPAL

HC mean volume (mm3) 9397± 1588 9272± 1525

AUC NC vs. AD 0.884 0.898

AUC NC vs. MCI 0.805 0.821

AUC MCI vs. AD 0.612 0.634

Table 5: Area under the ROC curve (AUC) on hippocampal volumes in the MNI space of the

segmentation results from reference EADC-ADNI harmonized protocol and OPAL method.

Figure 11: Hippocampal volumes in the MNI space of the segmentation results from reference

EADC-ADNI harmonized protocol and OPAL method (left). Correlation between hippocam-

pal volumes of HarP and OPAL segmentations (right).

5. Discussion

Our proposed OPAL method presents several differences with state-of-the-

art PBL approaches. First, the complexity of the optimized PatchMatch algo-

rithm (see Figure 1) only depends on the size of subject’s image. Consequently,555

the entire image library T is used without any template preselection step, at

constant complexity in time. The linear registration is also exploited by con-

straining the search for patch matches at each step. Secondly, a patchwise label

fusion is performed from the selected matches (see Figure 2) and a bilateral ker-

nel is also used to increase spatial consistency leading to better segmentation re-560

sults, as done in [25]. Finally, we introduced a new multi-scale and multi-feature
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framework based on late aggregation of estimators. This new approach is possi-

ble thanks to the very low computational burden of the ANN search in our OPM

framework. Independent multi-scale and multi-feature ANN searches are carried

out, and a late fusion is finally performed on all resulting estimator maps from565

PBL to produce the final segmentation as illustrated in Figure 3. We validated

our method on two datasets for hippocampus segmentation. These datasets

cover different manual segmentation protocols and preprocessing pipeline. By

this way, the robustness of OPAL to hippocampus definition and processing has

been studied.570

On ICBM and EADC-ADNI datasets, we respectively obtained a median

Dice coefficient of 89.9% and 90.1% in approximately 1.5s processing per subject.

A large comparison with published methods such as original PBL [15], sparse

representation (SRC) [20], dictionary learning (DDLS) [20], multi-templates

(MTM, BMAS, LEAP) [7, 46, 47] and random forest [34], highlights the very575

competitive results of the proposed method (see Tables 3 and 4).

For the EADC-ADNI comparison, the computation times are not provided

by the authors. However, we may assume that the BMAS [46] and LEAP [47]

methods are likely to propose comparable computation time to MTM [7] since

they are also based on a multi-templates warping approach. One can note that580

multi-templates warping methods perform worse on the EADC-ADNI dataset

than on the ICBM dataset. This can be related to higher anatomical variability

in EADC-ADNI dataset due to the presence of Alzheimer’s disease (AD). On

this dataset, the well defined one-to-many mapping offering by patch-based

segmentation appears to better capture this higher variability.585

It is important to note OPAL can reach the inter-expert reliability on both

datasets (90% and 89.0% respectively for ICBM and EADC-ADNI datasets).

Moreover, this has been validated on two datasets with two different manual

segmentation protocols. While more than 30 minutes are required by an expert

to segment one hippocampus (1 hour for both), OPAL produces similar segmen-590

tation quality in less than 2s. OPAL is performed on denoised and registered

images that are preprocessed in less than 5min (see section 3.1). We compared

30



the population separation accuracy using manual segmentation of HarP protocol

and OPAL segmentation. The robustness and consistency of our automatic seg-

mentation method enable a better group separation between ADNI populations595

(AD, MCI, NC). Complementary results on the use of automatic segmentations

as priors have been also presented. We show that improvements can be ob-

tained without significant increasing of computation time by adding subjects to

the training library.

Throughout this paper, we mentioned OPAL high capacities in terms of both600

segmentation and computation time. With such fast performance, OPAL opens

the way for new applications of label fusion segmentation such as integration in

visualization software that would highly facilitate the analysis of brain MRI. A

web-based tool for on-line remote MRI processing is also a possible application

to exploit OPAL capacities. We plan to include OPAL in the next version of605

volBrain (http://volbrain.upv.es).

Finally, in this paper we only applied our method to the hippocampus seg-

mentation, since it is the most studied structure in the Alzheimer’s disease

context. Nevertheless, the OPAL method can be applied to the segmentation

of any anatomical structure. Future research will focus on the extension of the610

method to the whole brain segmentation as done in [5]. Our preliminary results

suggest that this can be done in less than 2 minutes.

6. Conclusion

In this paper, we propose a novel patch-based segmentation method based on

an optimized PatchMatch label fusion. Thanks to the low computational burden615

of our method, we investigated the potential of a new multi-feature and multi-

scale framework with late estimator aggregation. The validation of our approach

on hippocampus segmentation applied to two different datasets shows that the

proposed method produces competitive results compared to the state-of-the-art

approaches. Indeed, OPAL obtained the highest median Dice coefficient with620

a drastically reduced computation time. In addition, OPAL reaches the inter-
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expert reliability on both datasets (90% and 89.0% respectively for ICBM and

EADC-ADNI datasets). Therefore, OPAL provides automatic segmentations

equivalent in terms of Dice coefficient to inter-expert segmentations in less than

2s of processing for the segmentation step. In addition, the volumes segmented625

by OPAL are highly correlated to the manually segmented volumes. Finally, the

accuracy and reproducibility of OPAL enable to better separate ADNI groups

(AD, MCI, NC).
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M. Robles. NICE: Non-local Intracranial Cavity Extraction. International

Journal of Biomedical Imaging, page Article ID 820205, 2014.

[26] G. Wu, M. Kim, G. Sanroma, Q. Wang, B. C. Munsell, D. Shen, and

Alzheimer’s Disease Neuroimaging Initiative. Hierarchical multi-atlas la-750

bel fusion with multi-scale feature representation and label-specific patch

partition. NeuroImage, 106:34–46, 2015.

[27] C. Wachinger, M. Brennan, G. Sharp, and P. Golland. On the Importance

of Location and Features for the Patch-Based Segmentation of Parotid

Glands. Image-Guided Adaptive Radiation Therapy (IGART), 2014.755

[28] M. Kim, G. Wu, W. Li, L. Wang, Y. D. Son, Z. H. Cho, and D. Shen. Au-

tomatic hippocampus segmentation of 7.0 Tesla MR images by combining

multiple atlases and auto-context models. NeuroImage, 83:335–345, 2013.

36



[29] W. Bai, W. Shi, C. Ledig, and D. Rueckert. Multi-atlas segmentation

with augmented features for cardiac MR images. Medical Image Analysis,760

19:98–109, 2015.

[30] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Early versus late

fusion in semantic video analysis. In ACM international conference on

Multimedia, pages 399–402, 2005.

[31] C. R. Jack, M. A Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Har-765

vey, B. Borowski, P. J. Britson, J. L. Whitwell, and C. Ward et al. The

Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Jour-

nal of Magnetic Resonance Imaging, 27(4):685–691, 2008.

[32] J. C. Mazziotta, A. W. Toga, A. C. Evans, P. Fox, and J. Lancaster. A

probabilistic atlas of the human brain: theory and rationale for its devel-770

opment. NeuroImage, 2(2):89–101, 1995.

[33] M. Boccardi, M. Bocchetta, L. G. Apostolova, J. Barnes, G. Bartzokis,

G. Corbetta, C. DeCarli, M. Firbank, R. Ganzola, and L. Gerritsen et

al. Delphi definition of the EADC-ADNI Harmonized Protocol for hip-

pocampal segmentation on magnetic resonance. Alzheimer’s & Dementia,775

11(2):126–138, 2014.

[34] S. Tangaro, N. Amoroso, M. Boccardi, S. Bruno, A. Chincarini, G. Ferraro,

G. B. Frisoni, R. Maglietta, A. Redolfi, L. Rei, A. Tateo, R. Bellotti, and

Alzheimers Disease Neuroimaging Initiative. Automated voxel-by-voxel tis-

sue classification for hippocampal segmentation: Methods and validation.780

Physica Medica, 30(8):878–887, 2014.
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Dice=92.4% Dice=90.1% Dice=85.8%

Expert 2D

Expert 3D

OPAL 2D

OPAL 3D

Errors 2D
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Figure 8: 2D and 3D visualizations of best, median and worst segmented EADC-ADNI sub-

jects computed with default settings. In the fifth and sixth rows, blue voxels are overlapping

with the expert segmentation, green voxels are the false positives (segmented by OPAL but

not by the expert) and red voxels are the false negatives (segmented by the expert but not by

OPAL).
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