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ABSTRACT: Developed countries have opted to transport drinking water to households via long 

networks of pipes, which are expensive to install and maintain. Their management is therefore an 

important issue for water utilities. Water asset management is a complex multicriteria problem since 

managers have lots of different objectives. This article focuses on “long term” strategic methods. 

Particularly it is centered on a new way to estimate the “number of future pipe breaks in the long term 

at the scale of the water utility territory”. This paper first estimate prospective pipe age distribution at a 

given network section location over time. Then equations of deterioration process of pipe sections are 

build-up. Finally both models are mixed. Our case study is eauservice Lausanne, the third water utility 

of Switzerland. The proposed approach is different from existing “long-term” models because it is 

based on actual historical survival function. 

 

1. INTRODUCTION 

Developed countries have opted to transport 

drinking water to households via long networks of 

pipes, which are expensive to install and maintain. 

The total length of water pipes installed in France 

is approximately 900,000 km, compared with 

around 1,600,000 km in the USA. Underground 

pipe networks represent more than 80 % of the 

total asset value for water distribution systems, 

and their management is therefore an important 

issue for water utilities (Folkman 2012). One 

objective of a water distribution system is to 

supply each consumer with sufficient good-

quality water. Nevertheless other objectives 

relating to performance and risk should also be 

met, and the overall costs (direct and 

environmental) should be acceptable. Thus, in 

practice, water asset management is a complex 

multicriteria problem since managers must 

prevent or minimize performance losses: service 

outages, disruption of surface traffic, flooding… 

There is a high variability of pipe service 

lifetimes. While some pipes installed 130 years 

ago are still in full working order, some younger 

pipes have a high failure rate and need to be 

replaced soon. Pipe condition is the cumulative 

effect of many factors (physical, environmental, 

operational) acting on the pipe (Liu et al. 2012). 

Furthermore some younger (than 60 years) pipes 

may have been renewed not because they were in 

bad condition but in order to follow other 
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operational constraints like pavement rehabilita-

tion (Al-Barqawi and Zayed 2006). The broad 

range of explanatory factors for renewal calls for 

the use of a powerful prediction model of pipe 

lifetimes. 

To optimize resources and performance, it is 

important to try to renew the pipes at the best 

possible time. (Large et al. 2014b) demonstrate 

that the most relevant is to start from a "long 

term" vision (more than 50 years, possible median 

of pipe service life) in order to predict the pipe 

linear that must be renewed each year to meet 

strategic objectives in terms of performance. Then 

deduce the annual need for "medium term" 

investment (≈ 10 years, across the "master plan"). 

Finally, water utility should then apply "short 

term" methods (< 3 years) in order to obtain for 

the coming year a list of pipes prioritized by level 

of renewal need or renewal opportunity, ensuring 

that these works actually achieve the target 

performance. 

In this context, this article will present the 

key part of a new "long term" approach to get a 

global view of pipes renewal need, in order to 

improve their management during their whole life 

cycle. This approach is tested using real data of 

Lausanne city, the third biggest water utility of 

Switzerland. Our long term model is an 

aggregation of selected short term criteria (level 

of degradation, level of coordination with 

pavement rehabilitation, degree of risk aversion) 

which allow us to make different simulations and 

scenarii. In this model, we statistically analyze the 

past chronicle of pipe decommissioning ages 

(with the Kaplan-Meier method). After we create 

future scenarii and deduce probabilistic 

performance indicators such as future renewal 

rates, future failure rates (thanks to Markov Chain 

model) and financial indicators such as future 

investment needs (maintenance OPEX, renewal 

CAPEX). Our "long term" method allows water 

utilities to make consistent their "short term" 

decision-rules and their “long-term” objectives. 

This article will only focus on the tricky part 

of our model: the calculation of the performance 

indicator “number of future pipe breaks in the 

long term at the scale of the water utility 

territory”. It is an indicator of robustness and 

sustainability of the network. 

Deterioration models allow the estimation of 

future probable failure rates. (Rajani and Kleiner 

2001), (Kleiner and Rajani 2001), (Marlow et al. 

2009), (Ugarelli and Bruaset 2010) and (Large et 

al. 2014a) made good reviews of existent 

deterioration models. A distinction can be made 

between deterministic models and probabilistic 

models. For example (McMullen, 1982) model, is 

the simplest deterministic model, the future 

number of failure is a linear equation depending 

only on pipe age. The LEYP (Linear Extension of 

the Yule Process) model, developed by (Le Gat 

2013), is one of the most probabilistic 

comprehensive models because it can take into 

account all the variables (material, corrosive soil, 

pressure, etc.) that have an impact on breaks. 

All these models include the pipe age as an 

explanatory variable. However when a water 

utility stakeholder wants to estimate the “number 

of future pipe breaks in the long term at the scale 

of its territory”, there is a problem while using 

these models. Indeed some pipes will be renewed 

therefore the age of pipe at the same location will 

change a lot in the future. Thus we need a 

powerful model to predict the distribution of the 

future age at each location of the water utility 

territory. We introduce in this article the concept 

of “pipe section location”. It is a location which 

has the same length of the pipe section observed 

in 2012, but the physical pipe can be renewed 

over time. 

The innovative idea in this paper consists in 

considering the pipe age distribution at a given 

network section location over time. The "number 

of times" that pipes at a given location will be 

replaced and "when" are studied here like random 

variables. 

2. METHODOLOGY 

2.1. Build-up 

The building up of the “number of future pipe 

breaks in the long term at the scale of the water 

utility territory” is done through three stages. First 
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stage we estimate the future probability 

distribution of ages at section pipe location scale 

over time. Second stage we deduce equations of 

deterioration process of physical section of pipes 

depending on their ages and other explanatory 

variables. Third stage we mix probable ages of 

“pipe section locations” with physical equations 

of deterioration process. 

2.2. Developments 

2.2.1. Probable future age of “pipe section 

locations” over time 

The estimation of future probability distribution of 

ages of “pipe section location” over time is done 

through five steps.  

 

Step 1: Past survival function estimation 

During the first step we calculate the past survival 

function of the water utility. This empirical past 

survival function  𝑆̂(𝑡)  is constructed with actual 

historical data of the water utility over an 

observation window. In our case study the 

observation window of decommissioned pipe 

sections starts in January 2001 and ends in 

december 2012. 𝑆̂(𝑡)  estimates S(t). S(t) is the 

probability that a pipe has not be decommissioned 

before age t [equ. (1)]. 𝑆̂(𝑡) is constructed with 

left truncated and right censored data. We used 

the (Kaplan and Meier 1958) method adapted by 

(Claude and Lyon 1997) [equ. (2)] in order to 

correct this bias.  

𝑆(𝑡) = ℙ(T > 𝑡)          (1) 

with : 

 ℙ = Probability 

 T = random variable, decommissioning 

age 

 S(t) = Survival function 

 t = age of pipe section 

 

𝑆̂𝐾(𝑡)   = ∏ (1 − 
𝐶𝑎𝑟𝑑{𝑢, 𝑏𝑢= 𝑔 & 𝑐𝑢=0}

𝐶𝑎𝑟𝑑{𝑢, 𝑎𝑢≤𝑔≤𝑏𝑢}
)𝑔≤𝑡    (2) 

with : 

 𝑢 = pipe section number 

 𝑆̂(𝑡)= empirical survival function 

 K = Kaplan-Meier method 

 a = age of the pipe at the beginning of the 

observation window (2001) 

 b = decommissioning age (for pipe out of 

service) or age in 2012 (for pipe still in 

service in 2012), classified in ascending 

hierarchical order, with bmin = 0 and bmax = 

134 years in our case study. 

 c = censorship which takes 0 if the pipe 

has been decommissioned during the 

observation window, or 1 if the pipe is still 

in service at the end of the observation 

window. 

 g = age  

 Card = cardinality of the set between brace 

 

Step 2: Future survival function estimation  

In the second step we have to create a prospective 

future scenario about pipe age evolution. 

Here we decided to use the “same as in the past” 

scenario. It works on the hypothesis that in the 

past, decommissioning ages were well chosen 

(good past survival curve) and the same 

distribution (survival curve) is applicable for 

future decisions. 

Among classical parametric distribution, we 

choose to use a (Weibull 1951) survival function, 

Sw(t) [equ. (3)] based on the past survival 

function.  

𝑆̂𝑊(𝑡) = 𝑒−(
𝑡

𝛼
)
𝛾

 (3) 

with : 

 W = Weibull equation 

 α and γ = parameters estimated by the 

(Nelder and Mead 1965) optimization 

method which optimises the objective 

function of the least squares method 

(Legendre 1805) based on the outputs of 

the (Kaplan and Meier 1958) method. 

 

Step 3: Transformation of prospective survival 

function in Markov transition matrix  

In order to model the entire life-cycle of pipe 

section, in step 3, we build the Markov transition 

matrix Q (Markov 1971), with the prospective 

survival function. The probability that a “pipe 

section location” has to go from age t to age t + 1 

(in years) is quantified. We assumed that the 
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maximum age of a pipe section is 150 years. To 

this Q matrix is associated the state diagram of 

Figure 1 and equ. (4):  

 

 
Figure 1: Markov state diagram 

 

𝑄 = 

{
 
 
 

 
 
 

𝑖 < 150,

{
 
 

 
 𝑗 = 1           Q𝑖,𝑗 = 1 −

𝑆𝑤(𝑖)

𝑆𝑤(𝑖 − 1)

𝑗 = 𝑖 + 1           Q𝑖,𝑗 =
𝑆𝑤(𝑖)

𝑆𝑤(𝑖 − 1)
𝑗 ≠ 1,≠ 𝑖 + 1                Q𝑖,𝑗 = 0

𝑖 = 150, 𝑗 = 1                                    Q𝑖,𝑗 = 1

𝑖 = 150, 𝑗 ≠ 1                                     Q𝑖,𝑗 = 0
 

 

(4) 

With 

 i = index of a line  

 j = index of a column  

 

The Q matrix looks like equ. (5). 

 
(5) 

Step 4: Transformation of ages of “segment of 

pipe locations” in 2012 in Markov initial 

vectors 

To complete this phase successfully, in step 4 we 

created for each “pipe section location” the vector 

𝑋𝑢 (2012) (with 150 columns) which takes 0 

everywhere except at the age bu of the physical 

pipe section in service in 2012 in its “pipe section 

location” [equ. (6)]. By convention all the vectors 

in this article are row vectors.  

 
(6) 

Step 5: Markov Chain: probabilities of future 

ages of each “pipe section location” 

Finally in step 5 in order to obtain the 

probabilities of future ages of “pipe section 

location” we use a Markov Chain (Markov 1971) 

at each prospective calendar year (2012 + k) [equ. 

(7)]. 

𝑋𝑢(2012 + 𝑘) = 𝑋𝑢(2012) × 𝑄
𝑘  (7) 

 

2.2.2. Equation of deterioration process of pipe 

sections depending on their ages 

Physical pipe sections have an inherent 

vulnerability. Due to chemical attacks and 

physical mechanisms during its service life 

deterioration process occurs. The path followed in 

order to model this process may be decomposed 

into the following two steps. 

 

Step 1: With actual historical data, construc-

tion of prospective equation of deterioration 

process 

First, we decided to use a probabilistic model: the 

NHPP (Non Homogeneous Poisson Process) 

(Røstum 2000) to model the deterioration process 

of physical section of pipe [equ. (8)]. This model 

is inside especially “Aware-P” and “Casses” 

software. This model is based on the counting 

process of breaks (see Figure 2). 

 
Figure 2: Counting process of breaks N(t) and 

dirac function dN(t) 
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𝐸[𝑑𝑁(𝑡)]

𝑑𝑡
= 𝜆u,𝜃(𝑡) 

               = 𝛿𝑡𝑢
(𝛿−1)𝑒𝛽0𝑒∑ 𝛽𝑟×𝑍𝑟,u

𝑅
𝑟=1         (8) 

With: 

 t  =  age of pipe section 

 N(t) = counting process of breaks (as 

specified in Figure 2) 

 dN(t) = Dirac function takes 1 if a break is 

observed, 0 otherwise (cf. Figure 2) 

 E = expectation of the random variable 

 dt = infinitesimal age interval  

 Z = explanatory variable (covariate) (other 

than age) 

 R = cardinality of the set “explanatory 

variables other than age” 

 𝛿, 𝛽0, … , 𝛽𝑅 = parameters estimated with 

the NHPP (Non Homogeneous Poisson 

Process) model. 

 𝜃 = (𝛿, 𝛽0, … , 𝛽𝑅) = vector of parameters  

 𝜆u,𝜃(𝑡)= number of break per time unit 

(break intensity) at age t for pipe section u  

 

Step 2: Estimation of the number of breaks at 

each age for each pipe 

Then, this equation enables us to calculate the 

number of failures at any age t for all physical 

pipe sections. “Casses” software developed at 

IRSTEA was used (Renaud et al. 2012). We store 

the results of  𝜆𝑢,𝜃(𝑡) in 𝑉𝑢 vector [equ. (9)].  

𝑉𝑢 = [𝜆𝑢,𝜃(𝑡)]1≤𝑡≤150    (9) 

2.2.3. Mixing probable age and equation of 

deterioration process 

Finally in order to obtain the “number of future 

pipe breaks in the long term at the scale of the 

water utility territory” we have to mix the two 

previous models. 

Fist we estimate the number of breaks at the 

scale of segment pipe location for prospective 

years [equ. (10)]. 

 

Ψu(2012 + 𝑘) = 𝑋𝑢(2012 + 𝑘) × 𝑉𝑢
′           (10) 

with 

 𝑉𝑢
′ = transpose of the vector 𝑉𝑢 

 Ψu(2012 + 𝑘) = number of breaks at 

segment pipe location u in year 

(2012+k) per time unit 

 

Then we estimate the number of future breaks at 

the scale of the water utility territory for 

prospective years [equ. (11)]. 

 

Ω(2012 + k) = ∑ Ψu(2012 + 𝑘)
σ
𝑢=1  (11) 

with 

 σ  : cardinality of the set of “pipe 

section locations” 

 Ω(2012 + k)= number of breaks at 

the scale of the water utility territory 

in (2012+k) 

3. APPLICATION 

3.1. Case selection 

The results shown below relate to eauservice 

Lausanne, which had around 900 km of pipes in 

service at the end of 2012 (see Figure 3). Data 

relating to around 150 km of out-of-service pipes 

have been correctly computationally archived 

since 2001 (see Figure 4).The observation period 

for decommissioned pipes was 12 years (2001 - 

2012). The decommissioning years are right-

censored after 2012 and left-truncated before 

2001. 

 
Figure 3: Length in service at the end of 2012 in 

Lausanne per decade of installation year.   
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Figure 4: Length out of service available from 

archives at the end of 2012. 

 

We partitioned the set of pipe sections into four 

strata according to their materials (see Figure 5): 

1) Ductile cast Iron 2) Grey cast Iron 2) Steel and 

4) Other materials. 

 
Figure 5: Distribution of pipe materials in 

eauservice Lausanne  

3.2. Demonstration and visualization 

3.2.1. Probable age of section of pipes over time 

First we estimated the past survival functions for 

each stratum and we adjusted on it Weibull 

survival functions [see Table 1] (see Table 1 and 

Figure 6).   

 
Table 1: Parameter values of Weibull survival function 

depending on pipe materials 

                Parameters 

Materials                                                  
𝜶 𝜸 

Ductile cast iron 70.7 3.1 

Grey cast iron 54.6 4.1 

Steel 79.8 2.9 

Other materials 86.3 2.4 

 

 
Figure 6: Past (K) and prospective (W) survival 

functions, Lausanne stratified by pipe materials  

 

The Weibull survival functions are our future 

survival functions in our prospective scenario 

“same as in the past”. For example the grey cast 

iron pipes are renewed younger than other 

materials (see Figure 6). 

3.2.2. Equation of deterioration process of 

section of pipes depending on their ages 

Then we statistically determined four equations of 

deterioration process using the NHPP model in 

“Casses” software [see Table 3]. The inputs of the 

NHPP model are the characteristics of section of 

pipes (diameter, material, length, etc.), the 

environment of section of pipe (pressure, soil, 

roads, etc.) and actual historical pipe breaks 

(number, shape, etc.). In our models three 

covariates maximum were statistically significant 

(cf. Table 2). 

 
Table 2: Covariates and units in our NHPP models 
Covariates Age (t) Length (Z1) Diameter (Z2) 

Units Century m mm 

 
Table 3: Parameter values of NHPP models depending 

on pipe materials 
           Parameters 

Materials 
𝜹 𝜷𝟎 𝜷𝟏 𝜷𝟐 

Ductile cast iron 3.8 1.1 0.6 -0.005 

Grey cast iron 1 -0.06 0.5 -0.007 

Steel 1.4 -0.8 0.6 -0.004 

Other materials 1.9 -1.2 0.3 0 
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The age is a parameter not significant with cast 

iron pipes and diameter is not significant for other 

materials. 

3.2.3. Mix of probable ages and equations of 

deterioration process 

Finally using the method described in the previous 

part we calculated the total number of breaks 

between 2013 and 2085 at the scale of eauservice 

Lausanne (see Figure 7). 

 

 
Figure 7: Number breaks in eauservice Lausanne 

from 2013 to 2085, stratified by materials  

3.3. Discussion 

3.3.1. Probable age of section of pipes over time 

One advantage of our model is that it is based on 

actual historical data in phase 1 (survival 

functions) and phase 2 (deterioration equations).  

In phase 1-step 2 we tested other classical 

survival functions (normal, lognormal, Gumble, 

Frechet, etc.), but the Weibull function fits the 

best with our actual data. However we will use in 

our future research the “Kernel density 

estimation” in order to fit closer than the Weibull 

function. 

In phase 1-step 3 (Markov Matrix) we choose 

150 years as a maximum age for a pipe segment. 

Indeed it is an age which seems realistic with 

Lausanne practices and actual data. However if 

for another water utility this age is too small or 

too high it is possible to change this hypothesis 

(for example 170 years). You just need to have 

170 lines and/or columns for vectors and matrix. 

A limitation (see phase 1-step3) of our model 

is that it is based on the hypothesis that a physical 

section of pipe (with a material, a diameter, etc.) 

will be replaced by another pipe section with 

exactly the same material and the same diameter 

etc. However it is well known that some materials 

like grey cast iron will not be used in the future. 

Very recently we succeed in taking into account 

this switch. Indeed you have to increase the 

Markov matrix and then switching pipes 

characteristics become possible. 

3.3.2. Equation of deterioration process of 

section of pipes depending on their ages 

In phase 2 we used the NHPP model which is one 

of the most comprehensive probabilistic 

deterioration models. However this model has two 

limitations. 1) Past failures cannot become an 

explanatory variable of future failures. However 

literature review revealed that the more a pipe has 

broken, the more it is likely to break in the future. 

2) The second part of the NHPP model is a Cox 

model which means that covariates Z are 

supposed to have a constant impact during pipe 

service life. However in practice it can be false. 

Then in our future research we will try better 

models, for example the LEYP model.  

In Lausanne here, in order to have a short 

model, we tested only three variables (length, 

diameter and age) in order to explain the 

deterioration process. Yet we have for Lausanne 

also the water pressure, the type of soil (corrosive 

or not), the road traffic, etc. Therefore next time 

we will also test these variables in order to see if 

they are significant in our case study to explain 

deterioration process. 

3.3.3. Mix of probable ages and equations of 

deterioration process 

The past average of the annual renewal rate 

between 2004 and 2012 in eauservice Lausanne is 

around 1.4%. It is quite a high figure compare to 

the French average in 2012 which is 0.6%.  

In our scenario “same as in the past” we 

predicted that the “number of future pipe breaks in 
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the long term at the scale of eauservice Lausanne 

territory” is around 110 breaks per year. There is 

no tendency to increase. Moreover in the past in 

Lausanne the number of break was around 110.  

4. CONCLUSIONS 

In order to create a useful long term model, we 

have to estimate key strategic performance 

indicators depending on prospective scenario. 

With prospective survival functions, in (Large et 

al. 2014) we explained how it is possible to 

calculate future annual length, renewal rate, 

average age and annual investment cost at 

network scale. Here in this article we focused on 

the tricky part, the estimation of the “future 

annual number of breaks at the scale of the water 

utility territory”. It is important to point out that 

this method can also be used on smaller or bigger 

networks without issue.  

Our next step is to calculate some risk 

indicators (service outages, disruption of surface 

traffic, flooding). Risk indicator can be cons-

tructed as followed: probability of future break 

"times" intensity of the break "times" at least one 

consumer related characteristic (vulnerable 

element): their quantity, their sensitivity or their 

value. Then it would be possible to calculate 

indicators relating to expected maintenance costs. 

Another way in which this particular method 

could be developed would be to move away from 

the "same as in the past" scenario and focus 

instead on optimum scenarios. On this basis, it 

would be possible to estimate how different 

strategies (for example that of taking greater 

advantage of roadworks to access pipes) affect 

"long-term" performance. 
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