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Abstract—This article focuses on operation sequences

engineering and preparation for complex and critical

systems. The main objective is to safely operate some

action sequences on the process devices (mainly actuators),

according to safety requirements specifications. Based on a

process formal model using communicating automata, this

article shows both feasibility and limits of an automatic

approach for the generation of safe operation sequences

based on reachability analysis.

Index Terms—Action sequences generation, reachability

analysis, model checking, communicating automata

I. INTRODUCTION

Industrial process control is a complex system

that involves field devices (transmitters and actuators),

automated reflex control system and plant operation

control mainly supported by Supervisory Control And

Data Acquisition (SCADA) systems or Manufacturing

Execution Systems (MES). All these devices may be

manually controlled and monitored by human field

operators or by human control room operators.

Operating such complex systems is often based

on predefined procedures, which are most of the

time implemented in SCADA or MES. An operating

procedure is a series of control and monitoring tasks

aiming to modify the process state and to control its

evolution.

In the context of critical systems, the predefined

procedures must be qualified to ensure that all safety

requirements are satisfied. It requires an important effort

in terms of engineering to verify and check all the

properties to be satisfied:

• control of physical variables range with regard to

safety limitations,

• control constraints for actuating some devices,

eventually taking into account actions that are

operated on other devices,

• constraints on sub-systems availability to start an

operation.

Moreover, critical systems are characterized by massive

organic and functional redundancies that enable several

procedures to reach a same goal.

This article focuses on action sequences which are

part of operating procedures. An action sequence leads

the system from an initial situation to a goal situation.

A situation is characterized by the state (such as

functioning features) and status (such as availability) of

the system components and by a set of physical values.

An action sequence consists in a set of ordered actions

which may be performed manually by an operator or

automatically by control devices. These actions induce a

change in the state or the status of an equipment, leading

to an evolution on the process physical variables. Once

a sequence is executed, the system must have reached

the predefined goal situation.

This article proposes the evaluation of a formal

approach for generating safe action sequences. This

approach is based on:

• a system model that is structured according

to ISA88 standard and formalised using

communicating automata [1]

• reachability analysis techniques (supported by

model-checking tools) to exhibit some execution

traces that represent the searched action sequences.

It is assumed that no distinction is made between

manual and automated actions, a reasonable hypothesis

considering that safety constraints to be ensured depend

on what kind of action is done rather than which are the

human or technical actors that execute it.



Section II presents both modeling and sequence

generation existing approaches. Section III proposes the

generation approach and its evaluation, applied on a case

study described in section IV and discussed in section

V.

II. EXISTING APPROACHES FOR MODELING AND

SEQUENCE GENERATION

Industrial process control hierarchical structure,

applicable for both batch and continuous processes,

has been formalised in ISA88 [2] and IEC 61512 [3]

standards. Among the different works on these processes

[4], the object-oriented method ASTRID, based on

the ISA88 standard (Figure 1), rely on a principle of

hierarchical description of a facility and procedures

decomposed in materials and functional subsets: devices,

resources, functions and recipe.

Devices

Resources

Functions

Recipes

Element

Control module

Equipment module

Phases

Operation

(Partial) Recipe

Unit

Functional Material Functional Material

ASTRID ISA88

Figure 1: Levels of abstraction used in the ASTRID

method and in the ISA88

Complementarily, works on batch processes operating

procedures aim to propose graphical representations,

as in [4]–[6] who introduce the Grafchart formalism,

a Grafcet extension for hierarchical and sequential

procedures modeling. If these works allow to represent

industrial processes and their operating procedures,

automatic generation of actions sequences a priori

respecting safety constraints requires the use analytics

mechanisms on formal models. Obtaining procedures for

critical systems is a problem especially addressed by

[7], who where among the first to propose an action

generation approach for systems made of valves. This

work has then been extended by [8] who proposed

an automatic trajectory generation method suitable for

more complex systems, based on the changes of state

between initial and goal situations, and taking into

account safety constraints. However it did not take into

account structural elements of the process or physical

variables. Other approaches, relying on the reachability

of several intermediary goals before reaching the final

goal situation, has been proposed by [9], [10] in an

objective of procedures scheduling under constraints

[11].

These works mostly use heuristics or operational

research techniques that cannot cover modular aspects

of modeling (hierarchical levels, equipments, functions,

. . . ) and dynamic behaviours of operating architectures

(materials consignment for example).

Discrete event systems based approaches [12] carry

answers to the previously mentioned limits. They allow

structural and behavioural formal representation of a

system. Using these approaches, several works have

been carried out for action sequences generation, as for

example [13] using Petri nets to propose a sequence

generation methodology, applied to the case study in [8].

No aggregation mechanism is however treated, despite an

important amount of elements to consider.

To facilitate hierarchical organisation representation

of the considered systems, statecharts, a visual

formalism for complex systems representation [14],

can be considered. Statecharts are an extension of

state-transition diagrams using additional mechanisms:

hierarchy, concurrence and communication. Hierarchy

being one of the key characteristic of the systems

of interest, it is there a strong point for modeling

formalism choice, because it enables state aggregation

representation. However, overlapping, that is to say the

fact that an equipment can belong to more than one

function, cannot be represented with statecharts while

preserving modeling language semantic, as indicated

in [15]. This problem seems to be resolvable using

communicating automata [1], an extension of finite

state automata, that include both concurrency and

synchronisation notions.

Thanks to their syntax and semantic, formal languages

previously cited allow model simulation and formal

property analysis (such as reachability properties), by

a state space exploration. Moreover, the integration of

formal rules specification ensures a complete respect of

safety constraints. If existing, a path reaching a goal

situation in the state space corresponds to a feasible safe

action sequence.

Supervisory control theory [16] is an approach

allowing to get the set of all existing paths [17], and

showed its interest in [18] and [19] for manufacturing

systems reconfiguration. This technique however induces

a problem regarding how to choose a path among the set

of possibilities.



Model checking approaches also allow reachability

properties verification, and then can be used to generate

action sequences, as shown in [20] for cyclic operating

procedures. Compared to supervisory control, this

technique only generate one path, so that sequence

choice is no longer a problem. This interest is reinforced

by the work of [21] that shows the path find can be near

of optimality.

III. EXISTING APPROACH EVALUATION

A. Evaluation principles

This article aims to evaluate a methodology for

automatic action sequence generation using process flow

diagrams and safety constraints specifications, based on:

• a communicating automata model, using generic

models specialised with specific knowledge (such

as safety constraints on guards), and structured

according to abstraction levels,

• a goal situation reachability formalisation as a CTL

property,

• and a property verification mechanism.

B. Structural levels

In this article, a three-level decomposition (Figure 2),

based on the ASTRID method principles, is used

for the evaluation of the action sequence generation

methodology. The ”equipment” level is the lower

abstraction level, corresponding to an aggregation

of ASTRID ”device” and ”resource” levels, and

representing the different handled equipment pieces

(valves, pumps, . . . ). From a functional point of view,

equipments are regrouped in ”functions” enabling the

evolution of one or more physical variables of ϕ, the set

of all physical variables of the whole process. Finally, the

”recipe” level, specific to the process, describes specified

goals.

C. Modeling principles

1) Modeling using communicating automata:

Communicating automata where first defined in [1],

introduced as a subclass of the temporised automata.

Communicating automata can be defined by a 7-uplet

A = (S,X,L, T, Sm, s0, v0) as:

• S is a finite set of locations;

• X is a finite set of variables;

• L is a set of events, decomposed in two disjoints

subsets Le and Lr, where

– Le is the set of emitted events;

– Lr is the set or received events.

Recipe

Function

Configuration:bool

1

1..*

Equipment

State:char

Status:char

1..*

1..*

PhysicalVariable

Value:float

1..* 1..*

* 1..*

Figure 2: Abstraction levels used for action sequence

generation

• T is a set of transitions (s, l, g,m, s′) ∈ S × L ×
G×M × S, where

– G is a set of guards (constraints on variables

of X);

– M is the set of the updates on variables values

of X .

• Sm ⊆ S is a set of marked locations;

• s0 ∈ S is the initial location;

• v0 : X ← N is the initial variables values.

In the automata models presented in this paper,

the following graphical conventions are used: location

names are given in bold, initial location is given by

a transition with no source, guards on transitions are

between brackets, events are in italic and followed

by ”!” or ”?”, to represent respectively emission or

reception, and updates are underlined.

2) Equipment generic models proposal: Equipments,

mostly valves and pumps, are elements on which whether

operator or control can operate on to change state. An

equipment is characterised by a couple (state, status),

defined as:

• state characterises a set of discrete values to

represent an equipment state (e.g. for a valve:

open/closed),

• status characterises an equipment operational

configuration (e.g. padlocked, condemned...).

Two locations express equipment state, and a boolean

variable is used to represent equipment status. This

boolean variable has to be defined at the initialisation of

the model (in v0) and will not change during state space

exploration, the goal being to determine the reachability

of a given situation through different actions while taking

into account the current equipments status.



A valve behavior can thus be modeled according

to the pattern presented in Figure 3. To evolve from

a location towards another, a valve must receive an

opening / closing order, modeled by the OpenValve /

CloseValve events. Safety constraints binding opening

or closing actions are modeled by Opening Constraints

/ Closing Constraints guards on transitions. Moreover,

a valve can only be operated if it is not condemned,

which is taken into account by adding a boolean variable

Condemned on the guards.

Open

Closed

[Opening Constraints
∧ !Condemned]

OpenValve?

[Closing Constraints
∧ !Condemned]

CloseValve?

Figure 3: Generic model for valves

In a similar way, a pump behavior can be modeled

according to the pattern presented in Figure 4. To evolve

from a location towards another, a pump must receive a

start / stop order, modeled by the StartPump / StopPump

events. Safety constraints binding start or stop actions are

modeled by Start Constraints / Stop Constraints guards

on transitions. Moreover, a pump can only be operate

if it is not condemned, which is taken into account by

adding a boolean variable Condemned on the guards.

Running

Stopped

[Start Constraints
∧ !Condemned]

StartPump?

[Stop Constraints
∧ !Condemned]

StopPump?

Figure 4: Generic model for pumps

3) Function generic model proposal: The

configuration of a function (Figure 5) is characterised

using two locations defined by:

• Configured if ∀eqt ∈ EQTf the equipment state

fits to the awaited state for a given configuration of

the function f , leading to an evolution on the set

ϕf ⊆ ϕ of the concerned physical variables;

• Not configured in other cases.

Transition from a location towards another is bound

firstly to the validation of a guard that corresponds to

a possible configuration for the function to be executed

(condition on the state of equipments), and secondly to

the occurrence of the Function event in charge of the

synchronisation of different levels of models.

Configured

Not configured

[Configuration]

Function?

[!Configuration]

Function?

evol ϕf

[Configuration]

Figure 5: Generic model for functions

All configurations were previously found using a

graph search methodology adapted to our needs. We

transformed the process flow diagram to a graph, with

equipments modeled by vertices, and pipes modeled by

arcs [22]. Using this graph, a configuration, which we

could define as a path leading a flow from a source to a

destination, can easily be found [23].

4) Recipe modeling: The ”recipe” level, which

describes the set of situations, is specific to each process.

Transition from a location towards another is bind to a

guard modeling a set of constraints on physical variables

and on equipments status. It is also conditioned to the

occurrence of the event Recipe, that synchronises models

of different levels.

5) Synchronization of different models: The whole

model behaves according to the following description:

one particular event leqti of the set Leqt ⊆ Le of

events associated with actions modifying the state of an

equipment is emitted. This action has an effect on the

function, thus impacting the process. This principle is

modeled by a ”generation” automata (Figure 6), that has

two roles:

• To generate events (that correspond to actions on

equipment status): it is necessary to explore the

state space for the verification of the reachability

property,



• To synchronise the execution of the different

models: an occurrence of an event on an equipment

(leqti !), is followed by an event to update functions

models (Function!), and one final event to update

recipe model (Recipe!).

leqti! Function!

Recipe!

Figure 6: Events generator automata to synchronise

models

6) Situation reachability analysis: The reachability

of a state in the Recipe model means that at least one

feasible sequence exists leading to this state. Therefore,

finding a feasible sequence (satisfying all constraints)

can be considered as a reachability problem.

A reachability property can be expressed in a formal

way as a CTL formula ”EF p”, where the ”E” quantifier

means ”Exists”, the ”F” quantifiers means ”eventually, in

the future”, and p corresponds to the goal specification.

In natural language, property ”EF p” means that there

exists a path such as property p holds in the future.

Such reachability problem can be addressed with

automatic techniques, like model checking [24]. Model

checking is an automatic technique that explores a model

M state space to formally verify if M satisfies a

property p (also expressed M |= p). If reachability

property holds, the execution trace that results represents

a feasible action sequence.

IV. A CASE STUDY: CISPI

A. Case study presentation

For evaluation purposes, the considered case

study is based on the CRAN laboratory platform

named CISPI (French acronym for Safe and

Interactive Operating of Industrial Processes

(http://safetech.cran.univ-lorraine.fr/). Its process

flow diagram is given in Figure 7.

Due to the various physical redundancies of the CISPI

platform, there exist 8 different configurations to supply

tank 002BA with water from tank 001BA.

On this process, the considered safety constraints are

related to:

Figure 7: Process Flow Diagram of the CISPI platform

case study

• pump start, which need both upstream and

downstream valves to be opened,

• valves closing , which may required prior pumps

stop.

The generic models previously presented in section

III have been instantiated to model the 10 valves and

pumps, and the 8 functions considered. Safety constraints

in transition guards are manually derived from the plant

topology. These models have been implemented using

the Uppaal tool [25] (Figure 8). This tool provides

both a graphical interface for automata models edition
1 and a model checker that allows verification of formal

property written in CTL. Among all the existing model

checkers, this particular tool has been chosen for its ease

of handling, the main objective being to evaluate such

type of approach.

Stopped

Running

!_CIS001PO.Condemned &&
_CIS102VM.Open && (_CIS101VM.Open ||
(_CIS201VM.Open && _CIS002VM.Open)) &&
_CIS103VM.Open || (_CIS003VM.Open &&
_CIS004VM.Open && _CIS203VM.Open)

StartCIS001PO?

_CIS001PO.Running = 1

!_CIS001PO.Condemned
StopCIS001PO?

_CIS001PO.Running = 0

(a) Pump 001PO

Closed

Open

!_CIS203VM.Condemned
OpenCIS203VM?

_CIS203VM.Open = 1

!_CIS203VM.Condemned &&
!(_CIS002PO.Running ||
(_CIS001PO.Running &&
_CIS004VM.Open &&
_CIS003VM.Open))

CloseCIS203VM?

_CIS203VM.Open = 0

(b) Valve 203VM

Figure 8: Instantiation examples relative to CISPI

1Graphical conventions are: circles represents automata locations,

two-circled location is initial state; in purple, location names; light

blue is events, green is guards, and blue is updates on variables.

http://safetech.cran.univ-lorraine.fr/


The partial recipe in Figure 9 shows two locations SF0

and SF1 corresponding to operating situations. Transition

from one to another if conditioned by the reaching of

a specified level in tank 002BA. CTL property that

express the reachability of this second location is: EF

Recipe.SF1.

SF1SF0

_CIS002BA > 0
Recipe?

Figure 9: Partial recipe model

B. Sequence generation results

The methodology presented in section III, using

formal models presented in section III-C, is implemented

on the considered case study (Figure 10). The models

are analysed using UPPAAL model checker, given the

reachability property EF Recipe.SF1, to finally obtain, if

existing, an action sequence.

Level 1 : Equipments

Open

Closed

Safety_Constraints &&
!Condemned
OpenValve?
valve.open = 1

Safety_Constraints &&
!Condemned
CloseValve?
valve.open = 0

Running

Stopped

Safety_Constraints &&
!Condemned
StartPump?
pump.running = 1

Safety_Constraints &&
!Condemned
StopPump?
pump.running = 0

Level 2 : Functions

Configured

NotConfigured

configuration
evol_Phi

Configuration
Function?

fonction.configured = 1

!Configuration
Function?
fonction.configured = 0

Level 3 : Recipe

Specific

goals
SF1SF0

_CIS002BA > 0
Recipe?

G
en
er
ic

S
p
ec
ifi
c

CTL formula for a reachability property

EF Recipe.SF1

Reachability
Property

Verification
&

Path
Generation
(sequence)

EF p

p

Model-checker
Uppaal

Actions
sequence

Figure 10: Implementation of sequence generation

approach on CISPI case study

Let us consider a first hypothesis where the whole

platform is in ”shut down” mode, which means that

all valves are closed and all pumps are stopped.

Additionally, we will consider that the water level in

tank 001BA does not constitute a limit for tank 002BA

water supply. A generated action sequence is given in

Table I. It enables the water supply via the ”left side”.

It should be noted that the order of the actions matters,

as it takes into account safety constraints.

Let us consider a second hypothesis where valve

201VM is condemned and closed, and where a

maintenance operation is scheduled on pump 001PO

(implying, for safety reasons, condemnation of valve

102VM in state closed). An alternative action sequence

to reach the predefined goal is given in Table II.

Table I: Actions sequence 1: no condemnation

Action Equipment

1 Open 101VM

2 Open 102VM

3 Open 103VM

4 Start 001PO

Table II: Actions sequence 2: 001PO maintenance, valves

102VM and 201VM condemned closed

Action Equipment

1 Open 203VM

2 Open 202VM

3 Open 101VM

4 Open 002VM

5 Start 002PO

V. DISCUSSION

The implementation on a laboratory case study

showed the feasability of action sequence generation,

with an approach based on existing methods. However,

the increasing size of models needed to fit industrial

scale puts in evidence limits of such an approach

(Figure 11). Applications on larger scale examples

show a rapid state space growth. Moreover, generated

sequences are not optimal because of ”useless” actions,

such as opening/closing successions of actions on a same

equipment.
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(a) State space size evolution
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Figure 11: Evolutions of state space size and number of

actions in relation to the number of equipments

Within model checking mechanisms, breadth first

search limits the size of the generated sequence, and can

even propose (almost) optimal sequences. Even though

this technique gives promising results, the state space

growth is exponential, rapidly limiting the size of the

systems of interest which can be addressed.

Depth first search limits the growth of the state space,

but this impacts the size of the generated sequence.

Although the state space growth seems to be linear, the

results of this exploration method are unusable for real

applications.

VI. CONCLUSION AND PERSPECTIVES

This article proposes an evaluation of an automatic

generation approach for safe action sequence. This

approach is based on a goal situation reachability

analysis in a structured communicating automata

network. The obtained results eventually show the

problems of this approach regarding its application to

large scale systems.

Several axes are currently under study to reduce

the combinatorial explosion caused by state space

exploration, mainly focusing on modelling issues. On

one hand, a stronger integration of physical constraints

should also limit the size of the state space explored to

find a feasible sequence. On the other hand, aggregation

and multi-scale modeling techniques should reduce

models size, as well as changing the lower level of

modeling to the functions and their effects on variables

values.

In particular, next work will be focused on abstraction

techniques, more specifically on the verification that a

particular abstract model satisfies the same properties,

both from a behavioral and a safety point of view, as a set

of detailed models. It is hoped that abstract models can

then produce higher level action sequences, thus allowing

large-scale systems to be considered.
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