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Stochastic simulators based optimization by Gaussian process metamodels -
Application to maintenance investments planning issues

Thomas BROWNE, Bertrand IOOSS, Löıc LE GRATIET, Jérome LONCHAMPT
EDF R&D, 6 Quai Watier, F-78401 Chatou, France

Abstract

This paper deals with the construction of a metamodel (i.e. a simplified mathematical
model) for a stochastic computer code (also called stochastic numerical model or stochastic
simulator), where stochastic means that the code maps the realization of a random variable.
The goal is to get, for a given model input, the main information about the output probability
distribution by using this metamodel and without running the computer code. In practical
applications, such a metamodel enables one to have estimations of every possible random variable
properties, such as the expectation, the probability of exceeding a threshold or any quantile.
The present work is concentrated on the emulation of the quantile function of the stochastic
simulator by interpolating well chosen basis function and metamodeling their coefficients (using
the Gaussian process metamodel). This quantile function metamodel is then used to treat a
simple optimization strategy maintenance problem using a stochastic code, in order to optimize
the quantile of an economic indicator. Using the Gaussian process framework, an adaptive design
method (called QFEI) is defined by extending in our case the well known EGO algorithm. This
allows to obtain an “optimal” solution using a small number of simulator runs.

Keywords: Adaptive Design, Asset management, Computer experiments, Expected Improve-
ment, Gaussian process, Optimization, Stochastic simulator, Uncertainty.

1 Introduction
EDF looks for assessing and optimizing its strategic investments decisions for its electricity
production assets by using probabilistic and optimization methods of “cost of maintenance
strategies”. In order to quantify the technical and economic impact of a candidate maintenance
strategy, some economic indicators are evaluated by Monte Carlo simulations using the VME
software developed by EDF R&D (Lonchamp and Fessart [12]). The major output result of the
Monte Carlo simulation process from VME is the probability distribution of the Net Present
Value (NPV) associated to the maintenance strategy. From this distribution, some indica-
tors, such as the NPV mean, the NPV standard deviation or the regret investment probability
(P(NPV < 0)) can easily be derived.

Once these indicators have been obtained, one is interested in optimizing the strategy, for
instance by determining the optimal investments dates leading to the highest mean NPV and the
lowest regret investment probability. Due to the discrete nature of the events to be optimized, the
optimization method is actually based on genetic algorithms. However, during the optimization
process, one of the main issues is the computational cost of the stochastic simulator to optimize,
which leads to methods requiring a minimal number of simulator runs (Dellino and Meloni [6]).
Genetic algorithms require often several thousands of simulator runs and, in some cases, are no
more applicable.

The solution investigated in this study is a first attempt to break the computational cost of
this problem by the way of using a metamodel instead of the simulator within the mathematical
optimization algorithm. From a first set of simulator runs (called the learning sample and
coming from a specific design of experiments), a metamodel consists in approximating the
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simulator outputs by a mathematical model (Fang et al. [7]). This metamodel can then be
used to predict the simulator outputs for other input configurations.

Many metamodeling techniques are available in the computer experiments literature (Fang
et al. [7]). Formally, the function G representing the computer model is defined as

G : E → R
x 7→ G(x) (1)

where E ⊂ Rd (d ∈ N∗) is the space of the input variables of the computer model. Metamodeling
consists in the construction of a statistical estimator Ĝ from an initial sample of G values
corresponding to a learning set χ with χ ⊂ E and #χ <∞ (with # the cardinal operator).

However, the conventional methods are not suitable in the present framework because of the
stochastic nature of the simulator: the output of interest is not a single scalar variable but a
full probability density function (or a cumulative distribution function, or a quantile function).
The computer code G is therefore stochastic:

G : E × Ω → R
(x, ω) 7→ G(x, ω) (2)

where Ω denotes the probability space. In the framework of robust design, robust optimization
and sensitivity analysis, previous works with stochastic simulator consist mainly in approximat-
ing the mean and variance of the stochastic output (Bursztyn and Steinberg [5], Kleijnen [9],
Ankenman et al [1], Marrel et al. [15], Dellino and Meloni [6]). Other specific characteristics of
the distribution of the random variable G(x) (as a quantile) can also be modeled to obtain, in
some cases, more efficient algorithms (Picheny et al. [18]).

In this paper, as first proposed by Reich et al. [19] (who used a simple Gaussian mixture
model), we are interested in a metamodel which predicts the full distribution of the random
variable G(x), ∀x ∈ E. We then define the following deterministic function f :

f : E → F
x 7→ fx density of the r.v. G(x) (3)

with F the family of probability density functions:

F =
{
g ∈ L1(R), positive, measurable,

∫
R
g = 1

}
. (4)

For a point x ∈ E, building fx with the kernel method requires a large number NMC realiza-
tions of G(x). A recent work (Moutoussamy et al. [16]) has proposed kernel-regression based
algorithms to build an estimator f̂ of the output densities, under the constraint that each call
to f is cpu-time expensive. Their result stands as the starting point for the work presented in
this paper (based on a Master internship report, see Browne [4]).

The next section briefly presents the VME application case. In the third section, we propose
to use the Gaussian process metamodel and develop an algorithm to emulate the quantile func-
tion instead of the probability density function. In the fourth section, this metamodel is used
to treat the VME case, in order to optimize a quantile. Using the Gaussian process metamodel
framework, an adaptive design method is also proposed, allowing to obtain an “optimal” solu-
tion using a small number of VME simulator runs. A conclusion synthesizes the main results of
this paper.

2 The VME application case
On an industrial facilities, we are interested by the replacement cost of four components in
function of the date of their maintenance (in year) (see Lonchamp and Fessart [11] for more
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details). To these four inputs, one additional input is the date (in year) of recovering a new
component. This input space is denoted F :

F =
( 4⊗
i=1
{41, 42, ..., 50}

)
× {11, 12, ..., 20} . (5)

F is therefore a discrete set (#F = 105 ). We have

G : F → R
x = (x1, x2, x3, x4, x5) 7→ NPV(x),

f : F → F
x = (x1, x2, x3, x4, x5) 7→ fx (density of NPV(x)).

(6)

Figure 1 provides examples of the output density of VME. The 10 input values inside F have
been randomly chosen. It shows that there is a small variability between the curves.
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Figure 1: 10 ouput probability densities of the VME code (randomly sampled).

The optimization process consists in finding the point of F which gives the “maximal NPV”
value. As NPV(x) is a random variable, we have to summarize its distribution by a deterministic
operator H, for example:

H(g) = E(g) ∀g ∈ F (7)

or
H(g) = qg(α) ∀g ∈ F (8)

with qg(α) the α-quantile of g. Our VME-optimization problem turns then to the determination
of

x∗ := arg max
x∈F

H(fx). (9)

However, several difficulties occur:
• VME is a cpu-time costly simulator and the size of the set F is large. Computing (fx)x∈F ,

needing NMC ×#F simulator calls (where NMC is worth several thousands), is therefore
impossible. Our solution is to restrict the VME calls to a learning set χ ⊂ F (with
#χ = 200 in our application case), randomly chosen inside F . We will then have (fx)x∈χ.
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• Our metamodel, that we will denote
( ˆ̂
fx

)
x∈F

, cannot be computed on F due to its large
size. A new set E is therefore defined, with E ⊂ F and #E = 2000. We will then have( ˆ̂
fx

)
x∈E

. In this work, we limit our study to this restricted space E instead of the full
space F . Other work will be performed to extend our methodology to the F study.

3 Gaussian process metamodel of a stochastic simulator
3.1 Basics on the Gaussian process model
Let us consider n evaluations of a deterministic computer code. Each evaluation Y (x) ∈ R
of a simulator scalar output comes from a d-dimensional input vector x = (x1, . . . , xd) ∈ E,
where E is a bounded domain of Rd. The n points corresponding to the code runs are called
the experimental design and are denoted as Xs = (x(1), . . . , x(n)). This learning sample comes
from the learning set, previously noted χ (n = #χ). The outputs will be denoted as Ys =
(y(1), . . . , y(n)) with y(i) = G(x(i)) ∀ i = 1..n. Gaussian process modeling (Sacks et al. [20]),
also called kriging model (Stein [21]), treats the simulator deterministic response G(x) as a
realization of a random function Y (x), including a regression part and a centered stochastic
process:

Y (x) = h(x) + Z(x). (10)
The deterministic function h(x) provides the mean approximation of the computer code. We

can use for example a one-degree polynomial model:

h(x) = β0 +
d∑
j=1

βjxj , (11)

where β = [β0, . . . , βd]t is the regression parameter vector. The stochastic part Z(x) is a Gaus-
sian centered stationary process fully characterized by its covariance function: Cov(Z(x), Z(u)) =
σ2Kθ(x− u), where σ2 denotes the variance of Z, Kθ is the correlation function and θ ∈ Rd is
the vector of correlation hyperparameters. This structure allows to provide interpolation and
spatial correlation properties. Several parametric families of correlation functions can be chosen
(Stein [21]).

If a new point x∗ = (x∗1, . . . , x∗d) ∈ E is considered, we obtain the predictor and variance
formulas for the scalar output Y (x∗):

E[Y (x∗)|Ys] = h(x∗) + k(x∗)tΣ−1
s (Ys − h(Xs)) , (12)

MSE(x∗) = Var[Y (x∗)|Ys] = σ2 − k(x∗)tΣ−1
s k(x∗) , (13)

with
k(x∗) = [Cov(y(1), Y (x∗)), . . . ,Cov(y(n), Y (x∗))]t

= σ2[Kθ(x(1), x∗), . . . ,Kθ(x(n), x∗))]t (14)

and the covariance matrix

Σs = σ2
(
Kθ

(
x(i) − x(j)

))
i=1...n,j=1...n

. (15)

The conditional mean (Eq. (12)) is used as a predictor. The variance formula (Eq. (13))
corresponds to the mean squared error (MSE) of this predictor and is also known as the kriging
variance. This analytical formula for MSE gives a local indicator of the prediction accuracy.
More generally, Gaussian process model defines a Gaussian distribution for the output variable
at any arbitrary new point. This distribution formula can be used for uncertainty and sensitivity
analysis (Marrel et al. [14], Le Gratiet et al. [10]). Regression and correlation parameters β, σ
and θ are ordinarily estimated by maximizing likelihood functions (Fang et al. [7]).
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3.2 Emulation of the simulator quantile function
3.2.1 General principles
In our VME-optimization problem, we are especially interested by several quantiles (for exam-
ple at the order 1%, 5%, 50%, 95%, 99%) rather than statistical moments. In Moutoussamy
et al. [16] and Browne [4], quantile prediction with density-based emulator has shown some
deficiencies. Therefore, instead of studying Eq. (6), we turn our modeling problem to

G : E → R
x = (x1, x2, x3, x4, x5) 7→ NPV(x),

Q : E → Q
x 7→ Qx quantile function of NPV(x)

(16)

where Q is the space of increasing functions defined on ]0, 1[, with values in [a, b] (which is the
support of the NPV output). For x ∈ E, a quantile function is defined by :

∀p ∈]0, 1[, Qx(p) = t ∈ [a, b] such as
∫ t

a

fx(ε)dε = p. (17)

For the same points than in Figure 1, Figure 2 shows the 10 quantile function ouputs Q which
present a rather low variability.
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Figure 2: Quantile functions Q for 10 points of E (randomly chosen).

We consider the learning set χ (n = #χ) and NMC × n G-simulator calls in order to obtain(
Q̃
NMC
x

)
x∈χ

, the empirical quantile functions of (NPV(x))x∈χ. In this work, we will use NMC =

104, which is sufficiently large to obtain a precise estimator of Qx with Q̃
NMC
x . Therefore, we

neglect this Monte Carlo error. In the following, we simplify the notations by replacing Q̃NMC
x

by Qx.
The approach we adopt is similar to the one used in metamodeling a functional output of a

deterministic simulator (Bayarri et al., [2], Marrel et. al. [13]). The first step consists in finding
a low-dimensional functional basis in order to reduce the output dimension by projection, while
the second step consists in emulating the coefficients of the basis functions. However, in our
case, due to the nature of the functional outputs (quantile functions), some particularities will
arise.
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3.2.2 Projection of Qx by the Modified Magic Points (MMP) algorithm
Adapted from the Magic Points algorithm (Maday et al. [17]) for probability density functions,
the MMP algorithm has been proposed in Moutoussamy et al. [16]. It is a greedy algorithm
that builds interpolator (as a linear combination of basis functions) for a set of functions by
iteratively picking a basis function in the learning sample output set and a set of interpolation
points. At each step j ∈ {2, . . . , q} of the construction of the functional basis, one picks the
element of the learning sample output set that maximizes the gap (L2 distance) between this
element and the interpolator which used the previous j − 1 functions of the basis. The total
number q of functions is chosen with respect to a convergence criterion. Mathematical details
will not be provided in the present paper.

In this paper, we apply the MMP algorithm on quantile functions. The first step consists in
a projection of (Qx)x∈χ:

Q̂x =
q∑
j=1

ψj(x)Rj ∀x ∈ χ (18)

where ψ = (ψ1, . . . , ψq) (the coefficients) and R = (R1, ..., Rq) (the quantile functions of the
basis) are determined by MMP. We need to restrict the solutions to the following constrained
space:

C = {ψ ∈ Rq, ψ1, ..., ψq ≥ 0} (19)
in order to ensure the monotonic increase of Q̂x.

In our VME application, the choice q = 5 has shown sufficient approximation capabilities.
For one example of quantile function output, a small relative L2-error (0.2%) between the
observed quantile function and the projected quantile function is obtained. Figure 3 confirms
also the relevance of the MMP method.
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Figure 3: For one point x ∈ χ, Q̂x (red line) and Qx (black points).

3.2.3 Gaussian process metamodeling of the basis coefficients
Estimations of the ψ(x) = (ψ1(x), . . . , ψq(x)) (x ∈ E) coefficient vector will be performed with
q Gaussian process metamodels in order to build ˆ̂

Qx:

ˆ̂
Qx =

q∑
j=1

ψ̂j(x)Rj ∀x ∈ E. (20)
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To ensure that ψ̂j ∈ C (j = 1 . . . q), we use a logarithmic transformation:

T1 : C → Rq
ψ 7→ (log(ψ1 + 1), ..., log(ψq + 1)) (21)

and its inverse transformation:
T2 : Rq → C

ϕ 7→ (exp(φ1)− 1, ..., exp(φq)− 1) . (22)

We then compute φ(x) := T1(ψ(x)) ∀x ∈ χ and suppose that φ is a Gaussian process realization
with q independent margins. φ is estimated by

φ̂(x) := E[Yx | Ys] ∀x ∈ E (23)

with Ys the learning sample output. We obtain

ψ̂(x) := T2(φ̂(x)) ∀x ∈ E (24)

and Eq. (20) can be applied as our metamodel predictor of the quantile function.
In our VME application, we have built the metamodel on the set E (with the choice q = 5).

For one example of quantile function output, a small relative L2-error (2.8%) between the
observed quantile function and the emulated quantile function is obtained. Figure 4 confirms
also the relevance of the metamodeling method.
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Figure 4: For one point x ∈ χ, ˆ̂
Qx (red line) and Qx (black points).

4 Application to an optimization problem
4.1 Direct optimization on the metamodel
We now apply our quantile function metamodel with a quantile-based objective function

H : Q → R
q 7→ q(p) (25)

with p ∈]0, 1[. We look for
x∗ := arg max

x∈F
Qx(p) (26)
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but have only access to
ˆ̂x∗ := arg max

x∈F

ˆ̂
Qx(p). (27)

We study the relative error of H( ˆ̂
Q) on E by computing

err = 1
maxx∈E (Qx(p))−minx∈E (Qx(p)) ×

(∑
x∈E
| Qx(p)− ˆ̂

Qx(p) |
)
. (28)

As an example, for p = 0.5 (median estimation), we find

maxx∈E(Qx(p)) = 0.82, maxx∈E( ˆ̂
Qx(p)) = 0.42, err = 5.4%. (29)

If we define y = arg maxx∈E
ˆ̂
Qx(p) the best point from the metamodel, we obtain Qy(p) = 0.29

while maxx∈χQx(p) = 0.35. The exploration of E by our metamodel does not bring any
information. We have observed the same result by repeating 100 times the experiments (changing
the initial design). It means that the punctual errors on the quantile function metamodel are
too large for this optimization algorithm. In fact, the basis functions R1, ..., R5 that the MMP
algorithm has chosen on χ are not able to represent the extreme parts of the quantile functions
of E.

As a conclusion of these tests, the quantile function metamodel cannot be directly applied
to solve the optimization problem. In the next section, we propose an adaptive algorithm
which consists in sequentially adding simulation points in order to capture interesting quantile
functions to be added in our functional basis.

4.2 QFEI: An adaptive optimization algorithm

After the choice of χ, E and the families (Qx)x∈χ, (Q̂x)x∈χ and ( ˆ̂
Qx)x∈E , our new algorithm

will propose to perform new interesting (for our specific problem) calls to the VME simulator
on E (outside of χ). With the Gaussian process metamodel, which provides a predictor and
its uncertainty bounds, this is a classical approach used for example in black-box optimization
problem (Jones et al. [8]) and rare event estimation (Bect et al. [3]). The goal is to provide
some algorithms which mix global space exploration and local optimization.

Our algorithm is based on the so-called EGO (Efficient Global Optimization) algorithm
(Jones et al. [8]) which uses the Expected Improvement (EI) criterion to optimize a deterministic
simulator. Our case is different as we want to maximize

H : E → R
x 7→ Qx(p) p-quantile of NPV(x). (30)

We will then propose a new algorithm called the QFEI (for Quantile Function Expected Im-
provement) algorithm.

As previously, we use the set E ⊂ F with #E = 5000 (E is a random sample in F ), the
initial learning set χ ⊂ F with #χ = 200 (initial design of experiment), (Qx)x∈χ, (Q̂x)x∈χ
and ( ˆ̂

Qx)x∈E . We denote D the current learning set (the initial learning set increased with
additional points coming from QFEI). As Gaussianity will be needed on the components of ψ,
we did not performed a logarithmic transformation as in Section 3.2.3. In our case, it has not
implied negative consequences.

We apply the Gaussian process metamodeling on the q independent components ψ1, ..., ψq:

ψj(x) ∼ N
(
ψ̂j(x),MSEj(x)

)
∀j ∈ {1, ..., q} ∀x ∈ E. (31)
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As Q̂x(p) =
∑q
j=1 ψj(x)Rj(p), we have

Q̂x(p) ∼ N

 ˆ̂
Qx(p),

q∑
j=1

Rj(p)2MSEj(x)

 ∀x ∈ E. (32)

Then Q̂x(p) is a realization of the underlying Gaussian process Ux =
∑q
j=1 ψj(x)Rj(p) with

UD := (Ux)x∈D ,

Ûx := E[Ux | UD] ∀x ∈ E,
σ2
U |D(x) := Var[Ux | UD] ∀x ∈ E.

(33)

The conditional mean and variance of Ux are directly obtained from the q Gaussian process
metamodels of the ψ coefficients.

At present, we propose to use the following improvement random function:

I : E → R
x 7→ (Ux −max (UD))+

.
(34)

In our adaptive design, finding a new point consists in solving:

xnew := arg max
x∈E

E[I(x)]. (35)

Added points are those which have more chance to improve the current optimum. The expec-
tation of the improvement function writes (the simple proof is given in Browne [4]):

E[I(x)] = σU |D(x) (u(x)φ(u(x)) + ϕ(u(x))) ∀x ∈ E, with u(x) = Ûx −max(UD)
σU |D(x) (36)

where ϕ and φ correspond respectively to the density and distribution functions of the reduced
centered Gaussian law.

In practice, several iterations of this algorithm are performed, allowing to complete the
experimental design D. At each iteration, a new projection functional basis is computed and the
q Gaussian process metamodels are re-estimated. The stopping criterion of the QFEI algorithm
can be a maximal number of iterations or a stabilization criterion on the obtained solutions. No
garantee on convergence of the algorithm can be given. In conclusion, this algorithm provides
the following estimation of the optimal point x∗:

x̂∗ := arg max
x∈D

(UD), (37)

In our application case, we have performed all the simulations in order to know (Qx)x∈E ,
therefore the solution x∗. Our first objective is to test our proposed algorithm for p = 0.4 which
has the following solution: {

x∗ = (41, 47, 48, 45, 18)
Qx∗(p) = −1.72. (38)

We have also computed

1
#E

∑
x∈E

Qx(p) = −3.15, Var
(
(Qx(p))x∈E

)
= 0.59. (39)

We start with D := χ and we obtain

max
x∈χ

(Qx) = −1.95 (40)
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After 50 iterations of the QFEI algorithm, we obtain:{
x̂∗ = (41, 47, 45, 46, 19)
Qx̂∗(p) = −1.74. (41)

We observe that x̂∗ ' x∗ and Qx̂∗(p) ' Qx∗(p) which is a first confirmation of the relevance
of our method. With respect to the initial design solution, the QFEI has allowed to obtain a
strong improvement of the proposed solution. 50 repetitions of this experiment (changing the
initial design) has also proved the robustness of QFEI. The obtained solution is always one of
the five best points on E.

QFEI algorithm seems promising but a lot of tests remain to perform and will be pursued
in future works: changing p (in particular testing extremal cases), increasing the size of E,
increasing the dimension d of the inputs, . . .

5 Conclusion
In this paper, we have proposed to build a metamodel of a stochastic simulator using the
following key points:

1. Emulation of the quantile function which proves better efficiency for our problem than the
emulation of the probability density function;

2. Decomposition of the quantile function in a sum of the quantile functions coming from the
learning sample outputs;

3. Selection of the most representative quantile functions of this decomposition using an
adaptive choice algorithm (called the MMP algorithm) in order to have a small number of
terms in the decomposition;

4. Emulation of each coefficient of this decomposition by a Gaussian process metamodel, by
taking into account constraints ensuring that a quantile function is built.

The metamodel is then used to treat a simple optimization strategy maintenance problem
using a stochastic simulator (VME), in order to optimize an output (NPV) quantile. Using the
Gaussian process metamodel framework and extending the EI criterion to quantile function, the
adaptive QFEI algorithm has been proposed. In our example, it allows to obtain an “optimal”
solution using a small number of VME simulator runs.

This work is just a first attempt and needs to be continued in several directions:
• Consideration of a variable NMC whose decrease could help to fight against the computa-

tional cost of the stochastic simulator,
• Improvement of the initial learning sample choice by replacing the random sample by a

space filling design (Fang et al. [7]),
• Algorithmic improvements to counter the cost of the metamodel evaluations and to increase

the size of the study set E,
• Multi-objective optimization (several quantiles to be optimized) in order to take advantage

of our powerful quantile function emulator,
• Application to more complex real cases,
• Consideration of a robust optimization problem where environmental input variables of

the simulator has not to be optimized but just create an additional uncertainty on the
output.
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