
HAL Id: hal-01198451
https://hal.science/hal-01198451v1

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AcTinG: Accurate Freerider Tracking in Gossip
Sonia Ben Mokhtar, Jérémie Decouchant, Vivien Quéma

To cite this version:
Sonia Ben Mokhtar, Jérémie Decouchant, Vivien Quéma. AcTinG: Accurate Freerider Tracking
in Gossip. Symposium on Reliable Distributed Systems (SRDS 2014), Oct 2014, Nara, Japan.
�10.1109/SRDS.2014.12�. �hal-01198451�

https://hal.science/hal-01198451v1
https://hal.archives-ouvertes.fr

AcTinG: Accurate Freerider Tracking in Gossip

Sonia Ben Mokhtar

CNRS - LIRIS

sonia.benmokhtar@insa-lyon.fr

Jérémie Decouchant

Grenoble University

jeremie.decouchant@imag.fr

Vivien Quéma

Grenoble INP

vivien.quema@imag.fr

Abstract—Gossip-based content dissemination protocols are a
scalable and cheap alternative to centralised content sharing
systems. However, it is well known that these protocols suffer
from rational nodes, i.e., nodes that aim at downloading the
content without contributing their fair share to the system.
While the problem of rational nodes that act individually has
been well addressed in the literature, colluding rational nodes
is still an open issue. Indeed, LiFTinG, the only existing gossip
protocol addressing this issue, yields a high ratio of false positive
accusations of correct nodes. In this paper, we propose AcTinG, a
protocol that prevents rational collusions in gossip-based content
dissemination protocols, while guaranteeing zero false positive
accusations. We assess the performance of AcTinG on a testbed
comprising 400 nodes running on 100 physical machines, and
compare its behaviour in the presence of colluders against two
state-of-the-art protocols: BAR Gossip that is the most robust
protocol handling non-colluding rational nodes, and LiFTinG, the
only existing gossip protocol that handles colluding nodes. The
performance evaluation shows that AcTinG is able to deliver
all messages despite the presence of colluders, whereas both
LiFTinG and BAR Gossip suffer heavy message loss. It also
shows that AcTinG is resilient to massive churn. Finally, using
simulations involving up to a million nodes, we show that AcTinG
exhibits similar scalability properties as standard gossip-based
dissemination protocols.

I. INTRODUCTION

It is well known that content sharing applications account

for a large proportion of traffic over the Internet. The most

popular of these applications include collaborative download-

ing (e.g., BitTorrent) and peer-to-peer live streaming (e.g.,

P2PLive). Relying on the P2P paradigm offers robustness to

failures, scalability up to hundreds of thousands of nodes, and

adaptability. Indeed, P2P systems can handle massive node

arrival/departure and are highly resilient to churn. From the

point of view of content providers, relying on a P2P system

allows shifting cost (e.g., bandwidth) to clients, and avoids the

need for maintaining dedicated servers.

A major problem that face large scale P2P systems deployed

on the public domain is the existence of rational nodes, i.e.,

nodes that aim at receiving content without contributing their

fair share, by forwarding it to others. Existing studies have

shown that the presence of even a small portion of rational

nodes significantly degrades the system performance [1]–[5].

This is why a number of protocols have been devised in

the last decade to deal with the problem of rational nodes

in collaborative systems, (e.g., rational resilient live stream-

ing [6]–[8], spam filtering content dissemination [9] and N-

party transfer [10]). All these protocols provide incentives that

encourage/force rational nodes to participate in the system.

However, apart from the protocol presented in [8], all the ex-

isting solutions work under the assumption that rational nodes

do not collude. This problem though has been demonstrated to

be a reality in existing file sharing applications [11]. Handling

colluding nodes is a difficult problem provided that colluders

generally perform unobservable actions from the point of

view of the collaborative protocol [12], which makes their

deviations difficult to deter. For example, a group of colluders

could be a group of nodes that collaborate to exchange content

between each other “off the record” (e.g., using the silent

broadcast protocol described in [12]). Such colluders do not

share with nodes not belonging to the group the content they

receive off the record, thus harming the protocol.

To the best of our knowledge, the only gossip-based con-

tent dissemination protocol trying to prevent collusions is

the LiFTinG protocol [8]. In this protocol, nodes log their

interactions with other nodes and perform distributed audits

of each others logs. In order to be cost effective, this protocol

relies on cryptography-free procedures and statistical analysis

of these logs. For instance, a node is suspected of colluding

with another node if the frequency of its interactions with

the latter is greater than an expected average. Unfortunately,

as analysed by the authors themselves, due to their statistical

nature and to message losses, the mechanisms implemented

in LiFTinG do not allow to catch all rational collusions (false

negatives), and may even lead to wrong exclusions of correct

nodes (false positives). Experiments that we performed, and

that are described in Section VI-B, confirm this result and

further show that, for instance, when 30% of nodes collude

(either in a large group or in small collusion groups), correct

nodes observe 25% of message losses.

The challenge we embrace in this paper is the design of a

rational-resilient content dissemination protocol that prevents

collusions to occur and that does not wrongfully exclude

correct nodes. An observation one can start with is: a colluding

behaviour can be considered as a Byzantine behaviour [13].

A legitimate question is thus to know whether it is possible

to rely on existing techniques for Byzantine fault tolerance

and Byzantine fault detection, such as Nysiad [14], PeerRe-

view [15], Accountable Virtual Machines [16], Trinc [17], or

A2M [18]? The answer is No. The reason is that these generic

solutions for Byzantine fault tolerance and detection either

assume a limited proportion of faulty nodes, or the existence

of trusted nodes or hardware. Instead, we assume in this paper

that all nodes can be rational, and we do not rely on any trusted

entity, whether software or hardware.

In this paper, we present AcTinG a content dissemination

protocol that tolerates an unlimited number of (possibly col-

luding) rational nodes, while guaranteeing that no correct node

is ever expelled, and that all rational deviations are eventually

detected. To reach this objective, we adopt a different approach

than the one used in the LiFTinG protocol: rather than trying to

detect collusions a-posteriori, we built AcTinG in such a way

that it is not in the interest of nodes to collude. We analyse

each step of the protocol and describe the incentives that force

rational (possibly colluding) nodes to stick to the protocol. We

perform a performance evaluation of AcTinG. Its performance

is compared with two protocols: BAR Gossip, the state-of-the-

art gossip protocol that is able to handle non-colluding rational

nodes and LiFTinG, the state-of-the-art gossip protocol that is

able to handle colluding nodes. We implement a streaming

application that we deploy on top of the three protocols. We

deploy 400 nodes on one hundred physical machines and show

that AcTinG is able to deliver the entire stream despite the

presence of colluders, whereas LiFTinG and BAR Gossip,

both suffer heavy message losses. We also show that AcTinG

is resilient to churn, and using complementary simulations

involving up to a million nodes, that it is scalable: it yields a

logarithmic growth of memory and bandwidth consumption,

comparable to standard gossip based protocols [19].

The rest of the paper is structured as follows. Section II

describes our system model. Section III introduces the core

ideas of AcTinG. Section IV provides a detailed presentation

of AcTinG. Section V discusses its resilience to (colluding)

rational nodes. Section VI presents a detailed performance

evaluation. Section VII reviews the related works. Section VIII

concludes the paper.

II. SYSTEM MODEL

We consider a system with N nodes, which are uniquely

identified, e.g., using a hash value of their IP address. We

assume that nodes can join and leave the system (gently or

by crashing) at any time. We consider two classes of nodes:

correct nodes and rational nodes. Correct nodes follow the

protocol. Rational nodes are defined as in [7] extended with

the notion of collusion: they aim at getting the content (i.e.,

missing the lowest possible number of updates) at the lowest

possible overhead in terms of bandwidth consumption. This

means that rational nodes would deviate in any sort from the

protocol, possibly by colluding with each other, as long as the

deviation saves their resources while not impacting the quality

of the content they are getting.

Specifically, the benefit of colluding rational nodes can be

represented along the following axes:

1) (Stream Quality) Receiving as much as possible (possi-

bly, all) stream updates,

2) (Communication) Sending as little as possible (possibly,

none) stream updates or protocol messages to nodes not

belonging to their coalition,

3) (Computation) Performing as little as possible compu-

tations for other nodes.

Colluding rational nodes would typically exchange updates

off the record, and, in order to save bandwidth, would not

share the updates they obtained secretly with nodes outside

their group. It is important to note that rational nodes are risk

averse, i.e., they never deviate from the protocol if there is

any risk of being evicted from the system. This assumption

is commonly used in BAR systems [20]. Furthermore, this

assumption is particularly relevant in our context as we use

accountability techniques to deter faults and accuse nodes (as

described in the following section). In this context, when a

fault is detected, a proof of misbehaviour is produced, which

can convince any correct node in the system of the necessity

of evicting the misbehaving node. As eviction corresponds to

an infinite penalty, no benefit is worth taking such risk. We

also suppose that rational nodes join and remain in the system

for a long time and seek a long-term benefit.

We refer to the source as the node that is disseminating a

given content. We assume that each content is disseminated

from a single source at a time but our principles can be easily

applied to systems where the content is disseminated from

multiple sources at the same time. We assume that all nodes

but the source may be rational, or experience failures, and

may organise themselves in colluding groups of arbitrary sizes.

Classical fault-tolerance techniques (e.g., [21]) can relax the

assumption that the source does not fail.

We assume that the network allows every pair of nodes

to exchange messages, and that they are eventually received

if retransmitted sufficiently often. We also assume that hash

functions are collision resistant and that cryptographic primi-

tives cannot be forged. We assume that nodes are provided a

pair of asymmetric keys, and denote a message m signed by

a node i using its private key as (m)σ(i).
As in [7] and [22], we assume that nodes maintain clocks

synchronised within δ seconds, and we structure time as a

sequence of rounds in which nodes exchange updates. We

assume that nodes have a secure log that is used to check

their correctness through its analysis. A secure log is a log

that is tamper evident and append only. Many systems recently

defined variants of secure logs among which [15]–[18]. We

build on the secure log presented in [15].

III. PROTOCOL OVERVIEW

We present AcTinG, a gossip-based dissemination protocol

that guarantees the following two properties: (i) a correct

node is never expelled, and (ii) a rational node that deviates

from the protocol in a way that impacts the performance of

correct nodes is eventually suspected by all correct nodes. In

the remainder of this section, we describe the principles of

AcTinG that allow us to guarantee the above two properties.

Protocol details are then presented in Section IV.

Figure 1 shows an overview of our protocol. In this fig-

ure, the source node s, which is the node from which the

dissemination originates, cuts the content into chunks that we

call updates. It then periodically disseminates these updates

to a set of nodes (arrows 1 in the figure). To join this content

dissemination session, a new node (pn in the figure) needs

node can skip mandatory interactions. We avoid this deviation

by overcharging the sending of suspicion messages in such

a way that it is more costly to suspect a node of omission

failure than to effectively interact with it. As such, nodes

would suspect other nodes of omission failures only if they are

really missing a given message. Instead, if a node effectively

left the system (assume node pz in the figure), its predecessors

(among which, node px in the figure) contact pz’s partners to

collect evidence about the effective unresponsiveness of pz (as

described in Section IV-A). Then, px sends this evidence to the

source node (arrow 7 in the figure), which eventually updates

the membership list, and will also inform its partners during

future exchanges.

Summarising, our protocol builds on accountability tech-

niques, and on a set of mechanisms to provide incentives to

rational, possibly colluding, nodes to stick to the protocol.

Specifically, to avoid nodes from selecting their partners, our

protocol relies on random yet verifiable partnerships. To be

efficient it relies on random yet verifiable audits. To discourage

rational nodes from being falsely unresponsive, our protocol

handles omission failures. Finally, to discourage nodes from

wrongly suspecting their partners our protocol associates an

extra cost with suspicion messages.

IV. PROTOCOL DETAILS

We have presented the principles of AcTinG in the previous

section. In this section, we detail the steps of the protocol.

In a nutshell, AcTinG divides time in rounds. At each round

the source disseminates new updates, which come to expiration

after RTE rounds, to a small set of randomly chosen nodes.

To get updates, each node initiates and maintains partnerships

with other nodes with whom it exchanges updates at each

round. The partners are selected using a pseudo-random num-

ber generator function, i.e., PRNG, seeded deterministically

(e.g., with the node’s public key concatenated with the round

number). At the beginning of a round, each node contacts all

of its partners in order to propose updates to them and to

request updates from them. Every Period rounds, each node

updates its set of partners. Each time a node starts a new

partnership with a node, the two nodes audit each others’

log with a given probability. The membership is managed in

a distributed manner by nodes who periodically inform the

source of the arrival and the departure of nodes. Yet, it is the

responsibility of the source to disseminate an updated list of

alive nodes every Epoch rounds.

The remainder of this section describes the sub protocols

constituting AcTinG in detail, as follows. First, we present

the membership protocol (Section IV-A), which allows deal-

ing with new nodes joining the system, nodes leaving it

and unresponsive nodes. Then, we present the partnership

management (Section IV-B), the audit (Section IV-C) and

the update exchange protocols (Section IV-D), which allow

handling the partnerships between nodes, auditing their logs

and exchanging updates between partners, respectively.

A. Membership protocol

The membership protocol handles the arrival and the depar-

ture of nodes as well as the management of the membership

list. Our membership protocol is fully distributed, rational

resilient, and handles massive nodes arrival and departure.

��

��������
��	
���

����
�	������
�
����

�����
�	�
��	
������

�����		���������
������
�����	
�

�����
���	

�
��
����

� ���
�	��
��
��	
������ �!���������

����

Fig. 2. Arrival of a new node.

Node arrival: The arrival of a new node follows the

sequence of messages depicted in Figure 2. In this figure, we

assume that node pn, which would like to join a given content

dissemination session, has installed the AcTinG software. This

means that pn has an empty secure log with the related security

primitives. We also assume that pn knows an entry point in

the system, say px, which we call the contact node of pn. To

join a content dissemination session, pn sends a join request

to px (step (1) in the diagram). The latter replies with the list

of active nodes of the current epoch (step (2) in the diagram).

Using this list, pn computes its list of new partners using

the PRNG function as described in Section IV-B and contacts

them to start receiving the content. At the beginning of a new

round, each node, including node px informs the source of the

arrival of new members that have contacted it (step (4)). Using

theses messages, the source confirms to the new members their

integration in the system and updates the membership list (step

(5)).

��

������	
����������

����
����������

��

������	����

�����������

��������	������

�������������	�	
���������	���	 ���� ���������!����	�	
���������	

�

�"�

�"�

Fig. 3. Handling of an omission failure.

Node departure and omission failures: If a node px is

expecting a message from one of its partners py for too long1,

it suspects py of omission failure as depicted in the diagram of

Figure 3. Specifically, px adds py in its local list of suspected

nodes (step (1) in the figure) and sends a suspicion message

to the other partners of py (step (2)). This message includes

the type of message that px is expecting from py . Then, each

of py’s partners pings py (step (3)). If py is alive, it replies to

both its partners and px with the missing message (step (4)).

After a given time slot, each of py’s partners replies to px
with a signed message certifying whether py responded to the

ping message or not (step (5)). Using this message, px either

1Delays for node suspicion are configured in an implementation dependent
manner

removes py from its list of suspected nodes if py replied (step

(6)) or sends an eviction message to the source including the

messages received from py’s partners.

To be sure that a rational node will never suspect a correct

node, in order to avoid initiating or accepting an interaction,

we make the cost of sending a suspicion message higher than

the cost of a normal interaction. Hence, unless it is a real

suspicion, a node will never suspect another node.

Membership list update: Periodically, nodes that served

as contact nodes for others send their list of new nodes to

the source. Furthermore, nodes that hold an evidence of the

departure of one partner send it to the source. The latter

updates the membership list and sends it, at the beginning

of each epoch, to the nodes along with the content. In order

to fasten the removal of dead nodes from the membership list,

an optimisation consists in letting the source disseminate the

list of dead nodes at the beginning of each round along with

the stream, instead of waiting the following epoch. As soon as

a node receives these incremental updates from the source, it

removes the corresponding nodes from its list of alive nodes,

which avoids selecting them when new partnerships have to be

established before the new epoch. In order to preserve nodes

from the massive arrival of new nodes, which may consume

their bandwidth, we adopt the optimisation defined in [22],

which allows splitting the load between the older nodes and the

new ones. Specifically, this optimisation prevents new nodes

from establishing too many partnerships with older nodes.

B. Partnership management

Each node px maintains partnerships with f other nodes,

which are selected with the PRNG function seeded with a

deterministically computed seed (e.g., px’s public key concate-

nated with the round number) among the non-suspected nodes

of the last membership list. This process is depicted in the

diagram of Figure 4. If a selected node is not responding, node

px has to propagate a suspicion, and once it is confirmed, px
is allowed to find a new partner. Every Period rounds, a node

px breaks the f partnerships it initiated, without informing its

partners which know when the partnerships are supposed to

end. A node having an identifier id will change its partnerships

during round r if (id + r) mod Period = 0. To initiate a

new partnership with a node py , node px sends an association

request to py (step (2) in the diagram).

At the beginning of a partnership, a node px may trigger an

in-depth audit of its new partner py (step (4) in the diagram),

by contacting the partners py had in the RTE previous rounds,

and asking them to return their own log of the last RTE

rounds including the current round (step (5) in the diagram).

To reduce the cost of the protocol, nodes perform these audits

in a random manner, i.e., each time they are in a position to

perform an audit, they flip a coin and decide whether they

should audit their partner or not. Nevertheless, to avoid that

rational nodes hide behind this randomness to avoid auditing

their partners, we make this randomness verifiable. Towards

this purpose, we use the secure log authenticators, which are

signed messages computed from the node’s log as detailed in

Section IV-C. These values are unpredictable as they depend

on the current state of a node’s log. Specifically, each time a

node px is in a position to perform an audit of a new partner

py , it computes the hash of its public key concatenated with the

public key of py and the round number. The value of this hash

modulo 100 gives a number that px uses to decide whether it

should audit its new partner. For instance, if the probability of

auditing a node fixed by the protocol is 30%, px audits py if

the result of the modulo function is between 0 and 29. Node

px further logs the authenticators it used to compute the value

of this boolean, in order to justify, in future audits, the reason

why it performed or did not perform the audit of py . If the

audit must take place, px contacts py’s partners, and asks for

their logs.

��

�������	
���	���������

��

�����������������	������

�		����������������

�������
��������	
���	���
�������������� ���

��	!�!�"����

�#���������������� ���
��	!�!�"����

$�����������
	����

�%�������

�&��$	�

�'�����
����(��

	���
�����

���

���

Fig. 4. Establishment of new associations between nodes, which may imply
audits.

C. Audit protocol

In our protocol, the secure log is used to keep track of the

communication a node had with other nodes in the system.

Specifically, each entry in the log of a node A corresponds to

a message sent (resp. received) by A to (resp. from) another

node B. A log entry ei is of the form ei = (seqnoi, hi, ci)
where seqnoi is a monotonically increasing sequence number,

hi is a hash value linked with the previous entries in the

log and ci is a type-specific content, which may include the

message sent (resp. received) by A as well as other information

such as authenticators (as defined below). The value of hi is

computed as follows: hi = H(hi−1||seqnoi||H(ci)), where

h0 = 0, H is a hash function and || stands for concatenation.

Each time a log entry ei is added to the log of a node A,

an authenticator αi is generated. This authenticator, which is

a signed message αi = (seqnoi, hi)σ(A), states that A has

a log entry ei with a corresponding hash hi. By sending the

authenticator αi to a node B, A commits to having logged the

entry ei and to the content of its log before ei. Any node that

receives αi can use it to inspect ei and all the entries preceding

ei in the log of A. Upon reception of a log, any node is able

to recompute the hash values it contains, according to the log

entries, and thus to check their validity. In addition, a log entry

for a received message must include a matching authenticator,

implying that a node cannot invent an entry for a message it

did not receive. These two properties make the secure logs

tamper-evident and append only.

As described in the partnership management protocol, when

node px must audit node py , it asks py’s partners to return their

logs. Upon reception of these logs, node px verifies:

(i) the consistency of the logs, by recomputing the recursive

hash values associated to log entries,

(ii) the presence of the exchanges py was supposed to initiate,

(iii) that py declared the updates it was supposed to receive

from the source, if py was supposed to interact with the source,

(iv) that the exchanges correspond to a correct execution of the

protocol, i.e., that py proposed to all its partners all the updates

that appear in its log, that py requested from its partners all

the updates it was missing, that py served to its partner all

the updates they were requesting and that py logged all the

identifiers of the updates it received,

(v) that py suspected all its partners that did not follow a

given step of the protocol as prescribed by the omission failure

protocol,

(vi) that py audited all the partners it was supposed to audit.

As any other node, the source also maintains partnerships and

regularly changes its partners, i.e., the nodes it serves. The

source follows the partnership management and the updates

exchange protocols, except that it does not send any log and

it is not audited by nodes2. This forces the nodes to log the

identifiers of the updates they received from the source, as they

are deterministically chosen among the epoch membership list,

which is known by all nodes. Hence, any node can check that

the received updates were correctly declared. As the serving

rate of the source is constant, the identifier of the updates that

are released at each round are also known.

D. Update exchanges

At the beginning of each round and for the duration of

their partnership, two partners px and py exchange updates as

depicted in Figure 5. Specifically, node px (resp. py) starts the

exchange by generating a proposition message containing the

identifiers of all the updates that appear in its log and that did

not expire yet. Node px (resp. py) logs this proposition mes-

sage in its log and generates the corresponding authenticator.

Then, px (resp. py) sends the proposition message along with

the corresponding authenticator to py . Upon reception of the

proposition message, which it logs, node py (resp. px) selects

the updates it is missing and replies to px (resp. py) with an

update request. The update request is logged at the two parties.

Finally, px (resp. py) serves the missing updates, and logs the

serve message. Each partner then terminates the exchange by

logging the identifiers of the updates it received, in its log.

The nodes will then propagate the received updates during the

following rounds, because we cannot ensure that nodes will

immediately share them.

V. RISK VERSUS GAIN ANALYSIS

The aim of this section is to demonstrate that rational nodes

will not collude with their partners, because audits will detect

deviations with a high probability, and because the estimated

gain of collective deviations is low. Complementary to this

analysis is a proof that the protocol is a Nash equilibrium.

This proof lists all the protocol steps and possible rational

deviations and proves that rational nodes do not have any

interest in deviating from the protocol whether individually

2We recall that the source is assumed to be a correct node.

��������������

	�
��	���������������

���
����

	�
���������������������

��������������������������

	�
���������������������

��������������������������

�������	���������������

	�
��	���������������

	�
���������������������

��������������������������

	�
���������������������

��������������������������

�������	���������������

���

���

���

Fig. 5. Update exchanges between nodes.

or as a group. Due to the lack of space, this proof is available

in the companion technical report [23].

We first evaluate the risk that two colluding partners take

by deviating, for example when interacting as prescribed by

the protocol, but without logging the updates they exchange.

Specifically, consider two partners px and py that decide

to collude. Assume px holds update u. To help py saving

bandwidth in future rounds, py sends a proposition message

to px that does not contain u, but logs that it has proposed

u. As such, the logs of px and py appear correct if audited

separately as px can not be blamed of not requesting u (as the

official proposition sent by py does not contain u) and py can

not be blamed of not proposing u as it appears in his log that

he has done so. We define the risk as the probability that such

a deviation is deterred by an audit.

Let us compute this risk. If any of the two colluding nodes

is audited during the time where the exchange is contained

in their logs, they will be discovered. Let us consider a

system of N nodes, where C nodes are part of a single

colluding group. A node’s log contains the entries of the last

RTE rounds. A participating node initiates f partnerships

with other nodes, which are changed after Period rounds.

Let Paudit the probability that a node audits each of its

new partners. When establishing a new partnership, a rational

node is not audited if its new partner is colluding with it

(which happens with probability C
N

), or if the new partner

is correct but the protocol prescribes not to perform the audit.

On average, each of the two nodes interacts with 2×f×RTE
Period

partners during the time the deviation is visible. Finally,

we obtain that the risk a deviation is detected is equal to:
(

1−
(

C
N

+
(

1− C
N

)

× (1− Paudit)
)

2.f.RTE
Period

)2

Let us now compute the gain of performing the above

deviation. To do this we need to compute the number of

interactions that a rational node may have with correct nodes

that do not hold the update u after receiving it from its

colluding partner, i.e., correct nodes to which the rational node

would have had to send u if it has received it officially from its

colluding partner. To do so, we use the algorithm of Figure 6.

The principle of this algorithm is that during each of the RTE

rounds that follow the round at which the deviation occurred,

2 ∗ f interactions happen. Each of these interactions, has a

probability C
N

to involve another colluding node. When it is

not the case, this other node owns the missing update with

a probability that depends on the number of rounds elapsed

since its release by the source. We evaluate this probability

using another algorithm, detailed in the companion technical

report [23]. When the rational node receives the update from

a correct node, it will have to share it with its future partners.

saved sends nb = 0;
for round id in 1..RTE do

for association id in 1..2*f do

if random() > C

N
then

if random() < probability[round id] then
return return saved sends nb;

else
saved sends nb = saved sends nb + 1;

end if
end if

end for
end for
return saved sends nb;

Fig. 6. Pseudocode of the algorithm used to estimate the number of times a
colluding node avoids to send an update.

Using the average of the outputs of this algorithm, we can

compute the proportion of interactions in which an update will

not be sent by rational nodes. To obtain the long term gain,

we multiply this proportion by the probability that a rational

node has to meet an accomplice to be able to execute this

deviation, which is C
N

.

Computing the risk, and the gain, with the values of the

parameters used in the protocol and further described in the

following section, we obtain that the risk two colluding nodes

take is equal to 60%, and the long term gain of the associated

deviation is equal to 3%. Thus, rational nodes are exposed with

a high risk each time they execute the deviation, and can only

hope for a very small benefit. As a result, we conclude that

rational nodes will not collude with their partners to exchange

updates off the record. As said above, a complete analysis of

the incentives provided by the protocol can be found in [23].

Note that nodes can still collude silently with nodes that are

not their partners. Yet, it they do so, they are still obliged to

execute the protocol correctly, i.e., request updates they do

not officially hold and propose updates they officially hold to

correct nodes. Hence, their collusion will not have any impact

on the quality of the stream perceived by correct nodes.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the

AcTinG protocol. We start by introducing our methodology

(Section VI-A). Then, we compare the impact of colluders

on AcTinG, BAR Gossip, and LiFTinG (Section VI-B). We

choose BAR Gossip as it is the most robust rational resilient

content dissemination protocol that has been proposed so

far and LiFTinG as it is the only state-of-the-art content

dissemination protocol that handles colluders. We then assess

the bandwidth consumption of AcTinG (Section VI-C), its per-

formance in the case of massive node departure (Section VI-D)

and its scalability in terms of memory and bandwidth con-

sumption using simulations involving up to a million nodes

(Section VI-E).

Overall, our evaluation draws the following conclusions:

In a real deployment involving 400 nodes and in presence

of colluders, correct nodes using AcTinG do not experience

any degradation in the quality of the content they receive

while those using BAR Gossip and LiFTinG experience heavy

message loss in presence of colluders independently from their

organisation (whether in small or larger groups). On the other

hand, we show that nodes that decide to collude in AcTinG

experience a heavy overhead, which discourages them from

staying in the coalition. Moreover, we show that AcTinG band-

width consumption is reasonable and that AcTinG is resilient

to massive node departure. Finally, we show that AcTinG is

scalable as simulations involving up to a million nodes exhibit

that both the bandwidth and memory consumptions of AcTinG

follow a logarithmic growth in the number of nodes. However,

we acknowledge that the source may become a bottleneck

as the number of nodes increase, as it periodically receive

notifications. Solving this issue is classically done by using a

tracker, i.e., a centralised server that handles membership, as in

the FlightPath protocol [22], which could easily be integrated

in our system. The tracker could even be replicated using

classical fault-tolerance techniques (e.g., [21]).

A. Methodology and Parameter Setting

To assess the performance of AcTinG, BAR Gossip and

LiFTinG, we used them to implement three video live stream-

ing applications. In these applications, a source node, selected

randomly, diffuses a video stream at a rate of 300 kbps, during

5 minutes, and proposes each update to 5 random nodes.

Updates are then disseminated using either AcTinG, BAR

Gossip or LiFTinG, respectively. In order to provide a fair

comparison, we implemented the three streaming applications

in Java using the same code base. We deployed the three

applications in 400 nodes running in one hundred physical

machines of the Grid5000 cluster, interconnected with a 1Gb/s

network that we limited to 1Mb/s. Each machine is composed

of an Intel Xeon L5420 processor clocked at 2.5GHz with

32GB of RAM. In the three applications, to provide further

tolerance to message loss (combined with retransmissions), the

source groups packets in windows of 40 packets, including 4

FEC 3 coded packets.

The duration of one round is set to one second, and updates

are released 10 seconds before being consumed by the nodes

media player. Note that nodes dynamically adapt the number

of their partners according to the size of the membership list:

each node establishes
⌈

ln(N)
2

⌉

partnerships that it maintains

for a duration of five rounds. For instance, in the fault free

case, with N = 400, each node has 3 partners. At the

beginning of each partnership, nodes performed audits with a

probability of 5%, which, as we show in Section V, allows the

system to detect deviations with a probability of 60% when

up to 10% of the audience colludes in a single group. The

3FEC stands for Forward Error Correction.

cryptographic primitives consisted in a 1024-bit RSA signature

and a SHA-1 hash.

B. Impact of Colluders

In this section, we experimentally study the impact of col-

luders on the BAR Gossip, LiFTinG, and AcTinG protocols.

We implemented colluders from the code base of correct nodes

in each protocol as follows. Colluders exchange unofficially

among each other all the stream updates they received from

correct nodes. Furthermore, colluders execute all the possible

undetectable rational deviations that exist in the underlying

protocol. For instance, in BAR Gossip, colluders never take

part of the optimistic push protocol, which allows nodes

to altruistically push updates to other nodes. Similarly, in

LiFTinG, colluders do not audit the logs of other nodes and

do not reply to messages sent by other nodes asking them

to assess the behaviour of their previous partners unless the

considered partner is among the group. As a result, correct

nodes will be blamed by their correct auditors. In this situation

the system administrator has two choices: (1) adjust the

detection threshold to avoid false positives (by decreasing

its value), which opens the doors to colluders for freeriding

or (2) adjust the detection threshold to detect colluders (by

increasing its value), which results in very high values of

false positive accusations. In this experiment, we considered

the first situation. A complementary experiment showed that in

the second situation, adjusting the threshold to exclude 20% of

colluders incurred the exclusion of 43% of correct nodes in the

system. Finally, in AcTinG, colluders do not forward updates

they received unofficially to their correct partners unless they

also received them officially.

We varied the number of colluders, as well as the size

of colluding groups. We measure the percentage of missed

updates observed by correct nodes in presence of a proportion

of colluders. We first studied the case in which all colluders

belong to the same group. Results are depicted in Figure 7.

The X axis presents the proportion of nodes that collude,

while the Y axis presents the percentage of missed updates

experienced by correct nodes in presence of colluders. We

notice that correct nodes miss up to 98% of updates with BAR

Gossip and 72% of updates with LiFTinG, whereas they do

not miss any update with AcTinG.

We then studied the impact of spreading colluders in mul-

tiple independent groups. More specifically, we made several

experiments in which we distributed 30% of all the nodes in

colluding groups of identical size. We depict the results in

Figure 8. The X axis presents the size of colluding groups,

while the Y axis presents the percentage of missed updates

observed by correct nodes. We observe that spreading collud-

ers in different groups has the same impact on the quality of

the content downloaded by correct nodes.

Group size 2 4 8 10 50

Overhead (%) 34.35 51.53 60.12 61.84 67.33

TABLE I
OVERHEAD OF COLLUDERS IN ACTING.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
ro

p
o

rt
io

n
 o

f
m

is
s
e

d
 u

p
d

a
te

s
 (

%
)

Proportion of colluders (%)

BAR Gossip
Lifting

AcTinG

Fig. 7. Proportion of missed updates by correct nodes when a given proportion
of the audience collude as a single group.

 0

 10

 20

 30

 40

 50

2 4 5 10 20

P
ro

p
o
rt

io
n
 o

f
m

is
s
e
d
 u

p
d
a
te

s
 (

%
)

Size of colluding groups

BAR Gossip
Lifting

AcTinG

Fig. 8. Proportion of missed updates by correct nodes when 30% of the
audience is rational, and collude in independent groups of equal sizes.

The reason why correct nodes do not observe missed

updates when using AcTinG is that we designed AcTinG

in such a way that colluders will eventually receive all the

updates officially from their correct partners and will thus be

obliged to forward them officially to their correct partners.

Hence, engaging in a colluding group only yields an extra

overhead due to the unofficial dissemination of updates among

the group. We have measured this overhead and results are

depicted in Table I. From this table we observe that the

overhead due to collusion is at least of 34% of the size of

the stream (case of a group containing only two colluders).

In addition, as seen in section V, in a scenario where 10%

of nodes collude, and where audits are performed 5% of the

time, each deviation will be detected with a probability of

60%. Moreover, exchanging updates without declaring them

will provide at most a gain equal to 3%. Consequently, nodes

in AcTinG have no interest in colluding as they would not

observe any increase in the quality of the stream they get,

take a very high risk of being evicted, experience very low

benefit, while suffering a useless waste of bandwidth.

C. Bandwidth consumption

To assess the overhead of AcTinG, we plot in Figure 9 the

cumulative distribution of the average bandwidth consumption

of nodes. Recall that AcTinG is used to broadcast a 300kbps

stream. Figure 9 shows that AcTinG induces a reasonable

overhead (that is mostly due to the transmission of logs). We

also measured the memory consumption of AcTinG, which

is due to the storage of secure logs and authenticators. Our

measures have showed that a node consumes 3MB of memory

for each partnership, in the worst case.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 300 400 500 600

P
ro

p
o

rt
io

n
 o

f
n

o
d

e
s
 (

%
)

Bandwidth (kbps)

AcTinG

Fig. 9. Fault-free case: Cumulative distribution of average bandwidths.

D. Resilience to massive node departure

In the case of a massive node departure, the remaining nodes

need to quickly replace their left partners with alive nodes in

order not to miss updates. In this experiment, we measure the

bandwidth consumption and the percentage of missed updates

when 60% and 70% of nodes suddenly leave the streaming

session. Results are depicted in Figures 10 and 11 respectively.

Specifically, we observe in Figure 10 that the massive node

departure, which happens 500 seconds after the beginning of

the experiment, immediately causes a decrease in the average

bandwidth consumed by the remaining nodes, as they stop

exchanging messages with their left partners. This decrease

(62% and 75% in the case of the departure of 60% and 70% of

nodes, respectively) is followed by an increase (of up to 18%

and 27% in the former two cases), which corresponds to the

messages exchanged by nodes to establish new partnerships

(including a given proportion of audits). Finally, we observe

that 30 seconds later, the average bandwidth consumption

stabilises around 430 kbs (13% less than the original value),

which is due to the decrease of the necessary number of

partners per node.

We also compute the percentage of nodes that do not receive

a viewable stream4. We observe in Figure 11 that only 2,5%

nodes do not receive a viewable stream during the first second

when 60% nodes leave the system, and between 5% and 15%

nodes do not receive a viewable during at most five seconds

when 70% nodes leave the system.

E. Scalability

We performed simulations to evaluate the bandwidth, and

the memory consumption, of AcTinG when the number of

4The stream is not viewable when more than 5% of the streaming windows
cannot be displayed because of missed updates [7]

 0

 100

 200

 300

 400

 500

 600

 700

 200 300 400 500 600 700

B
a

n
d

w
id

th
 (

k
b

p
s
)

Time (s)

Massive departure

60%
70%

Fig. 10. Nodes average bandwidth after a massive departure.

 0

 5

 10

 15

 20

 480 500 520 540

P
ro

p
o
rt

io
n
 o

f
n
o
d
e
s
 (

%
)

Time (s)

Massive departure

60%
70%

Fig. 11. Percentage of nodes that do not receive a viewable stream after a
massive departure.

nodes increases in the system.

Results, depicted in Table II, show that both the bandwidth

consumption and the memory consumption of AcTinG grow

logarithmically with respect to the number of nodes in the

system. Indeed, these values depend linearly on the number

of partners a node has, which grows logarithmically with the

system size.

System size Bandwidth consumption Memory usage
(Kbps) (Mb)

100 380.0 6.4
500 436.6 9.5

3,000 511.1 12.7
22,000 603.4 15.9

160,000 713.5 19.1
1,200,000 841.4 22.3

TABLE II
AVERAGE BANDWIDTH AND MEMORY USAGE OF ACTING IN FUNCTION

OF THE SYSTEM SIZE.

VII. RELATED WORKS

In this section, we focus on peer-to-peer content dissemi-

nation protocols that handle rational nodes. These protocols

can be classified into two categories, according to the way

file chunks (called updates in the following) are exchanged

between nodes. The first category of protocols is composed

of symmetric protocols. These protocols force nodes to col-

laborate, as the number of updates they get from a node is

proportional to the number of updates they have to offer (this

principle is often referred to as tit-for-tat). BAR Gossip [7]

and FlightPath [22] are symmetric protocols relying on game

theory. Both provide incentives to ensure that rational nodes

respectively have no, or a limited, interest in deviating from

the protocol. In terms of robustness to rational nodes, the

BAR Gossip protocol exhibits stronger properties than the

FlightPath protocol. Indeed, nodes in FlightPath are assumed

to deviate only if the benefit they get is higher than a threshold,

which is not the case in BAR Gossip. While the authors of

these two protocols point out the problem of colluding rational

nodes in [7], none of them address it.

The second category of protocols is composed of asymmet-

ric protocols. These protocols require nodes to altruistically

push update identifiers to other nodes, which subsequently

pull updates of interest. A first protocol in that category is

the one presented in [24]. This protocol aims at adapting

the contribution of nodes to the systems, according to their

available resources. This protocol assumes the existence of

trusted auditors that run in dedicated external nodes and does

not deal with colluders. A second protocol in that category

is LiFTinG [8]. To the best of our knowledge, LiFTinG

is the only existing peer-to-peer content dissemination pro-

tocol that tackles the problem of colluding rational nodes.

Specifically, LiFTinG sporadically verifies the distribution of

the interactions a given node performed with other nodes in

the system. Nodes that collude with other nodes break the

uniform distribution of partner selection, which may result in

their detection. In order to be cost effective, LiFTinG only

performs sporadic audits, and relies on non-secure logs that

can contain wrong information, be incomplete, be tampered

with and, as a consequence, be inconsistent the ones with

respect to the others. As a result, LiFTinG suffers from two

major limitations: correct nodes can be wrongly evicted from

the system (false positives), and a proportion of colluding

rational nodes can harm the system without being detected

(false negatives).

VIII. CONCLUSION

A number of gossip-based content dissemination protocols

tolerating rational behaviours have been proposed. A limitation

of these protocols is that they do not handle rational nodes that

collude, i.e. that act as a group in order to improve their bene-

fit. The only exception is the LiFTinG protocol that performs

sporadic checks on insecure logs to try to detect colluding

nodes. We have shown in this paper that neither LiFTinG

nor BAR Gossip, the most robust rational resilient content

dissemination protocol, are effectively resilient to colluders.

In this paper, we have presented AcTinG, the first content

dissemination protocol that tolerates rational nodes acting both

individually and in collusions, and that guarantees zero false

positive accusations. Performance evaluation combining both a

real deployment and simulations has demonstrated that nodes

running AcTinG are able to deliver the entire content despite

the presence of colluders. We have also shown that AcTinG is

resilient to churn, and exhibits very desirable scalability prop-

erties with a logarithmic growth of memory and bandwidth

consumption, comparable to standard gossip based protocols.

Our future work includes the study of the applicability of the

AcTinG principles to other types of collaborative applications

for the accurate detection of rational (possibly colluding)

nodes.
IX. ACKNOWLEDGEMENT

Experiments presented in this paper were carried out us-

ing the Grid’5000 testbed, supported by a scientific inter-

est group hosted by Inria and including CNRS, RENATER

and several Universities as well as other organizations (see

https://www.grid5000.fr).

REFERENCES

[1] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday,
vol. 5, no. 10, 2000.

[2] R. Krishnan et al., “The impact of free-riding on peer-to-peer networks,”
in System Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on. IEEE, 2004, pp. 10–pp.
[3] M. Feldman et al., “Free-riding and whitewashing in peer-to-peer

systems,” Selected Areas in Communications, IEEE Journal on, vol. 24,
no. 5, pp. 1010–1019, 2006.

[4] J. F. e Oliveira et al., “Can peer-to-peer live streaming systems coexist
with free riders?” in Peer-to-Peer Computing, 2013. P2P’13. IEEE 13th

International Conference on, 2013.
[5] T. Locher et al., “Free riding in bittorrent is cheap,” in Proc. Workshop

on Hot Topics in Networks (HotNets). Citeseer, 2006, pp. 85–90.
[6] J. J.-D. Mol et al., “Give-to-get: free-riding resilient video-on-demand

in p2p systems,” in Electronic Imaging 2008, 2008.
[7] H. C. Li et al., “Bar gossip,” in Proceedings of OSDI’06.
[8] G. et al., “Lifting: lightweight freerider-tracking in gossip,” in Proceed-

ings of Middleware’10.
[9] S. Ben Mokhtar et al., “Firespam: Spam resilient gossiping in the bar

model,” in Proceedings of SRDS, 2010.
[10] X. Vilaça et al., “N-party bar transfer,” in Principles of Distributed

Systems. Springer, 2011, pp. 392–408.
[11] L. Qiao et al., “An empirical study of collusion behavior in the maze

p2p file-sharing system,” in ICDCS’07.
[12] R. Eidenbenzet al., “Hidden communication in p2p networks stegano-

graphic handshake and broadcast,” in INFOCOM, 2011 Proceedings

IEEE. IEEE, 2011, pp. 954–962.
[13] L. Lamport et al., “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 2, 1982.
[14] C. Ho et al., “Nysiad: practical protocol transformation to tolerate

byzantine failures,” in Proceedings of NSDI’08.
[15] A. Haeberlen et al., “Peerreview: practical accountability for distributed

systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, 2007.
[16] H. Andreaset al., “Accountable virtual machines,” in Proceedings of

OSDI’10.
[17] D. Levin et al., “Trinc: small trusted hardware for large distributed

systems,” in Proceedings of NSDI’09.
[18] C. Byung-gon et al., “Attested append-only memory: Making adversaries

stick to their word,” in Proceedings of SOSP’07.
[19] E. Patrick et al., “Epidemic information dissemination in distributed

systems,” IEEE Computer, vol. 37, no. 5, 2004.
[20] A. Aiyer et al., “Bar fault tolerance for cooperative services,” in

Proceedings of SOSP, 2005.
[21] T. Bressoud et al., “Hypervisor-based fault tolerance,” ACM Transac-

tions on Computer Systems (TOCS), vol. 14, no. 1, pp. 80–107, 1996.
[22] H. C. Li et al., “Flightpath: obedience vs. choice in cooperative services,”

in Proceedings of OSDI’08.
[23] S. Ben Mokhtar et al., “Acting: Accurate freerider tracking

in gossip,” University of Grenoble, Tech. Rep., 2014,
https://sites.google.com/site/soniabm/.

[24] R. van Renesse et al., “Enforcing fairness in a live-streaming system,”
in Proceedings of MMCN’08.

