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Abstract

This paper introduces an original definition of diagnosability for nonlinear dynamical models called functional di-
agnosability. Fault diagnosability characterizes the faults that can be discriminated using the available sensors in a
system. The functional diagnosability definition proposed in this paper is based on analytical redundancy relations
obtained from differential algebra tools. Contrary to classical definitions, the study of functional diagnosability high-
lights some of the analytical redundancy relations properties related to the fault acting on the system. Additionally, it
gives a criterion for detecting the faults. Interestingly, the proposed diagnosability definition is closely linked to the
notion of identifiability, which establishes an unambiguous mapping between the parameters and the output trajecto-
ries of a model. This link allows us to provide a sufficient condition for testing functional diagnosability of a system.
Numerical simulations attest the relevance of the suggested approach.
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1. Introduction

Fault diagnosability establishes which faults can be
discriminated according to the available sensors in a
system. By analyzing diagnosability, it is possible to an-
ticipate the discriminatory power of a diagnoser at run
time and to propose solutions to other important prob-
lems like the one of selecting the lowest cardinality sen-
sor set that guarantees discriminability of an anticipated
set of faults. Diagnosability analysis must be achieved
in the framework used to design the diagnoser, which is
in our case the model-based framework. The principle
of model-based fault diagnosis is to compare the behav-
ior of the system with the predictions that arise from
the model and to analyse the sources of discrepancy. In
the case of nonlinear models, the classical methods are
based on nonlinear observers ([13] for example) and/or
Analytical Redundancy Relations (ARRs) ([14], [15]).
These latter are relations linking the system inputs, out-
puts and their derivatives. This paper follows the second
track and proposes an extension of the existing defini-
tions and methods for diagnosability and detectability
from ARRs. The extension is in line with a gain of dis-

criminability.
The considered nonlinear dynamical parametrized

models (controlled or uncontrolled) are of the follow-
ing form:


ẋ(t, p, f) = g(x(t, p), u(t), f, ε(t), p),

y(t, p, f) = h(x(t, p), u(t), f, ε(t), p),

x(t0, p, f) = x0,

t0 ≤ t ≤ T.

(1)

where:

• x(t, p, f) ∈ Rn and y(t, p, f) ∈ Rm denote the
state variables and the outputs respectively,

• the functions g and h are real, rational and analytic
on M , where M is an open set of Rn such that
x(t, p, f) ∈ M for every t ∈ [t0, T ]. T is a finite
or infinite time bound,

• u(t) ∈ Rr is the control vector,

• f ∈ Re is the fault vector,
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• ε(t) is a stochastic vector introducing noise in the
system,

• the vector of parameters p belongs to UP , where
UP ⊆ Rq is an a priori known set of admissible
parameters,

• the initial conditions x0 are assumed to belong to a
bounded set X0, to be independent of f and to be
different from an equilibrium point of the system.

f = 0 means no fault and ε = 0 means no noise. In the
case of uncontrolled models u = 0.

From elimination theory, some differential polynomi-
als, also called input-output representations, that may
act as ARRs – since they link system inputs, outputs,
parameters and their derivatives – can be obtained. In
the last decade, algorithms for obtaining such ARRs
have been developed and implemented in softwares as
Maple [1]. They are based on differential algebra [6]
and allow one to eliminate state variables, which are un-
known, from the model. ARRs can be used to detect [5],
isolate and estimate faults or in other words to achieve
fault detection and isolation (FDI) [17]. To do so, a so-
called residual is associated to each ARR, and acts as a
consistency indicator [14].

In our paper, faults are considered to disturb the sys-
tem model (1). Interestingly, there is no restriction
about the type of faults. They may act multiplicatively
changing the value of some parameter already present
in the model or as additional parameters. FDI then re-
lies on the assumption that the model parametrization
is suitably chosen so that the faults of the system can
be detected and isolated. The purpose of diagnosability
analysis is to verify such property.

Some definitions of diagnosability based on ARRs
have been proposed in the litterature. A classical di-
agnosability definition stands in comparing fault signa-
tures [15]. Typically, the fault signature of a fault is
a Boolean vector referring to a set of residuals and re-
porting which residuals are sensitive (with a 1) and not
sensitive (with a 0) to the fault. According to [15], the
model is said diagnosable if for any two faults, their
fault signatures are distinct. Then, if two faults act on
the same residuals, the model is not diagnosable.

[2] considers that a system is diagnosable if f is alge-
braically observable with respect to u and y. Defining
fi as the ith component of the fault vector f , it means
that each fault component fi can be written as a solu-
tion of a polynomial equation in fi and finitely many
time derivatives of inputs u and outputs y. This defi-
nition can be likened to the definition of identifiability

proposed in [10]. Indeed, the parameters are defined
globally identifiable if the condition above stands for
each parameter pi. Considering the fault vector as a
parameter vector, classical identifiability and diagnos-
ability as proposed by [2] are hence equivalent. The
links between the notions of identifiability and diagnos-
ability and the correspondence between faults and pa-
rameters have actually been sensed by several authors
among which those of [17]. Their work is based on the
key paper [10] that presents a method based on the use
of input-output representations – from which ARRs can
be built – for studying the identifiability of a model. In
[10], input-output representations are obtained with the
Ritt’s algorithm and checking identifiability may require
a lot of manipulations of the model equations. As a re-
sult, it is often impossible to obtain such input-output
representations for complex systems and, if they are ob-
tained, the order of derivatives is so high that the rela-
tions cannot be used as ARRs for FDI, thus the limita-
tion of the method proposed by [2] for diagnosability
analysis and FDI. Aware of these problems, [17] relaxes
the condition required by global identifiability, and al-
lows the input-output representations to involve several
parameters/faults. Input-output representations are used
to build residuals evaluated thanks to a statistical change
detection method. Hence [17] proposes an FDI method
for non linear systems but does not consider diagnos-
ability analysis and the problem of providing conditions
for faults to be discriminable.

In [3], thanks to the Rosenfeld-Groebner algorithm,
which is by far more efficient than the Ritt’s algorithm
[1], and to a particular elimination order, the authors
propose to study the identifiability of the parameters of
a model from differential polynomials that may contain
more than one parameters. The advantage of these poly-
nomials is that they present a particular form allowing
one to provide general conditions to study identifiabil-
ity. Furthermore, they contain derivatives of lower order
than the ones required by [10]. We borrow the idea of
[3] for diagnosability analysis and propose a new defini-
tion of diagnosability, called functional diagnosability.

This definition is closely related to the classical def-
inition of identifiability. From this link, definitions of
fault detectability and discriminability are proposed and
a sufficient condition for verifying functional diagnos-
ability is deduced. The method proposed to verify this
condition is easy to implement and allows to detect
faults whereas traditional methods fail, as illustrated by
the example of the water tanks presented in Section 4.2.

The paper is organized as follows. In Section 2,
a general method for obtaining specific ARRs is pre-
sented. In Section 3, the definition of functional di-
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agnosability is introduced and linked to the notion of
identifiability. From this study, a criterion is given for
testing functional diagnosability. Section 4 presents two
numerical examples and Section 5 discusses the results
and concludes the paper.

2. Obtention of ARRs

In the following subsections, the expression of ARRs
and how to obtain ARRs through variable elimination
are presented.

2.1. ARRs and their decomposition
In [14], the authors propose to use ARRs for fault

detection and isolation in algebraic dynamic systems.
An ARR is a relation deduced from the model of the
system that links the system inputs and outputs and their
derivatives. Provided that derivatives can be estimated,
an ARR is hence a testable relation in the sense that it
can be evaluated with the measurements and this is why
it is useful in the FDI framework.

The following notations borrowed from [14] are used.
If ϑ is a vector, ϑ̄(k) is the vector whose components are
ϑ and its time derivatives up to order k, ϑ̄ stands for ϑ
and its time derivatives up to some (unspecified) order.
Consider the set of ARRs:

wi(ȳ, ū, f, ε̄, p) = 0, i = 1, . . . ,m. (2)

They can be decomposed as:

wi(ȳ, ū, f, ε̄, p) = wd,i(ȳ, ū, f, p)
−ws,i(ȳ, ū, f, ε̄, p) = 0, (3)

where wd,i(ȳ, ū, f, p) is the deterministic part (a poly-
nomial of degree zero in the components of ε̄) and
ws,i(ȳ, ū, f, ε̄, p) is the stochastic part (a polynomial of
degree at least one in some components of ε̄).

In most cases, there is no simple characterization of
the residual’s stochastic behavior, in particular for es-
tablished fault detection procedures. [17] provides an
FDI method that perfectly exemplifies how stochastic
aspects can be managed. However, other papers like
[14] propose to base fault detection on the deterministic
part of the residual and we also adopt this assumption.
With this assumption, ws,i(ȳ, ū, f, ε̄, p) = 0 and ARRs
can be rewritten:

wi(ȳ, ū, f, ε̄, p) = wd,i(ȳ, ū, f, p) = 0. (4)

wd,i(ȳ, ū, f, p) can be decomposed as :

wd,i(ȳ, ū, f, p) = w0,i(ȳ, ū, p)− w1,i(ȳ, ū, f, p),
(5)

where w0,i(ȳ, ū, p) is a fault-free term and
w1,i(ȳ, ū, f, p) is a term that depends on the fault
vector. Consequently:

wi(ȳ, ū, f, p) = w0,i(ȳ, ū, p)− w1,i(ȳ, ū, f, p). (6)

According to (4), the following relation is always
true:

w0,i(ȳ, ū, p) = w1,i(ȳ, ū, f, p). (7)

The residual defined by ρ = w0,i(ȳ, ū, p) which in-
volves only known variables is used for detecting
faults. In the absence of faults, ρ is identically
zero for any triple (ȳ, ū, p) which satisfies (1) since
w1,i(ȳ, ū, 0, p) = 0. w0,i(ȳ, ū, p) is called the resid-
ual computation form and w1,i(ȳ, ū, f, p) the residual
internal form.

A fault is defined as detectable if w1,i(ȳ, ū, f, p) 6= 0
when f 6= 0.

In the following section, a method based on the
Rosenfeld-Groebner algorithm for obtaining ARRs is
presented. The advantage of the adopted method is to
give ARRs of a particular form that is interesting with
respect to the functional diagnosability definition given
in Section 3.1 and the method for testing functional di-
agnosability presented in Section 3.4.

2.2. Obtaining specific ARRs through variable elimina-
tion

In denoting θ the vector (f, p)T , the results of [3] can
be directly used. Assume that the system (1) can be
rewritten as a differential polynomial system composed
of polynomial equations and inequalities 1:

P (x̄, ū, θ) = 0,
Q(x̄, ȳ, θ) = 0,
R(x̄, ȳ, θ) 6= 0,

θ̇i = 0, i = 1, . . . , q + e.

(8)

Notice that the polynomials R correspond to denomina-
tors in model (1).
The differential ideal generated by (8) is the collection
of polynomials obtained from the polynomials of (8) by
addition, differentiation in time, and multiplication by
any polynomial in x, u, y, θ. Since an infinite number
of differential polynomials can be obtained by repeat-
edly performing the above operations, the differential
ideal is an infinite set of differential polynomials.

1In general a rational system can be rearranged into a polynomial
system as described in [11].
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Let I the radical of the differential ideal generated by
(8), that is the collection of polynomials some power
of which lies in the differential ideal generated by (8)
(see [12],[1], [4] for more details). I endowed with the
following ranking which eliminates the state variables:

[θ] ≺ [y, u] ≺ [x] (9)

admits a characteristic presentation C (i.e. a canoni-
cal representative of the ideal) which has the following
form [1]:{

θ̇1, . . . , θ̇q+e, w1(ȳ, ū, θ), . . . , wm(ȳ, ū, θ),

Q1(ȳ, ū, θ, x), . . . , Qn(ȳ, ū, θ, x)}
(10)

where the leader of the polynomial wi is yi for i =
1, . . . ,m.
Afterwards, we suppose that C(θ), the characteristic
presentation C evaluated in the particular value θ is
equal to Cθ, the characteristic presentation obtained with
the elimination ranking [y, u] ≺ [x] (see [4] or [16] for
more details).
C(θ) is proved to contain the differential polynomials

w1(ȳ, ū, θ), . . . , wm(ȳ, ū, θ) which can be expressed as:

wi(ȳ, ū, θ) = m̃0,i(ȳ, ū) +

ni∑
k=1

γ̃ik(θ)m̃k,i(ȳ, ū) (11)

where (γ̃ik)1≤k≤ni are rational in θ, γ̃iv 6= γ̃iw (v 6= w),
(m̃k,i(ȳ, ū))1≤k≤ni are differential polynomials with
respect to y and u and m̃0,i(ȳ, ū) 6≡ 0.
The polynomials wi, called the input-output polynomi-
als, can easily be rewritten in the form:

wi(ȳ, ū, f, p) = m0,i(ȳ, ū, p)−
si∑
k=1

γik(f, p)mk,i(ȳ, ū)

(12)
where the first part of the polynomial, m0,i(ȳ, ū, p), is
not identically equal to zero and does not contain com-
ponents of f . Notice that the number of ARRs corre-
sponds to the number of outputs [1].

According to the expression of the residual (6) of
section 2.1, one gets ρi = w0,i(ȳ, ū, p) = m0,i(ȳ, ū, p)

and w1,i(ȳ, ū, f, p) =

si∑
k=1

γik(f, p)mk,i(ȳ, ū).

2.3. A definition of diagnosability based on signatures
Let us consider fj , the jth component of the fault

vector f , and let us denote by f[j] the fault vector with
all components equal to zero but fj . fj as well as f[j]
refer to a single fault.

Considering that m residuals are available, the theo-
retical signature of a fault fj can be defined as follows.

Definition 2.1. The fault signature of fj is the m-vector
Sig(fj) whose ith component is equal to 1 if the ith
residual internal form w1,i(ȳ, ū, f, p) contains the fault
fj and equal to 0 otherwise.

From this definition, discriminality and diagnosabil-
ity definitions can be given [15].

Definition 2.2. Two faults fi and fj are discriminable
if their signatures are different. When all the faults are
discriminable, the model is said diagnosable.

According to the above diagnosability definition, if
two faults act on the same residuals, the model is not di-
agnosable. In the following section, a definition of func-
tional diagnosability is proposed. This definition takes
into account the fact that a residual can be impacted by
two faults but still have different behaviors depending
on the fault.

3. Functional diagnosability

3.1. Definition of functional diagnosability and related
concepts

The functional signature of a fault fj is given by the
vector formed of the internal form of the m residuals by
considering that only the fault fj is acting on the system.
In other words, it is given by the vector whose ith com-
ponent is w1,i(ȳ, ū, f[j], p), that is the polynomial ob-
tained from w1,i(ȳ, ū, f, p) by considering all the com-
ponents of f equal to zero but the jth component equal
to fj . Formally, the definition is the following:

Definition 3.1. The functional fault signature is a func-
tion FSig which associates to a fault fj , the vector
(w1,i(ȳ, ū, f[j], p))i=1,...,m.

From the above definition, it is clear that functional
fault signatures account explicitly for the effect of the
fault magnitude and the input value. This hence brings
more information than standard fault signatures.

Let FSig(i)(fj) = w1,i(ȳ, ū, f[j], p) denote the ith
component of FSig(fj).

Example 3.1. Consider the following Bernoulli equa-
tion:

ẏ(t) = β1y(t) + β2y(t)2, for t ∈ [0, 5], y(0) = −1.
(13)

The solution is y(t) = β1e
β1t

β2−β1−β2eβ1t
.

We obtain directlyw0,1(ȳ, p) = ẏ(t)−β1y(t)−β2y(t)2.
Assume that some positive single faults f1 and f2 im-
pact additively the two parameters β1 and β2 respec-
tively, then w1,1(ȳ, f, p) = f1y(t, p, f) + f2y(t, p, f)2
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where p = (β1, β2)T , f = (f1, f2)T , and T denotes
the transpose of the considered vector. One can de-
duce that Sig(f1) = Sig(f2) = 1 and FSig(f1) =
f1y(., p, f[1]), FSig(f2) = f2y(., p, f[2])

2 where
y(., p, f[i]) denotes the output impacted by fi only. The
two faults are not discriminable according to the classi-
cal fault signatures that are equal. However, their func-
tional signatures advocate that the residuals can be dis-
tinguished, as shown in more details in section 4.1.

The following definitions are proposed to link the
functional signature to the notions of discriminality and
diagnosability. The first one is true for all inputs,
whereas the second one is verified only for one input.

Definition 3.2. Two faults fj and fl are input-strongly
functionally discriminable if for all input u, there exists
at least one index i∗ and a finite time t1 ∈]t0, T ] such
that for all t ∈ [t0, t1], FSig(i

∗)(fj) 6= FSig(i
∗)(fl).

When all the faults are input-strongly functionally dis-
criminable, the model is said input-strongly functionally
diagnosable.

Definition 3.3. Two faults fj and fl are input-weakly
functionally discriminable if there exits an input u, there
exists at least one index i∗, and a finite time t1 ∈
]t0, T ] such that for all t ∈ [t0, t1], FSig(i

∗)(fj) 6=
FSig(i

∗)(fl). When all the faults are input-weakly
functionally discriminable, the model is said input-
weakly functionally diagnosable.

When the model is uncontrolled, we have the follow-
ing definition:

Definition 3.4. Two faults fj and fl are functionally
discriminable if there exists at least one index i∗ and
a finite time t1 ∈]t0, T ] such that for all t ∈ [t0, t1],
FSig(i

∗)(fj) 6= FSig(i
∗)(fl). When all the faults are

functionally discriminable, the model is said function-
ally diagnosable.

Detectability is a particular case of discriminability
that requires the fault-free situation to be discriminable
from the presence of any of the faults, without requiring
the faults to be discriminable. Functional detectability
can hence be defined based on functional signatures as
follows.

Definition 3.5. The fault fi is functionally detectable
if the functional signature FSig(fi) is not equal to the
null vector.

Although Sig(fi) 6= 0 implies FSig(fi) 6= 0
and vice-versa, functional signatures bring information
about the sensitivity of residuals to faults.

The above definition applies to uncontrolled systems.
In the case of controlled systems, the distinction be-
tween input-strongly and input-weakly detectable can be
done in the same way as in definitions 3.2 and 3.3.

Remark– Functional signatures of faults can be col-
lected in a Functional Signature Matrix whose compo-
nent (i, j) contains the ith residual for the fault fj , that
is w1,i(ȳ, ū, f[j], p). For illustration purposes, consider
the following example.

Example 3.2.
ẋ1 = (p1 + f1)(p2 + f2)x21 + x1x2,
ẋ2 = (p2 + f2)(p3 + f3)x22 + x2x3,
ẋ3 = (p1 + f1)(p3 + f3)x23 + x1x3,
y1 = x1, y2 = x2, y3 = x3.

(14)

It is easy to verify that:

w0,1(ȳ, ū, p) = ẏ1 − y1y2 − p1p2y21 ,
w0,2(ȳ, ū, p) = ẏ2 − y2y3 − p2p3y22 ,
w0,3(ȳ, ū, p) = ẏ3 − y1y3 − p1p3y22 .

(15)

and:

w1,1(ȳ, ū, f, p) = (p1f2 + p2f1 + f1f2)y21 ,
w1,2(ȳ, ū, f, p) = (p2f3 + p3f2 + f2f3)y22 ,
w1,3(ȳ, ū, f, p) = (p1f3 + p3f1 + f1f3)y23 .

(16)

The functional signature are:

FSig(f1) = (p2f1y
2
1 , 0, p3f1y

2
3)T ,

FSig(f2) = (p1f2y
2
1 , p3f2y

2
2 , 0)T ,

FSig(f3) = (0, p2f3y
2
2 , p1f3y

2
3)T .

Diagnosability can be analysed thanks to the following
table:

PPPPPPPPFSig(f)
f

f1 f2 f3

FSig(1)(f) p2f1y
2
1 p1f2y

2
1 0

FSig(2)(f) 0 p3f2y
2
2 p2f3y

2
2

FSig(3)(f) p3f1y
2
3 0 p1f3y

2
3

Clearly, for (j, l) ∈ {1, 2, 3}2, j 6= l, FSig(fj) 6=
FSig(fl) and the model is functionally diagnos-
able.The system (14) considered in this example is also
diagnosable in the classical sense. Nevertheless, the
Functional Signature Matrix advantageously shows the
impact of the faults on the residuals.

3.2. A criterion for testing identifiability from ARRs

Identifiability establishes an unambiguous mapping
between the parameters and the output trajectories. [10]
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has proposed definitions for identifiability in the frame-
work of algebra and one of them is recalled below. This
definition corresponds to global identifiability at p for
the model (1) in which there are no faults. If the ini-
tial conditions are not considered, the solutions may
not be unique and some solutions may be degenerated.
Thus, the set of outputs corresponding to the set of non-
degenerated solutions is denoted Y (p, u).

Definition 3.6. The system (1), considered with un-
known initial conditions, is said to be globally identi-
fiable at p∗ with respect to DM ⊆ UP if there exists an
input signal u∗ such that Y (p∗, u∗) 6= ∅ and

Y (p∗, u∗) ∩ Y (p, u∗) 6= ∅, p ∈ DM ⇒ p∗ = p.

This definition has been extended to local identifia-
bility at p∗.

The authors of [10] also give a sufficient condition
for global identifiability. By using an appropriate
elimination order in the Ritt’s algorithm, the system
(1) leads to a set of differential polynomials called the
characteristic set. If all the components pi of the param-
eter vector p are solutions of a differential equation of
the form Pi(ȳ, ū)pi − Qi(ȳ, ū) = 0, then the model is
globally identifiable at p for any p ∈ DM. In addition,
if some of the differential polynomials are of degree
>1 in pi, then the model is locally identifiable. These
results can be applied to the fault vector of the system
so that classical identifiability implies diagnosability as
defined in Definition 2.2 of Section 2.3.

However, in most cases, it is impossible to find such
nice differential polynomials even if the model struc-
ture is globally identifiable. Furthermore, even if the
computation terminates, the obtained differential alge-
braic equations may contain derivatives of high order
that induce numerical difficulties for identifying param-
eters (or faults). Thus, the aim of the following work is
to propose a method with wider applicability based on
testing functional diagnosability with polynomials that
may contain several faults.

The following proposition provides a necessary and
sufficient condition for the identifiability of the faults.
It is based on the use of the ARRs obtained in Section
2.2. We remind that these are of the form:

FSig(fj) =

(
si∑
k=1

γik(fj , p)mk,i(ȳ, ū)

)
i=1,...,m

.

According to [4], one gets the following proposition:

Proposition 3.1. Assume that there exists an index set
I0 ⊆ {1, . . . ,m} such that for all i ∈ I0, the functional
determinants 4w1,i(ȳ, ū) = det(mk,i(ȳ, ū), k =
1, . . . , si) are not identically equal to zero 2. The model
(1) is globally identifiable with respect to the faults if
and only if the function φ defined by :
φ : f = (f1, . . . , fp) 7→

(
γi1(f), . . . , γisi(f)

)
i∈I0

is in-
jective

Proposition 3.1 highlights a link between the injectiv-
ity of the function of faults φ(.) and the identifiability of
faults. The next step consists in linking identifiability of
faults and functional diagnosability.

3.3. Link between identifiability and functional diag-
nosability

Consider (mk,i(ȳ(., p, f[j]), ū))k=1,...,ni as the set
deduced from (mk,i(ȳ, ū))k=1,...,ni when the output is
evaluated for the single fault fj .

Proposition 3.2. Assume that there exists an index set
I0 ⊆ {1, . . . ,m} such that for all i ∈ I0, the functional
determinants 4w1,i(ȳ, ū) = det(mk,i(ȳ, ū), k =
1, . . . , si) are not identically equal to zero. If, with the
polynomials wi(ȳ, ū, f, p), i ∈ I0, the model is identifi-
able with respect to the faults then the model is (input-
strongly) functionally diagnosable. The reciprocal is
not true.

From Propositions 3.1 and 3.2, one can deduce that a
sufficient condition for functional diagnosability is the
injectivity of the function φ(.). However, it is not a nec-
essary condition according to the counterexample given
in the following Proof.

Proof – Assume that the assumptions of Proposition
3.2 are verified.

2This assumption consists in verifying the linear independence of
the mk,i(ȳ, ū), k = 1, . . . , si, by checking that the functional deter-
minant given by the Wronskian [3]

4w1,i(ȳ, ū) =

∣∣∣∣∣∣∣∣∣


m1,i(ȳ, ū) . . . msi,i(ȳ, ū)

m1,i(ȳ, ū)(1) . . . msi,i(ȳ, ū)(1)

. . .
m1,i(ȳ, ū)(si−1) . . . msi,i(ȳ, ū)(si−1)


∣∣∣∣∣∣∣∣∣

(17)
is not identically equal to zero. If there exists a time point at which the
Wronskian is non-zero, then the monomials are linearly independent
[7]. In the framework of differential algebra, this condition consists in
verifying that this functional determinant is not in the ideal obtained
after eliminating state variables. In practice, it can be checked with
the function Belong_To of the package DifferentialAlgebra of Maple
16.
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Sufficiency The proof is done by contrapositive. As-
sume that the model is not (input-strongly) func-
tionally diagnosable. Then, there exist two differ-
ent faults f1 and f2, (and an input u), such that
for all indexes i ∈ {1, . . . ,m} and for all t ∈
[t0, T ], we have FSig(i)(f1) = FSig(i)(f2). De-
note y(., p, f[1]) (resp y(., p, f[2])) the output aris-
ing from f1 (resp. f2). One gets, for all
i ∈ {1, . . . ,m}, w1,i(ȳ(., p, f[1]), ū, f[1], p) =
w1,i(ȳ(., p, f[2]), ū, f[2], p), in particular

si∑
k=1

(γik(f1, p)mk,i(ȳ(., p, f[1]), ū)

−γik(f2, p)mk,i(ȳ(., p, f[2]), ū)) = 0.

(18)

Three cases can arise:

1. For all indexes i0 ∈ I0, one gets that

m1,i0(ȳ(., p, f[1]), ū), . . . ,msi0 ,i0
(ȳ(., p, f[1]), ū),

m1,i0(ȳ(., p, f[2]), ū), . . . ,msi0 ,i0
(ȳ(., p, f[2]), ū)

are linearly independent. This assumption implies
that for all k = 1, . . . , si0 , γi0k (f1, p) = γi0k (f2, p)
with f1 6= f2. Thus, the function φ defined in
Proposition 3.1 is not injective and the model is
not identifiable with respect to the faults.

2. We are not in the first case and there exists an in-
dex i0 ∈ I0, that is a polynomial, such that some
of the ml,i0(ȳ(., p, f[2]), ū), l ∈ {1, . . . , si0} de-
pend linearly on {mk,i0(ȳ(., p, f[1]), ū)}k=1,...,si0

,
the others not. For example, suppose that, for
l = 1, . . . , v, v < si0 , ml,i0(ȳ(., p, f[2]), ū) =∑si0
k=1 ξk,lmk,i0(ȳ(., p, f[1]), ū) and γi0v+1(f2, p) 6=

0. By definition of the functional signature, one
gets:

FSig(i0)(f1) =

si0∑
k=1

γi0k (f1, p)mk,i0(ȳ(., p, f[1]), ū)

and
FSig(i0)(f2) =∑si0
k=1

(∑v
j=1 γ

i0
j (f2, p)ξk,j

)
mk,i0(ȳ(., p, f[1]), ū)+

si0∑
k=v+1

γi0k (f2, p)mk,i0(ȳ(., p, f[2]), ū).

(19)

It follows from (18):

si0∑
k=1

γi0k (f1, p)−
v∑
j=1

γi0j (f2, p)ξk,j

×
mk,i0(ȳ(., p, f[1]), ū)

−
si0∑

k=v+1

γi0k (f2, p)mk,i0(ȳ(., p, f[2]), ū) = 0

(20)
According to the linear independence hypothesis,
for k ∈ {v + 1, . . . , si0}, γik(f2, p) is equal to 0,
which is impossible since γi0v+1(f2, p) is assumed
nonzero. Thus, this situation is impossible.

3. Assume now that for all polynomials wi,
i ∈ {1, . . . ,m}, for all l ∈ {1, . . . , si}
ml,i(ȳ(., p, f[2]), ū) depends linearly on
{mk,i(ȳ(., p, f[1]), ū)}k=1,...,si , that is for
all l in {1, . . . , si}, ml,i(ȳ(., p, f[2]), ū) =∑si
k=1 ξk,lmk,i(ȳ(., p, f[1]), ū). The functional

signature of f2 can be rewritten:

FSig(i)(f2) =
si∑
k=1

 si∑
j=1

γij(f2, p)ξk,j

mk,i(ȳ(., p, f[1]), ū).

(21)

• If, for all j ∈ {1, . . . , si} , γij(f2, p) is solu-
tion of the system

∀k ∈ {1, . . . , si},
si∑
j=1

γij(f2, p)ξk,j = γik(f1, p),

(22)
the signature of f1 can be rewritten

FSig(i)(f1) =

si∑
k=1

 si∑
j=1

γij(f2, p)ξk,j


×mk,i(ȳ(., p, f[1]), ū)

(23)
and φ(f1) = φ(f2), which means that the
model is not identifiable.

• If γij(f2, p) is not solution of (22), for ex-
ample, if γi1(f1, p) 6=

∑si
j=1 γ

i
j(f2, p)ξ1,j ,

Equation (18) gives:(
γi1(f1, p)−

∑si
j=1 γ

i
j(f2, p)ξ1,j

)
×m1,i(ȳ(., p, f[1]), ū)

+
∑si
k=2

(
γik(f1, p)−

∑si
j=1 γ

i
j(f2, p)ξk,j

)
×mk,i(ȳ(., p, f[1]), ū) = 0.

(24)
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According to the assumptions about
functional determinants, the functions
mk,i(ȳ(., p, f[1]), ū), k = 1, . . . , si are
linearly independent and one can deduce that
γi1(f1, p) =

∑si
j=1 γ

i
j(f2, p)ξ1,j , which is

not possible.

For proving that the reciprocal is not true, consider
the simple differential equation ẏ(t, p) = (p1−p2)y(t),
y(0) = 1, p = (p1, p2)T , whose solution is y(t, p) =
e(p1−p2)t, t ∈ R. Assume that two positive and additive
single faults f1 and f2 impact the two parameters p1
and p2 respectively. From the differential equation, one
can deduce thatw1,1(ȳ, f, p) = (f1−f2)y(t, p, f). This
model is not identifiable according to the faults since the
function φ : (f1, f2) 7→ f1 − f2 is not injective. How-
ever, one can deduce that FSig(f1) = f1y(t, p, f[1]) =

f1e
(p1+f1−p2)t > 0, FSig(f2) = −f2y(t, p, f[2]) =

−f2e(p1−p2−f2)t < 0. Since the first signature is pos-
itive and the second negative, the two trajectories are
distinct on R. Thus, this model is not identifiable with
respect to the faults but it is functionally diagnosable.

3.4. Testing functional diagnosability
Consider the vector of faults f = (fi)i=1,...,e. The

steps for testing functional diagnosability are summed
up below.

1. Find the differential polynomials

(wi(ȳ, ū, f, p))i=1,...,m

by using, for example, the package DifferentialAl-
gebra of Maple with the elimination order [f ] ≺
[y, u] ≺ [x].

2. Isolate all the w1,i(ȳ, ū, f, p), i ∈ I0, i.e. the
parts of the polynomials wi(ȳ, ū, f, p) containing
the faults, for which the functional determinant is
not identically equal to zero (see footnote 1 of the
Proposition 3.1).

3. Construct the function φ.
4. Verify if φ is injective.

3.5. Practical detectability and discriminability
In the fault-free situation, the functional signature is

theoretically equal to the null vector. However, the pres-
ence of noise generally corrupts the measured signal,
hence the following definitions.

Definition 3.7. The fault fi is ε-functionally detectable
if there exist j ∈ [1,m] and a time interval [t1, t2] ⊆
[t0, T ] such that for all t ∈ [t1, t2], d(FSig(j)(fi), 0) >
ε, where d is a distance on R.

The condition of the above definition, based on the
threshold ε, guarantees that at least one residual is above
the threshold for a significant time interval, allowing to
practically detect the fault fi. This condition aims at
distinguishing a non null residual from model or mea-
surement noise.

Definition 3.8. If two faults f1 and f2 act on the same
residual, i.e. on the same w1,j(ȳ, ū, f, p), they are said
ε-functionally discriminable if there exists a time in-
terval [t1, t2] ⊆ [t0, T ] such that for all t ∈ [t1, t2],
d(FSig(j)(f1), FSig(j)(f2)) > ε.

These definitions can be extended to input-strongly
and input-weakly properties.

4. Illustrative examples

4.1. Bernoulli equation

Consider the Example 3.1 again and the correspond-
ing residual equal to ρ = w0,1(ȳ, p) = ẏ(t) −
β1y(t) − β2y(t)2. As previously, we assume that
some positive single faults f1 and f2 on the interval
[0, 1] impact the two parameters β1 and β2, respec-
tively. Then w1,1(ȳ, f, p) = f1y(t, p, f) + f2y(t, p, f)2

and FSig(f1) = f1y(., p, f[1]), FSig(f2) =
f2y(., p, f[2])

2 where for i = 1, 2, y(., p, f[i]) denotes
the output depending only on fault fi. The functional
determinant is equal to ∆w1,1(ȳ) = ẏy2 6≡ 0 and the
function φ : (f1, f2) 7→ (f1, f2) is injective. Accord-
ing to Proposition 3.1, the model is globally identifiable
with respect to the faults. From Proposition 3.2, one
can deduce that the model is functionally diagnosable
on [0, 5], the functional signatures being distinct. In-
deed, numerically, if β1 = 1, β2 = 2, y(t, p, f[1]) is
negative on [0, 5] and clearly, FSig(f1) 6= FSig(f2)
on [0, 5]. Notice however that the model is not diagnos-
able in the classical sense.
The residual can be used to detect one of the two faults
because its behavior is distinct when one or the other
fault is acting on the system. Consider the case of a
permanent fault appearing at time t = 0.5s with an
unknown magnitude between 0.1 and 1 and suppose
that the output is disturbed by a Gaussian noise so that
the relative error has a maximal value of 0.1. Figure
1 and Figure 2 represents the residual for several sce-
narios varying the magnitude of f1, respectively f2, be-
tween 0.1 and 1. From Figure 2, the faults are 0.02-
functionally detectable and 0.02-functionally diagnos-
able.

8



Figure 1: Bernoulli residual when a fault of different magnitude acts
on β1

Figure 2: Bernoulli residual when a fault of different magnitude acts
on β2

4.2. Water tanks

The second example concerns two coupled water
tanks modeled by:


ẋ1(t, p) = a1 u(t)− a2

√
x1(t, p), x1(0) = 1,

ẋ2(t, p) = a3
√
x1(t, p)− a4

√
x2(t, p), x2(0) = 0.6,

y1(t, p) = a5
√
x1(t, p),

y2(t, p) = a6
√
x2(t, p),

(25)
where p = (ai)i=1,...,6, ai 6= 0, is the model param-
eter vector, x = (x1, x2)T represents the state vector
and corresponds to the level in each tank, and u 6≡ 0 is
the input vector. The water level in the tanks can vary
between 0 and 10.

Let f1 denote an unknown additive fault on the ac-
tuator signal, f2 and f3 are additive faults on the two
sensors at the output of each of the water tanks, and f4
is a clogging fault. f4 = 1 represents a fully clogged
pipe and 0 < f4 < 1 represents partial clogging. In
the faulty scenarios, we assume that the faults are intro-
duced at time t = 20s.

In order to use the Rosenfeld-Groebner algorithm im-
plemented in Maple 16, auxiliary variables z1(t, p) =√
x1(t, p) and z2(t, p) =

√
x2(t, p) are introduced

and the model, including the representation of the four
faults, is rewritten as:

ẋ1(t, p) = a1 (u(t) + f1)− a2 (1− f4) z1(t, p),
ẋ2(t, p) = a3 (1− f4) z1(t)− a4 z2(t, p),
z1(t, p)2 = x1(t, p),
z2(t, p)2 = x2(t, p),
y1(t, p) = a5 (1− f4) z1(t, p) + f2,
y2(t, p) = a6 z2(t, p) + f3,

ḟi = 0.
(26)

According to the Rosenfeld-Groebner algorithm, the
two ARRs are:

w1(ȳ, ū, f, p) = w0,1(ȳ, ū, p)− w1,1(ȳ, ū, f, p)
w2(ȳ, ū, f, p) = w0,2(ȳ, ū, p)− w1,2(ȳ, ū, f, p)

(27)
where

w0,1 = −ua1a25 + (a2a5 + 2ẏ1)y1,
w1,1 = 2 ẏ1 f2 − (f24 a2 a5 − 2 f4 a2 a5) y1
−(−f24 a1 a25 + 2 f4 a1 a

2
5)u

+f24 f2 a2 a5 + f24 f1 a1 a
2
5 − 2 f4 f2 a2 a5

−2 f4 f1 a1 a
2
5 + f2 a2 a5 + f1 a1 a

2
5,

w0,2 = 2a5ẏ2y2 − a3a26y1 + a4a5a6y2,
w1,2 = 2 ẏ2 f3 a5 + f3 a4 a5 a6 − f2 a3 a26.

(28)
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Hence,

FSig(f1) = (−f1 a1 a25, 0)T

FSig(f2) = (−2 ẏ1 f2 − f2 a2 a5, f2 a3 a26)T

FSig(f3) = (0,−2 ẏ2 f3 a5 − f3 a4 a5 a6)T

FSig(f4) = (y1 f
2
4 a2 a5 − 2 y1 f4 a2 a5
−u f24 a1 a25 + 2u f4 a1 a

2
5, 0)T .

(29)
The functional determinants ∆w1,1(ȳ, ū) =

det(1, u, y1, ẏ1) = u̇(ÿ1y
(4)
1 − y

(3)
1

2
) −

ü(ẏ1y
(4)
1 − y

(3)
1 ÿ1) + u(3)(ẏ1y

(3)
1 − ÿ21) and

∆w1,2(ȳ, ū) = det(ẏ2, 1) = −ÿ2 are not identi-
cally equal to zero if u is not identically equal to a
constant. The function

φ(f) = (−2f2, f
2
4a2a5 − 2f4a2a5,

−f24a1a25 + 2f4a1a
2
5,

−f24 f2a2a5 − f24 f1a1a25 + 2f4f2a2a5+
2f4f1a1a

2
5 − f2a2a5 − f1a1a25,

−2f3a5,−f3a4a5a6 + f2a3a
2
6)

(30)
is clearly injective for f4 ∈]0, 1[. One can conclude
that the model is globally identifiable at f with respect
to ]0, 1[4. According to Proposition 3.2, the model is
input-weakly functionally diagnosable. Let us notice
that the model is not diagnosable in the classical sense.
In the simulations, a simple controller is used to con-
trol the water level in the upper tank to follow a square
reference signal. The two sensors are disturbed by a
Gaussian noise so that the relative error has a maximal
value of 0.1. The parameters of the model are equal
to a1 = a2 = a3 = a4 = 0.3, a5 = a6 = 1. Fig-
ure 3 shows the water levels in both tanks in a fault-
free but noisy simulation. The residuals in their com-

Figure 3: Water level in the upper tank, y1, and the lower tank y2
during fault-free simulation

putation form ρ1 = −ua1a25 + (a1a5 + 2ẏ1)y1 and

ρ2 = 2a5ẏ2y2−a3a26y1+a4a5a6y2, deduced from (27),
are used for detecting the faults. The faults fj = 0.1,
j ∈ [1, 4] are each introduced in turn at time t = 20s.
The derivatives are estimated using an HOSM differen-
tiator ([8], [9]). Figures 4, 5, 6, 7, 8, 9 and 10, 11 rep-
resent the residuals ρ1 and ρ2 when the different faults
act on the system.

Figure 4: Residual ρ1 when
fault f1 is introduced at time
t = 20s.

Figure 5: Residual ρ2 when
fault f1 is introduced at time
t = 20s.

Figure 6: Residual ρ1 when
fault f2 is introduced at time
t = 20s.

Figure 7: Residual ρ2 when
fault f2 is introduced at time
t = 20s.

According to the graphs of the residuals, each fault
is 0.03-detectable and it is possible to deduce the fault
that acts. The ambiguous case is the one for which the
faults f1 and f4 act since they have the same classical
signature : the first residual ρ1 is not identically equal
to zero and the second is zero.

However the behavior graphs are completely differ-
ent. On the time interval [21, 29], for example, they
are 0.04-functionally discriminable. One can also no-
tice that for fault f1 the residual ρ1 is positive although
it is negative for fault f2.

5. Conclusion

In this paper, a new definition of diagnosability has
been proposed as an alternative to classical diagnosabil-
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Figure 8: Residual ρ1 when
fault f3 is introduced at time
t = 20s.

Figure 9: Residual ρ2 when
fault f3 is introduced at time
t = 20s.

Figure 10: Residual ρ1 when
fault f4 is introduced at time
t = 20s.

Figure 11: Residual ρ2 when
fault f4 is introduced at time
t = 20s.

ity in critical cases. This definition is based on analyti-
cal redundancy relations and permits to highlight some
of their properties according to the fault that acts on the
system. It allows us to compare and assess the faulty
situation based on the whole trajectories of the residu-
als. The link between the notion of diagnosability and
identifiability which provides a criterion for verifying
(functional) diagnosability has been proved. Finally, a
method for fault detection has been proposed and the
application on two examples highlights the interest of
this work. Further investigations, in relation with [5],
are planned to extend the presented framework to set-
membership models, hence making it possible to nicely
consider faults whose value is unknown but bounded.
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