Probabilistic Anomaly Detection Method for Authorship Verification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Probabilistic Anomaly Detection Method for Authorship Verification

Résumé

Authorship verification is the task of determining if a given text is written by a candidate author or not. In this paper, we present a first study on using an anomaly detection method for the authorship verification task. We have considered a weakly supervised probabilistic model based on a multivari-ate Gaussian distribution. To evaluate the effectiveness of the proposed method, we conducted experiments on a classic French corpus. Our preliminary results show that the probabilistic method can achieve a high verification performance that can reach an F 1 score of 85%. Thus, this method can be very valuable for authorship verification.
Fichier principal
Vignette du fichier
Authorship_attribution__BOUKHALED.pdf (386.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01198401 , version 1 (12-09-2015)

Identifiants

Citer

Mohamed Amine Boukhaled, Jean-Gabriel Ganascia. Probabilistic Anomaly Detection Method for Authorship Verification. 2nd International Conference on Statistical Language and Speech Processing, SLSP 2014, Oct 2014, Grenoble, France. pp.211-219, ⟨10.1007/978-3-319-11397-5_16⟩. ⟨hal-01198401⟩
183 Consultations
241 Téléchargements

Altmetric

Partager

More