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Aix-Marseille Université, Institut de Mathématiques de Marseille (I2M) - CNRS UMR7373, Centrale Marseille, 13453 Marseille cedex 13 -
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Abstract

Recently, a new family of splitting methods, the so-called vector penalty-projection methods (VPP) were introduced
by Angot et al. [3, 4] to compute the solution of unsteady incompressible fluid flows and to overcome most of the
drawbacks of the usual incremental projection methods. Two different parameters are related to the VPP methods:
the augmentation parameter r ≥ 0 and the penalty parameter 0 < ε ≤ 1. In this paper, we deal with the time-
dependent incompressible Stokes equations with outflow boundary conditions using the VPP methods. The spatial
discretization is based on the finite volume scheme on a Marker and Cells (MAC) staggered grid. Furthermore, two
different second-order time discretization schemes are investigated: the second-order Backward Difference Formula
(BDF2) known also as Gear’s scheme and the Crank-Nicolson scheme. We show that the VPP methods provide a
second-order convergence rate for both velocity and pressure in space and time even in the presence of open boundary
conditions with small values of the augmentation parameter r typically 0 ≤ r ≤ 1 and a penalty parameter ε small
enough typically ε = 10−10. The resulting constraint on the discrete divergence of velocity is not exactly equal to
zero but is satisfied approximately as O(ε δt) where ε is the penalty parameter (taken as small as desired) and δt is
the time step. The choice r = 0 requires special attention to avoid the accumulation of the round-off errors for very
small values of ε. Indeed, it is important in this case to directly correct the pressure gradient by taking account of
the velocity correction issued from the vector penalty-projection step. Finally, the efficiency and the second-order
accuracy of the method are illustrated by several numerical test cases including homogeneous or non-homogeneous
given traction on the boundary.

Keywords: Vector penalty-projection methods, Navier-Stokes equations, incompressible viscous flows, open or
outflow boundary conditions, traction boundary conditions, second-order accuracy.

1. Introduction

The numerical solution of incompressible flows has
always been an important subject in fluid dynamics.
The major difficulty in numerically solving unsteady in-
compressible Navier-Stokes equations in primitive vari-
able form arises from the fact that the velocity and the
pressure are coupled by the incompressibility constraint
at each time step. There are numerous ways to dis-
cretize these equations, see e.g., the short review in [3].
Undoubtedly, the most popular are operator-splitting
discretization schemes known as projection methods.
This family of methods has been introduced by Chorin
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(1968) and Temam (1969) [15, 33]. The interest in pro-
jection methods arises from the fact that the compu-
tations of the velocity and the pressure are decoupled
by a two-step predictor-corrector procedure which sig-
nificantly reduces the computational cost. In the first
step, an intermediate velocity field is computed by solv-
ing momentum equations, ignoring the incompressibil-
ity constraint. In the second step, the predicted velocity
field is projected onto a divergence-free vector field in
order to get the pressure and the corrected velocity that
satisfies the mass equation using the Helmholtz-Hodge
decomposition. However, this process introduces a new
numerical error, often named the splitting error, which
must be at worst of the same order as the time discretiza-
tion error. These projection methods were improved by
Goda [19] in 1979 and named ”the standard incremen-
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tal projection methods”; they were popularized by Van
Kan [27] in 1986 who introduced a second-order incre-
mental pressure-correction scheme. It is well-known
that in the projection step, a difficulty arises from the
existence of an artificial pressure Neumann boundary
condition which spoils the numerical solution of the
pressure. This phenomenon was corrected by a vari-
ant proposed by Timmermans et al. [34] and analyzed
by Guermond et al. [22] under the name ”rotational in-
cremental projection methods”. A series of fractional
step techniques including pressure-correction and incre-
mental projection methods can be found in the review
paper of Guermond et al.[20]. In 1992, Shen [32] in-
troduced a modified approach which consists in adding
a penalty term built from the divergence constraint in
the first step of the scheme of the same form as in
Augmented Lagrangian methods [18]. This approach is
called ”penalty-projection method”. The same idea was
suggested independently by Caltagirone and Breil [13]
with some additional variants and was called ”vector-
projection step”. In the same way, Jobelin et al. [26]
proposed a numerical scheme which falls in the cat-
egory of the penalty-projection method. This scheme
generalizes the prediction step by an augmentation pa-
rameter totally independent of the time step and mod-
ifies consistently the projection step; numerical results
using finite element approximation show that only small
or moderate values of the augmentation parameter r are
sufficient to get accurate results. This numerical scheme
was also theoretically analyzed in [32] and later in [12].

Recently, a new family of methods, the so-called
”vector penalty-projection methods” (VPP) was pro-
posed in [3]. Two parameters are related to the VPP
methods: the augmentation parameter r > 0 and the
penalty-parameter 0 < ε ≤ 1. These methods repre-
sent a compromise between the best properties of both
classes: the Augmented Lagrangian methods (without
inner iteration) and the splitting methods under a vector
form. It was derived to overcome most of the draw-
backs of the projection methods, see [3]: in fact, an
original penalty-correction step for the velocity vector
replaces the standard scalar pressure-correction to cal-
culate flows with divergence-free velocity. These VPP
methods are designed on the basis of both fast discrete
Helmholtz-Hodge decompositions introduced in [7] and
on the splitting penalty method proposed in [6] to effi-
ciently solve general saddle-point problems. This al-
lows us to easily impose the desired boundary condition
to the end-of-step velocity pressure variables. The VPP
methods were improved in [2, 4, 5, 14] where it is shown
that such methods are also very efficient to compute in-
compressible multiphase viscous flows or Darcy flows

whatever the density, viscosity or permeability jumps.
Indeed, they are shown to favorably compete with the
best incremental projection methods or Augmented La-
grangian methods in terms of accuracy, cheapness and
robustness.

In [3, 2, 4], the VPP methods were implemented us-
ing the first-order Euler implicit scheme in time with
Dirichlet conditions on the boundary. The authors found
that the scheme is O(h2) in space for velocity and pres-
sure, where h is the spatial mesh step of the Marker and
Cells (MAC) scheme and O(δt) in time for velocity and
pressure (δt is the time step).

Many applications such as free surface problems
and channel flows have to deal with open (traction or
pseudo-traction) boundary conditions on a part of the
boundary. In this paper, we are interested in the vector
penalty-projection methods for outflow boundary con-
ditions. The ability of projection methods to correctly
treat outflow boundary conditions has been discussed in
length in the literature. We report in this section some
recent progress made in this direction.

Guermond et al. [20] use the standard incremen-
tal projection method and prove that the spatial con-
vergence rate is between O(h) and O(h

3
2 ) for the ve-

locity and O(h
1
2 ) for the pressure. They also obtain

that the temporal convergence rate is between O(δt)
and O(δt

3
2 ) for the velocity and O(δt

1
2 ) for the pressure.

These results are improved by the rotational incremen-
tal scheme. The convergence rates for both velocity and
pressure are expected to be between O(h) and O(h

3
2 ) in

space and between O(δt) and O(δt
3
2 ) in time. Févrière

et al. [17] combine the penalty-projection method with
a spatial discretization by finite volume on staggered
mesh. They obtain reasonably good results for moder-
ate values of r (typically r = 10). These results are sim-
ilar to those obtained with a finite element discretiza-
tion [26]. Liu [29] presents a new numerical scheme
using a pressure Poisson equation formulation and pro-
poses new conditions for the pressure on the open or the
traction boundaries. He proves the unconditional sta-
bility of a first-order semi-implicit scheme and shows
second-order accuracy in time on velocity and pressure
for the second-order scheme. Hasan et al. [24] present
a new procedure for extrapolating velocities at the out-
flow boundary for the computations of incompressible
flows around rigid bodies. Hosseini et al. [25] imple-
ment a rotational projection scheme to compute incom-
pressible flows using Smoothed Particle Hydrodynam-
ics (SPH). The scheme produces more accurate results
especially for pressure and drag. It facilitates simulation
with open boundaries and flow around solid obstacles.
Poux et al. [31] propose a new numerical scheme in the
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framework of pressure-correction methods to compute
the numerical solution of incompressible Navier-Stokes
equations with outflow boundary conditions. They ob-
tain good results both for spatial and temporal conver-
gence rates. In particular, their method improves the
standard incremental scheme to a spatial convergence
ofO(h2) for velocity and pressure while remaining com-
patible with the rotational scheme. It also improves the
orders of the standard incremental scheme to a temporal
convergence rate of O(δt2) for the velocity and close to
O(δt2) for pressure. Additionally, it slightly improves
the orders of the rotational scheme to a convergence
rate of O(δt2) for velocity and pressure. For the same
purpose, Poux et al. [30] have recently suggested a
new numerical scheme in the framework of the velocity-
correction methods with a proposed open boundary con-
dition. They obtain good numerical results: concerning
the spatial convergence, both the standard incremental
and the rotational schemes lead to a second order con-
vergence rate for velocity and pressure with the pro-
posed open boundary conditions using the finite volume
method. Concerning the temporal convergence, the ro-
tational form of their method with the proposed open
boundary condition improves the convergence rate to a
second order convergence rate for velocity and pressure
whereas it remains at O(δt

3
2 ) for velocity and O(δt) for

pressure with the standard open boundary condition.
Finally, it is well-known that the Augmented La-

grangian method with Uzawa inner iterations, see e.g.,
[18], yields accurate results with Dirichlet or open
boundary conditions, see e.g., [28]. However, this
method suffers from locking effects when the augmen-
tation parameter r is large. In this case, many inner iter-
ations are required and thus the solution cost is expen-
sive, especially in 3 dimensions (3-D). For this reason,
the splitting penalty methods proposed in [6] are very
efficient by avoiding the locking effect with r = 1/ε and
for very small values of ε. The VPP methods presented
in this paper are based on this splitting penalty method.

In the literature, the VPP methods concern only the
case of the first-order time discretization with Dirichlet
boundary conditions. The present paper is devoted to
the extension of such methods to a second-order time
discretization, either with the second-order Backward
Difference Formula (BDF2) or with the Crank-Nicolson
scheme. Moreover, we study the case of open boundary
conditions with a given traction. We propose two sets
of outflow boundary conditions to naturally ensure the
optimal second-order accuracy in both space and time
through different benchmark problems. We believe that
this paper provides an important progress since many
formally second-order projection methods suffer from

a degradation of precision when open boundary condi-
tions are considered.

The objective of the present work is to show the op-
timal convergence rate of the vector-penalty projection
methods when solving the unsteady incompressible vis-
cous flow problems including open boundary condi-
tions. We study both Stokes and Navier-Stokes prob-
lems since it is well-known that the degradation of ac-
curacy also occurs for both linear and nonlinear viscous
flows with most methods; see e.g. [21, 20].

The remainder of the paper is organized as follows. In
Section 2, the unsteady incompressible Navier-Stokes
problem is stated and some notations are introduced.
The VPP methods with Dirichlet boundary conditions
are described in Section 3. We numerically justify the
speed and the cheapness of the projection step in terms
of iterations number while maintaining the penalty pa-
rameter ε as small as possible. Section 4 is devoted
to the presentation of the VPP methods with outflow
boundary conditions using two different second-order
schemes for time discretization: the BDF2 scheme and
the Crank-Nicolson scheme. In addition, we draw a spe-
cial attention to the choice of r = 0 for small values of
ε. In Section 5, various numerical results are presented,
discussed and compared to the results obtained by other
projection methods. We conclude in Section 6.

2. Formulation of the continuous problem

Let Ω ⊂ Rd (d = 2 or 3 in practice) be an open,
bounded and connected domain with a Lipschitz contin-
uous boundary Γ = ∂Ω. We suppose that Γ is partitioned
into two subsets ΓD and ΓN , of outward unit normal vec-
tor n, such that Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. The generic
point in Ω is denoted by x.

We denote L2(Ω)-norm by ∥ . ∥0, the H1(Ω)-norm
by ∥ . ∥1, the H−1(Ω)-norm by ∥ . ∥−1 and L2(Ω)-inner
product by (. , .)0.

Let us introduce the following functional spaces:

L2(Ω) =
(
L2(Ω)

)d
,

H1(Ω) =
{
u ∈ L2(Ω); ∇u ∈ (L2(Ω))d×d

}
,

W(Ω) =
{
u ∈ H1(Ω)d; u = 0 on ΓD and u · n = 0 onΓN

}
,

L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q dx = 0
}
.

For T > 0, we consider the time-dependent incompress-
ible Navier-Stokes equations in the primitive variables
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on a finite time interval [0,T]:

ρ

(
∂v
∂t
+ (v · ∇) v

)
− µ∆v + ∇p = f in Ω×]0,T [, (1)

∇ · v = 0 in Ω×]0, T [, (2)
v = vD on ΓD×]0,T [, (3)
− p n + µ∇v · n = g on ΓN×]0,T [, (4)

where v=(u, v)T denotes the fluid velocity of initial
value v(t = 0) = v0, p the pressure field, ρ the fluid
density (the density is taken to 1 and µ the dynamic vis-
cosity (here, µ = 1/Re with Re a given Reynolds num-
ber). We impose Dirichlet boundary condition (3) on
ΓD and a pseudo-traction condition (4) on ΓN . The ex-
ternal body forces f, the pseudo-stress vector g and the
Dirichlet boundary condition vD are known. In this pa-
per, we call (4) the open boundary condition. In some
situation, the force acting on ΓN might be given by
−p n + µ (∇v + ∇vT ) · n = g instead of (4).

Finally, the reader will keep in mind that bold letters
such as v, g, etc., indicate vector valued quantities.

3. Vector penalty-projection methods with Dirichlet
boundary conditions

Let 0 = t0 < t1 < ... < tN = T be a partition of
the time interval of computation [0,T] which we sup-
pose uniform for sake of simplicity. We denote by
δt = tn+1 − tn > 0 the time step. Let ϕ0, ϕ1, . . .
,ϕN be a sequence of functions in a Hilbert space H. We
denote this sequence by ϕδt and we define the follow-
ing discrete norm: ∥ ϕδt ∥l2(H):= (δt ΣN

n=0 ∥ ϕn ∥2H)1/2.
The notation vn is used to represent an approximation
of v(tn), where tn = nδt.

3.1. Description of the VPP methods with Dirichlet
boundary conditions

In this subsection, we present the vector penalty-
projection methods for the incompressible Navier-
Stokes problem supplemented with Dirichlet boundary
conditions on the whole boundary Γ. Note that in this
case, Γ = ΓD and ΓN = ∅.

We use a semi-implicit time-integration scheme. We
approximate the time derivative by the Backward Dif-
ference Formula of second-order (BDF2). The convec-
tive term is handled explicitly. Finally, the viscous term
is treated implicitly. Hence, the VPP methods reads as
follows.

Let n ≥ 1 such that (n + 1)δt ≤ T , ṽ0, ṽ1, v0, v1 ∈
L2(Ω) and p0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such
that:

• Vector penalty-prediction step with an augmen-
tation parameter r ≥ 0:

3̃vn+1 − 4̃vn
+ ṽn−1

2δt
+ NLT1 − µ∆ṽn+1 − r∇(∇ · ṽn+1)

+ ∇p⋆,n+1 = fn+1 in Ω×]0,T [, (5)

ṽn+1
= vn+1

D on ΓD×]0,T [, (6)

where p⋆,n+1 is the second-order Richardson extrapo-
lation for pn+1:

p⋆,n+1 = 2pn − pn−1,

and NLT1 is the second-order extrapolated nonlinear
term:

NLT1 = 2(vn · ∇)̃vn − (vn−1 · ∇)̃vn−1.

• Vector penalty-projection step with a penalty
parameter 0 < ε ≤ 1:

3̂vn+1 − 4̂vn
+ v̂n−1

2δt
+ NLT2 − ε µ ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T [, (7)

v̂n+1
= 0 on ΓD×]0,T [, (8)

where NLT2 is the second-order extrapolated nonlinear
term:

NLT2 = 2(vn · ∇)̂vn − (vn−1 · ∇)̂vn−1
.

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (9)

pn+1 = 2pn − pn−1 − 1
ε

(∇ · vn+1) − r∇ · ṽn+1. (10)

At this stage, several comments can be made.

a. Using the second-order backward difference for-
mula to discretize in time and the second-order
extrapolation for the pressure and for the nonlin-
ear terms leads to a formally 2nd-order scheme for
both velocity and pressure.

b. Due to the explicit treatment of the nonlinear
terms, the above scheme for nonlinear Navier-
Stokes equations is subject to the usual CFL-like
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stability condition. Small time steps often have to
be used in numerical simulations to meet this sta-
bility requirement. We note that in order to ensure
the unconditional stability of the semi-discretized
system, an implicit treatment of the nonlinear term
could be also used.

c. Contrary to the pressure-correction scheme in stan-
dard form, there is no artificial Neumann boundary
condition imposed on the pressure approximation.
If such a boundary condition existed, it would in-
duce a numerical boundary layer which in turn will
result in a loss of accuracy.

Remark 1 (Nonlinear term in the projection step).
Since the purpose of the velocity correction step is to
perform an approximate divergence-free projection,
it is not necessary to include the discretization of the
nonlinear term in this step, see [5, 7]. Thus, we can
take NLT2 = 0. In this case, it is more suitable to
replace the nonlinear term NLT1 in the prediction step
by

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1,

which is better for the consistency of the scheme.

3.2. Space discretization and linear solvers
In this section, we give a brief description of the

space discretization and the tools used for the numer-
ical simulations before presenting the numerical exper-
iments. For the spatial discretization, the VPP method
is implemented with a finite volume solver on the clas-
sical Marker and Cells grid (MAC mesh) of Harlow
and Welch [23]. The MAC mesh is chosen for sev-
eral reasons: it avoids the spurious modes of pres-
sure, it does not need artificial boundary conditions.
In our implementations, pressure unknowns are cal-
culated at the cell-center and velocity components at
mid-faces. All simulations presented are performed
with a formally second-order scheme in time, i.e., a
second-order Backward Difference Formula (BDF2) or
the Crank-Nicolson scheme. Besides, the second-order
Richardson’s extrapolation is used to extrapolate the
pressure. Additionally, the method is initialized with
a first time step performed with a standard backward
Euler scheme. Finally, in order to solve the symmet-
ric linear systems obtained in the prediction and projec-
tion steps, we are running the Conjugate Gradient (CG)
method either with or without the zero-order Incomplete
Cholesky (IC(0)) as a preconditioner. The stopping cri-
terion for the iterative (CG) method is chosen such that
||res||2 ≤ 10−6, where res denotes the residuals at the
current CG iteration.

3.3. Cost of the penalty-projection step

In this part, we try to highlight the ambiguity that can
interfere the reader regarding the perturbation of the vis-
cous term in the second step by ε.

First, we write the implicit Euler scheme to discretize
in time for sake of simplicity. Now, by focusing on the
projection step, we explain below the interest to solve

v̂n+1 − v̂n

δt
− ε µ ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T [ (with perturbation),

(11)

instead of

v̂n+1 − v̂n

δt
− µ ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T [ (without perturbation).

(12)

We observe that the linear system associated to the
projection step (with or without perturbation) can be
solved all the more easily if η = ε/δt is small enough.
This is due to the fact that the operator in the right-hand
side in the projection step is adapted to operator of the
left-hand side. This leads to a fast and cheap vector cor-
rection step if η = ε/δt is small enough as proved in [6,
Theorem 1.1]. Moreover, the new projection step (11),
where the viscous term is perturbed by ε, is much faster
and cheaper if η = ε/δt is sufficiently small as proved
in [6, Corollary 1.3]. In order to verify these theoreti-
cal results in our case, we resort to a numerical test in
which we compare the cost in terms of the number of it-
erations of the penalty-projection step of (12) and (11).
The mesh size is fixed at 1/h = 128, where h is the spa-
tial mesh step, and we run the algorithm for different
values of ε with a stationary tolerance set to 10−6 for
Conjugate Gradient solvers. In order to solve the linear
systems, we use and compare:

• The standard Conjugate Gradient (CG) method and

• The Conjugate Gradient with IC(0) as a precondi-
tioner (IC(0)-CG).

The representative curves of Fig. 1 show that the
number of iterations decreases as long as ε tends to zero.
Moreover, in Fig. 1 (left), the cost of the projection step
using (12) with standard (CG) method is about 400 it-
erations for ε = 10−10 whereas this cost is about 350
iterations for ε = 10−10 using (11). Furthermore, the
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Figure 1: Cost of the penalty-projection step with perturbation (Eq. (11)) and without perturbation (Eq. (12)) at T = 2δt with δt=1 and mesh size
1/h = 128. Iterations number versus ε using standard CG (left) and (IC(0)-CG) (right).
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cost of the projection step without perturbation (12) us-
ing the preconditioned solver (IC(0) - CG) (see Fig. 1,
(right)) is decreased significantly, reaching 15 iterations
for ε = 10−10. However, the number of iterations is re-
duced even more by using (11): only 4 iterations are
required for ε = 10−10, i.e., about the quarter of the
number of iterations obtained by the correction step (12)
and this becomes quasi-independent of the spatial mesh
step. These results are in agreement with the previous
works [3, 6].

Indeed, we present in Fig. 2 the residual Euclidian
norm of (11) with standard and preconditioned conju-
gate gradient iterations respectively. The result is clear:
the convergence is improved by the preconditioner. Fur-
thermore, we observe in Fig. 2 (left) that for the mesh
size 16 × 16, the residual norm reaches approximately
10−8 for 100 iterations with standard CG. However, in
Fig. 2 (right), it reaches 10−15 for the first iteration
with preconditioned CG. Similarly, we found that for
the mesh size 128 × 128, the residual norm is approxi-
mately of order 10−6 for 350 iterations with standard CG
whereas using preconditioned (CG), the residual norm
attains approximately 10−9 starting from 4 iterations.

4. Vector penalty-projection methods with open
boundary conditions

In many applications such as free surface problems
and channel flows one has to deal with a natural bound-
ary condition on the part ΓN of the border of the type:

(−p n + µ∇ v · n)|ΓN = g.

Henceforth we assume that Dirichlet boundary condi-
tion is enforced on ΓD and an open boundary condition
is enforced on ΓN where the whole boundary Γ is de-
fined as Γ = ΓD ∪ ΓN (ΓN , ∅).

4.1. Description of the (VPP) methods with the first
kind of open boundary condition OBC1 (see be-
low) in the projection step

We describe the VPP methods using OBC1 (see be-
low) as an open boundary condition in the projection
step with an augmentation parameter r ≥ 0 and a
penalty parameter ε such that 0 < ε ≪ 1. Let δt > 0
be the time step. For the time discretization, we use in a
first time the backward difference formula of second-
order (BDF2) as in [10, 28, 26]. After that, we ad-
dress the method using the Crank-Nicolson scheme [16]
which can be interpreted to be the average of the implicit
and explicit Euler schemes.

4.1.1. BDF2 time scheme

Let n ≥ 1 such that (n + 1)δt ≤ T , ṽ0, ṽ1, v0, v1 ∈
L2(Ω) and p0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such
that:

• Vector penalty-prediction step with an augmen-
tation parameter r ≥ 0:

3̃vn+1 − 4̃vn
+ ṽn−1

2δt
− µ∆ṽn+1

+ NLT1 − r∇(∇ · ṽn+1)

+ ∇p⋆,n+1 = fn+1 in Ω, (13)

ṽn+1
= vn+1

D on ΓD, (14)

(−p⋆,n+1 + r∇ · ṽn+1) n + µ∇ṽn+1 · n = gn+1 on ΓN ,
(15)

where p⋆,n+1 is the second-order Richardson extrapola-
tion for pn+1:

p⋆,n+1 = 2pn − pn−1,

and NLT1 is the second-order extrapolated nonlinear
term (see Remark 1):

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1.

• Vector penalty-projection step with a penalty
parameter 0 < ε ≤ 1:

3̂vn+1 − 4̂vn
+ v̂n−1

2δt
− ε µ ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω, (16)

v̂n+1
= 0 on ΓD, (17)

µ ∇̂vn+1 · n = 0 on ΓN (OBC1). (18)

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (19)

pn+1 = 2pn − pn−1 − 1
ε

(∇ · vn+1) − r∇ · ṽn+1. (20)

Remark 2 (Effective discrete problem). Adding the
prediction and projection steps gives the discrete prob-
lem which is effectively solved by the above splitting
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scheme:

3vn+1 − 4vn + vn−1

2δt
+ NLT1 − µ (∆̃vn+1

+ ε ∆̂vn+1)

+ ∇pn+1 = fn+1 in Ω,

(εδt)
pn+1 − p⋆,n+1

δt
+ ∇ · vn+1 + r ε∇ · ṽn+1

= 0 in Ω,

vn+1 = vn+1
D on ΓD,

(−p⋆,n+1 + r∇ · ṽn+1) n + µ∇vn+1 · n = gn+1 on ΓN .

We note that the method has a weak lack of consistency
compared to the (VPP) method presented in [3]. This
is due to the perturbation of the viscous term in the cor-
rection step (16) step by ε. Nevertheless, the method
can be fast and very cheap if η = ε/δt is sufficiently
small. In fact, the right-hand side in the projection step
lies in the range of the left-hand side as ε is taken small
enough. This crucial property was already shown the-
oretically in [6, Theorem 1.1 and Corollary 1.3] and
in [5, Theorem 3.1] and also numerically confirmed in
[5, 6, 14]. Finally, the vector penalty-projection step
(16) is the key to get a cheap and fast method when ε is
sufficiently small.

Remark 3 (Another possible variant). In the predic-
tion step (13), it is possible to replace the pressure gra-
dient ∇p⋆,n+1 by ∇pn and then modify the pressure cor-
rection (20) consistently by using pn instead of p⋆,n+1 =

2pn − pn−1. However, it is important to keep the dis-
cretization of the traction boundary condition (18) in the
second-order using Richardson’s extrapolation of pres-
sure p⋆,n+1 in order to ensure the effective second-order
accuracy in time of the method.

4.1.2. Correction of the pressure gradient for r = 0 and
small values of ε

The augmentation parameter r is kept constant and
within small values in order to avoid to excessively de-
grade the conditioning of the linear system associated to
the prediction step choosing r = 10−4. However, when
r = 0, we obtain the standard prediction step. In this
case, we observe a poor convergence in time for veloc-
ity and pressure with very small values of ε: see the nu-
merical results in Section 5.1. In fact, this phenomenon
is due to the cumulation of the round-off errors when ε
is relatively small. To improve the convergence rate, we
hence reconstruct the pressure field itself very fast from
its gradient. This idea was proposed in [2, 4, 6] where
the authors have observed that it is numerically far bet-
ter to update the pressure gradient directly to avoid the
effect of round-off errors when ε is very small. In this

regard, the updating of the pressure in our case is as fol-
lows.
Starting from (20) and taking r = 0:

pn+1 = 2pn − pn−1 − 1
ε

(∇ · vn+1).

Taking the gradient of the above equation, we find

∇pn+1 = 2∇pn − ∇pn−1 − 1
ε
∇(∇ · vn+1). (21)

On the other hand, we have the following equality in the
penalty-projection step:

3̂vn+1 − 4̂vn
+ v̂n−1

2δt
− ε µ ∆̂vn+1

=
1
ε
∇(∇ · vn+1).

Now, replacing the term
1
ε
∇(∇·vn+1) in (21) by the terms

in the left side of the above equality. Then, the following
estimation of the gradient of the pressure can be used
directly for the pressure gradient correction:

∇pn+1 = 2∇pn−∇pn−1− 3̂vn+1 − 4̂vn
+ v̂n−1

2δt
+ε µ ∆̂vn+1

.

(22)

4.1.3. Adams-Bashfort/Crank-Nicolson time scheme
The set of equations is discretized in time using the

Crank-Nicolson scheme at time tn+ 1
2 . However, since

the continuity equation (2) should be satisfied at every
time step, so it is always defined at time tn+1. By defini-
tion, we have zn+ 1

2 := 1
2 (zn+1 + zn).

Let n ≥ 1 such that (n + 1)δt ≤ T , ṽ0, ṽ1, v0, v1 ∈
L2(Ω) and p0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such
that:

• Vector penalty-prediction step with an augmen-
tation parameter r ≥ 0:

ṽn+1 − ṽn

δt
+ NLT1 −

µ

2
∆(̃vn+1

+ ṽn) − r∇(∇ · ṽn+1)

+ ∇p⋆,n+
1
2 = f n+ 1

2 in Ω, (23)

ṽn+1
= vn+1

D on ΓD, (24)(
−p⋆,n+

1
2 +

r
2
∇ · (̃vn+1

+ ṽn)
)

n +
µ

2
∇(̃vn+1

+ ṽn) · n

= gn+ 1
2 on ΓN . (25)

where p⋆,n+
1
2 is a linear combination of the pressures at
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the two previous time steps tn and tn+1:

p⋆,n+
1
2 =

3
2

pn − 1
2

pn−1

and NLT1 is the second-order Adams-Bashfort extrapo-
lated nonlinear term.:

NLT1 =
3
2

(vn · ∇)vn − 1
2

(vn−1 · ∇)vn−1

• Vector penalty-projection step with a penalty
parameter 0 < ε ≤ 1:

v̂n+1 − v̂n

δt
− ε µ

2
∆(̂vn+1

+ v̂n) − 1
2ε
∇

(
∇ · (̂vn

+ v̂n+1)
)

=
1
2ε
∇

(
∇ · (̃vn+1

+ ṽn)
)

in Ω, (26)

v̂n+1
= 0 on ΓD, (27)

µ

2
∇(̂vn+1

+ v̂n) · n = 0 on ΓN . (28)

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (29)

pn+ 1
2 =

3
2

pn − 1
2

pn−1 − 1
2ε
∇ · (vn+1 + vn) − r∇ · ṽn+1.

(30)

Remark 4. The expression of the pressure in (30) is
approximated at time tn+ 1

2 . However, our goal is to
find the pressure field at time tn+1. We can switch
to the pressure at time tn+1 easily since by definition:
pn+ 1

2 = 1
2 (pn+1 + pn) + O(δt2). Hence

pn+1 = 2pn+ 1
2 − pn. (31)

Replacing pn+ 1
2 in (31)

by the terms in the right side of (30), the approxi-
mation of the pressure at time tn+1 yields

pn+1 = 2pn − pn−1 − 1
ε
∇ · (vn+1 + vn)− 2 r∇ · ṽn+1. (32)

4.2. Description of VPP methods with the second kind
of open boundary condition OBC2 (see below) in
the projection step

The VPP methods with OBC1 (see 18) yields good
numerical results (see Section. 5). However, we observe
that the well-posedness of the penalty-projection step
using OBC1 is not straightforward. Thus, we propose

to replace OBC1 by another version of open boundary
condition called OBC2 (see below) which clearly yields
a well-posed penalty-projection step (see Lemma. 1).

4.2.1. BDF2 time scheme
Let n ≥ 1 such that (n + 1)δt ≤ T , ṽ0, ṽ1, v0, v1 ∈

L2(Ω) and p0, p1 ∈ L2
0(Ω) given. Find (vn+1, pn+1) such

that:

• Vector penalty-prediction step with an augmen-
tation parameter r ≥ 0:

3̃vn+1 − 4̃vn
+ ṽn−1

2δt
+ NLT1 − µ∆ṽn+1 − r∇(∇ · ṽn+1)

+ ∇p⋆,n+1 = fn+1 in Ω, (33)

ṽn+1
= vD on ΓD, (34)

(−p⋆,n+1 + r∇ · ṽn+1) n + µ∇ṽn+1 · n = gn+1 on ΓN ,
(35)

where p⋆,n+1 is the second-order Richardson extrapola-
tion of pn+1:

p⋆,n+1 = 2pn − pn−1,

and NLT1 is the second-order extrapolated nonlinear
term:

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1.

• Vector penalty-projection step with a penalty
parameter 0 < ε ≤ 1:

3̂vn+1 − 4̂vn
+ v̂n−1

2δt
− ε µ ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω, (36)

v̂n+1
= 0 on ΓD, (37)

v̂n+1 · n = 0 and (µ∇̂vn+1 · n) ∧ n = 0 on ΓN (OBC2).
(38)

• Correction step for velocity and reconstruction
of the pressure from its gradient:

vn+1 = ṽn+1
+ v̂n+1

, (39)

∇pn+1 = 2∇pn − ∇pn−1 − 3̂vn+1 − 4̂vn
+ v̂n−1

2δt
+ ε µ ∆̂vn+1

− r∇(∇ · ṽn+1). (40)
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Remark 5. For any vector u ∈Rd defined on Γ, the tan-
gential component u∧n|Γ is defined by u∧n|Γ = uτ∧n|Γ
with uτ = u− (u · n)n. Thus, for d = 2, we simply have
u∧n|Γ = u·τ, where τ denotes the unit tangential vector
on Γ.

Lemma 1 (Well-posedness of the projection step).
For all ṽn+1 ∈ H1(Ω), ε > 0 and δt > 0, there exists a
unique solution v̂n+1 ∈ W(Ω) to the velocity-correction
step (36)-(38) at each time step, where W(Ω) ={
u ∈ H1(Ω)d; u = 0 on ΓD and u · n = 0 on ΓN

}
is an

Hilbert space.

Sketch of proof.
Starting from the continuous formulation of the vector
penalty-projection step:

∂̂v
∂t
− ε µ ∆̂v − 1

ε
∇ (∇ · v̂) = 1

ε
∇ (∇ · ṽ) .

Taking the inner product of the above equation with a
test function φ ∈ W(Ω) and applying Green’s formula.
This yields:∫
Ω

∂̂v
∂t
· φ dx + ε

∫
Ω

µ ∇̂v : ∇φ dx − ε
∫
Γ

(µ∇̂v · n) · φ ds

+
1
ε

∫
Ω

(∇ · v̂)(∇ · φ) dx − 1
ε

∫
Γ

(∇ · v̂)(φ · n) ds

= −1
ε

∫
Ω

(∇ · ṽ)(∇ · φ) dx +
1
ε

∫
Γ

(∇ · ṽ)(φ · n) ds.

(41)

Since Γ = ΓD ∪ ΓN and by the fact that φ = 0 on ΓD,
φ · n = 0 on ΓN and (µ∇̂v · n)∧ n = 0 on ΓN , we obtain
the following weak form:∫

Ω

(
∂̂v
∂t
· φ + εµ∇̂v : ∇φ + 1

ε
(∇ · v̂)(∇ · φ)

)
dx

= −1
ε

∫
Ω

(∇ · ṽ)(∇ · φ)dx. (42)

For sake of simplicity, we take the discrete form of (42)
and we use the implicit Euler scheme to discretize in
time. We obtain the following bilinear form:

a(̂v,φ) =
ε

δt
(̂v,φ)0 + ε

2µ(∇̂v,∇φ)0 + (∇ · v̂,∇ · φ)0.

It is clear that a(̂v,φ) is a continuous and coercive form
in W(Ω) ×W(Ω).
Moreover,

L(φ) := (∇ · ṽ,∇ · φ)0 +
ε

δt
(̂v, φ)0,

is a linear continuous form in W(Ω). Under these hy-
potheses, we can easily apply the Lax-Milgram theorem
which ensures that the penalty-projection step (36)-(38)
is well-posed and admits a unique solution v̂n+1 in the
Hilbert space W(Ω) equipped with the usual norm of
H1(Ω) (as a closed subspace of H1(Ω)). �

Remark 6 (Third set of open boundary condition).
We propose a new set of open boundary condition which
we call (OBC3) in the projection step. To introduce the
VPP methods with (OBC3), we proceed as follows. In
the prediction step, there are no modifications to make.
The step is exactly the same as proposed in VPP with
(OBC2):

3̃vn+1 − 4̃vn
+ ṽn−1

2δt
+ NLT1 − µ∆̃vn+1 − r∇(∇ · ṽn+1)

+ ∇p⋆,n+1 = fn+1 in Ω,

ṽn+1
= vD on ΓD,

(−p⋆,n+1 + r∇ · ṽn+1) n + µ∇̃vn+1 · n = gn+1 on ΓN .

For the projection step, we define the proposed open
boundary condition (OBC3) on ΓN as

3̂vn+1 − 4̂vn
+ v̂n−1

2δt
− µ∆̂vn+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω,

v̂n+1
= 0 on ΓD,

µ ∇̂vn+1 · n + 1
ε
∇ · vn+1 = 0 on ΓN . (OBC3)

We numerically test this scheme with a formally second-
order in time. We roughly observe a second order con-
vergence rate in time for both the velocity and the pres-
sure gradient (for case r = 0). Moreover, a theoretical
study including the well-posedness (see Lemma. 1), the
stability and the convergence analysis has been estab-
lished. The theoretical results are in line with the nu-
merical ones. These results are the subject of a work in
preparation [9].

Remark 7 (Theoretical analysis of VPP methods).
The penalty-projection step in the present methods is
based on the fast discrete Helmholtz-Hodge decom-
positions of L2(Ω) vector fields proposed in [7] for
bounded domains. Some theoretical results of stability
and error estimates are given for the first-order version
of VPP methods with Dirichlet boundary conditions in
[3, 6]. The proof of stability for Navier-Stokes problems
with such methods is stated in [2]. Moreover, the
analogous continuous version of the VPP methods, the
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so-called two-step artificial compressibility method, is
analyzed in [11]. In this case, the solutions are proved
to converge to weak solutions of the Navier-Stokes
equations when the penalty parameter ε tends to zero.

In the case of open boundary conditions, it is stated
that the Stokes problem with the stress (or traction) vec-
tor given on the boundary is globally well-posed what-
ever the dimension d. For the Navier-Stokes system, it is
not at all clear that this boundary condition guarantees
global existence and uniqueness of weak solutions with-
out any restriction on the data, even in two dimensions.
More precisely, it is only possible to prove, either global
existence for a small Reynolds number (that is a quasi
Stokes regime), or local existence with a small time in-
terval T . Therefore, it is probably necessary to consider
nonlinear boundary conditions which ensure the con-
trol of the kinetic energy at the artificial boundary. For
example, we refer the reader to the artificial boundary
condition taking account of the local inflow/outflow vol-
ume rate produced by a singular load, which is recently
proposed in [1]. Indeed, Angot’s open boundary con-
dition for the Navier-Stokes equations leads to global
existence of weak solutions in 3 − D and uniqueness in
2 − D, as for the case of Dirichlet boundary conditions.

5. Numerical experiments

This section is organized in the following way. First,
we focus on the behavior of the spatial and temporal
convergence rates in the case of open boundary con-
ditions (homogeneous and nonhomogeneous). The nu-
merical tests include the Stokes and the Navier-Stokes
problem. In addition, we estimate the L2-norm of the
velocity divergence. Finally, we conduct a comparative
and qualitative study of the VPP methods presented in
this paper and some pressure-correction schemes used
in the literature for the solution of non-stationary incom-
pressible flow problems, see, e.g., [31, 20]. Finally, we
note that for the numerical results concerning the case
of Dirichlet condition on the whole boundary, we refer
to the working paper [8] where we have shown numer-
ically as well as theoretically that the convergence rate
for the velocity and the pressure exhibits a second-order
convergence rate in time.

5.1. Stokes flow with open boundary conditions

We consider the square domain Ω = ]0, 1[2 and we
enforce Dirichlet condition on Γ = ∂Ω except for the
part included in the y-axis, where open boundary con-
ditions (4) are imposed. In this section, we illustrate
the convergence properties of the VPP methods for two

manufactured test cases with open boundary conditions,
homogeneous or not.

5.1.1. Homogeneous outflow boundary conditions (g
=0)

We choose a test case already used in the literature
[21, 20]. It consists of unstationary Stokes problem,
with a forcing term, an initial condition and boundary
conditions corresponding to the following analytical so-
lutions.

u(x, y, t) = sin(x) sin(y + t),
v(x, y, t) = cos(x) cos(y + t),
p(x, y, t) = cos(x) sin(y + t).

Convergence rate in space Since an optimal space con-
vergence rate can be reached using projection methods
in the case of Dirichlet boundary conditions, we are in-
terested to study the space convergence rate for Stokes
equations with open boundary conditions which is a
more sensitive case. In order to estimate the spatial er-
ror, we focus on the stationary solution of the above nu-
merical experiment. We take the time step δt= 10−2, the
penalty parameter ε = 10−10, the augmentation param-
eter r = 10−4, and we run the algorithm for different
values of the mesh space h. For more precision, we note
that we test the spatial convergence using VPP methods
with OBC1.

In Fig. 3, the convergence rate of the error on the
velocity is clearly O(h2) while the convergence rate in
space for the pressure is around O(h2).

As a conclusion concerning the spatial convergence
rate, we observe that the results obtained here conform
with those reported by Poux et al. [31]. In addition, the
optimal convergence rate in space offered by VPP meth-
ods is also in concordance with the results obtained by
[30] in the framework of the velocity-correction meth-
ods. Besides, the VPP method appears more efficient
and accurate than the standard incremental scheme in
[20]; particularly, it improves the spatial convergence
from O(h) to O(h2) for the velocity and from O(h1/2) to
O(h2) for the pressure.
Convergence rate in time In order to study the accuracy
in time in the presence of outflow boundary conditions,
we perform convergence tests with respect to δt. We
consider the unsteady homogeneous case. In all the fol-
lowing tests, the mesh is chosen fine enough (128×128)
to ensure that the consistency error in space is signifi-
cantly smaller than the one in time.

As one can see in Fig. 4, the convergence rate of
the error for the velocity behaves like O(δt2) and the
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Figure 3: Homogeneous open boundary conditions. OBC1 - Spatial convergence rates for the velocity (left) and the pressure (right) at T=2,
δt=10−2, ε=10−10 and r = 10−4.
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one for the pressure is also like O(δt2) for different val-
ues of the augmentation parameter r between 10−4 and
1. These rates are similar to those obtained by Poux
et al. [31] for the rotational form of their method pro-
posed in the framework of pressure-correction. Further-
more, in [30], the authors obtain an optimal conver-
gence rate in the framework of the velocity-correction
method (in standard incremental and rotational form)
with a proposed open boundary condition. Their re-
sults are also in agreement with what we obtained here
by the VPP methods. On the other hand, the errors of
velocity and pressure for the VPP methods are smaller
than those computed in [31] even if the mesh we have
used is coarser. Moreover, the VPP methods improve
the convergence rates of the standard BDF2 pressure-
correction scheme from O(δt) to O(δt2) for the veloc-
ity and from O(δt1/2) to O(δt2) for the pressure [22].
In [22], the second-order rotational pressure-correction
yields O(δt3/2) accuracy for the velocity in the L2-norm
and O(δt) accuracy for the pressure.

Fig. 5 illustrates the errors of the L2-norm of the ve-
locity divergence as a function of the penalty parameter
ε and the time step δt . In Fig. 5 (left), the L2-norm of
the divergence of the velocity vanishes as O(ε δt) when
the penalty parameter ε is chosen as small as desired. In
Fig. 5 (right), the L2-norm of the velocity divergence is
around O(ε δt) for ε small enough.

As a conclusion on the temporal convergence using
VPP methods with OBC1, we notice that the conver-
gence rate in the presence of open boundary condi-
tions is brought to the level observed with the Dirich-
let boundary conditions in [8] and guarantees a second-
order accuracy in time for velocity and pressure. More-
over, the L2-norm of the divergence of the velocity van-
ishes as O(ε δt) with a penalty parameter ε too small.

To complete the study, we have performed conver-
gence tests for the VPP methods using the Crank-
Nicolson scheme to approximate in time using the same
analytical solution described above. We recall that the
Crank-Nicolson scheme is also a second-order scheme
in time.

Fig. 6 represents the L2-norm of the error on the ve-
locity and the pressure respectively as a function of the
time step δt. The results of the error exhibit approx-
imately a second-order convergence rate for both un-
knowns. In addition, the slopes for both the velocity and
the pressure error obtained by using the Crank-Nicolson
scheme are slightly lower than the slopes obtained by
using the BDF2-scheme. We also obtain an order of
O(ε δt) for the L2-norm of the velocity divergence.We
did not show the figures for sake of shortness.

Finally, in order to check the VPP methods with the

OBC2 (38) in the projection step, we numerically sim-
ulate the test case presented above. Fig. 7 displays the
errors of the computed velocity and pressure gradient in
the L2-norm at ε = 10−10 and r = 0. The numerical
results show that a second-order accuracy in time is re-
covered for both the velocity and the pressure gradient.
The slopes in Fig. 8 exhibit again that the L2-norm of
the velocity divergence is of order O(ε δt).

Remark 8. We numerically check the value of v̂ · n on
the boundary ΓN in the vector penalty-projection step
with OBC2 (38). We obtain that v̂ · n is of order 10−12

which means that this condition is approximately satis-
fied naturally on ΓN in the projection step.

Convergence rate in time at r = 0 for the VPP meth-
ods with OBC1 (18) and the pressure gradient given by
(22)

In this section, we study the temporal convergence
of the special case: r = 0 and ε too small. For this
purpose, we use the same test as for the case of homo-
geneous outflow boundary conditions above. We study
the method with the proposed open boundary condition
OBC1 (18) on ΓN in the projection step. This study also
allows a comparison with the case 10−4 ≤ r ≤ 1 already
tested in the previous section.

Fig. 9 (left) displays the errors of the computed ve-
locity in the L2-norm at r = 0 and ε = 10−10. In contrast
to the case 10−4 ≤ r ≤ 1, we do not have a second-
order convergence rate: the slope of the velocity error
appears to be rather of first order. Moreover, we observe
in Fig. 9 (right) a sharp degradation of the pressure con-
vergence (order 1/2 only). This degradation is due to the
cumulation of round-off errors when we use the stan-
dard pressure-correction (20) with very small values of
ε.

Using the pressure gradient correction (22) explained
in Section 4.1.2, i.e, we repeat the same tests for the
velocity and the pressure gradient for r = 0. Fig. 10
(left) shows that we recover a second-order convergence
rate in time for the velocity as in the case of 10−4 ≤ r ≤
1. In Fig. 10 (right), the pressure gradient reaches the
order of O(δt1.8). Finally, these positive results confirm
the interest in updating the pressure by its gradient and
are in a agreement with [2].

5.1.2. Nonhomogeneous outflow boundary conditions
( g , 0 )

To further assess the influence of open boundary con-
ditions on the accuracy of BDF2-VPP methods, we have
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Figure 5: Homogeneous open boundary conditions. OBC1 - Velocity divergence L2-norm versus ε (left) at T=2, mesh size 1/h = 128 and r = 10−4
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Figure 7: Homogeneous open boundary conditions. OBC2 - Temporal convergence rates for the velocity (left) and the gradient pressure (right) at
T=2, mesh size 1/h = 128, ε=10−10 and r = 0.
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Figure 9: Homogeneous open boundary conditions. OBC1 - Velocity error L2-norm (left) and pressure error L2-norm (right) versus time step with
the standard pressure correction (20) at mesh size 1/h = 128, r = 0 and ε=10−10.
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Figure 10: Homogeneous open boundary conditions. OBC1 - L2-norm of the error for the velocity (left) and the pressure gradient (right) versus
time step with the pressure gradient correction (22) at mesh size 1/h = 128, r = 0 and ε=10−10.
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performed temporal convergence tests for the nonhomo-
geneous case. To this end, we consider the same prob-
lem as in [29, 31] :

u(x, y, t) = cos2(
πx
2

) sin(πy) cos(2πωt),

v(x, y, t) = − cos2(
πy
2

) sin(πx) cos(2πωt),

p(x, y, t) = cos(
πx
2

) sin(
πy
2

) cos(2πωt).

Convergence rate in time We take a mesh size 1/h =
128 and we suppose ω = 1. The representative curves
of Fig. 11 show that the convergence rates of the error
on the velocity and the pressure is of order 2 for an aug-
mentation parameter 10−4 ≤ r ≤ 1. This result is in line
with the results reported in [31]. We observe that the er-
rors are not very different from those computed with the
homogeneous case studied above. Besides, the L2-norm
of the velocity divergence vanishes roughly as O(ε δt)
for ε too small (see Fig. 12).

We now present the same test using the VPP methods
with (OBC2). Let r = 0 and ε = 10−10. As one can see
in Fig. 13 (left), the convergence rate of the error on the
velocity is clearly of order O(δt2). Fig. 13 (right) shows
the error on the pressure gradient measured in L2-norm.
The results reveal clearly that the pressure gradient ap-
proximation is roughly of order 1.7 in time. We note
that the saturation observed here for small time steps is
due to the approximation error in space which becomes
dominant for very small time steps. In this case, the ve-
locity divergence is almost of order O(ε δt) as ε tends to
zero (see Fig. 14).

5.2. Numerical results for Navier-Stokes problem

In order to validate the accuracy of the method for
the nonlinear Navier-Stokes equations, we present the
temporal convergence studies on two manufactured test
cases: first, with homogeneous open boundary condi-
tions and second, with nonhomogeneous open bound-
ary conditions. To this end, we consider the VPP meth-
ods with the open boundary condition OBC2 (38). For
the approximation of the time derivative, the BDF2
scheme is used. The convective terms of the Navier-
Stokes equations are treated explicitly then the second
order central difference scheme is applied to its conser-
vative form. This choice ensures overall second order
accuracy. The finite volume scheme on a MAC stag-
gered grid arrangement is adopted in order to remove
the odd-even decoupling. Simulations are performed
using a range of time steps 10−5 ≤ δt ≤ 5 × 10−3 at
T = 2 with a Reynolds number Re = 100. Note that

δt is chosen sufficiently small to satisfy the Courant-
FriedrichsLewy condition (CFL condition). We choose
r = 0 and ε = 10−10. The linear systems obtained are
solved with the preconditioned conjugate gradient CG-
IC(0). To check the temporal accuracy, we carry out the
following tests.

• For the homogeneous outflow boundary conditions
(g = 0), the Navier-Stokes equations are aug-
mented with a forcing term in order that the so-
lution is

u(x, y, t) = − sin(π x) cos(π y) exp(−µ t),
v(x, y, t) = cos(π x) sin(π y) exp(−µ t),
p(x, y, t) = −µ π cos(π x) cos(π y) exp(−µ t).

• For the nonhomogeneous outflow boundary condi-
tions (g , 0), the source term f is adjusted such
that the Navier-Stokes problem verify the follow-
ing problem

u(x, y, t) = cos2(
πx
2

) sin(πy) exp(−2πµt),

v(x, y, t) = − cos2(
πy
2

) sin(πx) exp(−2πµt),

p(x, y, t) = cos(
πx
2

) sin(
πy
2

) exp(−2πµt).

Convergence rate in time In Fig. 15 (left), we plot the
L2-norm error on the velocity and the pressure gradient
as function of the time step δt for the homogeneous test
case. Errors are calculated at the time T = 2 and for
r = 0 after computations on a square domain with the
mesh size h equal to 1/128. As expected, the nonlinear
term in the Navier-Stokes equations does not really af-
fect the convergence rate for both the velocity and the
pressure gradient. We obtain an order of 1.85 in time
for both unknowns. For the nonhomogeneous case, the
temporal error of the velocity and the pressure gradi-
ent computed on 128 × 128 grids are plotted in Fig. 15
(right). The results reveal an order of 1.85 in time for
both unknowns. The accuracy saturation observed for
small time steps results from the spatial discretization
error.

In conclusion, we deduce that for the Navier-Stokes
problem, the nonlinear term does not really damage the
convergence rate. However, we do not have an optimal
convergence of second-order in time.
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Figure 11: Nonhomogeneous open boundary conditions. OBC1 - Temporal convergence rates for the velocity (left) and the pressure (right) at T =
2, mesh size 1/h = 128 and ε=10−10.
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Figure 12: Nonhomogeneous open boundary conditions. OBC1 - L2-norm of the divergence of the velocity versus ε (left) at T=2, mesh size
1/h = 128 and r = 10−4 - L2-norm of the velocity divergence versus time step (right) at T=2, mesh size 1/h = 128, ε=10−6.
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Figure 13: Nonhomogeneous open boundary conditions. OBC2 - Temporal convergence rates for the velocity (left) and the gradient pressure (right)
at T=2, mesh size 1/h = 128, ε = 10−10 and r = 0.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

epsilon

D
iv

e
rg

e
n

c
e

 e
rr

o
r 

L
2

−
n

o
rm

 

 

r=0
slope 1

10
−3

10
−2

10
−1

10
0

10
−14

10
−13

10
−12

10
−11

10
−10

time step

D
iv

e
rg

e
n

c
e

 e
rr

o
r 

L
2

−
n

o
rm

 

 

r=0
slope 1

Figure 14: Nonhomogeneous open boundary conditions. OBC2 - Velocity divergence L2-norm versus ε (left) at T=2, mesh size 1/h = 128 and
r = 0 - Velocity divergence L2-norm versus time step (right) at T=2, mesh size 1/h = 128, ε = 10−6 and r = 0.
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Figure 15: Homogeneous (left) and nonhomogeneous (right) open boundary conditions. OBC2 - L2-norm of the error for the velocity and the
pressure gradient versus δt at T=2 and Re = 100, mesh size: 1/h = 128, ε = 10−6, r = 0 for Navier-Stokes problem.

5.3. Summary of the numerical results and discussion

We summarize in this section the advantages of the
VPP methods.

1. The outflow boundary conditions were naturally
extended on the boundary ΓN . Consequently, as
shown numerically in the above sections, the ve-
locity and the pressure (or the pressure gradient)
reach approximately a second order convergence
rate in space and time even in the presence of the
outflow boundary conditions.

2. The nonlinear terms in the Navier-Stokes problem
does not affect the convergence rate in time for the
velocity and the pressure. We note that the conver-
gence rate is slightly degraded but we obtain ap-
proximately a second order in time.

3. The VPP methods appear fast, cheap and require
only few iterations for small penalty parameter ε.

6. Conclusions

In this article, we have naturally extended the VPP
methods to the case of incompressible viscous flows
with open boundary conditions using two kinds of
second-order schemes for time discretization: the BDF2
scheme and the Crank-Nicolson scheme. The numerical

experiments show that the VPP methods yield a con-
siderable gain in accuracy compared to the pressure-
correction schemes [22]. The convergence rate in
time for velocity and pressure obtained using VPP
methods are also in agreement with those obtained
by the standard and rotational form of the velocity-
correction method with a proposed boundary condition
[30]. Moreover, we show that for both second-order
schemes used for time discretization (BDF2 or Crank-
Nicolson), the VPP methods yield approximatelyO(δt2)
for both the velocity and the pressure for the homo-
geneous as well as and nonhomogeneous open bound-
ary conditions. The loss of spatial convergence in the
case of outflow boundary conditions does not occur any-
more. We obtain O(h2) convergence in the L2-norm
of the velocity and the pressure. Indeed, the optimal
second-order accuracy in time and space is achieved be-
cause of the fully vector formulation of the VPP meth-
ods, without degrading it by a scalar pressure Poisson
equation. This inherently ensures the consistency with
respect to the continuous Navier-Stokes problem with
a traction boundary condition. The counterpart is that
the divergence of the velocity at each time step is not
exactly zero, as for the projection methods (at least in
the semi-discrete setting in time), since the VPP ve-
locity correction step is proved to be an approximate
divergence-free projection [7, 2]. However, it is not re-
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ally a drawback since the velocity divergence is in prac-
tice of order O(ε δt) with a penalty parameter ε taken as
small as desired up to machine precision.

Finally, the method proves to be very efficient: it
is fast, cheap, and provides very accurate results with
optimal spatial and temporal convergence rates despite
the existence of outflow boundary conditions. More-
over, this family of methods opens the way to the split-
ting methods with an order of time convergence greater
than 2 since the splitting error for velocity and pressure
varies as O(ε) which can be made negligible with re-
spect to the consistency error of higher-order schemes
when ε is chosen sufficiently small.
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