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Vector penalty-projection methods for outflow boundary conditions
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Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille (I2M), UMR7373, 13453Marseille - France

Abstract

Recently, a new family of splitting methods, the so-called vector penalty-projection methods (VPP) were introduced
by Angot et al. [2, 3] to compute the solution of unsteady incompressible fluid flows and to overcome most of the
drawbacks of the usual incremental projection methods. Twodifferent parameters are related to the VPP methods: the
augmentation parameterr ≥ 0 and the penalty parameter 0< ε ≤ 1. In this paper, we deal with the time-dependent
incompressible Navier-Stokes equations with outflow boundary conditions using the VPP methods. The spatial dis-
cretization is based on the finite volume scheme on a Marker and Cells (MAC) staggered grid. Furthermore, two
different second-order time discretization schemes are investigated: the second-order Backward Difference Formula
(BDF2) known also as Gear’s scheme and the Crank-Nicolson scheme. We show that the VPP methods provide a
second-order convergence rate for both velocity and pressure in space and time even in the presence of open boundary
conditions with small values of the augmentation parameterr typically 0 ≤ r ≤ 1 and a penalty parameterε small
enough typicallyε = 10−10. The resulting constraint on the discrete divergence of velocity is not exactly equal to zero
but is satisfied approximately asO(ε δt) whereε is the penalty parameter (taken as small as desired) andδt is the time
step. The choicer = 0 requires a special attention to avoid the accumulation of round-off errors for very small values
of ε. Indeed, it is important in this case to directly correct thepressure gradient by taking account of the velocity
correction issued from the vector penalty-projection step. Finally, the efficiency and the second-order accuracy of the
method are illustrated by several numerical test cases including homogeneous or non-homogeneous given traction on
the boundary.

Keywords: Vector penalty-projection methods, Navier-Stokes equations, Incompressible viscous flows, Open or
outflow boundary conditions, Traction Neumann boundary conditions, Second-order accuracy.

1. Introduction

The numerical solution of incompressible flows has always been an important subject in fluid dynamics. The
major difficulty in numerically solving unsteady incompressible Navier-Stokes equations in primitive variable form
arises from the fact that the velocity and the pressure are coupled by the incompressibility constraint at each time
step. There are numerous ways to discretize these equations, see e.g., the short review in [2]. Undoubtedly, the
most popular are operator-splitting discretization schemes known as projection methods. This family of methods has
been introduced by Chorin (1968) and Temam (1969) [13, 31]. The interest in projection methods arises from the
fact that the computations of the velocity and the pressure are decoupled by a two-step predictor-corrector procedure
which significantly reduces the computational cost. In the first step, an intermediate velocity field is computed by
solving momentum equations, ignoring the incompressibility constraint. In the second step, the predicted velocity
field is projected onto a divergence-free vector field in order to get the pressure and the corrected velocity that satisfies
the mass equation using the Helmholtz-Hodge decomposition. However, this process introduces a new numerical
error, often named the splitting error, which must be at worst of the same order as the time discretization error.
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These projection methods were improved by Goda [17] in 1979 and named ”the standard incremental projection
methods”; they were popularized by Van Kan [25] in 1986 who introduced a second-order incremental pressure-
correction scheme. It is well-known that in the projection step, a difficulty arises from the existence of an artificial
pressure Neumann boundary condition which spoils the numerical solution of the pressure. This phenomenon was
corrected by a variant proposed by Timmermans et al. [32] andanalyzed by Guermond et al. [20] under the name
”rotational incremental projection methods”. A series of fractional step techniques including pressure-correction
and incremental projection methods can be found in the review paper of Guermond et al.[19]. In 1992, Shen [30]
introduced a modified approach which consists in adding a penalty term built from the divergence constraint in the
first step of the scheme of the same form as in Augmented Lagrangian methods [16]. This approach is called ”penalty-
projection method”. The same idea was suggested independently by Caltagirone and Breil [12] with some additional
variants and was called ”vector-projection”. In the same way, Jobelin et al. [24] proposed a numerical scheme
which falls in the category of the penalty-projection method. This scheme generalizes the prediction step with an
augmentation parameterr ≥ 0 totally independent of the time stepδt and modifies consistently the projection step;
numerical results using finite element approximation show that only small or moderate values of the augmentation
parameterr are sufficient to get accurate results. This numerical scheme was also theoretically analyzed in [30] for
r = 1/δt2 and later in [11] whateverr ≥ 0.

Recently, a new family of methods, the so-called ”vector penalty-projection methods” (VPP) was proposed in [2].
Two parameters are related to the VPP methods: the augmentation parameterr ≥ 0 and the penalty-parameter 0< ε ≤
1. These methods represent a compromise between the best properties of both classes: the Augmented Lagrangian
methods (without inner iteration) and the splitting methods under a vector form. It was derived to overcome most of
the drawbacks of the projection methods, see [2]: in fact, anoriginal penalty-correction step for the velocity vector
replaces the standard scalar pressure-correction to calculate flows with divergence-free velocity. These VPP methods
are designed on the basis of both fast discrete Helmholtz-Hodge decompositions introduced in [6] and on the splitting
penalty method proposed in [5] to efficiently solve general saddle-point problems. This allows us to easily impose the
desired boundary condition to the end-of-step velocity pressure variables. The VPP methods were improved in [7, 3, 4]
where it is shown that such methods are also very efficient to compute incompressible multiphase viscous flows or
Darcy flows whatever the density, viscosity or permeabilityjumps. Indeed, they are shown to favorably compete
with the best incremental projection methods or Augmented Lagrangian methods in terms of accuracy, cheapness and
robustness.

In [2, 7, 3], the VPP methods were implemented using the first-order Euler implicit scheme in time with Dirichlet
conditions on the boundary. The authors found that the scheme isO(h2) in space for velocity and pressure, whereh
is the spatial mesh step of the Marker and Cells (MAC) scheme andO(δt) in time for velocity and pressure (δt is the
time step).

Many applications such as free surface problems and channelflows have to deal with open (traction or pseudo-
traction) boundary conditions on a part of the boundary. In this paper, we are interested in the vector penalty-projection
methods for outflow boundary conditions. The ability of projection methods to correctly treat outflow boundary
conditions has been discussed in length in the literature. We report in this section some recent progress made in this
direction.

Guermond et al. [19] use the standard incremental projection method and prove that the spatial convergence rate is
betweenO(h) andO(h

3
2 ) for the velocity andO(h

1
2 ) for the pressure. They also obtain that the temporal convergence

rate is betweenO(δt) andO(δt
3
2 ) for the velocity andO(δt

1
2 ) for the pressure. These results are improved by the

rotational incremental scheme. The convergence rates for both velocity and pressure are expected to be betweenO(h)
andO(h

3
2 ) in space and betweenO(δt) andO(δt

3
2 ) in time. Fvrire et al. [15] combine the penalty-projectionmethod

with a spatial discretization by finite volume on staggered mesh. They obtain reasonably good results for moderate
values ofr (typically r = 10). These results are similar to those obtained with a finiteelement discretization [24]. Liu
[27] presents a new numerical scheme using a pressure Poisson equation formulation and proposes new conditions
for the pressure on the open or the traction boundaries. He proves the unconditional stability of a first-order semi-
implicit scheme and shows second-order accuracy in time on velocity and pressure for the second-order scheme.
Hasan et al. [22] present a new procedure for extrapolating velocities at the outflow boundary for the computations of
incompressible flows around rigid bodies. Hosseini et al. [23] implement a rotational projection scheme to compute
incompressible flows using Smoothed Particle Hydrodynamics (SPH). The scheme produces more accurate results
especially for pressure and drag. It facilitates simulation with open boundaries and flow around solid obstacles. Poux
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et al. [29] propose a new numerical scheme in the framework ofpressure-correction methods to compute the numerical
solution of incompressible Navier-Stokes equations with outflow boundary conditions. They obtain good results both
for spatial and temporal convergence rates. In particular,their method improves the standard incremental scheme to a
spatial convergence ofO(h2) for velocity and pressure while remaining compatible withthe rotational scheme. It also
improves the orders of the standard incremental scheme to a temporal convergence rate ofO(δt2) for the velocity and
close toO(δt2) for pressure. Additionally, it slightly improves the orders of the rotational scheme to a convergence rate
of O(δt2) for velocity and pressure. For the same purpose, Poux et al.[28] have recently suggested a new numerical
scheme in the framework of the velocity-correction methodswith a proposed open boundary condition. They obtain
good numerical results: concerning the spatial convergence, both the standard incremental and the rotational schemes
lead to a second order convergence rate for velocity and pressure with the proposed open boundary conditions using
the finite volume method. Concerning the temporal convergence, the rotational form of their method with the proposed
open boundary condition improves the convergence rate to a second order convergence rate for velocity and pressure
whereas it remains atO(δt

3
2 ) for velocity andO(δt) for pressure with the standard open boundary condition.

Finally, it is well-known that the Augmented Lagrangian method with Uzawa inner iterations, see e.g., [16], yields
accurate results with Dirichlet or open boundary conditions, see e.g., [26]. However, this method suffers from locking
effects when the augmentation parameterr is large. In this case, many inner iterations are required and thus the
solution cost is expensive, especially in 3 dimensions (3-D). For this reason, the splitting penalty methods proposed
in [5] are very efficient by avoiding the locking effect withr = 1/ε and for very small values ofε. The VPP methods
presented in this paper are based on this splitting penalty method.

In the literature, the VPP methods concern anly the case of the first-order time discretization with Dirichlet bound-
ary conditions. The present paper is devoted to the extension of such methods to a second-order time discretization,
either with the second-order Backward Difference Formula (BDF2) or with the Crank-Nicolson scheme. Moreover,
we study the case of Dirichlet and open boundary conditions with a given traction. We propose two sets of outflow
boundary conditions to naturally ensure the optimal second-order accuracy in both space and time through different
benchmark problems. We believe that this paper provides an important progress since many formally second-order
projection methods suffer from a degradation of precision when open boundary conditions are considered.

The objective of the present work is to show the optimal convergence rate of the vector-penalty projection methods
when solving the unsteady incompressible viscous flow problems including open boundary conditions. We study both
Stokes and Navier-Stokes problems since it is well-known that the degradation of accuracy also occurs for both linear
and nonlinear viscous flows with most methods; see e.g. [18, 19].

The remainder of the paper is organized as follows. In Section 2, the unsteady incompressible Navier-Stokes
problem is stated and some notations are introduced. The VPPmethods with Dirichlet boundary conditions are
described in Section 3. We numerically justify the speed andthe cheapness of the projection step in terms of iterations
number while maintaining the penalty parameterε as small as possible. Section 4 is devoted to the presentation of
the VPP methods with outflow boundary conditions using two different second-order schemes for time discretization:
the BDF2 scheme and the Crank-Nicolson scheme. In addition,we draw a special attention to the choice ofr = 0
for small values ofε. In Section 5, various numerical results are presented, discussed and compared to the results
obtained by other projection methods. We conclude in Section 6.

2. Formulation of the continuous problem

Let Ω ⊂ R
d (d = 2 or 3 in practice) be an open, bounded and connected domain with a Lipschitz continuous

boundaryΓ = ∂Ω. We suppose thatΓ is partitioned into two subsetsΓD andΓN, of outward unit normal vectorn, such
thatΓ = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅. The generic point inΩ is denoted byx.

We denoteL2(Ω)-norm by‖ . ‖0, theH1(Ω)-norm by‖ . ‖1, theH−1(Ω)-norm by‖ . ‖−1 andL2(Ω)-inner product
by (. , .)0.
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Let us introduce the following functional spaces:

L2(Ω) =
(
L2(Ω)

)d
,

H1(Ω) =
{
u ∈ L2(Ω); ∇u ∈ (L2(Ω))d×d

}
,

W(Ω) =
{
u ∈ H1(Ω)d; u = 0 onΓD andu · n = 0 onΓN

}
,

L2
0(Ω) =

{
q ∈ L2(Ω);

∫

Ω

q dx= 0

}
.

For T > 0, we consider the time-dependent incompressible Navier-Stokes equations in the primitive variables on a
finite time interval [0,T]:

ρ

(
∂v
∂t
+ (v · ∇) v

)
− µ∆v + ∇p = f in Ω×]0,T[, (1)

∇ · v = 0 inΩ×]0,T[, (2)

v = vD onΓD×]0,T[, (3)

−pn + µ∇v · n = g onΓN×]0,T[, (4)

wherev=(u, v)T denotes the fluid velocity of initial valuev(t = 0) = v0, p the pressure field,ρ the fluid density (the
density is taken to 1 andµ the dynamic viscosity (here,µ = 1/Rewith Rea given Reynolds number). We impose
Dirichlet boundary condition (3) onΓD and a pseudo-traction condition (4) onΓN. The external body forcesf, the
pseudo-stress vectorg and the Dirichlet boundary conditionvD are known. In this paper, we call (4) the open boundary
condition. In some situation, the force acting onΓN might be given by−pn + µ (∇v + ∇vT ) · n = g instead of (4).

Finally, the reader will keep in mind that bold letters such asv, g, etc., indicate vector valued quantities.

3. Vector penalty-projection methods with Dirichlet boundary conditions

Let 0 = t0 < t1 < ... < tN = T be a partition of the time interval of computation [0,T] which we suppose uniform
for sake of simplicity. We denote byδt = tn+1 − tn > 0 the time step. Letφ0, φ1, . . . ,φN be a sequence of functions in
a Hilbert space H. We denote this sequence byφδt and we define the following discrete norm:‖ φδt ‖l2(H):= (δt ΣN

n=0 ‖

φn ‖2H)1/2. The notationvn is used to represent an approximation ofv(tn), wheretn = nδt.

3.1. Description of the VPP methods with Dirichlet boundaryconditions

In this subsection, we present the vector penalty-projection methods for the incompressible Navier-Stokes problem
supplemented with Dirichlet boundary conditions on the whole boundaryΓ. Note that in this case,Γ = ΓD andΓN = ∅.

We use a semi-implicit time-integration scheme. We approximate the time derivative by the Backward Difference
Formula of second-order (BDF2). The convective term is handled explicitly. Finally, the viscous term is treated
implicitly. Hence, the VPP methods reads as follows.

Let n ≥ 1 such that (n+ 1)δt ≤ T, ṽ0
, ṽ1
, v0, v1 ∈ L2(Ω) andp0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r ≥ 0:

3̃vn+1
− 4̃vn

+ ṽn−1

2δt
+ NLT1 − µ∆ṽn+1

− r ∇(∇ · ṽn+1) + ∇p⋆,n+1 = fn+1 in Ω×]0,T[, (5)

ṽn+1
= vn+1

D onΓD×]0,T[, (6)

wherep⋆,n+1 is the second-order Richardson extrapolation forpn+1:

p⋆,n+1 = 2pn − pn−1,
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andNLT1 is the second-order extrapolated nonlinear term:

NLT1 = 2(vn · ∇)̃vn
− (vn−1 · ∇)̃vn−1

.

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3̂vn+1
− 4̂vn

+ v̂n−1

2δt
+ NLT2 − ε µ ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[, (7)

v̂n+1
= 0 onΓD×]0,T[, (8)

whereNLT2 is the second-order extrapolated nonlinear term:

NLT2 = 2(vn · ∇)̂vn
− (vn−1 · ∇)̂vn−1

.

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (9)

pn+1 = 2pn − pn−1 −
1
ε

(∇ · vn+1) − r ∇ · ṽn+1
. (10)

At this stage, several comments can be made.

a. Using the second-order backward difference formula to discretize in time and the second-order extrapolation
for the pressure and for the nonlinear terms leads to a formally 2nd-order scheme for both velocity and pressure.

b. Due to the explicit treatment of the nonlinear terms, the above scheme for nonlinear Navier-Stokes equations is
subject to the usual CFL-like stability condition. Small time steps often have to be used in numerical simulations
to meet this stability requirement. We note that in order to ensure the unconditional stability of the semi-
discretized system, an implicit treatment of the nonlinearterm could be also used.

c. Contrary to the pressure-correction scheme in standard form, there is no artificial Neumann boundary condition
imposed on the pressure approximation. If such a boundary condition existed, it would induce a numerical
boundary layer which in turn will result in a loss of accuracy.

Remark 1 (Nonlinear term in the projection step). Since the purpose of the velocity correction step is to perform
an approximate divergence-free projection, it is not necessary to include the discretization of the nonlinear term in
this step, see [4, 6]. Thus, we can take NLT2 = 0. In this case, it is more suitable to replace the nonlinear term NLT1

in the prediction step by
NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1,

which is better for the consistency of the scheme.

3.2. Space discretization and linear solvers
In this section, we give a brief description of the space discretization and the tools used for the numerical simula-

tions before presenting the numerical experiments. For thespatial discretization, the VPP method is implemented with
a finite volume solver on the classical Marker and Cells grid (MAC mesh) of Harlow and Welch [21]. The MAC mesh
is chosen for several reasons: it avoids the spurious modes of pressure, it does not need artificial boundary conditions.
In our implementations, pressure unknowns are calculated at the cell-center and velocity components at mid-faces.
All simulations presented are performed with a formally second-order scheme in time, i.e., a second-order Backward
Difference Formula (BDF2) or the Crank-Nicolson scheme. Besides, the second-order Richardson’s extrapolation is
used to extrapolate the pressure. Additionally, the methodis initialized with a first time step performed with a stan-
dard backward Euler scheme. Finally, in order to solve the symmetric linear systems obtained in the prediction and
projection steps, we are running the Conjugate Gradient (CG) method either with or without the zero-order Incom-
plete Cholesky (IC(0)) as a preconditioner. The stopping criterion for the iterative (CG) method is chosen such that
||res||2 ≤ 10−6, whereresdenotes the residuals at the current CG iteration.
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Figure 1: Cost of the penalty-projection step with perturbation (Eq.
(11)) and without perturbation (Eq. (12)) atT = 2δt with δt=1 and
mesh size 1/h = 128. Iterations number versusε using standard CG.
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Figure 2: Cost of the penalty-projection step with perturbation ( Eq. (11)
and without perturbation (Eq. (12)) atT = 2δt with δt = 1 and mesh
size 1/h = 128. Iterations number versusε using CG with IC(0) as
preconditioner.

3.3. Cost of the penalty-projection step

In this part, we try to highlight the ambiguity that can interfere the reader regarding the perturbation of the viscous
term in the second step byε.

First, we write the implicit Euler scheme to discretize in time for sake of simplicity. Now, by focusing on the
projection step, we explain below the interest to solve

v̂n+1
− v̂n

δt
− ε µ ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[ (with perturbation), (11)

instead of

v̂n+1
− v̂n

δt
− µ ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[ (without perturbation). (12)

We observe that the linear system associated to the projection step (with or without perturbation) can be solved
all the more easily ifη = ε/δt is small enough. This is due to the fact that the operator in the right-hand side in the
projection step is adapted to operator of the left-hand side. This leads to a fast and cheap vector correction step if
η = ε/δt is small enough as proved in [5, Theorem 1.1]. Moreover, the new projection step (11), where the viscous
term is perturbed byε, is much faster and cheaper ifη = ε/δt is sufficiently small as proved in [5, Corollary 1.3].
In order to verify these theoretical results in our case, we resort to a numerical test in which we compare the cost in
terms of the number of iterations of the penalty-projectionstep of (12) and (11). The mesh size is fixed at 1/h = 128,
whereh is the spatial mesh step, and we run the algorithm for different values ofε with a stationary tolerance set to
10−6 for Conjugate Gradient solvers. In order to solve the linearsystems, we use and compare:

• The standard Conjugate Gradient (CG) method and

• The Conjugate Gradient with IC(0) as a preconditioner (IC(0)-CG).
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iterations for different mesh sizes using Eq. (11) with standard CG.
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Figure 4: Normalized residual (by initial residual) versusnumber of
iterations for different mesh sizes using Eq. (11) with CG and IC(0) as
preconditioner.η = ε/δt = 10−10, T = 2δt with δt = 1.

The representative curves of Figs. 1 and 2 show that the number of iterations decreases as long asε tends to zero.
Moreover, in Fig. 1, the cost of the projection step using (12) with standard (CG) method is about 400 iterations for
ε = 10−10 whereas this cost is about 350 iterations forε = 10−10 using (11). Furthermore, the cost of the projection
step without perturbation (12) using the preconditioned solver (IC(0) - CG) (see Fig. 2) is decreased significantly,
reaching 15 iterations forε = 10−10. However, the number of iterations is reduced even more by using (11): only 4
iterations are required forε = 10−10, i.e., about the quarter of the number of iterations obtained by the correction step
(12) and this becomes quasi-independent of the spatial meshstep. These results are in agreement with the previous
works [2, 5].

Indeed, we present in Figs. 3 and 4 the residual Euclidian norm of (11) with standard and preconditioned conjugate
gradient iterations respectively. The result is clear: theconvergence is improved by the preconditioner. Furthermore,
we observe in Fig. 3 that for the mesh size 16× 16, the residual norm reaches approximately 10−8 for 100 iterations
with standard CG. However, it reaches 10−15 for the first iteration with preconditioned CG. Similarly, we found that
for the mesh size 128× 128, the residual norm is approximately of order 10−6 for 350 iterations with standard CG
whereas using preconditioned (CG), the residual norm attains approximately 10−9 starting from 4 iterations.

4. Vector penalty-projection methods with open boundary conditions

So far we have only considered Dirichlet boundary conditions, but in many applications such as free surface
problems and channel flows one also has to deal with natural boundary conditions of the type:

[−pn + µ∇ v · n]|Γ = g.

Henceforth we assume that Dirichlet boundary condition is enforced onΓD and an open boundary condition is
enforced onΓN where the whole boundaryΓ is defined asΓ = ΓD ∪ ΓN (ΓN , 0).
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4.1. Description of the(VPP) methods with the first kind of open boundary condition OBC1 (see below) in the
projection step

We describe the VPP methods using OBC1 (see below) as an open boundary condition in the projection step with
an augmentation parameterr ≥ 0 and a penalty parameterε such that 0< ε ≪ 1. Letδt > 0 be the time step. For the
time discretization, we use in a first time the backward difference formula of second-order (BDF2) as in [8, 26, 24].
After that, we address the method using the Crank-Nicolson scheme [14] which can be interpreted to be the average
of the implicit and explicit Euler schemes.

4.1.1. BDF2 time scheme
Let n ≥ 1 such that (n+ 1)δt ≤ T, ṽ0

, ṽ1
, v0, v1 ∈ L2(Ω) andp0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r ≥ 0:

3̃vn+1
− 4̃vn

+ ṽn−1

2δt
− µ∆ṽn+1

+ NLT1 − r ∇(∇ · ṽn+1) + ∇p⋆,n+1 = fn+1 in Ω×]0,T[, (13)

ṽn+1
= vn+1

D onΓD×]0,T[, (14)

(−p⋆,n+1 + r ∇ · ṽn+1) n + µ∇ṽn+1
· n = gn+1 onΓN×]0,T[, (15)

wherep⋆,n+1 is the second-order Richardson extrapolation forpn+1:

p⋆,n+1 = 2pn − pn−1,

andNLT1 is the second-order extrapolated nonlinear term (see Remark 1):

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1.

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3̂vn+1
− 4̂vn

+ v̂n−1

2δt
− ε µ ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[, (16)

v̂n+1
= 0 onΓD×]0,T[, (17)

µ∇v̂n+1
· n = 0 onΓN×]0,T[ (OBC1). (18)

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (19)

pn+1 = 2pn − pn−1 −
1
ε

(∇ · vn+1) − r ∇ · ṽn+1
. (20)

Remark 2 (Effective discrete problem). Adding the prediction and projection steps gives the discrete problem which
is effectively solved by the above splitting scheme:

3vn+1 − 4vn + vn−1

2δt
+ NLT1 − µ (∆̃vn+1

+ ε ∆̂vn+1) + ∇pn+1 = fn+1 in Ω×]0,T[,

(εδt)
pn+1 − p⋆,n+1

δt
+ ∇ · vn+1 + r ε∇ · ṽn+1

= 0 in Ω×]0,T[,

vn+1 = vn+1
D onΓD×]0,T[,

(−p⋆,n+1 + r ∇ · ṽn+1) n + µ∇vn+1 · n = gn+1 onΓN×]0,T[.

We note that the method has a weak lack of consistency compared to the(VPP) method presented in [2]. This is
due to the perturbation of the viscous term in the correctionstep (16) step byε. Nevertheless, the method can be
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fast and very cheap ifη = ε/δt is sufficiently small. In fact, the right-hand side in the projection step lies in the
range of the left-hand side asε is taken small enough. This crucial property was already shown theoretically in [5,
Theorem 1.1 and Corollary 1.3] and in [4, Theorem 3.1] and also numerically confirmed in [4, 5]. Finally, the vector
penalty-projection step (16) is the key to get a cheap and fast method whenε is sufficiently small.

Remark 3 (Another possible variant). In the prediction step (13), it is possible to replace the pressure gradient
∇p⋆,n+1 by∇pn and then modify the pressure correction (20) consistently by using pn instead of p⋆,n+1 = 2pn − pn−1.
However, it is important to keep the discretization of the traction boundary condition (18) in the second-order using
Richardson’s extrapolation of pressure p⋆,n+1 in order to ensure the effective second-order accuracy in time of the
method.

4.1.2. Correction of the pressure gradient for r= 0 and small values ofε
The augmentation parameterr is kept constant and within small values in order to avoid to excessively degrade

the conditioning of the linear system associated to the prediction step choosingr = 10−4. However, whenr = 0, we
obtain the standard prediction step. In this case, we observe a poor convergence in time for velocity and pressure with
very small values ofε: see the numerical results in Section 5.3. In fact, this phenomenon is due to the cumulation of
the round-off errors whenε is relatively small. To improve the convergence rate, we hence reconstruct the pressure
field itself very fast from its gradient. This idea was proposed in [7, 3, 5] where the authors have observed that it is
numerically far better to update the pressure gradient directly to avoid the effect of round-off errors whenε is very
small. In this regard, the updating of the pressure in our case is as follows.
Starting from (20) and takingr = 0:

pn+1 = 2pn − pn−1 −
1
ε

(∇ · vn+1).

Taking the gradient of the above equation, we find

∇pn+1 = 2∇pn − ∇pn−1 −
1
ε
∇(∇ · vn+1). (21)

On the other hand, we have the following equality in the penalty-projection step:

3̂vn+1
− 4̂vn

+ v̂n−1

2δt
− ε µ ∆̂vn+1

=
1
ε
∇(∇ · vn+1).

Now, replacing the term
1
ε
∇(∇ · vn+1) in (21) by the terms in the left side of the above equality. Then, the following

estimation of the gradient of the pressure can be used directly for the pressure gradient correction:

∇pn+1 = 2∇pn − ∇pn−1 −
3̂vn+1

− 4̂vn
+ v̂n−1

2δt
+ ε µ ∆̂vn+1

. (22)

4.1.3. Adams-Bashfort/Crank-Nicolson time scheme
The set of equations is discretized in time using the Crank-Nicolson scheme at timetn+

1
2 . However, since the

continuity equation (2) should be satisfied at every time step, so it is always defined at timetn+1. By definition, we
havezn+ 1

2 := 1
2(zn+1 + zn).

Let n ≥ 1 such that (n+ 1)δt ≤ T, ṽ0
, ṽ1
, v0, v1 ∈ L2(Ω) andp0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r ≥ 0:

ṽn+1
− ṽn

δt
+ NLT1 −

µ

2
∆(̃vn+1

+ ṽn) − r ∇(∇ · ṽn+1) + ∇p⋆,n+
1
2 = f n+ 1

2 in Ω×]0,T[, (23)

ṽn+1
= vn+1

D on ΓD×]0,T[, (24)
(
−p⋆,n+

1
2 +

r
2
∇ · (̃vn+1

+ ṽn)
)

n +
µ

2
∇(̃vn+1

+ ṽn) · n = gn+ 1
2 on ΓN×]0,T[. (25)
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wherep⋆,n+
1
2 is a linear combination of the pressures at the two previous time stepstn andtn+1:

p⋆,n+
1
2 =

3
2

pn −
1
2

pn−1

andNLT1 is the second-order Adams-Bashfort extrapolated nonlinear term.:

NLT1 =
3
2

(vn · ∇)vn −
1
2

(vn−1 · ∇)vn−1

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

v̂n+1
− v̂n

δt
−
ε µ

2
∆(̂vn+1

+ v̂n) −
1
2ε
∇

(
∇ · (̂vn

+ v̂n+1)
)
=

1
2ε
∇

(
∇ · (̃vn+1

+ ṽn)
)

in Ω×]0,T[, (26)

v̂n+1
= 0 on ΓD×]0,T[, (27)

µ

2
∇(̂vn+1

+ v̂n) · n = 0 on ΓN×]0,T[. (28)

• Correction step for velocity and pressure:

vn+1 = ṽn+1
+ v̂n+1

, (29)

pn+ 1
2 =

3
2

pn −
1
2

pn−1 −
1
2ε
∇ · (vn+1 + vn) − r ∇ · ṽn+1

. (30)

Remark 4. The expression of the pressure in (30) is approximated at time tn+
1
2 . However, our goal is to find the

pressure field at time tn+1. We can switch to the pressure at time tn+1 easily since by definition: pn+
1
2 = 1

2(pn+1 + pn) +
O(δt2). Hence

pn+1 = 2pn+ 1
2 − pn. (31)

Replacing pn+
1
2 in (31) by the terms in the right side of (30), the approximation of the pressure at time tn+1 yields

pn+1 = 2pn − pn−1 −
1
ε
∇ · (vn+1 + vn) − 2 r∇ · ṽn+1

. (32)

4.2. Description of VPP methods with the second kind of open boundary condition OBC2 (see below) in the projection
step

The VPP methods with OBC1 (see 18) yields good numerical results (see Section. 5). However, we observe that
the well-posedness of the penalty-projection step using OBC1 is not straightforward. Thus, we propose to replace
OBC1 by another version of open boundary condition called OBC2 (see below) which clearly yields a well-posed
penalty-projection step (see Lemma. 1).

4.2.1. BDF2 time scheme
Let n ≥ 1 such that (n+ 1)δt ≤ T, ṽ0

, ṽ1
, v0, v1 ∈ L2(Ω) andp0, p1 ∈ L2

0(Ω) given. Find (vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r ≥ 0:

3̃vn+1
− 4̃vn

+ ṽn−1

2δt
+ NLT1 − µ∆ṽn+1

− r∇(∇ · ṽn+1) + ∇p⋆,n+1 = fn+1 in Ω×]0,T[, (33)

ṽn+1
= vD onΓD×]0,T[, (34)

(−p⋆,n+1 + r ∇ · ṽn+1) n + µ∇ṽn+1
· n = gn+1 onΓN×]0,T[, (35)

wherep⋆,n+1 is the second-order Richardson extrapolation ofpn+1:

p⋆,n+1 = 2pn − pn−1,
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andNLT1 is the second-order extrapolated nonlinear term:

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1.

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3̂vn+1
− 4̂vn

+ v̂n−1

2δt
− ε µ ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[, (36)

v̂n+1
= 0 onΓD×]0,T[, (37)

v̂n+1
· n = 0 and (µ∇v̂n+1

· n) ∧ n = 0 onΓN×]0,T[ (OBC2). (38)

• Correction step for velocity and reconstruction of the pressure from its gradient:

vn+1 = ṽn+1
+ v̂n+1

, (39)

∇pn+1 = 2∇pn − ∇pn−1 −
3̂vn+1

− 4̂vn
+ v̂n−1

2δt
+ ε µ ∆̂vn+1

− r ∇(∇ · ṽn+1). (40)

Remark 5. For any vectoru ∈ Rd defined onΓ, the tangential componentu∧n|Γ is defined byu∧n|Γ = uτ ∧n|Γ with
uτ = u − (u · n)n. Thus, for d= 2, we simply haveu ∧ n|Γ = u · τ, whereτ denotes the unit tangential vector onΓ.

Lemma 1 (Well-posedness of the velocity correction step (36)-(38)). For all ṽn+1
∈ H1(Ω), ε > 0 andδt > 0, there

exists a unique solution̂vn+1
∈ W(Ω) to the velocity-correction step (36)-(38) at each time step, whereW(Ω) ={

u ∈ H1(Ω)d; u = 0 onΓD andu · n = 0 onΓN

}
is an Hilbert space.

Sketch of proof.
Starting from the continuous formulation of the vector penalty-projection step:

∂̂v
∂t
− ε µ ∆̂v −

1
ε
∇

(
∇ · v̂

)
=

1
ε
∇

(
∇ · ṽ

)
.

Taking the inner product of the above equation with a test functionϕ ∈ W(Ω) and applying Green’s formula. This
yields:

∫

Ω

∂̂v
∂t
· ϕdx + ε

∫

Ω

µ∇v̂ : ∇ϕdx − ε
∫

Γ

(µ∇v̂ · n) · ϕ ds+
1
ε

∫

Ω

(∇ · v̂)(∇ · ϕ) dx −
1
ε

∫

Γ

(∇ · v̂)(ϕ · n) ds

= −
1
ε

∫

Ω

(∇ · ṽ)(∇ · ϕ) dx +
1
ε

∫

Γ

(∇ · ṽ)(ϕ · n) ds. (41)

SinceΓ = ΓD ∪ ΓN and by the fact thatϕ = 0 onΓD, ϕ · n = 0 onΓN and (µ∇v̂ · n) ∧ n = 0 onΓN, we obtain the
following weak form:

∫

Ω

(
∂̂v
∂t
· ϕ + εµ∇v̂ : ∇ϕ +

1
ε

(∇ · v̂)(∇ · ϕ)

)
dx = −

1
ε

∫

Ω

(∇ · ṽ)(∇ · ϕ)dx. (42)

For sake of simplicity, we take the discrete form of (42) and we use the implicit Euler scheme to discretize in time.
We obtain the following bilinear form:

a(̂v,ϕ) =
ε

δt
(̂v,ϕ)0 + ε

2µ(∇v̂,∇ϕ)0 + (∇ · v̂,∇ · ϕ)0 in W(Ω) ×W(Ω).

It is now clear thata(̂v,ϕ) is a continuous and coercive form inW(Ω) ×W(Ω).
Moreover,

L(ϕ) := (∇ · ṽ,∇ · ϕ)0 +
ε

δt
(̂v, ϕ)0,
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is a linear continuous form inW(Ω). Under these hypotheses, we can easily apply the Lax-Milgram theorem which
ensures that the penalty-projection step (36)-(38) is well-posed and admits a unique solutionv̂n+1 in the Hilbert space
W(Ω) equipped with the usual norm ofH1(Ω) (as a closed subspace ofH1(Ω)). �

Remark 6 (Third set of open boundary condition (OBC3)). We propose a new set of open boundary condition
which we call (OBC3) in the projection step. To introduce theVPP methods with (OBC3), we proceed as follows.
In the prediction step, there are no modifications to make. The step is exactly the same as proposed in VPP with
(OBC2):

3̃vn+1
− 4̃vn

+ ṽn−1

2δt
+ NLT1 − µ∆̃vn+1

− r∇(∇ · ṽn+1) + ∇p⋆,n+1 = fn+1 in Ω×]0,T[,

ṽn+1
= vD onΓD×]0,T[,

(−p⋆,n+1 + r ∇ · ṽn+1) n + µ∇̃vn+1
· n = gn+1 onΓN×]0,T[.

For the projection step, we define the proposed open boundarycondition (OBC3) onΓN as

v̂n+1
− v̂n

δt
− µ∆̂vn+1

−
1
ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω×]0,T[,

v̂n+1
= 0 on ΓD×]0,T[,

µ ∇̂vn+1
· n +

1
ε
∇ · vn+1 = 0 on ΓN×]0,T[. (OBC3)

We numerically test this scheme with a formally second-order in time. We roughly observe a second order convergence
rate in time for both the velocity and the pressure gradient (for case r= 0). Moreover, a theoretical study including
the well-posedness (see Lemma. 1), the stability and the convergence analysis has been established. The theoretical
results are in line with the numerical ones. These results are the subject of a work in preparation [9].

Remark 7 (Theoretical analysis of VPP methods). The penalty-projection step in the present methods is basedon
the fast discrete Helmholtz-Hodge decompositions ofL2(Ω) vector fields proposed in [6] for bounded domains. Some
theoretical results of stability and error estimates are given for the first-order version of VPP methods with Dirichlet
boundary conditions in [2, 5]. The proof of stability for Navier-Stokes problems with such methods is stated in [7].
Moreover, the analogous continuous version of the VPP methods, the so-called two-step artificial compressibility
method, is analyzed in [10]. In this case, the solutions are proved to converge to weak solutions of the Navier-Stokes
equations when the penalty parameterε tends to zero.

In the case of open boundary conditions, it is stated that theStokes problem with the stress (or traction) vector
given on the boundary is globally well-posed whatever the dimension d. For the Navier-Stokes system, it is not at
all clear that this boundary condition guarantees global existence and uniqueness of weak solutions without any
restriction on the data, even in two dimensions. More precisely, it is only possible to prove, either global existence for
a small Reynolds number (that is a quasi Stokes regime), or local existence with a small time interval T . Therefore,
it is probably necessary to consider nonlinear boundary conditions which ensure the control of the kinetic energy at
the artificial boundary. For example, we refer the reader to the artificial boundary condition taking account of the
local inflow/outflow volume rate produced by a singular load, which is recently proposed in [1]. Indeed, Angot’s
open boundary condition for the Navier-Stokes equations leads to global existence of weak solutions in3 − D and
uniqueness in2− D, as for the case of Dirichlet boundary conditions.

5. Numerical experiments

This section is organized in the following way. First, we examine the accuracy of the method on a standard
Navier-Stokes benchmark, namely the computation of Taylor-Green vortices. Secondly, we examine the temporal
convergence rate for the velocity and the pressure in the case of the Stokes flow with Dirichlet boundary conditions.
Third, we focus on the behavior of the spatial and temporal convergence rates in the case of open boundary conditions
(homogeneous and nonhomogeneous). The numerical tests include tne Stokes and the Navier-Stokes problem. In
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Figure 6: Taylor-Green vortex - Velocity divergenceL2-norm versus
penalty parameterε at T = 2 with 1/h = 128, ε=10−10 for Re = 1
andRe= 100 respectiely.

addition, we estimate theL2-norm of the velocity divergence. Finally, we conduct a comparative and qualitative
study of the VPP methods presented in this paper and some pressure-correction schemes used in the literature for the
solution of non-stationary incompressible flow problems, see, e.g., [29, 19].

5.1. Taylor-Green vortices

As a first benchmark for the proposed method, the non-dimensional unsteady incompressible Navier-Stokes equa-
tions are solved on a two-dimensional square domain for the Taylor-Green vortex decaying problem. In fluid dynam-
ics, the Taylor-Green vortex is a two-dimensional, unsteady flow of a decaying vortex which has exactly the same
closed form solution of incompressible Navier-Stokes equations in Cartesian coordinates. We adjust the source term
f in such a way that the exact solutions for velocity and pressure become

u(x, y, t) = − sin(
πx
2

) cos(
πy
2

) exp(−2µt),

v(x, y, t) = cos(
πx
2

) sin(
πy
2

) exp(−2µt),

p(x, y, t) =
1
4π

(cos(πx) + cos(πy)) exp(−4µt).

The chosen computational domain is the square ]0, 1[×]0, 1[ and the velocity is imposed on the whole boundary. The

viscosity is set toµ = 0.01 whereµ =
1
Re

. We vary the time stepδt to investigate the temporal accuracy. We choose

δt sufficiently small to satisfy the usual CFL condition. Fig. 5 shows the difference between the numerical and the
analytical solution atT = 2 measured in theL2-norm for the velocity and for the pressure. These curves aredrawn
for the 128× 128 mesh. In both cases, the error decreases with the time step. We observe that the convergence rate is
of order 1.85 for the velocity and the pressure. Note that the saturations observed for very small time steps are due to
the approximation error in space which becomes dominant forvery small time steps.

Moreover, we compute theL2-norm of the velocity divergence as a function ofε. We repeat this test for two dif-
ferent values of Reynolds number:Re= 1 andRe= 100. The time stepδt is set to 5×10−1. The results are illustrated
in Fig. 6 at the final time T=2. Both curves show that whenε tends to 0, theL2-norm of the velocity divergence tends
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Figure 8: Dirichlet Boundary Conditions. Pressure errorL2-norm versus
time step at T=2, mesh size 1/h = 128 andε=10−10.

also to 0. For example, takingε = 10−4, the value of theL2-norm of velocity divergence is approximately equal to
10−6 for Re= 1 and is equal to 10−5 for Re= 100. Moreover, we observe that the velocity divergence is vanishing
approximately with an order ofε δt. Finally, we notice that forRe= 1, the value of theL2-norm of velocity divergence
(||∇ · v||0 = 1.088070e− 08) is smaller than the one computed forRe= 100 (||∇ · v||0 = 4.365446e− 07).

5.2. Stokes flow with Dirichlet boundary conditions

We consider a square domainΩ =]0, 1[2, and we enforce nonhomogeneous Dirichlet boundary conditions on∂Ω.
The tests are performed using the following analytical solution.

v(x, y, t) = (sin(x+ t) sin(y+ t), cos(x+ t) cos(y+ t)),

p(x, y, t) = cos(x− y+ t),

which defines the right hand-side of the balance momentum equation.
This test case is the same studied in [15, 24]. In order to check the accuracy in time, we plot the errors of

the velocity and the pressure in theL2-norm for different values of the augmentation parameterr between 10−4

and 1 at timeT = 2. In the computations reported herein, the mesh sizeh is equal to 1/128 so that the spatial
discretization errors are negligible compared with the time discretization errors. The time steps tested are in the range
10−3 ≤ δt ≤ 100. We choose a penalty parameterε small enough:ε = 10−10. In Fig. 7, the convergence rate for
the velocity is clearly of the order 2 with respect to the timestep for three different values ofr (10−4, 10−2 and 1).
Concerning the pressure, we observe in Fig. 8 that convergence rate exhibits also a second-order convergence in
time and this is also for different values of the augmentation parameterr: 10−4, 10−2 and 1. Indeed, the slope of the
pressure errors obtained is higher than the best possible convergence rate (3/2) estimated using rotational incremental
pressure-correction algorithms on a square domain as in [20, 19].

As a conclusion on the convergence rate in time in presence ofDirichlet conditions on the boundaries, the VPP
method improves the order of pressure fromO(δt) toO(δt2) compared to the standard incremental pressure-correction
scheme [19] and provides a higher-order of that considered as the best in the rotational incremental pressure-correction
(order of 3/2 in L∞−norm). However, the convergence rate of order 2 for the velocity remains the same in standard and
rotational pressure-correction [19]. We conclude also that the velocity divergence vanishes approximately atO(εδt)
with ε sufficiently small (see Fig. 9 and Fig. 10).
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Figure 10: Dirichlet Boundary Conditions. Velocity divergence L2-
norm versus time step at T=2, mesh size 1/h = 128 andε=10−6.

5.3. Stokes flow with open boundary conditions

As before, we consider the unit square as our computation domainΩ = ]0, 1[2. This time, the Dirichlet condition
is prescribed onΓ = ∂Ω except for the part included in the y-axis, where open boundary conditions (4) are imposed.
In this section, we illustrate the convergence properties of the VPP methods for two manufactured test cases with open
boundary conditions, homogeneous or not.

5.3.1. Homogeneous outflow boundary conditions (g=0)
We choose a test case already used in the literature [18, 19].It consists of unstationary Stokes problem, with a

forcing term, an initial condition and boundary conditionscorresponding to the following analytical solutions.

u(x, y, t) = sin(x) sin(y+ t),

v(x, y, t) = cos(x) cos(y+ t),

p(x, y, t) = cos(x) sin(y+ t).

Convergence rate in spaceSince an optimal space convergence rate can be reached usingprojection methods in the
case of Dirichlet boundary conditions, we are interested tostudy the space convergence rate for Stokes equations
with open boundary conditions which is a more sensitive case. In order to estimate the spatial error, we focus on
the stationary solution of the above numerical experiment.We take the time stepδt= 10−2, the penalty parameter
ε = 10−10, the augmentation parameterr = 10−4, and we run the algorithm for different values of the mesh spaceh.
For more precision, we note that we test the spatial convergence using VPP methods with OBC1.

In Fig. 11, the convergence rate of the error on the velocity is clearlyO(h2). Fig. 12 suggests that the convergence
rate in space for the pressure is aroundO(h2).

As a conclusion concerning the spatial convergence rate, weobserve that the results obtained here conform with
those reported by Poux et al. [29]. In addition, the optimal convergence rate in space offered by VPP methods is
also in concordance with the results obtained by [28] in the framework of the velocity-correction methods. Besides,
the VPP method appears more efficient and accurate than the standard incremental scheme in [19]; particularly, it
improves the spatial convergence fromO(h) toO(h2) for the velocity and fromO(h1/2) toO(h2) for the pressure.
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Figure 12: Homogeneous open boundary conditions. OBC1 - Pressure
errorL2-norm versus mesh step at T=2,δt=10−2, ε=10−10 andr = 10−4.

Convergence rate in timeIn order to study the accuracy in time in the presence of outflow boundary conditions, we
perform convergence tests with respect toδt. We consider the unsteady homogeneous case. In all the following tests,
the mesh is chosen fine enough (128× 128) to ensure that the consistency error in space is significantly smaller than
the one in time.

As one can see in Figs. 13 and 14, the convergence rate of the error for the velocity behaves likeO(δt2) and the one
for the pressure is also likeO(δt2) for different values of the augmentation parameterr between 10−4 and 1. These rates
are similar to those obtained by Poux et al. [29] for the rotational form of their method proposed in the framework
of pressure-correction. Furthermore, in [28], the authorsobtain an optimal convergence rate in the framework of the
velocity-correction method (in standard incremental and rotational form) with a proposed open boundary condition.
These results are also in agreement with those obtained by VPP methods. On the other hand, the errors of velocity
and pressure for the VPP methods are smaller than those computed in [29] even if the mesh we have used is coarser.
Moreover, the VPP methods improve the convergence rates of the standard BDF2 pressure-correction scheme from
O(δt) to O(δt2) for the velocity and fromO(δt1/2) to O(δt2) for the pressure [20]. In [20], the second-order rotational
pressure-correction yieldsO(δt3/2) accuracy for the velocity in theL2-norm andO(δt) accuracy for the pressure.

Fig. 15 illustrates the errors of theL2-norm of the velocity divergence as a function of the penaltyparameterε.
Again, theL2-norm of the divergence of the velocity vanishes asO(ε δt) when the penalty parameterε is chosen as
small as desired. In Fig. 16, we measure theL2-norm of the velocity divergence as a function of the time step δt. We
observe that theL2-norm of the velocity divergence is aroundO(ε δt) for ε small enough.

As a conclusion on the temporal convergence using VPP methods with OBC1, we notice that the convergence rate
in the presence of open boundary conditions is brought to thelevel observed with the Dirichlet boundary conditions
in Section. 5.2 and guarantees a second-order accuracy in time for velocity and pressure. Moreover, theL2-norm of
the divergence of the velocity vanishes asO(ε δt) with a penalty parameterε too small.

To complete the study, we have performed convergence tests for the VPP methods using the Crank-Nicolson
scheme to approximate in time using the same analytical solution described above. We recall that the Crank-Nicolson
scheme is also a second-order scheme in time. Figs. 17 and 18 represent theL2-norm of the error on the velocity and
the pressure respectively as a function of the time stepδt. The results of the error exhibit approximately a second-order
convergence rate for both unknowns. In addition, the slopesfor both the velocity and the pressure error obtained by
using the Crank-Nicolson scheme are slightly lower than theslopes obtained by using the BDF2-scheme. We also
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Figure 13: Homogeneous open boundary conditions. OBC1 - Veloc-
ity error L2-norm versus time step at T=2, mesh size 1/h = 128 and
ε=10−10.
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Figure 14: Homogeneous open boundary conditions. OBC1 - Pres-
sure errorL2-norm versus time step at T=2, mesh size 1/h = 128 and
ε=10−10.
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Figure 15: Homogeneous open boundary conditions. OBC1 - Velocity
divergenceL2-norm versusε at T=2, mesh size 1/h = 128 andr = 10−4.
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Figure 16: Homogeneous open boundary conditions. OBC1 - Velocity
divergenceL2-norm versus time step at T=2, mesh size 1/h = 128 and
ε=10−6.
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Figure 17: Homogeneous open boundary conditions. Crank-Nicolson -
Velocity error L2-norm versus time step at T=2, mesh size 1/h = 128
andε=10−10.

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

time step

P
re

s
s
u

re
 e

rr
o

r 
L

2
−

n
o

rm
 

 

r=1

r=10−2

r=10−4

slope 1.8

Figure 18: Homogeneous open boundary conditions. Crank-Nicolson -
Pressure errorL2-norm versus time step at T=2, mesh size 1/h = 128
andε=10−10.

obtain an order ofO(ε δt) for theL2-norm of the velocity divergence.We did not show the figures for sake of shortness.
Finally, in order to check the VPP methods with the OBC2 (38) in the projection step, we numerically simulate

the test case presented above. Figs. 19 and 20 display the errors of the computed velocity and pressure gradient in
theL2-norm atε = 10−10 andr = 0. The numerical results show that a second-order accuracy in time is recovered for
both the velocity and the pressure gradient. Figs. 21 and 22 exhibit again that theL2-norm of the velocity divergence
is of orderO(ε δt).

Remark 8. We numerically check the value ofv̂ · n on the boundaryΓN in the vector penalty-projection step with
OBC2 (38). We obtain that̂v · n is of order10−12 which means that this condition is approximately satisfied naturally
onΓN in the projection step.

Convergence rate in time atr = 0 for the VPP methods with OBC1 (18) and the pressure gradient given by (22)
In this section, we study the temporal convergence of the special case:r = 0 andε too small. For this purpose, we

use the same test as for the case of homogeneous outflow boundary conditions above. We study the method with the
proposed open boundary condition OBC1 (18) onΓN in the projection step. This study also allows a comparison with
the case 10−4 ≤ r ≤ 1 already tested in the previous section. Fig. 23 displays the errors of the computed velocity in the
L2-norm atr = 0 andε = 10−10. In contrast to the case 10−4 ≤ r ≤ 1, we do not have a second-order convergence rate:
the slope of the velocity error appears to be rather of first order. Moreover, we observe in Fig. 24 a sharp degradation
of the pressure convergence (order 1/2 only). This degradation is due to the cumulation of round-off errors when we
use the standard pressure-correction (20) with very small values ofε.

Using the pressure gradient correction (22) explained in Section 4.1.2, i.e, we repeat the same tests for the velocity
and the pressure gradient forr = 0. Fig. 25 shows that we recover a second-order convergence rate in time for the
velocity as in the case of 10−4 ≤ r ≤ 1. In Fig. 26, the pressure gradient reaches the order ofO(δt1.8). Finally, these
positive results confirm the interest in updating the pressure by its gradient and are in a agreement with [7].

5.3.2. Nonhomogeneous outflow boundary conditions (g , 0 )
To further assess the influence of open boundary conditions on the accuracy of BDF2-VPP methods, we have

performed temporal convergence tests for the nonhomogeneous case. To this end, we consider the same problem as
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Figure 19: Homogeneous open boundary conditions. OBC2 - Velocity
error L2-norm versus time step at T=2, mesh size 1/h = 128,ε=10−10

andr = 0.
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Figure 20: Homogeneous open boundary conditions. OBC2 - Gradient
pressure errorL2-norm versus time step at T=2, mesh size 1/h = 128,
ε=10−10 andr = 0.
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Figure 21: Homogeneous open boundary conditions. OBC2 - Velocity
divergenceL2-norm versusε at T=2, mesh size 1/h = 128 andr = 0.

10
−3

10
−2

10
−1

10
0

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

time step

D
iv

e
rg

e
n

c
e

 L
2

−
n

o
rm

 

 

r=0
slope 1

Figure 22: Homogeneous open boundary conditions. OBC2 - Velocity
divergenceL2-norm versus time step at T= 2, mesh size 1/h = 128 and
ε=10−6.
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Figure 23: Homogeneous open boundary conditions. OBC1 - Velocity
error L2-norm versus time step with the standard pressure correction
(20) at mesh size 1/h = 128,r = 0 andε=10−10.
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Figure 24: Homogeneous open boundary conditions. OBC1 - Pressure
error L2-norm versus time step with the standard pressure correction
(20) at mesh size 1/h = 128 andε=10−10.
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Figure 25: Homogeneous open boundary conditions. OBC1 -L2-norm
of the error for the velocity versus time step with the pressure gradient
correction (22) at mesh size 1/h = 128,r = 0 andε=10−10.
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Figure 26: Homogeneous open boundary conditions. OBC1 -L2-norm
of the error for the gradient of the pressure Gradient versustime step
with the pressure gradient correction (22) at mesh size 1/h = 128 and
ε=10−10.
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Figure 27: Nonhomogeneous open boundary conditions. OBC1 -Ve-
locity errorL2-norm versus time step at T= 2, mesh size 1/h = 128 and
ε=10−10.
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Figure 28: Nonhomogeneous open boundary conditions. OBC1 -Pres-
sure errorL2-norm versus time step at T= 2, mesh size 1/h = 128 and
ε=10−10.

in [27, 29] :

u(x, y, t) = cos2(
πx
2

) sin(πy) cos(2πωt),

v(x, y, t) = − cos2(
πy
2

) sin(πx) cos(2πωt),

p(x, y, t) = cos(
πx
2

) sin(
πy
2

) cos(2πωt).

Convergence rate in timeWe take a mesh size 1/h = 128 and we supposeω = 1. The representative curves of
Figs. 27 and 28 show that the convergence rates of the error onthe velocity and the pressure is of order 2 for an
augmentation parameter 10−4 ≤ r ≤ 1. This result is in line with the results reported in [29]. Weobserve that the
errors are not very different from those computed with the homogeneous case studiedabove. Besides, theL2-norm of
the velocity divergence vanishes roughly asO(ε δt) for ε too small (see Figs. 29 and 30). We now present the same
test using the VPP methods with (OBC2). Letr = 0 andε = 10−10. As one can see in Fig. 31, the convergence
rate of the error on the velocity is clearly of orderO(δt2). Fig. 32 shows the error on the pressure gradient measured
in L2-norm. The results reveal clearly that the pressure gradient approximation is roughly of order 1.7 in time. We
note that the saturation observed here for small time steps is due to the approximation error in space which becomes
dominant for very small time steps. In this case, the velocity divergence is almost of orderO(ε δt) asε tends to zero
(see Figs. 33 and 34).

5.4. Numerical results for Navier-Stokes problem

In order to validate the accuracy of the method for the nonlinear Navier-Stokes equations, we present the temporal
convergence studies on two manufactured test cases: first, with homogeneous open boundary conditions and second,
with nonhomogeneous open boundary conditions. To this end,we consider the VPP methods with the open boundary
condition OBC2 (38). For the approximation of the time derivative, the BDF2 scheme is used. The convective terms
of the Navier-Stokes equations are treated explicitly thenthe second order central difference scheme is applied to its
conservative form. This choice ensures overall second order accuracy. The finite volume scheme on a MAC staggered
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Figure 29: Nonhomogeneous open boundary conditions. OBC1 -L2-
norm of the divergence of the velocity versusε at T=2, mesh size 1/h =
128,r = 10−4.
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Figure 30: Nonhomogeneous open boundary conditions. OBC1 -L2-
norm of the error for the divergence of the velocity versus time step at
T=2, mesh size 1/h = 128,ε=10−6.
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Figure 31: Nonhomogeneous open boundary conditions. OBC2 -Ve-
locity error L2-norm versus time step at T=2, mesh size 1/h = 128,
ε = 10−10 andr = 0.
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Figure 32: Nonhomogeneous open boundary conditions. OBC2 -Gra-
dient pressure errorL2-norm versus time step at T=2, mesh size 1/h =
128,ε = 10−10 andr = 0.
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Figure 33: Nonhomogeneous open boundary conditions. OBC2 -Veloc-
ity divergenceL2-norm versusε at T=2, mesh size 1/h = 128 andr = 0.
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Figure 34: Nonhomogeneous open boundary conditions. OBC2 -Veloc-
ity divergenceL2-norm versus time step at T=2, mesh size 1/h = 128,
ε = 10−6 andr = 0.

grid arrangement is adopted in order to remove the odd-even decoupling. Simulations are performed using a range of
time steps 10−5 ≤ δt ≤ 5× 10−3 at T = 2 with a Reynolds numberRe= 100. Note thatδt is chosen sufficiently small
to satisfy the CourantFriedrichsLewy condition (CFL condition). We chooser = 0 andε = 10−10. The linear systems
obtained are solved with the preconditioned conjugate gradient CG-IC(0). To check the temporal accuracy, we carry
out the following tests.

• For the homogeneous outflow boundary conditions (g = 0), the Navier-Stokes equations are augmented with a
forcing term in order that the solution is

u(x, y, t) = − sin(π x) cos(π y) exp(−µ t),

v(x, y, t) = cos(π x) sin(π y) exp(−µ t),

p(x, y, t) = −µ π cos(π x) cos(π y) exp(−µ t).

• For the nonhomogeneous outflow boundary conditions (g , 0), the source termf is adjusted such that the
Navier-Stokes problem verify the following problem

u(x, y, t) = cos2(
πx
2

) sin(πy) exp(−2πµt),

v(x, y, t) = − cos2(
πy
2

) sin(πx) exp(−2πµt),

p(x, y, t) = cos(
πx
2

) sin(
πy
2

) exp(−2πµt).

Convergence rate in timeIn Fig. 35, we plot theL2-norm error on the velocity and the pressure gradient as function
of the time stepδt for the homogeneous test case. Errors are calculated at the time T = 2 and forr = 0 after
computations on a square domain with the mesh sizeh equal to 1/128. As expected, the nonlinear term in the Navier-
Stokes equations does not really affect the convergence rate for both the velocity and the pressure gradient. We obtain
an order of 1.85 in time for both unknowns. For the nonhomogeneous case, the temporal error of the velocity and the
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Figure 35: Homogeneous open boundary conditions. OBC2 -L2-norm
of the error for the velocity and the pressure gradient versus δt at T=2
andRe= 100, mesh size: 1/h = 128,ε = 10−6, r = 0 for Navier-Stokes
problem.
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Figure 36: Nonhomogeneous open boundary conditions. OBC2 -L2-
norm of the error for the velocity and the pressure gradient versusδt at
T=2 andRe= 100, mesh size 1/h = 128,ε = 10−6, r = 0 for Navier-
Stokes problem.

pressure gradient computed on 128× 128 grids are plotted in Fig. 36. The results reveal an order of 1.85 in time for
both unknowns. The accuracy saturation observed for small time steps results from the spatial discretization error. In
conclusion, we deduce that for the Navier-Stokes problem, the nonlinear term does not really damage the convergence
rate. However, we do not have an optimal convergence of second-order in time.

5.5. Summary of the numerical results and discussion

We summarize in this section the advantages of the VPP methods.

1. While the Dirichlet boundary conditions imposed on the velocity degenerate into a nonrealistic Neumann
boundary condition for the pressure in the case of the usual projection methods [19], the VPP methods pre-
serve the original Dirichlet conditions. Consequently, the pressure approximation is no longer plagued by an
artificial Neumann boundary condition. Therefore, the scheme truly provides the second-order accuracy for the
velocity and the pressure (or the pressure gradient) as shown in our numerical results.

2. The outflow boundary conditions were naturally extended on the boundaryΓN. Consequently, as shown nu-
merically in the above sections, the velocity and the pressure (or the pressure gradient) reach approximately a
second order convergence rate in space and time even in the presence of the outflow boundary conditions.

3. The nonlinear terms in the Navier-Stokes problem does notaffect the convergence rate in time for the velocity
and the pressure. We note that the convergence rate is slightly degraded but we obtain approximately a second
order in time.

4. The VPP methods appear fast, cheap and require only few iterations for small penalty parameterε.

6. Conclusions

In this article, we have naturally extended the VPP methods to the case of incompressible viscous flows with
open boundary conditions using two kinds of second-order schemes for time discretization: the BDF2 scheme and the
Crank-Nicolson scheme. The numerical experiments show that the VPP methods yield a considerable gain in accuracy
compared to the incremental pressure-correction schemes.The VPP methods also improve the convergence rate in
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time compared to the standard and rotational form [20] of theprojection method. Additionally, we show through
numerical tests that the convergence rate of both velocity and pressure in theL2-norm is of order 2 using the BDF2-
scheme for discretizing in time in the case of Dirichlet boundary conditions. Moreover, we show that for both second-
order schemes used for time discretization (BDF2 or Crank-Nicolson), the VPP methods yield approximatelyO(δt2)
for both velocity and pressure as well as for the homogeneousand nonhomogeneous open boundary conditions. The
loss of spatial convergence in the case of outflow boundary conditions does not occur anymore compared to projection
methods. We obtainO(h2) convergence in theL2-norm of the velocity or pressure. The minor drawback of the present
method is that the constraint on the velocity divergence is not exactly equal to zero at the continuous level but is
satisfied only approximately at the orderO(ε δt) with a penalty parameterε taken as small as desired up to machine
precision. Moreover, the vector penalty-projection step exhibits excellent effective conditioning properties, even for
very small values ofε; see [3, 5, 4, 6]. Therefore, from the numerical point of view, the approximate divergence is not
at all an issue since any projection method also leads when discretized in time and space to an approximate divergence
which is larger in practice.

Finally, the VPP method proves to be very efficient: it is fast, cheap, and provides very accurate resultswith
optimal spatial and temporal convergence rates despite theexistence of outflow boundary conditions. Furthermore,
the family of VPP methods opens the way to splitting methods with an order of time convergence greater than 2 since
the splitting error for velocity and pressure scales asO(ε) which can be made negligible with respect to the consistency
error of higher-order schemes whenε is chosen sufficiently small.
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