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Abstract Pesticides are now occurring worldwide in almost
all water resources, thus threatening the health of humans and
other life. As a consequence, there is a strong social demand
for designing safe cropping systems with less or no hazardous
pesticides. Safe cropping systems can be designed now using
pesticide transfer models. These models are mathematical
tools that allow to predict the flow and concentration of
pesticides in a field or a watershed. Here, we review the effects
of agricultural practices on runoff, leaching, erosion, and drift
from eight watershed models and nine field models. Our main
findings are the following: (1) though models claim they
account for practices, their effects cannot be represented. We
present a method and four practice levels to assess the effects
of practices in models, using tillage as an example. (2) The
conceptual structure of the model highly influences the pre-
dicted distribution and transfer of pesticides. For instance, the
pesticide levels remaining on the soil surface after plowing ranges
from 0 % of the dose applied for the MIKE SHE–DAISY model
to 100 % for GLEAMS, annAGNPS, SoilFug, and PestLCI.
Only the Root Zone Water Quality Model (RZWQM) simulates
pesticide interception by mulch during pesticide application. (3)
Models should better take into account mulching, e.g., plastic,
crop residues and associated crops, and other innovative practices.
(4) A change in scale is needed for drift in watershed models.
Here, topological watershed representations are the most

promising way for upscaling the effects of practices. (5) Non-
conservative calculations of pesticide interception by watershed
mitigation structures (SWAT) should be carefully checked be-
cause these calculations underestimate the risk of pollution at the
outlet. How models simulate practices will no longer be a secret
for model users who apply our methodology and recommenda-
tions when selecting a model. We provide recommendations for
improving tools to assess practices.

Keywords Pesticides . Catchment .Watershed . Field .

Agricultural practice . Best management practice .Mitigation
practice . Model .Water pollution

Contents
1. Introduction................................................................... 2
2. Methodology.................................................................. 3

2.1. Model selection...................................................... 3
2.2. Conceptual framework.......................................... 4
2.3. Selection of practices and processes.......................5
2.4. Data analysis.......................................................... 6

3. Levels of integration of practices...................................6
3.1. Continuous and event models................................ 8
3.2. Tillage and runoff................................................... 9
3.3. Tillage and erosion............................................... 10
3.4. Data requirements................................................ 10

4. Pesticide distribution....................................................10
4.1. Tillage effects....................................................... 11
4.2. Pesticide application practices............................. 11

5. Innovative practices: ground cover management........12
5.1. Tillage and ground cover...................................... 13
5.2. Plastic mulch........................................................ 13
5.3. Dead mulch.......................................................... 13
5.4. Crops, weeds, and cover crops............................. 13

6. Upscaling practices...................................................... 14
6.1. Space representation............................................ 14

C. Mottes (*) :M. Lesueur-Jannoyer
Cirad, UPR HortSys, Campus agro-environemental Caraïbe,
BP 214, 97285 Le Lamentin Cedex 2, Martinique, France
e-mail: charles.mottes@cirad.fr

M. Le Bail
AgroParisTech, UMR SADAPT, 16 Rue Claude Bernard,
75231 Paris Cedex 5, France

C. Mottes :M. Lesueur-Jannoyer : E. Malézieux
Cirad, UPR HortSys, 34398 Montpellier, France

Agron. Sustain. Dev.
DOI 10.1007/s13593-013-0176-3



6.2. Drift modeling...................................................... 14
7. Practices at the catchment scale...................................15

7.1. Ditches and waterways........................................ 15
7.2. Buffer zones......................................................... 16

8. Conclusions................................................................. 16

1 Introduction

In agriculture, the control of pests and weeds has always been a
major problem worldwide. Since the 1930s–1940s, several fam-
ilies of chemical compounds have been synthesized to protect
crops against pests and weeds while increasing yield and
commercial quality (Fournier 2006; van der Werf 1996). This
contributed to an unsustainable increase in yield, while pesti-
cides and metabolites were spread throughout the environment
with potentially negative impacts on ecosystems (Tilman et al.
2002) and on human health. Nowadays, despite progress in
using ecological processes to manage agro-systems with
less chemicals (Altieri 1995; Altieri and Nicholls 2000;
Kogan 1998; Malézieux 2012; Rosset and Altieri 1997),
in practice, the use of pesticides is still widespread and
even in innovative practices such as no-till systems
coupled with the use of herbicides (Alletto et al. 2010;
Carof et al. 2007; Roger-Estrade et al. 2009).

Capel et al. (2001) analyzed the behavior of 39 pesticides at
different scales in the USA and showed that the annual load of
pesticides in streams as a percentage of use is usually less than
2 % in large catchments (>100,000 ha). However, even if the
rates of pesticides reaching rivers are usually low in catchments,
pesticides pollute environmental compartments and food, lead-
ing to sanitary (Hjorth et al. 2011) and eco-toxicological issues
(Chapman and Stranger 1992; Desneux et al. 2007; Tanji 1993;
Warren et al. 2003). The impact of pesticides on the environ-
ment ranges from ecosystem disruption to human health risks
related to the contamination of drinking water and food
(Cabidoche and Lesueur-Jannoyer 2012; Daam and den Brink
2009; Finizio et al. 2001; Kruhm-Pimpl 1993).

The main processes involved in the fate of pesticides are
degradation, retention, volatilization, drift, atmospheric dis-
persion, runoff, and leaching (Calvet et al. 2005; van Dijk and
Guicherit 1999; Holvoet et al. 2007; Schiavon et al. 1995; van
der Werf 1996). Once applied, the transfer of pesticides in the
catchment depends on catchment hydrologic characteristics
(Abbott et al. 1986a; Blanchard and Lerch 2000). Modeling
these processes is one way to account for the response of a
catchment to the combination of agricultural practices, the
effects of which are difficult to test experimentally at such a
scale (Arnold et al. 1998).

A catchment outlet combines the effects of agricultural
practices and natural processes occurring at the catchment
scale, including the type, timing, and spatial position of the
processes and practices (Fig. 1).Many field-scale models have

been developed to simulate pesticide transfer at field borders
(Dubus and Surdyk 2006; Siimes and Kämäri 2003). In par-
allel, catchment scale models such as European Hydrological
System (SHE) (Abbott et al. 1986b) or TOPMODEL (Beven
and Kirkby 1979) have been developed. Catchment models
provide a simplified virtual representation of catchment func-
tioning. Most catchment models simulate water and pollutant
transfers. With increasing concern about water pollution by
agricultural pesticides, there is the crucial need for models that
deal with both scales. It is a known fact that, due to emergent
processes at the catchment scale, the functioning of a catch-
ment is more complex than a simple linear combination of
emissions at the field scale (Cerdan et al. 2004; Shaman et al.
2004; Sivapalan 2006). However, catchment scale models
were not designed to take the effects of agricultural practices
on catchment response into account. Hence, the issue of
including the effects of field-scale agricultural practices in
catchment scale models has led to the development of new
models that can account for agricultural practices when esti-
mating the contamination of streams by pesticides (Arnold
et al. 1998).

As summarized by Kauark Leite (1990), pesticide transfer
models at the catchment scale can serve several purposes: (a)
estimating pollutant fluxes, (b) estimating the risk of exceed-
ing a particular concentration, (c) describing and identifying
transport mechanisms, (d) locating and quantifying the impor-
tance of pollution sources, and (e) evaluating the effects of
agricultural practices on water quality. Assessing cropping
system scenarios at the landscape scale is a major objective
for agronomists (Martin et al. 2006; Meynard et al. 2001).
Catchment scale models can help diagnose and identify com-
binations of practices and other environmental factors that
contribute to water contamination by pesticides at the water-
shed outlet (Biarnes and Colin 2006; Luo and Zhang 2009).
Catchment scale models may also be able to determine wheth-
er changes in practices will have a beneficial effect on water
quality (Arabi et al. 2007). The results of the simulations
can be used to categorize scenarios based on their potential
effect on water quality (Tixier 2004; Tixier et al. 2007; Zhang
and Zhang 2011). A major challenge today is designing
management-oriented assessment tools that can be more eas-
ily used by catchment managers (Quilbé and Rousseau 2007),
agricultural advisors (Bockstaller et al. 2008), or farmers
themselves (Barreteau et al. 2008).

Although catchment scale models have been reviewed sev-
eral times (Beckers and Degré 2011; Borah and Bera 2003;
Holvoet et al. 2007; Payraudeau and Gregoire 2012; Quilbé
et al. 2006), these reviews focused on processes rather than on
agricultural practices. Knowledge about practices is needed in
models so that agronomists, managers, and developers can
simulate existing and innovative practices. Modeling knowl-
edge about farming practices will also help identify further
research needs to enable the representation of agricultural
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practices in catchment scale models. Here, we propose a con-
ceptual framework to determine if and how pesticide transfer
models represent the effects of agricultural practices on the
contamination of water by pesticides.

2 Methodology

2.1 Model selection

The models we identified for review and associated references
are summarized in Table 1. In the first step, we selected models
representing whole catchments, not only specific catchment
structures. Models were selected to represent the different types
of catchment models identified in previous reviews: Following
Quilbé et al. (2006), we selected management models (Soil and
Water Assessment Tool (SWAT), annualized-Agricultural Non-
Point Source (annAGNPS), Hydrological Simulation
Program—Fortran (HSPF)), research models (MIKE SHE,
Distributed Hydrological Modeling of Agrosystems
(MHYDAS)), and multimedia models (SoilFug). Following
Payraudeau and Gregoire (2012), MIKE SHE and MHYDAS
represent physically based models; SWAT, annAGNPS, and

HSPF represent conceptual models; and an environmental indi-
cator (I-phyBV) was added to our selection set. Because of the
huge amount of data needed to run simulation models, re-
searchers are particularly interested in developing methods that
require fewer input data such as multimedia models (Mackay
2001) or environmental indicators. Environmental indicators
have been optimized for management purposes which makes
them good candidates for the assessment of practices by agron-
omists (Devillers et al. 2005;Maraite et al. 2004;Wohlfahrt et al.
2010). To ensure that the selected assessment tools were
representative of their diversity, we searched the Web of
Knowledge up to May 2012 using the following keywords:
“[Topic = (model*) AND Topic = (pesticide*) AND
Topic = (practice*) AND (Topic = (catchment*) OR
Topic=(watershed*))]”. The results obtained confirmed our
preselected list of assessment tools. For purposes of comparison,
we completed the set of models with the geo-Pesticide Emission
Assessment at Regional and Local scales (geoPEARL)model (a
physically based research model) that assesses the contribution
of practices to groundwater loading by pesticides at a regional
scale. Finally, we searched for available documentation to val-
idate the height assessment tools at the catchment scale:
annAGNPS, geoPEARL, HSPF, I-phyBV, MHYDAS, MIKE

Fig. 1 Examples of agricultural practices which affect pesticide transfers
in catchments: pesticide application (a), dead mulch ground cover (b),
plastic mulch ground cover (c). Catchments are combinations of spatial

units with different environmental characteristics resulting from practices
(d) (photos from Lesueur-Jannoyer)
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SHE, SoilFug, and SWAT. To avoid unnecessary repetition, the
term “model” is used hereafter to qualify all selected assessment
tools including simulation models and indicators.

Analysis of the structure of the MIKE SHE, MHYDAS,
and HSPF models showed that they were developed primarily
at the catchment scale. The other models were based on
previously developed pesticide transfer models at the field
scale (Chemicals, Runoff, and Erosion from Agricultural
Management Systems (CREAMS), Groundwater Loading
Effects of Agricultural Management Systems (GLEAMS),
PEARL, and I-pest). The field-scale models have been
adapted so they can be incorporated in catchment scale
models, and as a result, they do not exactly match the stand-
alone field-scale versions. Two catchment scale models
(HPSF and MIKE SHE) have been bridged to field-scale

models to improve their representation of field-scale practices
and processes. Pesticide Root Zone Model (PRZM) was
bridged to HSPF by the PZ2HSPF Bridge Program (Suarez
2005), and DAISY (Abrahamsen and Hansen 2000) and
MACRO were bridged to MIKE SHE (van der Keur et al.
2011; Styczen et al. 1999). Pesticide transfer models at the
field-scale and crop models coupled with pesticide transfer
models at the catchment scale are summarized in Table 2.

In the second step, we selected field-scale models for
review because they were developed specifically to assess
the effects of agricultural practices on pesticides transfers at
the field border and are used to generate inputs for catchment
models. We found three field-scale models (Root Zone Water
Quality Model (RZWQM), R-pest, and PestLCI) with docu-
mented descriptions of practice. As to our knowledge, they
had not been associated with pesticide transfer models at the
catchment scale; we also reviewed them for the purpose of
comparison. GLEAMS is an update of CREAMS with im-
proved groundwater capacities (Knisel and Walter 1980;
Leonard et al. 1987), so we only reviewed GLEAMS.

For each model, we selected a set of documents including
the manual, the technical guide, publications associated with
the development of the model, and publications related to its
use for diagnosis or simulation studies (Table 1). When the
authors published a special paper to explain how to represent
agricultural practices in the model, the paper was included in
the set. Unfortunately, not all documents were available for the
models we selected (Table 1). This finding revealed a lack of
homogeneity in the framework associated with model devel-
opment and documentation, especially for user manuals, and
the focus of this review: publications on practices.

2.2 Conceptual framework

In agricultural catchments, pesticides may be applied on fields
(Real 2004), on field borders such as hedges (Moonen and
Marshall 2001), and on tracks and roads (Huang et al. 2004).

Table 1 Models and associated references

Models References

annAGNPS Young et al. 1994a; Bingner et al. 2011b;
Young et al. 1989c; Yuan et al. 2008e

geoPEARL Tiktak et al. 2003a,b; Tiktak et al. 2004a;
Tiktak et al. 2002c,e

GLEAMS Knisel and Walter 1993a,b; Leonard et al. 1987c;
Knisel et al. 1995d; Knisel et al. 1989e;
Magliola and Knisel 1992e

HSPF Bicknell et al. 1996a,b; Donigian et al. 1995c;
Mohamoud et al. 2010d

I-pest van der Werf and Zimmer 1998c; Roussel et al. 2000e

I-phyBV Thiollet-Scholtus 2004c; Wohlfahrt 2008c

MACRO Stenemo and Jarvis 2010a; Larsbo and Jarvis 2003b;
Jarvis et al. 1997c

MHYDAS Charlier 2007b; Moussa et al. 2002c;
Moussa et al. 2010c; Moussa et al. 2003e

MIKE SHE DHI 2007aa; DHI 2007bb; Styczen et al. 2004b;
Abbott et al. 1986a, bc; Refsgaard and
Storm 1995c; Styczen et al. 1999e;
de Bruyn et al. 2006e

PEARL Tiktak et al. 2000a; Leistra et al. 2001b

PestLCI Birkved and Hauschild 2006c

PRZM Suarez 2005a,b; Carsel et al. 1985c

R-pest Tixier 2004b,e; Tixier et al. 2007c,e

RZWQM Ahuja et al. 2000b; Wauchope et al. 2004b;
Ma et al. 2001c,d ; Malone et al. 2004e

SoilFug Barra et al. 1995c; Barra et al. 2000c;
di Guardo et al. 1994c

SWAT Arnold et al. 2011a; Neitsch et al. 2011b;
Arnold et al. 1998c; Srinivasan et al. 1998c;
Arabi et al. 2008d; Zhang and Zhang 2011e

Catchment scale models are in bold; field-scale models are in italics
a User manuals
b Technical or theoretical guides
c General or initial publications
d Publication on practices
eModel uses

Table 2 Catchment scale models and associated field-scale models

Catchment models Field-scale
pesticide models

Field-scale
crop models

annAGNPS CREAMS EPIC

geoPEARL PEARL WOFOST

HSPF Included/PRZM Generic

I-phyBV I-pest None

MHYDAS Included None

MIKE SHE MIKE SHE AD/
MACRO/DAISY

Included/MACRO/
DAISY

SoilFug Included Simple

SWAT GLEAMS EPIC

Each line of the table shows the field-scale pesticide and crop models that
have been integrated or bridged to each catchment model

C. Mottes et al.



As diffuse pollution results from pesticides applied on fields
(Levillain et al. 2012), we focused on the effects of agricul-
tural practices on the fate of pesticides applied on fields.

At field and catchment scales, the general mechanisms that
influence pesticide transfers can be represented as shown in
Fig. 2: (i) Agricultural practices modify variables describing
environmental characteristics (such as soil hydraulic proper-
ties or ground cover) of one or more environmental compart-
ments (such as soil or plants). (ii) Variables describing envi-
ronmental characteristics modify the response of the simulated
processes according to the variables defining the climate. (iii)
The resulting hydrologic and biophysical processes modify
environmental characteristics. For instance, tillage affects (i)
soil hydraulic properties which, in turn, modify (ii) different
hydrologic processes (leaching, runoff) that occur in soil after
a rainfall event (Alletto et al. 2010). The resulting water fluxes
modify (iii) the pesticide content and distribution in the soil
due to leaching or runoff. In Fig. 2, decisional relationship
arrows represent the farmer’s decisions concerning which
practices to use in a given field depending on its climatic
and environmental characteristics. For instance, herbicide ap-
plications can use a threshold based on weed height, but no
herbicide applications are performed on rainy days. In this
review, we focused on the simulation of the effects of practices
on points (i) and (ii) only. The effects of processes on envi-
ronmental characteristics as well as decision models for ap-
plications of practices are not discussed in this article.

2.3 Selection of practices and processes

We review models at both the field and the catchment scales.
The models have different objectives and thus do not simulate
exactly the same categories of processes. Field models simu-
late production of flows but do not simulate flow transfers,
whereas catchment models simulate both the production and
transfer of flows. We took this difference into account in the
selection of the practices and processes analyzed in our re-
view. The relations between practices and processes analyzed
in this review are not exhaustive but suffice to discuss the

conclusions which can be drawn by using our conceptual
analysis framework. Holvoet et al. (2007) report that contam-
ination of rivers can be significantly reduced by reducing
pesticide use and by applying practices to control runoff and
erosion, along with drift reducing measures. We thus chose to
analyze the effects of practices on runoff/infiltration, erosion,
and drift. These processes are produced at field scale and
transferred at catchment scale making it possible to discuss
the change in scale. The main environmental characteristics
found to affect pesticide transfers toward the identified pro-
cesses were ground cover, soil water content, the distribution
of pesticides in the different environmental compartments, soil
hydraulic properties, soil erodibility, and soil organic matter
content (Alletto et al. 2010; Leonard 1990). The main field-
scale practices found to affect the above-mentioned environ-
mental characteristics were pesticide application, tillage, ma-
nure application, mulching, cover cropping, crop plantation,
crop harvest, mowing, clearing, pruning, and irrigation
(Alletto et al. 2010; Hartwig and Ammon 2002; Walter et al.
1979). We selected four types of practices based on their
effects: (1) pesticide applications make pesticides available
in the different environmental compartments; (2) tillage,
which has drastic effects on most of the environmental char-
acteristics that affect pesticide transfer (soil hydraulic proper-
ties, soil erodibility, soil ground cover, soil organic matter, and
pesticide distribution in soil); (3) practices associated with the
management of ground cover (tillage, impervious mulching,
mulching using plant residues, cover cropping, crop planta-
tion, crop harvest, mowing, clearing, and pruning), which
make it possible to compare the models’ representation of
innovative practices (impervious mulching, plant residue
mulching, cover cropping) with their representation of con-
ventional practices (tillage); and (4) catchment practices that
interact with pesticide flows. The catchment practices identi-
fied as affecting pesticide flow in catchments were buffer
zones, waterways, ditches, tile drainage, and ponds
(Reichenberger et al. 2007; Rice et al. 2007).

To conduct a broad yet in-depth analysis of the modeled
agricultural practices, we selected specific relationships

Fig. 2 Relationships between agricultural practices and pesticide transfer
related processes: (i) Agricultural practices modify variables describing
environmental characteristics (such as hydraulic properties or ground
cover). (ii) Variables describing environmental characteristics modify

the response of the simulated processes according to the variables defin-
ing climate. (iii ) The resulting processes modify the environmental
characteristics

Pesticide transfer models in crop and watershed systems: a review



between practices and processes (Table 3). Other processes or
practices were not included in our in-depth analysis either
because the lack of information on the effect of certain prac-
tices (retention, degradation) would spoil the comparison or
because their representation was not a priority for catchment
modelers (volatilization).

2.4 Data analysis

First, we compared models on the basis of whether they
accounted for our subset of selected practices (pesticide ap-
plication, tillage, and mulching) (Table 4). It is important to
note that this study relies on a literature analysis only. None of
the models we reviewed were tested. We analyzed the
methods and scientific knowledge used to represent the effect
of identified practices on runoff, infiltration, erosion, and drift
according to our conceptual framework. Then, we classified
our results under five points with illustrations of specific
practices:

We found different levels of integration of practices in
models. We discuss the levels of integration based on the
effects of tillage on runoff through soil hydraulic properties
and soil cover and the effects of tillage on erosion through
erodibility (Section 3). We found different pesticide applica-
tion practices represented in models as well as various tillage
mixing algorithms and wondered about their effects on pesti-
cide transfers (Section 4). We discuss whether models simu-
late innovative agricultural practices by analyzing practices
related to ground cover management (impervious plastic
mulching, mulching using plant residues, and associated cov-
er cropping) (Section 5). We discuss problems of changes in
scale by analyzing how space is represented in catchment

models and how drift and drift redeposition are modeled
(Section 6). We also checked whether and how catchment
practices (buffer zones and ditches) had been integrated in
the models (Section 7).

In Section 4, we compare the algorithms used to represent
the effects of tillage on pesticide distribution in the soil profile
by simulating pesticide distribution in soil layers using the
tillage algorithms found in the models. To this end, we simu-
lated a moldboard plow tillage operation at 30 cm depth from
an initial situation of 10 kg ha−1 of pesticides applied to the
first 1 cm of the soil. For the simulation, the soil was repre-
sented as having 11 layers and a depth of 50 cm. The first layer
was 10 mm deep, the second 40 mm, and the other eight were
each 50 mm deep. Figure 4 presents the simulation results.

3 Levels of integration of practices

Table 4 summarizes the reviewed cropping system practices
implemented in pesticide transfer models at both catchment
and field scales. To illustrate the levels of integration of
practices in the models, we focused on the effect of tillage
on runoff and erosion through soil hydraulic properties, soil
cover, and soil erodibility. Using the analytical framework
depicted in Fig. 2, we found four levels of integration of
the effect of a practice on processes related to pesticide
transfers (Fig. 3):

Level 1: The process is not represented by the model. As a
result, the effects of practices on the process cannot be
represented. For instance, MACRO, PEARL, geoPEARL,
I-pest, I-phyBV, PestLCI, RZWQM, and SoilFug models
do not have an erosion module, which implies that tillage

Table 3 Relationships between practices, environmental characteristics, and processes analyzed in the review

Practices Environmental characteristics Processes Sections

Tillage Soil hydraulic properties Runoff/infiltration 3.2

Tillage Erodibility Erosion 3.3

Tillage Ground cover Runoff/infiltration 3.2–5.1

Tillage Ground cover Erosion 3.3–5.1

Tillage Pesticide vertical distribution in soil Runoff/infiltration 4.1

Pesticide application Amount of pesticides in environmental
compartments

Various depending on models and
compartments

4.2

Pesticide application Amount of pesticide in air Drift redeposition 6.2

Plastic mulching Impervious ground cover Multiple, no specific example 5.2

Crop residues mulching Pervious ground cover Multiple, no specific example 5.3

Cover crop mulching Pervious ground cover Multiple, no specific example 5.4

Ditch and waterway Vegetative cover and size Runoff and erosion interception 7.1

Buffer zone Vegetative cover and size Runoff and erosion interception 7.2

Each line corresponds to a relationship. The first column gives the practice, the second column gives the environmental characteristic affected by the
practice, and the third column gives the process affected by themodification of the environmental characteristic. The last column indicates the sections of
the article discussing each relationship

C. Mottes et al.
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operations do not affect pesticide transfers through erosion
even though it is known that tillage affects soil structure
hence favoring soil and soil-bound pesticide transfers
(Alletto et al. 2010; Takken et al. 2001)
Level 2: The process is represented by the model, but the
environmental characteristic has no effect on the process
or, in continuous models, the environmental characteristic
cannot be modified during the course of the simulation.
For instance, SoilFug simulates the runoff process, but the
process does not depend on soil hydraulic properties.
PestLCI has a parameter that partially represents soil hy-
draulic properties, but it depends only on sand content of
the soil and cannot be modified even though it is known
that tillage affects soil hydraulic properties leading to
modifications in runoff and infiltration processes
(Cresswell et al. 1993; Wu et al. 1992).
Level 3: The process is represented and depends on an
environmental characteristic. However, there is no mod-
ule in the model to estimate the effect of the practice on
the environmental characteristic concerned. For instance,
HSPF, MHYDAS, MIKE SHE, and I-phyBV simulate
runoff and infiltration. They have parameters that are
presented as being modified by tillage practices.
However, the value of the parameters has to be supplied
by the user and is not simulated by a module in the model.
Level 4: Environmental characteristics and the process
are fully integrated in the model. Environmental charac-
teristic values are calculated from the application of prac-
tices and have direct or indirect effects on pesticide
transfer processes. For instance, GLEAMS, MACRO,
RZWQM, R-pest, PRZM, SWAT, and annAGNPS sim-
ulate the effect of tillage on soil hydraulic properties

which in turn affects the runoff and infiltration processes
and the resulting pesticide transfers.

Table 4 shows that most models do not simulate erosion
and are thus unable to assess the effects of any practice on
pesticide transfers caused by erosion. Most field-scale models
integrate the effects of tillage on runoff and infiltration at level
4. In catchment scale models, except for annAGNPS and
SWAT, the integration of the effects of tillage is below level
4. Nevertheless, the levels of integration are improved by
bridging catchment scale models to field-scale models
(HSPF). We also found that the representation of time in a
model constrains the level of integration of the effects of
agricultural practices on processes (Section 3.1). Finally, we
found that different models rely on the same method to sim-
ulate the effect of an agricultural practice on a process and that
only a few methods integrate the practice at level 4
(Sections 3.2, 3.3, and 3.4).

3.1 Continuous and event models

Borah and Bera (2003), Quilbé et al. (2006), and Payraudeau
and Gregoire (2012) divided catchment scale models into two
categories: event models and continuous models. Event
models simulate catchment response to a single rainfall event
and are thus short-term response models, whereas continuous
models simulate rainfall events as well as changes in the
catchment between rainfall events. The resulting total simula-
tion period can last from less than 10 years to more than
40 years (Borah and Bera 2004). Our conclusion is that event
models (I-pest, I-phyBV, and MHYDAS) do not simulate the

Fig. 3 The four levels of integration of the effect of agricultural practices on processes in models
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effects of agricultural practices on environmental characteris-
tics. In such models, the initial values of environmental char-
acteristics have to be estimated or measured prior to the
simulation (integration at level 3). For instance, MHYDAS
associates soil-saturated hydraulic conductivity values with
different cropping system components, such as tilled fields
or untilled fields, prior to the calculation (Moussa et al. 2002);
I-phyBV indicator values are inferred from MHYDAS simu-
lation results using the Monte Carlo procedure (Wohlfahrt
2008) or expert parameterization based on soil hydraulic
conductivity at saturation characteristics (Thiollet-Scholtus
2004). Conversely, the 14 continuous models (annAGNPS,
geoPEARL, GLEAMS, HSPF, MACRO, MIKE SHE,
PEARL, PestLCI, PRZM, R-pest, RZWQM, SoilFug, and
SWAT) make it possible to integrate practices at level 4 as
they at least simulate changes in one environmental

characteristic (crop cover). However, this is not the case for
all processes, as only six models integrate the effect of tillage
on runoff by incorporating crop residues at level 4
(annAGNPS, GLEAMS, PRZM, RZWQM, R-pest, and
SWAT) and only five integrate the effect of tillage on erosion
by modifying the erodibility characteristic at level 4
(annAGNPS, GLEAMS, PRZM, R-pest, and SWAT)
(Table 4).

3.2 Tillage and runoff

Three methods are used to produce runoff in models. The first
is the curve number method (USDA 1986). The curve number
is a lumped parameter that includes the effect of land use and
surface conditions, among other characteristics (Ponce and
Hawkins 1996). Surface conditions include the effects of

Fig. 4 Comparison of the effects of the tillage algorithms found in
models on the vertical distribution of pesticides in the soil profile. Tillage
is a moldboard plow operation at 30 cm depth from an initial situation of
10 kg/ha of pesticides applied to the first 1-cm layer of the soil. The soil
was represented as having 11 layers and a depth of 50 cm. The first layer
was 10 mm deep, the second 40 mm, and the other eight were each

50 mm deep. a Initial situation or models without tillage algorithm. b
Pesticide Emission Assessment at Regional and Local scales (PEARL)
tillage algorithm. c Soil and Water Assessment Tool (SWAT) and Root
Zone Water Quality Model (RZWQM) algorithm, the mixing efficiency
parameter is set to 0.95 as indicated in the documentation of themodels. d
DAISY (not an acronym) algorithm
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ground cover. GLEAMS, SWAT, annAGNPS, and PRZM use
a curve number parameter to simulate runoff. The curve
numbers are estimated using the values available in USDA
(1986), which were recently updated (USDA 2012) and in-
clude the effects of both soil hydraulic properties and ground
cover (level 4).

The second is the EPIC method. RZWQM and MACRO
solve Richards’ equation to produce runoff. More information
on methods used to simulate water and pollutant flows in soil
macropores is available in Simunek et al. (2003) and in Köhne
et al. (2009a, b). RZWQMandMACRO require soil hydraulic
properties and use the same algorithm to estimate changes in
soil hydraulic properties after tillage. Soil hydraulic properties
rely on the soil bulk density, which is the result of tillage
operations and soil reconsolidation. In both models, the meth-
od used to predict soil bulk density after tillage is based on the
EPIC model (Williams et al. 1984) which uses a tillage inten-
sity factor and a consolidation bulk density. The EPIC method
comes with tillage intensity factors for various tillage tools
(Rojas and Ahuja 2000; Williams et al. 1990). The EPIC
method is thus level 4 for soil hydraulic properties, but for
runoff through ground cover is only level 2, since ground
cover is not represented as affecting runoff. In HSPF, ground
cover restricts the velocity of runoff and reduces the total
quantity of runoff by allowing more time for infiltration.
HSPF has no tillage module (level 3) unless coupled to
PRZM (level 4).

The last method comes with R-pest. Runoff is calculated as
a function of soil hydraulic properties (soil compaction), till-
age direction, and ground cover. All tillage practices have the
same effect on the soil compaction indicator and ground cover
by decreasing their values to the minimum values (0 and 0 %).
Tillage is thus integrated at level 4 but relies on extreme
modifications of environmental characteristics.

3.3 Tillage and erosion

Models that use the Universal Soil Loss Equation (Wischmeier
and Smith 1978) or its derivative, the Revised Universal Soil
Loss Equation (Renard et al. 1997) to simulate erosion integrate
tillage effects at level 4. In these methods, two factors of the
equation, C and P, stand for the effect of the cropping system
and the erosion control practices on soil erodibility, respective-
ly. The C factor is modified by tillage practices, whereas the P
factor stands for more structural tillage practices (contour till-
age, strip cropping). AnnAGNPS, GLEAMS, and PRZM use a
surface roughness coefficient, which is modified by tillage, to
calculate the C coefficient. Databases that can be used for this
calculation are available in Sharpley and Williams (1990),
Wischmeier and Smith (1978), or the specific model documen-
tation. The Universal Soil Loss Equation is used by models that
use curve numbers to simulate runoff. As for runoff, R-pest

integrates the effect of tillage on erosion at level 4 using
extreme modifications of soil compaction and soil cover.

MIKE SHE and MHYDAS use physically based methods
to represent soil erosion. MHYDAS uses MHYDAS-
EROSION (Gumiere et al. 2010). The MIKE SHE erosion
module is based on the European Soil Erosion Model
(Morgan et al. 1998). In both models, erosion is presented as
being modified by tillage, but there is no module to estimate
the effects of tillage on erosion (level 3). Instead, models use
calibrated data or measured data on fields that are tilled or not
tilled (Gumiere et al. 2010). InMHYDAS, the soil cover is not
represented, but its effect on erosion can be taken into account
using the Manning roughness coefficient. MIKE SHE reduces
rainfall energy by crop canopy interception.

3.4 Data requirements

Despite the large number of studies reviewed by Alletto et al.
(2010) that report the effects of tillage on the fate of pesticides,
tillage integration at level 4 is limited to global trends of
cropping systems such as conventional tillage and conserva-
tion tillage. This confirms the lack of available knowledge to
parameterize the effects of tillage on pesticide transfers. For
instance, the curve number and the Universal Soil Loss
Equation can be used to estimate the effect of conventional
and conservation tillage on runoff and erosion, respectively.
Each tillage modality works with two possible tillage direc-
tions: straight rows or contouring. Other authors integrate
tillage at level 4 using only one tillage modality leading to
modifications of environmental characteristic to extreme
values (R-pest). Other methods with the highest tillage reso-
lution (choice of tool) such as the EPIC method were perhaps
not integrated in the catchment scale models because these
models focus on the effect of tillage on runoff using only soil
hydraulic properties and do not consider the other effects of
tillage on runoff (ground cover) or on other processes
(erosion).

4 Pesticide distribution

When pesticides are applied to fields, the dose is split between
the different environmental compartments (plant, soil, air,
mulch). The distribution of pesticides in the field influences
whether they are subject to transfer and degradation processes
such as washoff, runoff, volatilization, leaching, photo-
degradation, bacterial metabolism, and hydrolysis (Barriuso
2004). For instance, pesticides that are incorporated into the
soil are less exposed to volatilization and runoff than pesticides
applied on the surface of the soil (Larson et al. 1995). Pesticides
applied on plants are subject to washoff, photodegradation, and
plant absorption, whereas pesticides in the soil are not (Calvet
et al. 2005; Galiulin et al. 2002; Norris 1974). Pesticide
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distribution at field scale determines the pathways of the pesti-
cide to the catchment outlet. For instance, Charlier et al. (2009)
showed that, in the specific case of a catchment with shallow
groundwater connected to surface water, pesticide transfers by
runoff cause peaks of high pesticide concentrations in the
stream, whereas shallow groundwater flows buffer pesticide
concentrations by diluting and spreading pesticides over time
leading to chronic contamination of the stream. To illustrate the
potential effects of model structures and model algorithms on
cropping systems assessment, we present practices that directly
affect the distribution of pesticides in fields: tillage (Section 4.1)
and pesticide applications (Section 4.2).

4.1 Tillage effects

To simulate the redistribution of chemicals during tillage,
models have to use a layered representation of the soil.
Sevenmodels do not represent the effect of tillage on pesticide
redistribution in the soil (annAGNPS, GLEAMS, I-pest, I-
phyBV, PestLCI, R-pest, and SoilFug). Among them, four
models (I-pest, I-phyBV, R-pest, and SoilFug) have no layered
representation of the soil. These models cannot represent the
vertical heterogeneity of soil pesticide contents. AnnAGNPS,
GLEAMS, and PestLCI have a layered soil representation but
either lack a module for representing soil mixing by tillage
(PestLCI) or they have one for nutrients but not for pesticides
(annAGNPS and GLEAMS).

PEARL, SWAT, RZWQM, MACRO, and PRZM have a
pesticide mixing module. The simplest module for tillage
mixing is the one in PEARL. The module mixes the amount
of pesticides uniformly throughout the tillage depth (Fig. 4b).
Only tillage depth is needed in this case. The SWAT and
RZWQM mixing modules (Fig. 4c) require two parameters
to estimate chemical mixing in soil layers: depth and mixing
efficiency. The efficiency is the fraction of pesticide mixed
uniformly in the tilled layers. When coupled to the DAISY
field model, the MIKE SHE model has a mixing module with
two basic actions: mix and swap. With the mix effect, pesti-
cides are averaged throughout the tillage depth. Swap simu-
lates the inversion effect of tillage. When swap is enabled,
DAISY considers two equal sub-layers that are swapped
around by tillage after being mixed separately (Fig. 4d).
PRZM andMACRO consider the effect of tillage on pesticide
distribution in the soil only if tillage is performed on the same
day as pesticide application. In these models, subsequent
tillage operations have no effect on pesticide distribution in
soil layers. Suarez (2005) gives the links between tillage
practices and the different tillage algorithms used by these
two models.

Tillage algorithms result in different vertical distributions
of pesticides, making different amounts of pesticide available
for the transfer processes such as runoff and percolation in the
soil. Here we consider that only pesticides in the top layer are

available for runoff. After the operation presented in Fig. 4,
the soil surface holds 0.33 kg ha−1 of pesticide with PEARL.
The RZWQM and SWAT algorithm resulted in more than
twice this amount (0.81 kg ha−1) at the soil surface whereas
the DAISY algorithm does not make any pesticides available
to the soil surface (0 kg ha−1). Models with no tillage algo-
rithm for pesticides assume the total amount of pesticides
applied (10 kg ha−1) is available for runoff. These differences
can lead to simulations of contrasting behaviors of pesticides
in the catchment by modifying the transfer pathways.

4.2 Pesticide application practices

Pesticide application practices lead to several different distri-
butions of the pesticides applied to the different compartments
such as crops, cover crops, weeds, and residues as well as their
distribution in the soil profile. In the models we reviewed, we
identified different height representations of pesticide appli-
cation practices affecting pesticide distribution in environ-
mental compartments (Table 5).

Above canopy broadcast application is a practice included
in all continuous models as well as in indicators. It stands for
spraying pesticide uniformly above the crop canopy. In
models, the amount of pesticide applied is linearly intercepted
by the crop on the basis of crop coverage with the remaining
fraction reaching compartments located under the crop, i.e.,
the mulch and the soil. In GLEAMS, the intercepted fraction
has to be indicated manually. PRZM andMACRO account for
a linear or an exponential filtration by crop canopy. Among
the models reviewed, only RZWQM simulates the intercep-
tion of pesticides by a mulch of crop residues before they
reach the soil (Table 5).

Soil broadcast means the pesticide is directly applied on
the soil. In models, this is represented by directly adding non-
drifted pesticides to the soil. In this case, no interception by
any environmental compartments other than soil is simulated.
If soil is layered, pesticide is added to the first centimeter of
soil (GLEAMS, annAGNPS, and RZWQM); pesticide is
distributed to 4 cm, linearly decreasing with depth (PRZM
and MACRO); or pesticide is added to the top computation
layer (PEARL and geoPEARL). If soil is not layered, pesti-
cide is homogenously mixed in the soil.

Foliar application means the pesticide is applied to the
leaves using manual or vertical mechanical pulverization. In
models, it is simulated by adding non-drifted pesticides to the
crop compartment only.

The use of slow release (microencapsulated) pesticide
formulations (Shasha et al. 1976; Sinclair 1973) is simulated
only in RZWQM using a time-dependant amount of pesticide
available from an initial stock.

Injection in the soil is the application of the pesticide at a
certain depth in the soil with or without pressure (All and
Dutcher 1977). It is usually used for fumigation purposes. In
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models, it is simulated by concentrating pesticides at a specific
depth in the soil.

Band application and localized application means the
pesticide is applied in parallel bands or in specific places such
as on or between the rows. In GLEAMS, band application
decreases the total amount of pesticide applied to fields com-
pared to a broadcast application (Knisel et al. 1995). It ac-
counts for the ratio of the treated area and the total area of the
field. In MACRO and PRZM, however, localized pesticide
applications attracted our attention. Indeed, the horizontal
distribution of pesticides on fields resulting from localized
applications is represented by a vertical depth-dependant dis-
tribution of pesticide in the soil profile (Suarez 2005). These
two models use their conceptual vertical discretization to
represent the effect of practices leading to heterogeneous
horizontal distribution of pesticides in the soil.

Even if an application method is taken into account, its
effect on pesticide transfers relies on the conceptual compart-
mentalization of the model. For instance, RZWQM is the only
model we reviewed in which mulch intercepts pesticides. The
other models do not simulate mulch or do not simulate

pesticide interception by mulch (Tables 4 and 5). This impacts
the whole simulation of pesticide fate as the pesticides in these
different environmental compartments are not subject to the
same processes.

5 Innovative practices: ground cover management

Ground cover is a key environmental characteristic affecting
pesticide transfer processes such as runoff, volatilization, and
erosion (Alletto et al. 2010; Antonious and Byers 1997;
Bartley et al. 2006; Foltz 2012; Gish et al. 1995). Ground
cover can take the form of pervious or impervious mulches,
and these have contrasting effects on pesticide transfers.
Pervious mulch made of dead or living plants reduces runoff
(Dabney 1998; Findeling et al. 2003) whereas impervious
mulches (such as plastic mulch) favor runoff (Rice et al.
2001). Pervious mulch results from a combination of practices
and processes such as planting a crop and a cover crop, the
growth and development of both along with spontaneous
weeds.Weeding or mowing transforms livingmulch into dead

Table 5 Pesticide application practices available in models

Models Above canopy
broadcast

Soil
broadcast

Incorporation
with tillage

Foliar
application

Application in
irrigation water

Slow release
application

Injection
in soil

Band or localized
application

annAGNPS X X X X – – – –

geoPEARL X X X X – – X –

GLEAMS X X X X X – X X

HSPF See PRZM via PZ2HSPF

I-pest X – X – – – – –

I-phyBV X X X – – – X –

MACRO X X X – – – X X

MHYDAS Not documented

MIKE SHE Xb – – – – – – –

PEARL X X X X – – X –

PestLCI X – – – – – – –

PRZM X X X – – – X X

R-pest – X – – – – – –

RZWQM Xa X X X X X X –

SoilFug Not documented

SWAT X – Xc – – – – –

Catchment scale models are in bold; field-scale models are in italics

X taken into account in the model, – not taken into account in the model or undocumented, Above canopy broadcast the pesticide is sprayed uniformly
above the crop canopy, Soil broadcast the pesticide is directly applied on the soil,Foliar application the pesticide is applied to the leaves usingmanual or
vertical mechanical pulverization, Application in irrigation water the pesticide is diluted in irrigation water, Slow release application the formulation of
the pesticide results in a slow release of the pesticide in or on soil, Injection in soil the pesticide is applied at a certain depth in the soil, Band or localized
application the pesticide is applied in parallel bands or in specific places such as on or between the rows
a Pesticide interception by crop residues
b Using DAISY as field model
c Only after an above canopy broadcast application
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mulch if not removed. Tillage incorporates mulches into the
soil with varying degrees of efficiency. To assess whether the
models simulate innovative cropping systems and compare
them to conventional ones, we analyzed the effects of prac-
tices affecting ground cover in both catchment and field-scale
models (Table 4): tillage (Section 5.1), plastic mulching
(Section 5.2), “dead” mulching (Section 5.3), and cover
cropping and intercropping (Section 5.4).

5.1 Tillage and ground cover

Ground cover is directly affected by tillage, by the burying of
plants and plant residues. In SWAT, MIKE SHE–DAISY, and
RZWQM, the effect of tillage on ground cover is simulated in the
same way as chemical redistribution in the soil. The mixing
module is used to estimate soil cover as a result of biomass
redistribution in the soil. GLEAMS, annAGNPS, and PRZM
use a residue incorporation efficiency parameter to determine the
percentage of residue and plant material incorporated into the soil
and left on the surface after a tillage operation (Knisel andWalter
1980; Knisel and Walter 1993). R-pest has only one tillage
operation in its database, and it decreases soil cover by weeds
and residues to 0 % (Tixier 2004). MACRO, PEARL, PestLCI,
and SoilFug do not simulate residues on the soil surface. MIKE
SHE or HSPF can take the effect of tillage on ground cover into
account by bridging pesticide transfer models at the field scale to
these two catchment scalemodels. The effect of tillage on ground
cover is simulated by half the models reviewed (Table 4),
depending on the modelers’ objectives.

5.2 Plastic mulch

The most widely used impervious mulch is plastic, and its use
has increased dramatically in the last 10 years (Kasirajan and
Ngouajio 2012). It is mainly used for weed control in vegeta-
ble crops (Rice et al. 2001) and pineapple (Dusek et al. 2010).
Impervious mulch favors runoff from covered fields. Due to
its high cost, it is used for small area with high-income crops.
However, none of the models we reviewed had available
parameters or modules to simulate the effects of impervious
mulch on the water budget or on the fate of pesticides.
However, Dietrich and Gallagher (2002) showed extremely
high concentrations of pesticides (>100 μg L−1) in runoff
water from tomato fields covered with plastic mulch which
might be explained by the fraction of pesticide washed off
leaves but not intercepted by the soil during runoff. In the case
of pesticides that only very weakly bind to plastic, runoff can
be enriched by the fraction of pesticides that are deposited on
the mulch during application. For this reason, plastic
mulching has been described as favoring pesticide transfers.
Nevertheless, such effects are not included in pesticide trans-
fer models either at the catchment or field scale.

5.3 Dead mulch

Mowing, clearing, pruning, harvesting, and weeding remove
plant biomass from a living plant whether it be a crop, a cover
crop, or a weed. The biomass can either be removed from the
field or feed the pool of residues that remains on the soil
surface. In the first case, the overall soil cover is depreciated,
whereas in the second case, living mulch is converted into
dead mulch and the plant residues undergo degradation
(Raphael et al. 2012; Ripoche et al. 2008). GLEAMS,
RZWQM, R-pest, PRZM, SWAT, annAGNPS, DAISY, and
HSPF can simulate crop residues (Table 4), but not all models
simulate the impact of a crop residue cover on pesticide
transfers. For instance, in DAISY for MIKE SHE, crop resi-
dues are simulated to estimate changes in the organic matter
pool but were not found to have an effect on hydrologic or
pesticide transfer processes through ground cover. R-pest and
SWATare the only two models that simulate the generation of
dead mulch by practices other than harvesting. SWAT, how-
ever, has only a partial support for the different practices. They
can be simulated by combinations of simpler unitary opera-
tions with overridden parameters. Mulching crop residues
during the crop cycle is not directly considered in the models
(except with R-pest), thus confirming a lack in the represen-
tation of agricultural practices associated with ground cover in
pesticide transfer models at both the field and catchment
scales.

5.4 Crops, weeds, and cover crops

Ground cover is affected by crops, weeds, and cover crops.
Except I-pest, I-phyBV, and MHYDAS, all the models
reviewed simulate the growth of at least one crop associated
with agricultural practices.

Mixing crops has potentially beneficial effects on environ-
mental impacts and increases productivity (Malézieux et al.
2009). To integrate these effects of mixing crops, a model is
needed that simulates the growth of several crops at the same
time as well as their interactions. However, mixtures of crops
and crop–weed associations are not widely represented in
most crop models (Malézieux et al. 2009). Among catchment
scale models, only SWAT can simulate mixing crops
(Table 4). R-pest coupled with SIMBA enables a simple
dynamic simulation of ground cover by weed growth under
a banana canopy. A more complex support to simulate the
growth of a cover crop has recently been developed for
SIMBA (Tixier et al. 2011). I-pest and I-phyBV make it
possible to indicate percentage soil cover by weeds, cover
crops, and associated crops but do not simulate their growth.
A major limitation of the pesticide transfer models at the field
and catchment scales is that their crop models do not simulate
mixed cropping, cover cropping, or weed management.
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6 Upscaling practices

6.1 Space representation

Three classifications are usually given for spatial representa-
tion in catchment scale models: (a) lumped models, (b) dis-
tributed models, and (c) semi-distributed models (Beckers and
Degré 2011; Gárfias et al. 1996). Lumped models are unable
to account for the position of cropping systems within the
watershed. However, they can be used on small catchments to
represent pollutant transfers in groundwater using residence
time distribution in the aquifers (Farlin et al. 2013).
Distributed models split the catchment into units of fixed size
usually by using a square grid (MIKE SHE, AGNPS) or a
triangular grid (Julien et al. 1995). Spatial representation in
distributed models is a complex affair concerning landscape
elements that are smaller than the grid resolution. This is
usually the case of linear entities, such as roads and ditches,
as well as small areal entities such as buffer zones which have
been shown to affect flows in watersheds (van Dijk et al.
1996; Jones et al. 2000). Semi-distributed models represent
a watershed as a combination of lumped units usually called
hydrologic response units or homogenous land units. These
units are to be considered homogeneous with respect to their
environmental characteristics (usually slope, soil type, and
cropping system). In fact, and especially when modeling large
watersheds, homogeneous units usually include a variety of
cropping systems, leading to drastic simplifications in
cropping system diversity within the homogeneous units.
The difference between distributed and semi-distributed
models is fuzzy as a distributed model grid considers lumped
parameters. The distributed characteristic of a model depends
on the ratio of the grid size to the size of the watershed
(Bathurst 1986). This determines whether the model can sep-
arate agricultural fields or combines cropping system diversity
under a unique value.

Over and above the size of the units and the regularity of
the grids of distributed and semi-distributed models, the most
astonishing difference in spatial representations in catchment
scale models is related to the interactions between spatial units
(“the interacting unit models”). Four of the models (HSPF,
MIKE SHE, MHYDAS, I-phyBV) we reviewed simulate
spatial interactions: Pesticides and water flows produced by
a spatial unit enter the next spatial unit in the flow path and are
subject to the processes that occur in the neighboring spatial
unit. The discretization method proposed by Lagacherie et al.
(2010) in Geo-MHYDAS uses an irregular grid but enables
interactions between spatial units such as inflow interception
by defining a topological organization of units within catch-
ments. Such advances make it possible to generate space
discretization to account for different types of spatial units
(channels and fields for instance) while allowing spatial inter-
action between units on pesticide flows.

6.2 Drift modeling

The direct loss of pesticides during their application is called
drift. This loss can pollute the vicinity of the field including
streams, grass strips, or other fields. Application methods and
the height of pulverization are the main factors that determine the
amount of pesticides that drift during application taken into
account by models (Birkved and Hauschild 2006; Wauchope
et al. 2004; van der Werf and Zimmer 1998). Models can be
classified in three groups depending on the way they handle drift
(Table 4). Drifted pesticides may be represented as leaving the
system (SWAT, GLEAMS, RZWQM, PestLCI, PRZM, and
HSPF with the PZ2HSPF bridge), as being re-deposited as a
function of distance from the field (I-pest and I-phyBV), or may
simply not be taken into account (R-pest, annAGNPS, MIKE
SHE, SoilFug). We found no information in MHYDAS or
PEARL even though the drift process is mentioned in PEARL
documentation (Leistra et al. 2001). Models that consider drift to
leave the system use a pesticide application efficiency factor. In
thesemodels, the efficiency of pesticide application is the fraction
of pesticides reaching the field, with the drifted part being lost.
Values proposed for estimating drifted fractions inmodels that do
not consider redeposition are substantial. Wauchope et al. (2004)
estimate drift to range from 40 to 55 % of the amount of
pesticides applied. Such values are confirmed by values ranging
from 20 to 50 % of the applied dose (Maybank et al. 1978;
Ravier et al. 2005).

At the catchment scale, the objective of calculating drift is
estimating pesticide deposition on surrounding fields and rivers.
Models considering drift deposition use the Ganzelmeier estima-
tion method (Ganzelmeier et al. 1995) but only account for
redeposition in rivers. Estimation of pesticide deposition is given
as a function of distance from the field, the application technique,
and the height of application. I-pest and I-phyBVuse this method
to estimate pesticide drift reaching the river (Thiollet-Scholtus
2004; van der Werf and Zimmer 1998). More recently, SWAT
was adapted by Holvoet et al. (2008) to deal with direct losses
and redeposition during pesticide applications also using the
Ganzelmeier method. However, this has not yet been incorporat-
ed in the current version. The other catchment models fail to use
the drift outputs from the field-scale models as inputs, e.g.,
pesticide redeposition, when modeling catchment processes.
This shows that the change in scale needs to be better addressed
in catchment models. Drift redeposition in catchments models
will have to account for the organization and characteristics of the
landscape when assessing the effects of drift on streams. Trees or
other tall crops acting as buffers are not taken into consideration
by theGanzelmeiermethod in drift interception even though they
can intercept a significant part of pesticide drift (Hewitt 2001; de
Schampheleire et al. 2008). In their literature review, Ucar and
Hall (2001) reported a lack of standardmethodology to assess the
effect of physical barriers on pesticide drift. Drift models have
been developed to estimate the contamination of unwanted
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targets by pesticides (Ellis and Miller 2010; Gil and Sinfort
2005). One of the next moves in catchment scale modeling
should be to simplify and integrate landscape scale drift models.

Drift is the most weighted parameter determining river
contamination risk in I-pest even for orchard systems. This
is not in accordance with the lower influence of drift than of
runoff in river contamination found in orchard systems
(Schulz 2001) or with authors who report little influence of
drift on stream water quality in open cereal cropping areas
(Kreuger 1998). The I-pest indicator is considered at its unfa-
vorable value when the drifted fraction reaching the river is
higher than an arbitrarily selected value of 1 % (van der Werf
and Zimmer 1998). To better account for the effect of drift on
surface water contamination, the stream discharge—or at least
the length and the width of the stream—should be taken into
consideration.

7 Practices at the catchment scale

Catchment practices are structures that are integrated in the
landscape. They modify the behavior of pesticides before they

reach the catchment outlet. Inmodel documentation, we found
information on buffer zones, drainage ditches and waterways,
water bodies (ponds), tile drainage, and irrigation practices
(Table 6). In the following sections, we show that the man-
agement of catchment structures needs to be better taken into
account in models. We also found that not all models simulate
the remobilization of pesticides intercepted by catchment
structures. To illustrate these results, we compare the effects
of drainage ditches, grassed waterways (Section 7.1) and
buffer zone areas (Section 7.2) on pesticide transfers in the
different models.

7.1 Ditches and waterways

The objectives of creating drainage ditches and grassed wa-
terways are to intercept runoff and to favor water and pesticide
infiltration while routing flow to the outlet. The vegetative
cover of ditches and waterways is a key factor in pesticide
interception because plants retain pesticides (Moore et al.
2001, 2011). On the contrary, non-vegetated ditches and
gullies favor quick pesticide routing to the permanent hydro-
graphic network, leading to pesticide contamination peaks.

Table 6 Catchment practices interacting with pesticide transfers available in models

Models Catchment practices Irrigation

Buffer zone Drainage ditches Waterbodies Tile drainage Irrigation Chemicals in irrigation water Water removal from source

annAGNPS Xb X X X X X –

geoPEARL – X – X X X –

GLEAMS – – – – X – –

HSPF X X X – Xe – –

I-pest – – – – – – –

I-phyBV X X – X – – –

MACRO – – – X X – –

MHYDAS X Xc – Xc – – –

MIKE SHE X X Xd X X – X

PEARL – X – X X X –

PestLCI – – – – X – –

PRZM Xa X – – X – –

R-pest – – – – X – –

RZWQM – – – X X – –

SoilFug – – – – X – –

SWAT X X X X X X X

Catchment scale models are in bold; field-scale models are in italics

X taken into account in the model, – not taken into account in the model or undocumented
a Using PRZM-BUFF
bCoupling with the Riparian Ecosystem Management Model
c Using MHYDAS-DRAIN
dUsing MIKE 11
eUsing PRZM as field model
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Three models use drainage ditches to simulate the routing
of excess water to the hydrographic network only
(geoPEARL, MIKE SHE, and MHYDAS). MHYDAS uses
MHYDAS-DRAIN to represent ditches (Tiemeyer et al.
2007). The module has been used to test the effect of ditch
networks on hydrology (flow routing and reinfiltration) but
not on pesticide behavior (Levavasseur et al. 2012). None of
the three models simulate the effect of a grassed ditch on
pesticide removal from water and sediment flow. In these
models, groundwater drainage is usually associated with tile
drainage. As a result, in all three models, ditches favor fast
pesticide flows to the river network. Models should be select-
ed knowing that not all models that simulate ditches were
designed to simulate pesticide interception by ditches.

Ditches and waterways in SWAT, annAGNPS, HSPF, and
I-phyBV remove pesticides. In annAGNPS and HSPF, the
effect of grassed waterways is parameterized using the chan-
nel module (LimnoTech 2010; Mohamoud et al. 2010). All
four models make it possible to specify the length of ditches to
assess their effect on pesticide removal. The width (HSPF,
SWAT), the shape (HSPF), and the cover (HSPF, I-phyBV,
and SWAT) of the waterways are used to determine pesticide
interception effectiveness. Nevertheless, we found no mod-
ules that accounted for the management of ditches or water-
ways in the models or for the natural evolution of their ground
cover.

7.2 Buffer zones

Buffer zone is a generic term to define non-channelized areas
that intercept runoff, sediments, and pesticides due to a high
vegetative or deadmulch coverage (Barling andMoore 1994).
These zones are assumed to produce very little runoff and
erosion. Three main types of buffer zones exist: buffer grassed
strips, hedges, and riparian zones. Even though any correctly
managed land can act as a buffer zone, these three zones
intercept runoff, pesticides, and sediments (Campbell et al.
2004; Carluer et al. 2008; Lacas et al. 2005, 2012; Lin et al.
2002; Madrigal et al. 2002; Madrigal 2004; Passeport et al.
2013; Tortrat 2005). Except geoPEARL and SoilFug, all the
catchment scale models we reviewed have been used to sim-
ulate the effect of buffer zones on pesticides, runoff, or ero-
sion.While the AGNPSmodel (event model used as a basis of
annAGNPS) simulates the buffer zone effects of sediments
and attached pesticides (Vennix and Northcott 2004),
annAGNPS does not. Bridging annAGNPS with the
Riparian Ecosystem Management Model (REMM) is a way
to simulate the effect of buffer zones (Yuan et al. 2007).
AnnAGNPS-REMM simulates only riparian zones, which
limits the spatial distribution of buffer zones in the catchment.
Among pesticide transfer models at the field scale, only
PRZM simulates buffer zones using the PRZM-BUFF model
(Winchell and Estes 2009).

HSPF, MIKE SHE, I-phyBV, andMHYDAS are interacting
unit models. Buffer zones are simulated by the generic field
module of the model. In this case, any piece of land is poten-
tially a pesticide interceptor and emitter at the same time. The
size of buffer zones is constrained by the minimum size of the
unit area accepted by the model. Water and pollutant intercep-
tion depends on environmental characteristics which can be
modified by the practices available in the model. In SWAT, no
interaction between hydrologic response units can be simulated.
Buffer zones are part of the hydrologic response units; they
interact with the runoff generated by the unit, but not with
runoff generated by upland units. In SWAT, a buffer zone can
only intercept flows generated by one hydrologic response unit
while models that simulate inflows in each spatial unit account
for larger contributing areas corresponding to the watershed
whose outlet is the buffer zone.

In continuous models, two contrasting representations of
pesticide interception by buffer zones exist. HSPF and MIKE
SHE represent conservative pesticide interception, which
means that the next rainfall event remobilizes previously
intercepted pesticides. In contrast, SWAT pesticide interception
by buffer zones is not conservative. The removed fraction
leaves the system. This is not in agreement with Lacas et al.
(2005) and Barling and Moore (1994), who report that pesti-
cides intercepted by buffer zones move to the subsurface or are
desorbed from the soil surface. Thus, when simulating the
effects of buffer zones, users must carefully check that the
model’s assumption will not lead to an underestimation of
pesticide pollution at the catchment outlet.

8 Conclusions

This review helped identify the improvements required to better
account for the effects of agricultural practices on pesticide
transfers. We also provide some recommendations to help model
users select an appropriate model depending on their objectives:

1. The change in scale is poorly addressed, as representa-
tions of pesticide applications on drift kept the original
field-scale representation in all models except I-phyBV.
Drift redeposition has been addressed in SWAT but is not
yet included in the current version of the model. Drift
needs to be better integrated in catchment models.

2. The integration of innovative practices is a neces-
sary step forward in field and catchment models to
ensure models are capable of assessing innovative
cropping systems. Plastic mulches and associated
cover cropping practices are already integrated in
crop models such as STICS (Brisson et al. 2009),
the cropping system representations of which may
serve their improvements in pesticide transfer
models at the field and catchment scales.
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3. Using the conceptual framework proposed in this article,
model users and developers will be aware of both the
effects of practices represented by models and of those
which are not. Its use will make descriptions of the effects
of practices clearer, which, in turn, will make the selection
and development of models easier.

4. A practice library compatible with the different models
needs to be developed. This library should include empir-
ical data and equations to simulate the effects of practices
on environmental characteristics. Relationships between
the parameters of the main methods used to simulate the
effects of practices on environmental characteristics will
become apparent.

5. Users should only select models that represent catchment
structures that are not conservative in the knowledge they
may underestimate pesticide transfers.

6. Model structure influences how pesticides are distributed
and subjected to transfers processes. Model users and
modelers must think carefully about the conceptual envi-
ronmental compartments needed to simulate the effects of
practices together with processes.

7. Semi-distributed models should make it possible for users to
enable topological representations of catchments and allow
flow interactions and transfers between spatial units. In some
place, such interactions might be significant.

8. Natural changes in the vegetated cover of catchment
structures (buffer strips, ditches), as well as the effects of
management practices on such structures need to be better
addressed in catchment models.

9. The results of simulations made with models using the
same practice data need to be compared. It is important to
check whether (1) pesticide emissions at field borders
vary significantly among models, (2) models with better
levels of integration of the effects of tillage and mulching
better simulate pesticides transfers, and (3) the spatial
representation of the organization of the catchment affects
contamination by pesticides at the outlet of the catchment.
This will highlight the strengths and weaknesses of catch-
ment scale models in assessing the effects of practices on
pesticide transfers.
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