
HAL Id: hal-01197655
https://hal.science/hal-01197655

Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and approximate inference in graphical models:
variable elimination and beyond

Nathalie Dubois Peyrard, Simon de Givry, Alain Franc, Stephane Robin,
Régis Sabbadin, Thomas Schiex, Matthieu Vignes

To cite this version:
Nathalie Dubois Peyrard, Simon de Givry, Alain Franc, Stephane Robin, Régis Sabbadin, et al.. Exact
and approximate inference in graphical models: variable elimination and beyond. 2015. �hal-01197655�

https://hal.science/hal-01197655
https://hal.archives-ouvertes.fr


Exact and approximate inference in graphical models:
variable elimination and beyond

Nathalie Peyrarda, Simon de Givrya, Alain Francb, Stéphane Robinc,d,
Régis Sabbadina, Thomas Schiexa, Matthieu Vignesa

a INRA UR 875, Unité de Mathématiques et Informatique Appliquées,
Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
b INRA UMR 1202, Biodiversité, Gènes et Communautés,

69, route d’Arcachon, Pierroton, 33612 Cestas
Cedex, France

c AgroParisTech, UMR 518 MIA, Paris 5e, France
d INRA, UM R518 MIA, Paris 5e, France

June 30, 2015

Abstract

Probabilistic graphical models offer a powerful framework to account for the dependence
structure between variables, which can be represented as a graph. The dependence between
variables may render inference tasks such as computing normalizing constant, marginalization
or optimization intractable. The objective of this paper is to review techniques exploiting the
graph structure for exact inference borrowed from optimization and computer science. They
are not yet standard in the statistician toolkit, and we specify under which conditions they are
efficient in practice. They are built on the principle of variable elimination whose complex-
ity is dictated in an intricate way by the order in which variables are eliminated in the graph.
The so-called treewidth of the graph characterizes this algorithmic complexity: low-treewidth
graphs can be processed efficiently. Algorithmic solutions derived from variable elimination
and the notion of treewidth are illustrated on problems of treewidth computation and inference
in challenging benchmarks from optimization competitions. We also review how efficient tech-
niques for approximate inference such as loopy belief propagation and variational approaches
can be linked to variable elimination and we illustrate them in the context of Expectation-
Maximisation procedures for parameter estimation in coupled Hidden Markov Models.

Keywords: graphical model, computational inference, treewidth, message passing, variational
approximations

1

ar
X

iv
:1

50
6.

08
54

4v
1 

 [
st

at
.M

L
] 

 2
9 

Ju
n 

20
15



1 Introduction

Most real complex systems are made up or modeled by elementary objects that locally interact
with each other. Graphical models (Bishop, 2006; Koller and Friedman, 2009; Murphy, 2012)
are formed by variables linked to each other by stochastic relationships. They enable to model
dependencies in possibly high-dimensional heterogeneous data and to capture uncertainty. Graph-
ical models have been applied in a wide range of areas like image analysis, speech recognition,
bioinformatics, ecology to name a few.

In real applications a large number of random variables with a complex dependency structure
are involved. As a consequence, inference tasks such as the calculation of a normalization con-
stant, a marginal distribution or the mode of the joint distribution are challenging. Three main
approaches exist to evaluate such quantities for a given distribution p defining a graphical model:
(a) compute them in an exact manner; (b) use a stochastic algorithm to sample from the distribu-
tion p to get (unbiased) estimates; (c) derive an approximation of p for which the exact calculation
is possible. Even if appealing, exact computation on p often leads to very time and memory con-
suming procedures, since the number of elements to store or elementary operations to perform
increase exponentially with n the number of random variables. The second approach is probably
the most widely used by statisticians and modelers. Stochastic algorithms such as Monte-Carlo
Markov Chains (MCMC, Robert and Casella, 2004), Gibbs sampling (Casella and George, 1992)
and particle filtering (Gordon and Smith, 1993) have become standard tools in many fields of ap-
plication using statistical models. The last approach includes variational approximation techniques
(Wainwright and Jordan, 2008), which are starting to become common practice in computational
statistics. In essence, approaches of type (b) provide an approximate answer to an exact problem
whereas approaches of type (c) provide an exact answer to an approximate problem.

In this paper we focus on approaches of type (a) and (c), and we will review techniques for
exact or approximate inference in graphical models borrowed from both optimization and computer
science. They are computationally efficient, yet not standard in the statistician toolkit. Our purpose
is to show that the characterization of the structure of the graph G associated to a graphical model
(precise definitions are given in Section 2) enables both to determine if the exact calculation of the
quantities of interest (marginal distribution, normalization constant, mode) can be implemented
efficiently and to derive a class of operational algorithms. When the answer is no, the same analysis
enables to design algorithms to compute an approximation of the desired quantities for which an
acceptable complexity can be obtained.

The central algorithmic tool is the variable elimination concept (Bertelé and Brioshi, 1972).
In Section 3 we adopt a unified algebraic presentation of the different inference tasks (marginal-
ization, normalizing constant or mode evaluation) to emphasize that all of them can be solved as
particular cases of variable elimination. This implies that if variable elimination is efficient for one
task it will also be efficient for the other ones. The key ingredient to design efficient algorithms
based on variable elimination is the clever use of distributivity between algebraic operators. For
instance distributivity of the product (×) over the sum (+) enables to write (a × b) + (a × c) =
a × (b + c) and evaluating the left-hand side of this equality requires two multiplications and one
addition while evaluating the right-hand side requires one multiplication and one addition. Simi-
larly since max(a + b, a + c) = a + max(b, c) it is more efficient to compute the right-hand side
from an algorithmic point of view. Distributivity enables to minimize the number of operations.

2



Associativity and commutativity are also required and the algebra behind is the semi-ring cate-
gory (from which some notations will be borrowed). Inference algorithms using the distributivity
property have been known and published in the Artificial Intelligence and Machine Learning liter-
ature under different names, such as sum-prod, or max-sum (Pearl, 1988; Bishop, 2006) and are
examples of variable elimination.

Variable elimination relies on the choice of an order of elimination of the variables (either by
marginalization or by maximization). This corresponds to the ordering calculations are performed
when applying distributivity. The topology of the graph G provides key information to organize
the calculations for an optimal use of distributivity, i.e. to minimize the number of elementary
operations to perform. For example, when the graph is a tree, the most efficient elimination order
corresponds to eliminating recursively the vertices of degree one, starting from the leaves towards
the root. For an arbitrary graph, the notion of an optimal elimination order for inference in a graph-
ical model is closely linked to the notion of treewidth of the associated graph G. We will see in
Section 3 the reason why inference algorithms based on variable elimination with the best elimi-
nation order are of complexity linear in n but exponential in the treewidth. Therefore treewidth is
the key characterization of G to determine if exact inference is possible in practice or not.

The concept of treewidth has been proposed in parallel in computer science (Bodlaender, 1994)
and in discrete mathematics and graph minor theory (see Robertson and Seymour, 1986; Lovász,
2005). Discrete mathematics existence theorems (Robertson and Seymour, 1986) establish that
there exists an algorithm for computing the treewidth of any graph with complexity polynomial
in n (but exponential in the treewidth), and even the degree of the polynomial is given. However
this result does not tell how to derive and implement the algorithm, apart from some specific cases
(as trees, chordal graphs, and series-parallel graphs, see Duffin (1965). So we will also present
in Section 4 several state-of-the-art algorithms for approximate evaluation of the treewidth and
illustrate their behavior on benchmarks borrowed from optimization competitions.

Variable elimination has also lead to message passing algorithms (Pearl, 1988) which are now
common tools in computer science or machine learning. More recently these algorithms have
been reinterpreted as re-parametrization tools (Koller and Friedman, 2009). We will explain in
Section 5 how re-parametrization can be used as a pre-processing tool to transform the original
graphical model into an equivalent one for which inference may been simpler. Message passing is
not the only way to perform re-parametrization and we will discuss alternative efficient algorithms
that have been proposed in the context of constraint satisfaction problems (CSP, see (Rossi et al.,
2006)) and that have not yet been exploited in the context of graphical models.

As emphasized above, efficient exact inference algorithms can only be designed for graphical
models with limited treewidth (much less than the number of vertices), which is a far from being
the general case. But the principle of variable elimination and message passing for a tree can still
be applied to any graph leading then to heuristic inference algorithms. The most famous heuristics
is the Loopy Belief Propagation algorithm (Kschischang et al., 2001) We recall in Section 6 the
result that establishes LBP as a variational approximation method. Variational methods rely on
the choice of a distribution which renders inference easier, to approximate the original complex
graphical model p. The approximate distribution is chosen within a class of models for which
efficient inference algorithms exist, that is models with small treewidth (0, 1 or 2 in practice).
We review some of the standard choices and we illustrate on the problem of parameter estimation
in coupled Hidden Markov Model (Ghahramani and Jordan, 1997) how variational methods have

3



been applied in practice with different approximate distributions, each of them corresponding to a
different underlying treewidth (Section 7).

2 Graphical Models

2.1 Models definition

Consider a a stochastic system defined by a set of random variables X = (X1, . . . , Xn). Each
variable Xi takes values in Λi. Then, a realization of X is a set x = (x1, . . . , xn), with xi ∈ Λi.
The set of all possible realizations is called the state space, and is denoted Λ =

∏n
i=1 Λi. If A

is a subset of V = {1, . . . , n}, XA, xA and ΛA are respectively the subset of random variables
{Xi, i ∈ A}, the set of realizations {xi, i ∈ A} and the state space of XA. If p is the joint
probability distribution of X on Λ, we denote

∀ x ∈ Λ, p(x) = p(X = x).

Note that we focus here on discrete variables (we will discuss inference in the case of contin-
uous variables on examples in Section 8). A joint distribution p on Λ is said to be a probabilistic
graphical model (Lauritzen, 1996; Bishop, 2006; Koller and Friedman, 2009) indexed on a set B
of parts of V if there exists a set Ψ = {ψB}B∈B of maps from ΛB to R+, called potential functions,
indexed by B such that p can be expressed in the following factorized form:

p(x) =
1

Z

∏
B∈B

ψB(xB), (1)

where Z =
∑

x∈Λ

∏
B∈B ψB(xB) is the normalizing constant, also called partition function. The

elements B ∈ B are the scopes of the potential functions and |B| is the arity of the potential
function ψB. The set of scopes of all the potential functions involving variable Xi is denoted
Bi =

⋃
B∈B
B3i
{B}.

One desirable property of graphical models is that of Markov local independence: if p(X = x)
can be expressed as (1) then a variable Xi is (stochastically) independent of all others in X con-
ditionally to the set of variables X(∪B∈BiB)\i. This set is called the Markov blanket of Xi, or its
neighborhood. We will denote it Ni. These conditional independences can be represented graph-
ically, by a graph with one vertex per variable in X . The question of encoding the independence
properties associated with a given distribution into a graph structure is well described in (Koller and
Friedman, 2009), and we will not discuss it here. We will consider the classical graph G = (V,E)
associated to a decomposition of the form (1) where an edge is drawn between two vertices i and
j if there exists B ∈ B such that i and j are in B. Such a representation of a graphical model is
actually not as rich as the representation (1). For instance, if n = 3, the two cases B = {{1, 2, 3}}
and B = {{1, 2}, {2, 3}, {3, 1}} are represented by the same graph G, namely a clique of size 3.
The factor graph representation goes beyond this limit: this graphical representation is a bipartite
graph with one vertex per potential function and one vertex per variable. edges are only between
functions and variables. An edge is present between a function vertex (also called factor vertex)

4



12

34

5

67
(a)

12

34

5

67
(b)

12

34

5

67
(c)

12

34

5

67
(d)

Figure 1: From left to right: (a) Graphical representation of a directed graphical model where po-
tential functions define the conditional probability of each variable given its parents values; (b) The
corresponding factor graph where every potential function is represented as a factor (square ver-
tex) connected to the variables that are involved in it; (c) Graphical representation of an undirected
graphical model. It is impossible from this graph to distinguish between a graphical model defined
by a unique potential function on vertices 3, 4 and 5 from a model defined by 3 pairwise poten-
tial functions over each pair (3, 4), (3, 5) and (4, 5); (d) The corresponding factor graph, which
unambiguously defines these potential functions (here three pairwise potential functions)

and a variable vertex if the variable is in the scope of the potential function. Figure 1 displays
examples of the two graphical representations.

There exists several families of probabilistic graphical models (Koller and Friedman, 2009;
Murphy, 2012). They can be grouped into directed and undirected ones. The most classical
directed framework is that of Bayesian network (Pearl, 1988; Jensen and Nielsen, 2007). In a
Bayesian network, an edge is directed from a parent vertex to a child vertex and potential func-
tions are conditional probabilities of a variable given its parents in the graph (see Figure 1 (a)).
In such models, trivially Z = 1. Undirected probabilistic graphical models (see Figure 1 (c)) are
equivalent to Markov Random Fields (Li, 2001) as soon as the potential functions are in R+∗. In a
Markov random field (MRF), a potential function is not necessarily a probability distribution: ψB
is not required to be normalized.

Deterministic Graphical models. Although the terminology of ’Graphical Models’ is often
used to refer to stochastic graphical models, the idea of describing a joint distribution on a set of
variables through local functions has also been used in Artificial Intelligence to concisely describe
Boolean functions or cost functions, with no normalization constraint. In a graphical model with
only Boolean (0/1) potential functions, each potential function describes a constraint between vari-
ables. If the potential function takes value 1, the corresponding realization is said to satisfy the
constraint. The graphical model is known as a ’Constraint Network’. It describes a joint Boolean
function on all variables that takes value 1 if and only if all constraints are satisfied. The problem
of finding a realization that satisfies all the constraints, called a solution of the network, is the
’Constraint Satisfaction Problem’ (CSP) (Rossi et al., 2006). This framework is used to model
and solve combinatorial optimization problems and there is a variety of software tools to solve it.

5



When variables are Boolean too and when the Boolean functions are described as disjunctions of
variables or of their negation, the CSP reduces to the ’Boolean Satisfiability’ problem (or SAT),
the seminal NP-complete problem (Cook, 1971).

CSP have been extended to describe joint cost functions, decomposed as a sum of local cost
functions in the ‘Weighted Constraint Network’ (Rossi et al., 2006) or ‘Cost Function Network’.
In this case, potential functions take finite or infinite integer or rational values: infinity enables
to express hard constraints while finite values encode costs for unsatisfied soft constraints. The
problem of finding a realization of minimum cost is the ’Weighted Constraint Satisfaction Prob-
lem’ (WCSP), which is also NP-hard. It is easy to observe that any stochastic graphical model
can be translated in a weighted constraint network using a simple − log(·) transformation. With
this equivalence, it becomes possible to use exact WCSP resolution algorithms that have been
developed in this field for mode evaluation in stochastic graphical model.

2.2 Inference tasks in probabilistic graphical models

Computations on probabilities and potentials rely on two fundamental types of operations. Firstly,
multiplication (or addition in the log domain) is used to combine potentials to define a joint
potential distribution. Secondly, sum or max/min can be used to eliminate variables and com-
pute marginals or modes of the joint distribution on subsets of variables. The precise identity
of these two basic operations is not crucial for the inference algorithms considered in this pa-
per. We denote as � the combination operator and as ⊕ the elimination operator. The algo-
rithms just require that (R+,⊕,�) defines a commutative semi-ring. Specifically, the semi-ring
algebra offers distributivity: (a� b)⊕(a� c) = a�(b⊕ c). This corresponds to distributivity
of product over sum since (a × b) + (a × c) = a × (b + c) or distributivity of max over sum
since max(a + b, a + c) = a + max(b, c), or again distributivity of max over product since
max(a× b, a× c) = a× (max(b, c)). These two abstract operators can be defined to be applied to
potential functions, as follows:

Combine operator: the combination of two potential functions ψA and ψB is a new function
ψA�ψB, from ΛA∪B to R+ defined as ψA�ψB(xA∪B) = ψA(xA)�ψB(xB).

Elimination operator: the elimination of variableXi, i ∈ B from a potential function ψB is a new
function (⊕xi ψB) from ΛB\{i} to R+ defined as (⊕xi ψB)(xB\{i}) = ⊕xi(ψB(xB\{i}, xi)).
For ⊕ = +, (⊕xi ψB)(xB\{i}) represents

∑
xi
ψB(xB\{i}, xi).

We can now describe classical counting and optimization tasks in graphical models in terms of
these two operators. For simplicity, we denote by ⊕xB , where B ⊂ V a sequence of eliminations
⊕xi for all i ∈ B, the result being insensitive to the order in a commutative semi-ring. Similarly,
�B∈B represents the successive combination of all potential functions ψB such that B ∈ B.

Counting tasks. Under this name we group all tasks that involve summing over the state space
of a subset of variables in X . This includes the computation of the partition function Z or of any

6



marginal distribution, as well as entropy evaluation. For A ⊂ V and Ā = V \ A, the marginal
distribution pA of XA associated to the joint distribution p is defined as:

pA(xA) =
∑
xĀ∈ΛĀ

p (xA, xĀ) =
1

Z

∑
xĀ∈ΛĀ

∏
B∈B

ψB(xB) (2)

The function pA then satisfies:

pA�Z = pA�
(
⊕
xV

( �
B∈B

ψB
))

=
(
⊕
xĀ

( �
B∈B

ψB
))

where � combines functions using × and ⊕ eliminates variables using +.

Marginal evaluation is also interesting in the case where some variables are observed. If the val-
ues of some variables xO (O ⊂ V ) have been observed, we can compute the marginal conditional
distribution by restricting the domains of variables XO to the observed value.

The entropy H of a probabilistic graphical model p is defined as

H(p) = −E[ln(p(x))], (3)

where E[·] denotes the mathematical expectation. In the case of a graphical model, by linearity of
the expectation, the entropy is equal to

H(p) = ln(Z)−
∑
B∈B

∑
xB∈ΛB

p(xB) ln(ψB(xB)).

This expression is an alternation of use of � and ⊕ operators (for p(xB) evaluation, for each B
and xB).

Optimization task An optimization task in a graphical model corresponds to the evaluation of
the most probable state x∗ of the random vector X , defined as

x∗ = arg max
x∈Λ

p(x) = arg max
x∈Λ

∏
B∈B

ψB(xB) = arg max
∑
B∈B

lnψB(xB). (4)

The maximum itself is⊕xV �B∈B lnψB(xB) with ⊕ set to max and � to +. The computation of
the mode x∗ does not require the computation of the normalizing constant Z, however computing
the mode probability p(x∗) does.

Therefore counting and optimization tasks can be interpreted as two instantiations of the same
computational task expressed in terms of combination and elimination operators, namely⊕xA�B∈B ψB
where A ⊂ V . When the combination operator � and the elimination operator ⊕ are respectively
set to × and +, this computational problem is known as a sum-product problem in the Artificial
Intelligence literature (Pearl, 1988),(Bishop, 2006, chapter 8). When ⊕ is set to max and � to the
sum operator it is a max-sum problem (Bishop, 2006, chapter 8).

We will see in Section 3 that there exists an exact algorithm solving this general task that
exploits the distributivity of the combination and elimination operators to perform operations in
a smart order. From this generic algorithm, known as variable elimination (Bertelé and Brioshi,
1972) or bucket elimination (Dechter, 1999), one can deduce exact algorithms to solve counting
and optimization tasks in a graphical model, by instantiating the operators ⊕ and �.

7



1

2

3

4

5

6

7

8

Figure 2: Graphical representation of a HMM. Hidden variables correspond to vertices 1, 3, 5, 7,
and observed variables to vertices 2, 4, 6, 8.

Deterministic Graphical models : the Constraint Satisfaction Problem is a ∨-∧ problem
as it can can be defined using ∨ (logical ’or’) as the elimination operator and ∧ (logical ’and’)
as the combination operator over Booleans. The weighted CSP is a min-+ as it uses min as
the elimination operator and + (or bounded variants of +) as the combination operator. Several
other variants exist (Rossi et al., 2006), including generic algebraic variants (Schiex et al., 1995;
Bistarelli et al., 1997; Cooper, 2004; Pralet et al., 2007; Kohlas, 2003).

3 Variable elimination for exact inference

We describe now the principle of variable elimination. We first recall the Viterbi algorithm for
Hidden Markov Chains, a classical example of variable elimination for optimization. Then we
formally describe the variable elimination procedure in the general graphical model framework.
The key element is the choice of an ordering for the sequential elimination of the variables. It is
closely linked to the notion of treewidth of the graphical representation of the graphical model. As
it will be shown, the complexity of the variable elimination is fully characterized by this notion.
Conversely, the treewidth can be bounded from above from a given variable elimination scheme.

3.1 An example: hidden Markov chain models

As an introduction to exact inference on graphical models by variable elimination, we consider a
well studied stochastic process: the discrete Hidden Markov Chain model (HMC).

A HMC (Figure 2) is defined by two sequences of random variables O and H of the same
length, T . A realization o = (o1, . . . oT ) of the variables O = (O1, . . . OT ) is observed, while the
states of variables H = (H1, . . . HT ) are unknown. In the HMC model the assumption is made
that Oi is independent of HV \{i} and OV \{i} given the hidden variable Hi. These independences
are modeled by pairwise potential functions ψHi,Oi

,∀ 1 ≤ i ≤ T . Furthermore, hidden vari-
able Hi is independent of H1, . . . , Hi−2 and O1, . . . , Oi−1 given the hidden variable Hi−1. These
independences are modeled by pairwise potential functions ψHi−1,Hi

,∀ 1 < i ≤ T . Then the
model is fully defined by specifying an additional potential function ψH1(h1) to model the initial
distribution. In the classical HMC formulation (Rabiner, 1989), these potential functions are nor-
malized conditional probability distributions i.e., ψHi−1,Hi

(hi−1, hi) = p(Hi = hi|Hi−1 = hi−1),
ψOi,Hi

(oi, hi) = p(Oi = oi|Hi = hi) and ψH1(h1) = p(H1 = h1). As a consequence, the normal-
izing constant Z is equal to 1, as in any Bayesian network.

8



A classical inference task for HMC is to identify the most likely value of the variables H given
a realization o of the variables O. The problem is to compute arg maxh p(H = h|O = o) or
equivalently the argument of:

max
h1,...,hT

[
(ψH1(h1)ψO1,H1(o1, h1))

T∏
i=2

(ψHi−1,Hi
(hi−1, hi)ψOi,Hi

(oi, hi))
]

(5)

The number of possible realizations of H is exponential in T . Nevertheless this optimization
problem can be solved in a number of operations linear in T using the well-known Viterbi al-
gorithm (Rabiner, 1989). This algorithm, based on dynamic programming, performs successive
eliminations (by maximization) of all hidden variables, starting with HT , then HT−1, and finishing
by H1, to compute the most likely sequence of hidden variables. By using distributivity between
the max and the product operators, the elimination of variable HT can be done by rewriting equa-
tion (5) as:

max
h1,...,hT−1

[
ψH1(h1)ψO1,H1(o1, h1)

T−1∏
i=2

(
ψHi−1,Hi

(hi−1, hi)ψOi,Hi
(oi, hi).max

hT
ψHT−1,HT

(hT−1, hT )ψOT ,HT
(oT , hT )︸ ︷︷ ︸

New potential function

)]

The new potential function created by maximizing on HT depends only on variable HT−1, so
that variables HT , OT and potential functions involving them have been removed from the opti-
mization problem. This is a simple application of the general variable elimination algorithm that
we describe in the next section.

3.2 General principle of variable elimination

In Section 2, we have seen that counting and optimization tasks can be formalized by the same
generic algebraic formulation

⊕
xA

(�
B∈B

ψB) (6)

where A ⊂ V .
The trick behind variable elimination (Bertelé and Brioshi, 1972) relies on a clever use of the

distributivity property. Indeed, evaluating (a� b)⊕(a� c) as a�(b⊕ c) requires fewer operations.
Since distributivity applies both for counting and optimizing tasks, variable elimination can be
applied to both tasks. It also means that if variable elimination is efficient for one task it will also
be efficient for the other one. As in the HMC example, the principle of the variable elimination
algorithm for counting or optimizing consists in eliminating variables one by one in expression (6).

Elimination of the first variable, say Xi, i ∈ A, is performed by merging all potential functions
involving Xi and applying operator ⊕xi to these potential functions. Using commutativity and
associativity equation (6) can be rewritten as follows:

⊕
xA

(�
B∈B

ψB) = ⊕
xA\{i}

⊕
xi

(
( �
B∈B\Bi

ψB)(�
B∈Bi

ψB)

)
9



1

2

3

5

4

1

2

3

5

4

2

3

5

4

Figure 3: Elimination of variable X1 replaces the four pairwise potential functions involving vari-
able X1 with a new potential ψN1 , involving the four neighbors of vertex 1 in the original graph.
The new edges created between these four vertices are called fill-in edges (dashed edges in the
middle figure).

Then using distributivity we obtain

⊕
xA

(�
B∈B

ψB) = ⊕
xA\{i}

[
( �
B∈B\Bi

ψB)� (⊕
xi
�
B∈Bi

ψB)︸ ︷︷ ︸
New potential function ψNi

]

This shows that the elimination of Xi results in a new graphical model where the variable Xi

and the potential functions ψB, B ∈ Bi have been removed and replaced by a new potential ψNi

which does not involve Xi, but its neighboring vertices. The graph associated to the new graphical
model is similar to the graph of the original model except that vertex Xi has been removed and
that the neighbors Ni of Xi are now connected together in a clique. The new edges between
the neighbors of Xi are called fill-in edges. For instance, when eliminating variable X1 in the
graph of Figure 3 (left), potential functions ψ1,2, ψ1,3, ψ1,4 and ψ1,5 are replaced by ψ2,3,4,5 =
⊕x1(ψ1,2�ψ1,3�ψ1,4�ψ1,4). The new graph is shown in Figure 3, right part.

When the first elimination step is applied with ⊕ = + and � = ×, the probability distribution
defined by this new graphical model is the marginal distribution p(xV \{i}) of the original distri-
bution p. The complete elimination can be obtained by successively eliminating all variables in
XA. The result is a graphical model over XV \A which is the marginal distribution p(xV \A). When
A = V , the result is a model with a single constant potential function with value Z.

If instead ⊕ is max, and � = × (or + with a log transformation of the potential functions)
and A = V , the last potential function obtained after elimination of the last variable is equal to
the maximum of the non normalized distribution. So evaluating Z or the maximal probability of a
graphical model can be both obtained with the same variable elimination algorithm, just changing
the meaning of ⊕ and �.
However, if one is interested in the mode itself, an additional simple computation is required.
The mode is obtained by induction: if x∗V \{i} is the mode of the graphical model obtained after
the elimination of the first variable, Xi, then the mode of p can be defined as (x∗V \{i}, x

∗
i ) where

x∗i is a value in Λi that maximizes �B∈B ψB(x∗V \{i}, xi). This maximization is straightforward
to derive because xi can take only |Λi| values. x∗V \{i} itself is obtained by completing the mode

10



of the graphical model obtained after elimination the second variable, and so on. We stress here
that the procedure requires to keep the intermediary potential functions ψNi

generated during the
successive eliminations.

When eliminating a variable Xi, the task that can be computationally expensive is the com-
putation of the intermediate ψNi

. It requires to compute the product �B∈Bi ψB(xB) of several
potential functions for all elements of ΛNi∪{i}, the state space of XNi∪{i}. The time and space
complexity of the operation are entirely determined by the cardinality |Ni| of the set of indices Ni.
If K = maxj∈V |Λj| is the maximum domain size of a variable, the time complexity (i.e. number
of elementary operations performed) is in O(K |Ni|+1) and space complexity (i.e. memory space
needed) is in O(K |Ni|). Complexity is therefore exponential in |Ni|, the number of neighbors of
the eliminated variable in the current graphical model. The total complexity of the variable elim-
ination is then exponential in the maximum cardinality |Ni| over all successive eliminations (but
linear in n). Because the graphical model changes at elimination each step, this number usually
depends on the order in which variables are eliminated.

As a consequence, the prerequisite to apply variable elimination is to decide for an ordering of
elimination of the variables. As illustrated in Figure 4 two different orders can lead to two different
Ni subsets. The key message is that the choice of the order is crucial/ it dictates the efficiency of
the variable elimination procedure. We will now illustrate and formalize this intuition.

3.3 When is variable elimination efficient ?

We can understand why the Viterbi algorithm is an efficient algorithm for mode evaluation in a
HMC. The graph associated to a HMC is comb-shaped: the hidden variables form a line and each
observed variable is a leaf in the comb (see Figure 2). So it is possible to design an elimination
order where the current variable to eliminate has a unique neighbor in the graphical representation
of the current model: for instanceOT > HT > OT−1 > HT−1, . . . > O1 > H1 (the first eliminated
variable is the largest according to this ordering). Following this elimination order, when eliminat-
ing a variable using ⊕, the resulting graphical model has one fewer vertex than the previous one
and no fill-in edge. Indeed, the new potential function ψNi

is a function of a single variable since
|Ni| = 1 .

More generally, variable elimination is very efficient, i.e. leads to intermediate Ni sets of
small cardinality, on graphical models whose graph representation is a tree, again because it is
always possible to design an elimination order where the current variable to eliminate has only one
neighbor in the graphical representation of the current model.

Another situation where variable elimination can be efficient is when the graph associated to
the graphical model is chordal (any cycle of length 4 or more has a chord i.e., an edge connecting
two non adjacent vertices in the cycle), the size of the largest clique being low. The reason is
the following. In Figure 2, new edges are created between neighbors of the eliminated vertex. If
this neighborhood is a clique, no new edge is added. A vertex whose neighborhood is a clique is
called a simplicial vertex. Chordal graphs have the property that there exists an elimination order
of the vertices such that every vertex during elimination process is simplicial. Then, there exists
an elimination order such that no fill-in edges are created. Thus, the largest size of Ni is no more
than the size of a clique, and is equal to or less than the size of the largest clique in the graph. Let

11



1 2

3 4

5

6 7

7

6

5

4

3

2

1

7

5

3

1

6

4

2

Figure 4: A graph and two elimination orders. Left, the graph; middle, induced graph associated
to the elimination order (7 > 6 > 5 > 4 > 3 > 2 > 1). Vertices are eliminated from the largest
to the smallest. The maximum size of Ni sets created during elimination is 2 (maximum number
of outgoing edges) and only one (dashed) fill-in edge is added when vertex 4 is eliminated; right,
induced graph associated to the elimination order (7 > 5 > 3 > 1 > 6 > 4 > 2). The maximum
size of Ni sets created during elimination is 3 and 5 (dashed) fill-in edges are used.

us note that a tree is a chordal graph in which all edges and only edges are cliques. Hence, for a
tree, simplicial vertices are vertices of degree one. Then, elimination of degree one vertices on a
tree is an example of simplicial elimination on a chordal graph.

For arbitrary graphs, if the maximal scope size of the intermediate ψNi
functions created during

variable elimination is too large, then memory and time required for the storage and computation
quickly exceed computer capacities. Depending on the chosen elimination order, this maximal
scope can be reasonable from a computational point of view, or too large. So again, the choice of
the elimination order is crucial.

3.4 The treewidth to characterize variable elimination complexity

The lowest complexity achievable when performing variable elimination is characterized by a pa-
rameter called the treewidth of the graph associated to the original graphical model. This concept
has been repeatedly discovered and redefined. The treewidth of a graph is sometimes called its
induced width (Dechter and Pearl, 1988), its minimum front size (Liu, 1992), its k-tree num-
ber (Arnborg, 1985), its dimension (Bertelé and Brioshi, 1972) and is also equal to the min-max
clique number of G minus one (Arnborg, 1985). The treewidth is also a key notion in the theory
of graph minors (see Robertson and Seymour, 1986; Lovász, 2005).

We insist here on two definitions. The first one from (Bodlaender, 1994) relies on the notion
of induced graph and the link between fill-in edges and the intermediate Ni sets created during
variable elimination is straightforward. The second (Robertson and Seymour, 1986; Bodlaender,
1994) is the commonly used characterization of the treewidth using so-called tree decompositions,
also known as junction trees which are key tools to derive variable elimination algorithms. It
underlies the block-by-block elimination procedure described in Section 3.5.

12



Definition 1 (induced graph) Let G = (V,E) be a graph defined by a set of vertices indexed
on V and a set E of edges. Given an ordering π of the vertices of G, the induced graph Gind

π

is obtained as follows. G and Gind
π have same vertices. Then to each edge in E corresponds an

oriented edge in Gind
π going from the first of the two nodes according to π toward the second. Then

each vertex i of V is considered one after the other following the order defined by π. When vertex
i is treated, an oriented edge is created between all pairs of neighbors of i in G that follows i
according to π. Again the edge is going from the first of the two nodes according to π toward the
second.

The induced graph Gind
π is also called the fill graph of G and the process of computing it is

sometimes referred to as “playing the elimination game” on G, as it just simulates elimination on
G using the variable ordering π. This graph is chordal (Vandenberghe and Andersen, 2014). It is
known that every chordal graph G has at least one vertex ordering π such that Gind

π = G, called a
perfect elimination ordering (Fulkerson and Gross, 1965).

The second notion that enables to define the treewidth is the notion of tree decomposition.
Intuitively, a tree decomposition of a graph G organizes the vertices of G in clusters of vertices
which are linked by edges such that the graph obtained is a tree. Specific constraints on the way
vertices of G are associated to clusters in the decomposition tree are demanded. These contraints
ensure properties to tree decomposition usefull for building variable elimination algorithms.

Definition 2 (tree decomposition) Given a graph G = (V,E), a tree decomposition T is a tree
(C, ET ), where C = {C1, . . . , Cl} is a family of subsets of V (called clusters), and ET is a set of
edges between the subsets Ci, satisfying the following properties:

• The union of all clusters Ck equals V (each vertex is associated with at least one vertex of
T ).

• For every edge (i, j) in E, there is at least one cluster Ck that contains both i and j.

• If clusters Ck and Cl both contain a vertex i of G, then all clusters Cs of T in the (unique)
path between Ck and Cl contain i as well: clusters containing vertex i form a connected
subset of T . This is known as the running intersection property).

The concept of tree decomposition is illustrated in Figure 5.

Definition 3 (treewidth) The two following definitions of the treewidth derived respectively from
the notion of induce graph and from that of tree decomposition are equivalent (but this is not trivial
to establish):

• The treewidth TW π(G) of a graph G for the ordering π is the maximum number of outgoing
edges of a vertex in the induced graph Gind

π . The treewidth TW (G) of a graph G is the
minimum treewidth over all possible orderings π.

• The width of a tree decomposition (C, ET ) is the size of the largest Ci ∈ C. and the treewidth
TW (G) of a graph is the minimum width among all its tree decompositions.

13



12

34

5

67

C1

C2

C3

C4C5

1
4

4 3

55

Figure 5: Left: graphical representation of a graphical model. Right: tree decomposition over
clusters C1 = {1, 2, 4}, C2 = {1, 3, 4}, C3 = {3, 4, 5}, C4 = {5, 6} and C5 = {5, 7}. Each edge
between two clusters is labeled by their common variables.

TW π(G) is exactly the cardinality of the largest setNi created during variable elimination with
elimination order π. For example, in Figure 4, the middle and right graphs are the two induced
graphs for two different orderings. TW π(G) is equal to 2 with the first ordering and to 3 with the
second. It is easy to see that in this example TW (G) = 2. The treewidth of the graph of the HMC
model, and of any tree is equal to 1.

It has been established that finding a minimum treewidth ordering π for a graph G, finding a
minimum treewidth tree decomposition or computing the treewidth of a graph are of equivalent
complexity. For an arbitrary graph, computing the treewidth is not an easy task. Section 4 is
dedicated to this question, from a theoretical and a practical point of view.

The treewidth is therefore a key indicator to answer the driving subject of this review: will
variable elimination be efficient for a given graphical model? For instance, the principle of variable
elimination have been applied to the exact computation of the normalizing constant of a Markov
random field on a small r by c lattice in (Reeves and Pettitt, 2004). For this regular graph, it is
known that the treewidth is equal to min(r, c). So exact computation through variable elimination
is only possible for lattices with a small value for min(r, c). It is however well beyond computer
capacities for real challenging problems in image analysis. In this case variable elimination can be
used to define heuristic computational solutions, such as the algorithm of (Friel et al., 2009) which
relies on exact computations on small sub-lattices of the original lattice.

3.5 Tree decomposition and block by block elimination

Given a graphical model and a tree decomposition of its graph, a possible alternative to solve
counting or optimization tasks is to eliminate variables in successive blocks instead of one after
the other. To do so, the block by block elimination procedure (Bertelé and Brioshi, 1972) relies
on the tree decomposition characterization of the treewidth. The underlying idea is to apply the
variable elimination procedure on the tree decomposition, eliminating one cluster of the tree at
each step. First a root cluster Cr ∈ C is chosen and used to define an order of elimination of
the clusters, by progressing from the leaves toward the roots, such that every eliminated cluster
corresponds to a leaf of the current intermediate tree. Then each potential function ψB is assigned

14



to the cluster Ci in C such that B ⊂ Ci which is the closest to the root. Sucha cluster always exists
from the properties of a tree decomposition and the fact that a potential function is associated to
a clique in G). The procedure starts with the elimination of any leaf cluster Ci of T , with parent
Cj in T . Let us note B(Ci) = {B ∈ B, ψB assigned to Ci}. Here again, commutativity and
distributivity are used to rewrite expression (6) (with A = V ) as follows:

⊕
xV
�
B∈B

ψB = ⊕
xV \(Ci−Cj)

[
�

B∈B\B(Ci)
ψB � ( ⊕

xCi−Cj

�
B∈B(Ci)

ψB)︸ ︷︷ ︸
New potential function

]

Note that only variables with indices in Ci \ Cj ≡ Ci ∩ (V \ Cj) are eliminated, even if it is
common to say that the cluster has been eliminated. For instance, for the graph of Figure 5, if the
first eliminated cluster is C1, the new potential function is ⊕x2 ψ1,2(x1, x2)ψ2,4(x2, x4), it depends
only on variables X1 and X4. Cluster elimination continues until no cluster is left. The interest
of this procedure is that the intermediate potential function created after each cluster elimination
may have a scope much smaller than the treewidth, leading to better space complexity (Bertelé and
Brioshi, 1972, chapter 4). However, the time complexity is increased.

In summmary, the lowest complexity achievable when performing variable elimination is for
elimination orders whose cardinalities of the intermediateNi sets are lower of equal to the treewidth
of G. This treewidth can be determined by considering clusters sizes in tree decompositions of G.
Furthermore, a tree decomposition T can be used to build an elimination order and vice versa.
Indeed, an elimination order can be defined by using a cluster elimination order based on T and
choosing an arbitrary order to eliminate variables with indices in the subsets Ci \Cj . Conversely, it
is easy to build a tree decomposition from a given vertex ordering π. Since the induced graph Gind

π

is chordal, its maximum cliques can be identified in polynomial time. Each such clique defines a
cluster Ci of the tree decomposition. Edges of T can be identified as the edges of any maximum
spanning tree in the graph with vertices Ci and edges (Ci, Cj) weighed by |Ci ∩ Cj|.

Deterministic Graphical Models : to our knowledge, the notion of treewidth and its properties
have been first identified in combinatorial optimization in (Bertelé and Brioshi, 1972) where it was
called “dimension”, a graph parameter which has been shown equivalent to the treewidth (Bodlaen-
der, 1998). Variable elimination itself is related to Fourier-Motzkin elimination (Fourier, 1827),
a variable elimination algorithm that benefits from the linearity of the handled formulas. Variable
elimination has been repeatedly rediscovered, as non-serial dynamic programming (Bertelé and
Brioshi, 1972), in the David-Putnam procedure for boolean satisfiability problems (SAT, Davis
and Putnam, 1960), as Bucket elimination for the CSP and WCSP (Dechter, 1999), in the Viterbi
and Forward-Backward algorithms for HMM (Rabiner, 1989) and many more.

Theree exists other situations where the choice of an elimination order has a deep impact on the
complexity of the computations as in Gauss elimination scheme for a system of linear equations, or
Choleski factorization of very large sparse matrices, and where equivalence between elimination
and decomposition have been used (see Bodlaender et al., 1995).

15



4 Treewidth computation and approximation

As already mentioned, the complexity of the counting and the optimization tasks on graphical
models is heavily linked to the treewidth TW (G) of the underlying graph G. If one could guess
the optimal vertex ordering, π∗, leading to TW π∗(G) = TW (G), then, one would be able to
achieve the “optimal complexity” O(KTW (G))n for solving exactly these tasks (we recall that K
is the maximal domain size of a variable in the graphical model). However, the problem is that
one cannot easily evaluate the treewidth of a given graph. The treewidth computation problem is
known to be NP-hard (Arnborg et al., 1987).

In the following subsections we provide a short presentation of the state-of-the-art theoretical
and experimental results concerning the exact computation of the treewidth of a graph, and the
computation of suboptimal vertex orderings providing approximations of the treewidth in the form
of an upper bound.

4.1 Exact solution algorithms

Several exponential time exact algorithms have been proposed to compute the treewidth. These
algorithms compute the treewidth in time exponential in n. The algorithm with the best complex-
ity bound has been proposed by (Fomin and Villanger, 2012). They provide an exact algorithm
for computing the treewidth, which run in time O(2.6151n) (using polynomial space), or in time
O(1.7549n), using exponential (memory) space.

Since the treewidth of a network can be quite small (compared to n) in practice, there has been
a great deal of interest in finding exact algorithms with time complexity exponential in TW (G)
and potentially only polynomial in n. Some of these algorithms even have complexity linear
in n (Bodlaender, 1996; Perkovic and Reed, 2000). In Bodlaender (1996), an algorithm is pro-
posed to compute the treewidth (it also provides an associated tree decomposition) of G in time
O(TW (G)O(TW (G)3)n). If this algorithm is used to compute the treewidth of graphs in a family
of graphs whose treewidth is uniformly bounded, then computing the treewidth would become of
time complexity linear in n (however, even for a small bound on the treewidth, the constant can be
huge). Moreover, in the general case, there is no way to bound the treewidth a priori.

4.2 Approximation of the treewidth with guarantee

Now, recall that even though crucial, finding a “good” tree decomposition of the graph G is only
one element in the computation of quantities of interest in graphical models. If one has to spend
more time on finding an optimal vertex ordering than on computing probabilities on the underlying
graphical model using an easy-to-compute suboptimal ordering, the utility of exact treewidth com-
putation becomes limited. Therefore, an alternative line of search is to look for algorithms com-
puting a vertex ordering π leading to a suboptimal width, TW π(G) ≥ TW (G), but more efficient
in terms of computational time. When defining such approximation algorithms, one is particularly
interested in polynomial time (in n) algorithms, finding a vertex ordering π that approaches the
optimal ordering within a constant multiplicative factor : TW π(G) ≤ αTW (G), α > 1.

16



However, the existence of such constant-factor approximation algorithms is not guaranteed for
all NP-hard problems. Some NP-hard problems are even known not to admit polynomial time ap-
proximation algorithms. As far as treewidth approximation is concerned, we are in the interesting
case where it is not yet known whether or not a polynomial time approximation algorithm does
exist (Austrin et al., 2012).

Finally, there have been a variety of proposed algorithms, trading off approximation quality and
running time complexity (Robertson and Seymour, 1986; Lagergreen, 1996; Amir, 2010; Bodlaen-
der et al., 2013). Table 1 (extracted from Bodlaender et al., 2013) summarizes the results in terms
of approximation guarantee and time complexity for these algorithms.

Algorithm Approximation Time complexity
guarantee f(TW (G)) g(n)

Robertson and Seymour (1986) 4TW (G) + 3 33TW (G) n2

Lagergreen (1996) 8TW (G) + 7 2TW (G) log TW (G) n log2 n
Amir (2010) 3.67TW (G) 23.6982TW (G)TW (G)3 n2

Bodlaender et al. (2013) 3TW (G) + 4 2TW (G) n log n

Table 1: Approximation guarantee and time complexity of state-of-the-art treewidth approximation
algorithms. Each algorithm provides a vertex ordering π such that TW π(G) is upper bounded by
the approximation guarantee indicated in column 2. The time complexity of these algorithms is is
O(f(TW (G)).g(n)) where n is the number of vertices in G.

The theoretical results about the complexity and approximability of treewidth computation are
interesting by the insight they give about the difficulties of finding good, if not optimal, vertex
ordering. They are also interesting in that they offer worst-case guarantees, i.e., the approximation
quality is guaranteed to be at least that promised by the algorithm. Furthermore, the increase in
computation time is also upper-bounded, allowing to get some guarantees that the approximation
can be obtained in “reasonable” time.

However, the main drawback of these worst-case based approaches, is that they can be domi-
nated, empirically, by heuristic approaches, on most instances. Indeed, several algorithms, working
well in practice, even though without worst-case complexity/quality bounds have been proposed.
We describe some of these approaches in the following section.

4.3 Treewidth in practice

A broad class of heuristic approaches is that of greedy algorithms (Bodlaender and Koster, 2010).
They use the same iterative approach as the variable elimination algorithm (Section 3) except that
they manipulate the graph structure only and do not perform any actual combination/elimination
computation. Starting from an empty vertex ordering and an initial graph G, they repeatedly select
the next vertex to add in the ordering by locally optimizing one of the following criteria:

• select a vertex with minimum degree in the current graph ;

• select a vertex with minimum number of fill-in edges in the current graph.

17



After each vertex selection, the current graph is modified by removing the selected vertex and
making a clique on its neighbors. The new edges added by this clique are fill-in edges. A ver-
tex with no fill-in edges is called a simplicial vertex. Fast implementations of minimum degree
algorithms have been developed, see e.g., AMD (Amestoy et al., 1996) with time complexity in
O(nm) (Heggernes et al., 2001) for an input graph G with n vertices and m edges. The minimum
fill-in heuristic tends to be slower to compute but yields slightly better treewidth approximations
in practice. Moreover, it will find a perfect elimination ordering (ı.e., adding no fill-in edges) if it
exists, thus recognizing chordal graphs and it returns the optimal treewidth in this particular case
((this can be easily established from results in Bodlaender et al., 2005).

Notice that there exists linear time O(n+m) algorithms to detect chordal graphs as the Maxi-
mum Cardinality Search (MCS) greedy algorithm (Tarjan and Yannakakis, 1984) but the treewidth
approximation they return is usually worse than the previous heuristic approaches.

A simple way to improve the treewidth bound found by these greedy algorithms is to break ties
for the selected criterion using a second criterion, such as minimum fill-in first and then maximum
degree, or to break ties at random and to iterate on the resulting randomized algorithms as done in
Kask et al. (2011).

We compared the mean treewidth bound found by these four approaches (minimum degree,
minimum fill-in, MCS and randomized iterative minimum fill-in) on a set of five CSP and MRF
benchmarks used as combinatorial optimization problems in various solver competitions. Par-
ityLearning is an optimization variant of the minimal disagreement parity CSP problem originally
contributed to the DIMACS benchmark and used in the Minizinc challenge (Optimization Re-
search Group, 2012). Linkage is a genetic linkage analysis benchmark (Elidan and Globerson,
2010). GeomSurf and SceneDecomp are respectively geometric surface labeling and scene de-
composition problems in computer vision (Andres et al., 2013). The number of instances per
problem as well as their mean characteristics are given in Table 2. Results are reported in Figure 6
(Left).The randomized iterative minimum fill-in algorithm used a maximum of 30, 000 iterations
or 180 seconds (respectively 10, 000 iterations and 60 seconds for ParityLearning and Linkage),
compared to a maximum of 0.37 second used by the non-iterative approaches. The minimum fill-
in algorithm (using maximum degree for ties breaking) performed better than the other greedy
approaches, being slightly improved by its randomized iterative version.

Problem Nb Mean nb Mean nb
Type/Name of instances of vertices of potential functions
CSP/ParityLearning 7 659 1246
MRF/Linkage 22 917 1560
MRF/GeomSurf-3 300 505 2140
MRF/GeomSurf-7 300 505 2140
MRF/SceneDecomp 715 183 672

Table 2: Characteristics of the five optimization problems of the benchmark. For a given prob-
lem, several instances are available, corresponding to differents number of variables (equal to the
number of vertices in the underlying graph) and different numbers of potential functions.

18



On the same benchmark, we also compared three exact methods for the task of mode evaluation
that exploit either minimum fill-in ordering or its randomized iterative version: variable elimina-
tion (ELIM), BTD (de Givry et al., 2006) and AND/OR search (Marinescu and Dechter, 2006).
Elim and BTD exploit the minimum fill-in ordering while AND/OR search used its randomized
iterative version. In addition, BTD and AND/OR Search exploit a tree decomposition during a
Depth First Branch and Bound method in order to get a good trade-off between memory space
and search effort. As variable elimination, they have a worst-case time complexity exponential in
the treewidth. All methods were allocated a maximum of 1 hour and 4 GB of RAM on an AMD
Operon 6176 at 2.3 GHz. The results, as reported in Figure 6 (Right) shown that BTD was able
to solve more problems than the two other methods for a fixed CPU time. However, on a given
problem, the best method heavily depends on the problem category. On ParityLearning, ELIM
was the fastest method, but it ran out of memory on 83% of the total set of instances, while BTD
(resp. AND/OR search) used less than 1.7 GB (resp. 4GB). The randomized iterative minimum
fill-in heuristic used by AND/OR search in preprocessing consumed a fixed amount of time (≈ 180
seconds, included in the CPU time measurements) larger than the cost of a simple minimum fill-
in heuristic. BDT was faster than AND/OR search to solve most of the instances except on two
problem categories (ParityLearning and Linkage).

To perform this comparison, we ran the followinf implementation of each method. The version
of ELIM was the one implemented in the combinatorial optimization solver TOOLBAR 2.3 (options
-i -T3, available at mulcyber.toulouse.inra.fr/projects/toolbar). The ver-
sion of BTD was the one implemented in the combinatorial optimization solver TOULBAR2 0.9.7
(options -B=1 -O=-3 -nopre. Toulbar2 is available at mulcyber.toulouse.inra.fr/
projects/toulbar2. This software won the UAI 2010 (Elidan and Globerson, 2010) and
2014 (Gogate, 2014) Inference Competitions on the MAP task. AND/OR search was the version
implemented in the open-source version 1.1.2 of DAOOPT (Otten et al., 2012) (options -y -i 35
--slsX=20 --slsT=10 --lds 1 -m 4000 -t 30000 --orderTime=180 for bench-
marks from computer vision and -y -i 25 --slsX=10 --slsT=6 --lds 1 -m 4000
-t 10000 --orderTime=60 for the other benchmarks) which won the Probabilistic Infer-
ence Challenge 2011 (Elidan and Globerson, 2011), albeit with a different closed-source ver-
sion (Otten et al., 2012).

5 From Variable Elimination to Message Passing

Message passing algorithms make use of messages, which can be described as potential functions
which are external to the definition of graphical models. On tree-structured graphical models mes-
sage passing algorithms extend the variable elimination algorithm by efficiently computing every
marginals (or modes) simultaneously, when variable elimination only computes one. On general
graphical models, message passing algorithms can still be applied but either provide approximate
results efficiently or have an exponential running cost.

We present how it may be conceptually interesting to view these algorithms as performing a
re-parametrization of the original graphical model i.e., modifications of the potentials, instead of
producing external messages, which are not easy to interpret by themselves.

19

mulcyber.toulouse.inra.fr/projects/toolbar
mulcyber.toulouse.inra.fr/projects/toulbar2
mulcyber.toulouse.inra.fr/projects/toulbar2


Figure 6: Left: Comparison of treewidth bounds provided by MCS (red), minimum degree
(green), minimum fill-in (blue) and randomized iterative minimum fill-in (cyan) for the 5 cate-
gories of problems Right: Mode evaluation by three exact methods exploiting minimum fill-in
ordering or its randomized iterative version. Number of instances solved (x-axis) within a given
CPU time (log10 scale y-axis) of ELIM (red), BTD (green), and AND/OR SEARCH (blue).

5.1 Message passing and belief propagation

Message passing algorithms over trees can be described as an extension of variable elimination,
where the marginals of all variables are computed in a double pass of the algorithm (instead of
one variable in classical variable elimination). Instead of eliminating a leaf Xi and the potential
functions involvingXi, we just mark the leafXi as “processed“ and consider that the new potential
ψNi

is a “message” sent from Xi to Xpa(i) (the parents of Xi in the tree), denoted as µi→pa(i). This
message is a potential function over Xpa(i) only. We can iterate this process, always applying it
to a leaf in the subgraph defined by unmarked variables, handling already computed messages as
unary potentials.

When only one variable remains unmarked (defining the root of the tree), the combination of
all the functions on this variable (messages and possibly original potential function) will be equal
to the marginal unnormalized distribution on this variable. This results directly from the fact that
the operations are equivalent to variable elimination. The root of the tree defines a directed tree
where the root is at the top, descendants are below and messages are flowing upwards, to the root.

To compute the marginal of another variable, one can redirect the tree using this new root.
Then some subtrees will remain unchanged (in terms of direction from the root of the subtree to
the leaves) in this new tree and the messages in these subtrees do not need to be recomputed.

It turns out that in a tree, one can organize all these computations cleverly so that only two
messages are computed for each edge, one for each possible direction of the edge.

20



Formally, in the Sum-product algorithm over a tree (V,E), messages µi→j are defined for each
edge (i, j) ∈ E (there are 2|E| such messages, one for each edge direction) in a leaves-to-root-to-
leaves order. Messages µi→j are functions of xj , which are computed iteratively, by the following
algorithm:

1. First, messages leaving the leaves of the tree are initialized: ∀i ∈ V , where i is a leaf of the
tree,

∀j, s.t. (i, j) ∈ E,∀(xi, xj) ∈ Λi × Λj, µi→j(xj)← 1

Mark all leaves as processed.

2. Then, messages are sent upward through all edges. Message updates are performed itera-
tively, from marked nodes i to their only unmarked neighbor j through edge (i, j) ∈ E.
Message updates take the following form:

∀xj ∈ Λj, µi→j(xj)←
1

K

∑
x′i

ψij(x
′
i, xj)ψi(x

′
i)

∏
k 6=j,(k,i)∈E

µk→i(x
′
i), (7)

where K =
∑

xj

∑
x′i
ψij(x

′
i, xj)ψi(x

′
i)
∏

k 6=j,(k,i)∈E µk→i(x
′
i).

Mark node j as processed. See Figure 7 for an illustration.

3. It remains to send the latter messages downward (from root to leaves). This second phase of
message updates takes the following form:

• Unmark root node.

• While there remains a marked node, send update (7) from an unmarked node to one of
its marked neighbors, unmark the corresponding neighbor.

4. After the two above steps, messages have been transmitted through all edges in both direc-
tions. Finally, marginal distributions over variables and pairs of variables (linked by an edge)
are computed as follows:

pi(xi)← 1
K1
ψi(xi)

∏
j,(j,i)∈E µj→i(xi),∀xi ∈ Λi,

pij(xi, xj)← 1
K2
ψij(xi, xj)

∏
k 6=j,(k,i)∈E µk→i(xi)

∏
l 6=i,(l,j)∈E µl→j(xj).

K1 and K2 are suitable normalizing constants.

When the graph of the original graphical model is not a tree, the two-pass message passing al-
gorithm can no more be applied. Still, for general graphical models, this message passing approach
can be generalized in two different ways.

• One can compute a tree decomposition, as previously shown. Message passing can then be
applied on the resulting cluster tree, handling each cluster as a cross-product of variables
following a block-by-block approach. This yields an exact algorithm, for which computa-
tions can be expensive (exponential in the treewidth) and space intensive (exponential in the
separator size). A typical example of such algorithm is the algebraic exact message passing
algorithm of Shafer and Shenoy (1988); Shenoy and Shafer (1990).

21



s w

t

v

µ t
→
s

←−
−

µ
w
→
t

←−−−

µ v
→
t

←−
−

Figure 7: Example of message update on a tree. In this example, nodes t, v and w are marked,
while node s is still unmarked. µt→s is a function of all the incoming messages to node t, except
µs→t.

• Alternatively, the Loopy Belief Propagation algorithm (Frey and MacKay, 1998) is another
extension of Message Passing in which messages updates are repeated, in arbitrary order
through all edges (possibly many times through each edge), until a termination condition is
met. The algorithm returns approximations of the marginal probabilities (over variables and
pairs of variables). The quality of the approximation and the convergence to steady state
messages are not guaranteed (hence, the importance of the termination condition). However,
it has been observed that LBP often provides good estimates of the marginals, in practice. A
deeper analysis of message-passing algorithms will be provided in Section 6.

We have described above the Sum-product algorithm. Max-product, Max-sum algorithms can
be equivalently defined, for exact computation or approximation of the max-marginal of a joint
distribution or its logarithm. In algebraic language, updates like defined in formula (7) take the
general form:

∀xj ∈ Λj, µi→j(xj) = ⊕
x′i

ψij(x
′
i, xj)ψi(x

′
i) �
k 6=j,(k,i)∈E

µk→i(x
′
i).

As for sum-product, the resulting algorithm computes exact ⊕-marginals on a tree-structured
graphical model from which the mode of the distribution can be computed while on general graph-
ical models, it provides only approximations.

5.2 Message Passing and Re-parametrization

It is possible to use message passing on trees as a re-parametrization technique. Instead of com-
puting external messages, message passing can reformulate the original tree-structured graphical
model in a new equivalent tree-structured graphical model. By “equivalent” we mean that the
resulting tree defines exactly the same joint distribution as the original graphical model. In the
re-parameterized problem, information of interest (marginals) can be directly read in the potential
functions (Koller and Friedman, 2009).

22



The idea behind re-parametrization is conceptually very simple: when a message µi→j is com-
puted, instead of keeping it as a message, it is possible to multiply any potential function involving
Xj by µi→j , using �. To preserve the joint distribution defined by the graphical model, we need to
divide another potential function involving Xj by the same message µi→j using the inverse of �.1

One possibility is to incorporate the messages in the binary potentials: we replace ψij by
ψij �µi→j �µj→i while ψi is divided by µj→i and ψj is divided by µi→j . In this case, each pairwise
potential ψij can be shown to be equal to the marginal of the joint potential on {Xi, Xj}.

The resulting tree-structured MRF is said to be calibrated to emphasize the fact that all pairs
of binary potentials sharing a common variable agree on their marginals:

⊕
Xj

ψij = ⊕
Xk

ψik

The main advantage of a calibrated re-parametrization is that it can be used instead for the
original model for any further processing. This is useful in the context of incremental updates,
where new evidence is introduced incrementally and each recalibration is simpler than a new cali-
bration (Koller and Friedman, 2009).

Message passing based re-parameterizations can be generalized to cyclic graphs. If an exact
approach using tree decompositions is followed, messages may have a size exponential in the
intersection of pairs of clusters and the re-parametrization will create new potentials of this size.
If these messages are multiplied inside the clusters, each resulting cluster will be the marginal of
the joint distribution on the cluster variables. The tree-decomposition is calibrated and any two
intersecting clusters agree on their marginals. This is exploited in the Lauritzen-Spiegelhalter and
Jensen sum-product-divide algorithms (Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990). In
this context, besides incremental updates, a calibrated tree decomposition allows also to locally
compute exact marginals for any set of variables in the same cluster.

If a local “loopy” approach is used instead, re-parameterizations do not change scopes but pro-
vide a re-parameterized model where estimates of the marginals can be directly read. For MAP,
such re-parameterizations can follow clever update rules to provide convergent re-parameterizations
maximizing a well defined criterion. Typical examples of this schema are the sequential version of
the tree reweighted algorithm (TRWS, Kolmogorov, 2006), or the Max Product Linear Program-
ming algorithm (MPLP, Globerson and Jaakkola, 2008) which try to optimize a bound on the non-
normalized probability of the mode. A seminal reference, published in Russian is (Schlesinger,
1976). These algorithms can be exact on graphical models with loops, provided the potential
functions are all submodular (often described as the discrete version of convexity).

Deterministic graphical models : message passing algorithms have also been used in deter-
ministic graphical models where they are known as “local consistency” enforcing or constraint
propagation algorithms. A local consistency property defines the targeted calibration property and

1Zeros in potential can be dealt with by a proper extension of the algebraic operations, including an inverse for
zero. If the algebraic structure equipped with � is not a group but only a semi-group or monoid, suitable pseudo
inverses can often be defined. See (Cooper and Schiex, 2004; Gondran and Minoux, 2008).

23



the enforcing algorithm allows to transform the original network into an equivalent network (defin-
ing the same joint function) that satisfies the desired calibration/local consistency property. Similar
to LBP, Arc Consistency Waltz (1972); Rossi et al. (2006) is the most usual form of local consis-
tency and is related to Unit Propagation in SAT Biere et al. (2009). Arc consistency is exact on
trees and is usually incrementally maintained during an exact tree search, using re-parametrization.
Because of the idempotency of logical operators, local consistencies always converge to a unique
fix-point.

Local consistency properties and algorithms for the Weighted CSP are very closely related to
message passing for MAP. They however are always convergent, thanks to suitable calibration
properties (Schiex, 2000; Cooper and Schiex, 2004; Cooper et al., 2010) and may also solve tree
structured or fully submodular problems.

6 Heuristics and approximations for inference

We mainly discussed methods for exact inference in graphical models. They are useful if an or-
der for variable elimination with small treewidth is available. In real life applications, interaction
network are seldom tree-shaped, and their treewidth can be large (e.g. a grid of pixel in image
analysis) and exact methods cannot be applied anymore. However, they are starting points to
derive heuristic methods for inference that can be applied to any graphical model. By heuristic
method, we mean an algorithm that is (a priori) not derived from the optimization of a particular
criterion, as opposed to what we will call approximation methods. Nevertheless, we shall alleviate
this distinction and show that good performing heursitics can sometimes be interpreted as approx-
imate methods. For the marginalization task, the most widespread heuristics derived from vari-
able elimination and message passing principles is the Loopy Belief Propagation algorithm (LBP,
Kschischang et al., 2001) described in Section 5.1, and numerous extensions (e.g. Generalized
BP, Yedidia et al., 2005) have been proposed since then. In the last decade, a better understanding
of these heuristics has been reached and they can now be reinterpreted as particular instances of
variational approximation methods Wainwright and Jordan (2008). A variational approximation
of a distribution p is defined as the best approximation of p in a class Q of tractable distributions
(for inference), according to the Küllback-Leibler divergence. Depending of the application (e.g.
discrete or continuous variables), several choices for Q have been considered. We are apparently
far from variable elimination principles and treewidth issues. However, as we just emphasized,
LBP can be cast in the variational framework. The treewidth of the chosen variational distribution
depends on the nature of the variables: i) in the case of discrete variables the treewidth is low: the
class Q is in the majority of cases that of independent variables (mean field approximation), with
associated treewidth of 0, and some works consider a classQ with associated treewidth of 1; ii) in
the case of continuous variables, the treewidth of the variational distribution is the same as in the
original model: Q is in general a class of multivariate Gaussian distributions, for which numerous
inference tools are available.

We will illustrate these remarks in Section 7. Before that in the remainder of this section,
we recall the two key component for a variational approximation method: the Küllback-Leibler
divergence and the choice of a class of tractable distributions. We also explain how LBP can be
interpreted as a variational approximation method.

24



6.1 Variational approximations

The Küllback-Leibler divergenceKL(q||p) =
∑

x q(x) log q(x)
p(x)

measures the dissimilarity between
two probability distributions p and q. KL is positive, and it is null if and only if p and q are equal.
Let us consider now that q is constrained to belong to a family Q which does not include p. The
solution q∗ of arg minq∈QKL(p||q) is then the best approximation of p in Q according to diver-
gence KL. If Q is a set of distributions tractable for inference, marginals, mode or normalizing
constant of q∗ can be used as approximations of the same quantities on p.

For example, let us consider a binary Potts model on n vertices whose joint distribution is

p(x) =
1

Z

∏
i

exp (aixi +
∑

(i,j)∈E

bijxixj)

We can derive its so called mean field approximation, corresponding to the class QMF of fully
factorized distributions (i.e. an associated graph of treewidth equal to 0): QMF = {q s.t. q(x) =∏

i∈V qi(xi)}.
Since variables are binary QMF corresponds to joint distributions of independent Bernoulli

variables with respective parameters qi = qi(1), namely for all q in QMF , q(x) =
∏

i q
xi
i (1 −

qi)
1−xi . The optimal approximation (in terms of Küllback-Leibler divergence) within this class

of distributions is characterized by the set of qi’s which minimize KL(q||p). Denoting Eq the
expectation with respect to q, KL(q||p)− logZ is

Eq

∑
i

[Xi log qi + (1−Xi) log(1− qi)]−
∑
i

aiXi −
∑

(i,j)∈E

bijXiXj


=
∑
i

[qi log qi + (1− qi) log(1− qi)]−
∑
i

aiqi −
∑

(i,j)∈E

bijqiqj.

This expectation has a simple form because of the specific structure of q. Minimizing it with
respect to qi gives the fixed-point relation that each optimal qMF

i ’s must satisfy:

log
[
qMF
i /(1− qMF

i )
]

= ai +
∑

j:(i,j)∈E

bijq
MF
j .

leading to

qMF
i =

eai+
∑

j:(i,j)∈E bijq
MF
j

1 + eai+
∑

j:(i,j)∈E bijq
MF
j

.

qMF
i is equal the conditional probability that Xi = 1 given that all other variables are fixed to their

mean field expected values under distribution q, which explain the name of mean field approxima-
tion. Note that in general qi is not equal to the marginal p(Xi = 1).

The choice of the class Q is indeed a critical trade-off with opposite desirable properties: it
must be large enough to guarantee a good approximation and small enough to contain only man-
ageable distributions. We will focus in the next section on a particular choice for Q, the Bethe
class, that will enable to link the LBP heuristics to variational methods. Other choices are possible

25



and have been used. For instance, the Chow-Liu algorithm (Chow and Liu, 1968) computes the
minimum ofKL(q||p) for q a distribution whose associated graph is a spanning tree of the graph of
p. This amounts to computing the best approximation of p among graphical models with treewidth
equal to 1. In the structured mean field approximation (Ghahramani and Jordan, 1997; Wain-
wright and Jordan, 2008) the distribution of a factorial Hidden Markov Model is approximated in
a variational approach: the multivariate hidden state is decoupled and the variational distribution
of the conditional distribution of hidden states is that of independent Markov chains (here again,
the treewidth is equal to 1). Finally, an alternative to treewidth reduction is to choose the varia-
tional approximation in the class of exponential distributions This has been applied for Gaussian
process classification (Kim and Ghahramani, 2006) using a multivariate Gaussian approximation
of the posterior distribution of the hidden field. This relies on the use of the EP algorithm (Minka,
2001). Note that in this algorithm, KL(p||q) is minimized instead of KL(q||p).

6.2 LBP heuristics as a variational method

The mean field approximation is the most naive approximation among the so-called Kikuchi
approximations from statistical mechanics, also known as Cluster Variational Methods (CVM,
Kikuchi, 1951). Originally, they are not defined by a minimization of the Küllback-Leibler diver-
gence, but as an approximation of the minimum of the free energy H(q),

H(q) = −
∑
x

q(x) log
∏
B∈B

ψB(xB) +
∑
x

q(x) log q(x).

The two problems are equivalent since H(q) is equal to KL(q||p) − logZ and is minimum when
p = q. If p and q are pairwise MRF whose associated graph G = (V,E) is the same and is a tree,
then q(x) =

∏
(i,j)∈E q(xi,xj)∏
i∈V q(xi)di−1 , where {q(xi, xj)} and {q(xi)} coherent sets of order 1 and order 2

marginals of q, and di is the degree of vertex i in the tree. In this particular case the Bethe free
energy, defined as H(q) is expressed as (see Heskes et al., 2004; Yedidia et al., 2005)

H(q) = −
∑

(i,j)∈E

∑
xi,xj

q(xi, xj) logψ(xi, xj)−
∑
i∈V

∑
xi

q(xi) logψ(xi)

+
∑

(i,j)∈E

∑
xi,xj

q(xi, xj) log q(xi, xj) +
∑
i∈V

(di–1)
∑
xi

q(xi) log q(xi)

The Bethe approximation consists in applying to an arbitrary graphical model the same formula of
the free energy than for a tree and minimizing it over the variables {q(xi, xj)} and {q(xi)} under
the constraint that they are probability distributions and that q(xi) is the marginal of q(xi, xj). By
extension the Bethe approximation can be interpreted as a variational method associated to the
family QBethe of unnormalized distributions that can be expressed as q(x) =

∏
(i,j)∈E q(xi,xj)∏
i∈V q(xi)di−1 with

{q(xi, xj)} and {q(xi)} coherent sets of order 1 and order 2 marginals.

It has been established by Yedidia et al. (2005) that the fixed points of LBP (when they exist,
convergence is still not well understood, see Weiss (2000) and Mooij and Kappen (2007)) are
stationary points of the problem of minimizing the Bethe free energy, or equivalently KL(q||p)
with q in the class QBethe of distributions.

26



Furthermore Yedidia et al. (2005) showed that for any class of distributions Q corresponding
to a particular CVM method, it is possible to define a generalized BP algorithm whose fixed points
are stationary points of the problem of minimizing KL(q||p) in Q.

The drawback of the LBP algorithm and its extensions (Yedidia et al., 2005) it that they are
not associated with any theoretical bound on the error made on the marginals approximations.
Nevertheless, this algorithm is increasingly used for inference in graphical models for its good
behavior in practice (Murphy et al., 1999). It is implemented in several pieces of software for
inference in graphical models like libDAI (Mooij, 2010) or OpenGM2 (Andres et al., 2012).

7 Illustration with coupled HMM

We now illustrate how the the procedures we have described have been used for parameter es-
timation in a elaborated example: coupled HMM. Consider a set of I signals observed at times
t ∈ {1, . . . T} and denote Oi

t the variable corresponding to the observed signal i at time t. HMM
models assume that the distribution of each Oi

t is conditional to some hidden state H i
t , where the

series (H i
t)t=1,...T is a Markov chain. Coupled HMM further assumes that the hidden states display

a correlation at each time (see Jordan, 2004; Wainwright and Jordan, 2008), resulting in the graph-
ical model displayed in Figure 8. Such models have been considered in a series of domains such
as bioinformatics (Choi et al., 2013), electroencephalogram analysis (Zhong and Ghosh, 2002) or
speech recognition (Nock and Ostendorf, 2003). More complex versions are sometimes consid-
ered, assuming dependency between two times series at two consecutive time steps. For this model,
the joint distribution of the hidden variables H = (H i

t)i,t and observed variables O = (Oi
t)i,t fac-

torizes as

p(h, o) ∝

(∏
i

∏
t

ψM(hit−1, h
i
t)

)
×

(∏
t

ψC(ht)

)
×

(∏
i

∏
t

ψE(hit, o
i
t)

)
, (8)

where ht = (hit)i stands the vector of all hidden variables at time t and where ψM encodes the
Markovian dependency of the hidden variables within a series, ψC encodes the coupling between
the hidden variables of all series at a given time and ψE encodes the emission of the observed
signal given the corresponding hidden state. A fairly comprehensive exploration of these models
can be found in (Murphy, 2002).

7.1 Exact EM algorithm for coupled HMM

Coupled HMM are examples of incomplete data models, as they involve variables (O,H) where
only the variablesO are observed. Maximum likelihood inference for such a model aims at finding
the value of the parameter θ that maximizes the (log-)likelihood of the observed data o, that is
to solve maxθ log pθ(o). The most popular algorithm to achieve this task is the EM algorithm,
(Dempster et al., 1977), that can be rephrased in the following way. Observe that

log pθ(o) = E(log pθ(o,H)|o)− E(log pθ(H|o)|o) = max
q
F (θ, q),

27



H1
t−1 H1

t H1
t+1

Hi
t−1 Hi

t Hi
t+1

HI
t−1 HI

t HI
t+1

O1
t−1 O1

t O1
t+1

Oi
t−1 Oi

t Oi
t+1

OI
t−1 OI

t OI
t+1

Figure 8: Graphical representation of p(h, o) for a coupled HMM

where

F (θ, q) = Eq(log pθ(o,H))− Eq(log q(H)) = log pθ(o)−KL(q(H)||pθ(H|o)),

and q stands for any distribution on the hidden variables H , E stands for the expectation under
the true distribution p and Eq under the arbitrary distribution q. The EM algorithm consists in
alternatively maximizing F (θ, q) with respect to q (E-step) and to θ (M-step). The solution of the
E-step is q(h) = p(h|o) since the Kullback-Leibler divergence is minimal (and null) in this case.

Exact computation of p(h|o) can be performed by observing that (8) can be rewritten as

p(h, o) ∝

(∏
t

ψM
′
(ht−1, ht)

)
×

(∏
i

∏
t

ψE(hit, o
i
t)

)
,

where ΨM ′ encodes both the Markovian dependency and the coupling of the hidden variables
within a given time step. This writing is equivalent to merging all hidden variables of a given
time step and corresponds to the graphical model given in Figure 9. Denoting K the number of
possible values for each hidden variables, we end up with a regular hidden Markov model with KI

possible hidden states. Both p(h|o) (and its mode) can then be computed in a exact manner with
either the forward-backward recursion or the Viterbi algorithm, which have the same complexity:
O(TK2I). The exact calculation can therefore be achieved provided thatKI remains small enough,
but becomes intractable when the number of signals I exceeds few tens.

7.2 Approximate E step for the EM algorithm

A first approach to derive an approximate E step it to seek for a variational approximation of p(h|o)
assuming that q(h) is restricted to a family Q of tractable distributions, as described in Section
6.1. This approach results in the maximization of a lower bound of the original log-likelihood.
The choice of Q is critical and is a balance between approximation accuracy and computation
efficiency. Choosing Q typically amounts to breaking down some dependencies in the original

28



Ht−1 Ht Ht+1

O1
t−1 O1

t O1
t+1

Oi
t−1 Oi

t Oi
t+1

OI
t−1 OI

t OI
t+1

Figure 9: Graphical representation of p(h, o) for a coupled HMM when merging hidden variables
at each time step

distribution to end up with some tractable distribution. In the case of coupled HMM, the simplest
distribution is the class of fully factorized distributions (i.e. mean field approximation), that is

Q0 = {q : q(h) =
∏
i

∏
t

qit(h
i
t)}.

Such an approximation corresponds to the graphical model of Figure 10. Intuitively, this approxi-
mation replaces the stochastic influence existing between the hidden variables by its mean value.

H1
t−1 H1

t H1
t+1

Hi
t−1 Hi

t Hi
t+1

HI
t−1 HI

t HI
t+1

O1
t−1 O1

t O1
t+1

Oi
t−1 Oi

t Oi
t+1

OI
t−1 OI

t OI
t+1

Figure 10: Graphical representation for the independent mean-field approximation of p(h, o) in
a coupled HMM. Observed variables are indicated in light gray since they are not part of the
variational distribution which is a distribution only on the hidden variables.

As suggested in Wainwright and Jordan (2008), a less drastic approximation can be obtained
using the distribution family of independent heterogeneous Markov chains:

QM = {q : q(h) =
∏
i

∏
t

qit(h
i
t|hit−1)}

which is consistent with the graphical representation of independent HMM, as depicted in Fig-
ure 11.

An alternative to the approximate maximization of maxq F (θ, q) consists in seeking for the
maximum of an approximation F̃ (θ, q) of F (θ, q) which involves only marginals of p(h|o) on

29



H1
t−1 H1

t H1
t+1

Hi
t−1 Hi

t Hi
t+1

HI
t−1 HI

t HI
t+1

O1
t−1 O1

t O1
t+1

Oi
t−1 Oi

t Oi
t+1

OI
t−1 OI

t OI
t+1

Figure 11: Graphical representation for the independent Markov approximation of p(h, o) in a cou-
pled HMM. Observed variables are indicated in light gray since they are not part of the variational
distribution which is a distribution only on the hidden variables.

subsets of variables in H of limited size. Then the LBP algorithm can be used to provide an
approximation of these marginals. This approach has been proposed in Heskes et al. (2004) where
the authors approximated the negative entropy term Eq(log q(H)) in F (θ, q) by its so-called Bethe
approximation as follows (the first term in F by definition depends only on marginals of variables
involved in the potential functions ψM , ψC , ψE).∑

i

∑
t

qM(hit−1, h
i
t) log qM(hit−1, h

i
t) +

∑
t

qC(ht) log qC(ht)

+
∑
i

∑
t

qE(hit, o
i
t) log qE(hit, o

i
t)−

∑
i

∑
t

Iq(hit) log q(hit)

because each hidden variable H i
t has degree I + 1 in the original graphical model given in Figure

8. The advantage of this approach compared to the variational approximations based on families
Q0 and QM is that it provides an approximation of the joint conditional distribution of all hidden
variables within the same time step.

8 Conclusion

This tutorial on variable elimination for exact and approximate inference is an introduction to the
basic concepts of variable elimination, message passing and their links with variational methods.
It introduces these fields to statisticians confronted with inference in graphical models. The main
message is that exact inference should not be systematically considered as out of reach. Before
looking for an efficient approximate method, a wise advice would be to know the treewidth of the
graphical model. In practice this question is not easy to answer exactly but several implementations
of the presented algorithms exist and provide an upper bound of the treewidth.

Obviously this tutorial is not exhaustive, since we have chosen to focus on the fundamental
concepts. While many important results on treewidth and graphical models have several decades

30



in age, the area is still lively and we now broaden our discussion to a few recent works which tackle
some challenges related to the computation of the treewidth.

Because they offer efficient algorithms, graphical models with a bounded treewidth offer an
attractive target when the aim is to learn a model that best represents some given sample. In (Kumar
and Bach, 2012), the problem of learning the structure of an undirected graphical model with
bounded treewidth is approximated by a convex optimization problem. The resulting algorithm
has a polynomial time complexity. As discussed in (Kumar and Bach, 2012), this algorithm is
useful to derive tractable candidate distributions in a variational approach, enabling to go beyond
the usual variational distributions with treewidth zero or 1.

For optimization (MAP), other exact techniques are offered by tree search algorithms such
as Branch and Bound (Lawler and Wood, 1966), that recursively consider possible conditioning
of variables. These techniques often exploit limited variable elimination processing to prevent
exhaustive search, either using message-passing like algorithms (Cooper et al., 2010) to compute
bounds that can be used for pruning, or by performing “on-the-fly” elimination of variables with
small degree (Larrosa, 2000).

Beyond pairwise potential functions, the time needed for simple update rules of message pass-
ing becomes exponential in the size of the scope of the potential functions. However, for specific
potential functions involving many (or all) variables, exact messages can be computed in reason-
able time, even in the context of convergent message passing for optimization. This can be done
using polytime graph optimization algorithms such as shortest path or mincost flow algorithms.
Such functions are known as global potential functions (Vicente et al., 2008; Werner, 2008) in
stochastic graphical models, and as global cost functions (Lee and Leung, 2009; Allouche et al.,
2012; Lee and Leung, 2012) in deterministic Cost Function Networks.

Different problems appears with continuous variables, where counting requires integration of
functions. Here again, for specific families of distributions, exact (analytic) computations can be
obtained for distributions with conjugate distributions. For message passing, several solutions have
been proposed. For instance, a recent message passing scheme proposed by Noorshams and Wain-
wright (2013) relies on the combination of orthogonal series approximation of the messages, and
the use of stochastic updates. We refer the reader to references in (Noorshams and Wainwright,
2013) for a state-of-the-art of alternative methods dealing with continuous variables message pass-
ing.

Finally, we have excluded Monte-Carlo methods from the scope of our review. But recent
sampling algorithms have been proposed that use exact optimization algorithms to sample points
with high probability in the context of estimating the partition function. Additional control in the
sampling method is needed to avoid biased estimations: this may be hashing functions enforcing a
fair sampling (Ermon et al., 2014) or randomly perturbed potential functions using a suitable noise
distribution (Hazan et al., 2013).

We hope this review will enable more cross-fertilizations of this sort, combining statistics and
computer science, stochastic and deterministic algorithms for inference in graphical models.

31



References
D. Allouche, C. Bessiere, P. Boizumault, S. de Givry, P. Gutierrez, S. Loudni, J.P. Metivier, and

T. Schiex. Decomposing Global Cost Functions. In Proceedings of AAAI’12, pages 407–413,
2012.

P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.

E. Amir. Approximation algorithms for treewidth. Algorithmica, 56:448–479, 2010.

B. Andres, Beier T., and J. H. Kappes. OpenGM: A C++ library for discrete graphical models.
ArXiv e-prints, 2012. URL http://hci.iwr.uni-heidelberg.de/opengm2/.

Bjoern Andres, Thorsten Beier, and Joerg H. Kappes. Open gm benchmark - cvpr’2013 section.
See http://hci.iwr.uni-heidelberg.de/opengm2/?l0=benchmark, 2013.

S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decompos-
ability — a survey. BIT, 25:2–23, 1985.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM J. Algebraic Discrete Methods, 8:277–284, 1987.

P. Austrin, T. Pitassi, and Y. Wu. Inapproximability of treewidth, one-shot pebbling, and related
layout problems. In International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX),, pages 13–24, Boston, USA, 2012.

U. Bertelé and F. Brioshi. Nonserial Dynamic Programming. Academic Press, 1972.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. Ios
press, 2009.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and optimization.
Journal of the ACM, 44(2):201–236, 1997.

H. L. Bodlaender. A tourist guide through treewidth. Developments in Theoretical Computer
Science, 1, 1994.

H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25:1305–1317, 1996.

H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. upper bounds. Information
and Computation, 208(3):259–275, 2010.

H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, path-
width, frontsize, and shortest elimination tree. Journal of Algorithms, 18:238–255, 1995.

32

http://hci.iwr.uni-heidelberg.de/opengm2/
http://hci.iwr.uni-heidelberg.de/opengm2/?l0=benchmark


H. L. Bodlaender, A. Koster, and F. van den Eijkhof. Preprocessing rules for triangulation of
probabilistic networks. Computational Intelligence, 21(3):286–305, 2005.

H. L. Bodlaender, P. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. A
ckn 5-approximation algorithm for treewidth. In IEEE Symposium on Foundations of Computer
Science, pages 499–508, 2013.

Hans L Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical computer
science, 209(1):1–45, 1998.

G. Casella and E. I. George. Explaining the Gibbs sampler. The American Statistician, 46(3):
167–174, 1992.

H. Choi, D. Fermin, A. Nesvizhskii, D. Ghosh, and Z. Qin. Sparsely correlated hidden Markov
models with application to genome-wide location studies. Bioinformatics, 29(5):533–541, 2013.

C. K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):462–467, 1968.

S.A. Cook. The complexity of theorem proving procedures. In 3rd ACM symp. on theory of
computing, pages 151–158, 1971.

M C. Cooper. Cyclic consistency: a local reduction operation for binary valued constraints. Artifi-
cial Intelligence, 155(1-2):69–92, 2004.

M C. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelligence, 154(1-2):
199–227, 2004.

M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consistency
revisited. Artificial Intelligence, 174:449–478, 2010.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM,
7(3):210–215, 1960.

S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local Consis-
tency in Weighted CSP. In Proceedings of the National Conference on Artificial Intelligence,
AAAI-2006, pages 22–27, 2006.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113
(1–2):41–85, 1999.

R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. In L. Kanal
and V. Kumar, editors, Search in Artificial Intelligence, chapter 11, pages 370–425. Springer-
Verlag, 1988.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

R. J. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and Appli-
cation, 10(2):303–313, 1965.

33



G. Elidan and A. Globerson. UAI inference challenge 2010. See www.cs.huji.ac.il/
project/UAI10, 2010.

G. Elidan and A. Globerson. The probabilistic inference challenge. See http://www.cs.
huji.ac.il/project/PASCAL/index.php, 2011.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Low-density parity constraints for hashing-
based discrete integration. In Proceedings of the 31st International Conference on Machine
Learning, pages 271–279, 2014.

F. V. Fomin and Y. Villanger. Treewidth computation and extremal combinatorics. Combinatorica,
32(3):289–308, 2012.

J. Fourier. Mémoires de l’Académie des sciences de l’Institut de France 7, chapter Histoire de
l’Académie, partie mathématique (1824). Gauthier-Villars., 1827.

B. Frey and D. MacKay. A revolution: Belief propagation in graphs with cycles. In Advances in
Neural Information Processing Systems, pages 479–485. MIT Press, 1998.

N. Friel, A. N. Pettitt, R. Reeves, and E. Wit. Bayesian inference in hidden Markov random fields
for binary data defined on large lattices. Journal of Computational and Graphical Statistics, 18:
243–261, 2009.

D. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific journal of mathematics,
15(3):835–855, 1965.

Z. Ghahramani and M. Jordan. Factorial hidden Markov models. Machine learning, 29(2-3):
245–273, 1997.

A; Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for
map lp-relaxations. In Advances in Neural Information Processing Systems, pages 553–560,
2008.

V. Gogate. UAI 2014 inference competition. See www.hlt.utdallas.edu/˜vgogate/
uai14-competition, 2014.

M. Gondran and M. Minoux. Graphs, Dioids and Semirings, volume 41 of Operations Re-
search/Computer Science Interfaces Series. Springer, 2008.

D. J. Gordon, N. J.and Salmond and A. F. M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. IEE Proceedings on Radar and Signal Processing, 140(2):107–113,
1993.

T. Hazan, S. Maji, and T. Jaakkola. On sampling from the Gibbs distribution with random maxi-
mum a-posteriori perturbations. In Advances in Neural Information Processing Systems, pages
1268–1276, 2013.

P. Heggernes, S. Eisenstat, G. Kumfert, and A. Pothen. The computational complexity of the
minimum degree algorithm. In 14th Norwegian Computer Science Conference, Troms, Norway,
2001.

34

www.cs.huji.ac.il/project/UAI10
www.cs.huji.ac.il/project/UAI10
http://www.cs.huji.ac.il/project/PASCAL/index.php
http://www.cs.huji.ac.il/project/PASCAL/index.php
www.hlt.utdallas.edu/~vgogate/uai14-competition
www.hlt.utdallas.edu/~vgogate/uai14-competition


T. Heskes, O. Zoeter, and W. Wiegerinck. Approximate expectation maximization. Advances in
Neural Information Processing Systems, 16:353–360, 2004.

F. Jensen, K. Olesen, and S. Andersen. An algebra of bayesian belief universes for knowledge-
based systems. Networks, 20(5):637–659, 1990.

F. V. Jensen and T. D. Nielsen. Bayesian Networks and Decision Graphs. Springer Publishing
Company, Incorporated, 2nd edition, 2007.

M. Jordan. Graphical models. Statistical Science, pages 140–155, 2004.

K. Kask, A. Gelfand, L. Otten, and R. Dechter. Pushing the power of stochastic greedy ordering
schemes for inference in graphical models. In AAAI, 2011.

R. Kikuchi. A theory of cooperative phenomena. Physical Review, 81(6):988–1003, 1951.

H.C. Kim and Z. Ghahramani. Bayesian gaussian process classification with the EM-EP algorithm.
IEEE Transactions on Pattern Analyis and Machine Intelligence, 28(12):1948–1959, 2006.

J. Kohlas. Information algebras: Generic structures for inference. Springer Science & Business
Media, 2003.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

F. R. Kschischang, B. J. Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498 –519, 2001.

K. S. Sesh Kumar and F. Bach. Convex relaxations for learning bounded treewidth decomposable
graphs. In Proceedings of the International Conference on Machine Learning (ICML), Atlanta,
United States, 2012.

J. Lagergreen. Efficient parallel algorithms for graphs of bounded treewidth. Journal of Algo-
rithms, 20:20–44, 1996.

J. Larrosa. Boosting search with variable elimination. In Principles and Practice of Constraint
Programming - CP 2000, volume 1894 of LNCS, pages 291–305, Singapore, September 2000.

S. L. Lauritzen. Graphical Models. Clarendon Press, 1996.

S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society – Series B,
50:157–224, 1988.

E. Lawler and D. Wood. Branch-and-bound methods: A survey. Operations Research, 14(4):
699–719, 1966.

35



J. Lee and K. L. Leung. Towards efficient consistency enforcement for global constraints in
weighted constraint satisfaction. In International Conference on Artificial Intelligence, vol-
ume 9, pages 559–565, 2009.

J. H. M. Lee and K. L. Leung. Consistency Techniques for Global Cost Functions in Weighted
Constraint Satisfaction. Journal of Artificial Intelligence Research, 43:257–292, 2012.

S. Z. Li. Markov random field modeling in image analysis. Springer-Verlag, 2001.

J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and practice. SIAM
Review, 34:82–109, 1992. First papers on the multifrontal technique go back to 1983.

L. Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43:75–86, 2005.

R. Marinescu and R. Dechter. Memory intensive branch-and-bound search for graphical models.
In proceedings of the National Conference on Artificial Intelligence, AAAI-2006, pages 1200–
1205, 2006.

T. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, 2001.

J. M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010. URL
https://staff.fnwi.uva.nl/j.m.mooij/libDAI/.

J. M. Mooij and H. J. Kappen. Sufficient conditions for convergence of the sum-product algorithm.
IEEE Transactions on Information Theory, 53(12):4422–4437, 2007.

K. Murphy. Dynamic bayesian networks: representation, inference and learning. PhD thesis,
University of California, Berkeley, 2002.

K. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: An
empirical study. In Proceedings of the 15th conference on Uncertainty in Artificial Intelligence,
pages 467–475, 1999.

H. Nock and M. Ostendorf. Parameter reduction schemes for loosely coupled HMMs. Computer
Speech & Language, 17(2):233–262, 2003.

N. Noorshams and M. J. Wainwright. Belief propagation for continuous state spaces: stochastic
message-passing with quantitative guarantees. Journal of Machine Learning Research, 14(1):
2799–2835, 2013.

NICTA Optimization Research Group. Minizinc challenge 2012. See http://www.
minizinc.org/challenge2012/challenge.html, 2012.

L. Otten, A. Ihler, K. Kask, and R. Dechter. Winning the PASCAL 2011 MAP challenge with
enhanced AND/OR branch-and-bound. In NIPS DISCML Workshop, Lake Tahoe, USA, 2012.

36

https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
http://www.minizinc.org/challenge2012/challenge.html
http://www.minizinc.org/challenge2012/challenge.html


J. Pearl. Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference. Morgan
Kaufmann, Palo Alto, 1988.

L. Perkovic and B. Reed. An improved algorithm for finding tree decompositions of small
treewidth. International Journal of Foundations of Computer Science, 11:365–371, 2000.

C. Pralet, G. Verfaillie, and T. Schiex. An algebraic graphical model for decision with uncertainties,
feasibilities, and utilities. Journal of Artificial Intelligence Research, pages 421–489, 2007.

L. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

R. Reeves and A. N. Pettitt. Efficient recursions for general factorisable models. Biometrika, 91:
751–757, 2004.

C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer- Verlag, New York, 2004.

N. Robertson and P. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309–322, 1986.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

T. Schiex. Arc consistency for soft constraints. In Principles and Practice of Constraint Program-
ming - CP 2000, volume 1894 of LNCS, pages 411–424, Singapore, September 2000.

T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: hard and easy
problems. In Proc. of the 14th IJCAI, pages 631–637, Montréal, Canada, August 1995.

M.I. Schlesinger. Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh
(Syntactic analysis of two-dimensional visual signals in noisy conditions). Kibernetika, 4:113–
130, 1976.

G. Shafer and P. Shenoy. Local computations in hyper-trees. Working paper 201, School of
business, University of Kansas, 1988.

P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In Proceed-
ings of the 6th Conference on Uncertainty in Artificial Intelligence, pages 169–198, Cambridge,
USA, 1990.

R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs and selectively reduce acyclic hypergraphs. SIAM Journal of Comput-
ing, 13(3):566–579, 1984.

L. Vandenberghe and M. S. Andersen. Chordal graphs and semidefinite optimization. Foundations
and Trends in Optimization, 1(4):241–433, 2014.

S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with connectivity
priors. In Computer Vision and Pattern Recognition,CVPR 2008, pages 1–8, Alaska, USA, 2008.

37



M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

D. L. Waltz. Generating semantic descriptions from drawings of scenes with shadows. Technical
Report AI271, M.I.T., Cambridge MA, 1972.

Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Computation, 12(1), 2000.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft
constraint optimisation (map-mrf). In Computer Vision and Pattern Recognition, CVPR 2008,
pages 1–8, Alaska, USA, 2008.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free energy approximations and generalized
belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312,
2005.

S. Zhong and J. Ghosh. HMMs and coupled HMMs for multi-channel EEG classification. In
Proceedings of the IEEE International Joint Conference on Neural Networks, volume 2, pages
1254–1159, Honolulu, Hawai, 2002.

38


	1 Introduction
	2 Graphical Models
	2.1 Models definition
	2.2 Inference tasks in probabilistic graphical models

	3 Variable elimination for exact inference
	3.1 An example: hidden Markov chain models
	3.2 General principle of variable elimination
	3.3 When is variable elimination efficient ?
	3.4 The treewidth to characterize variable elimination complexity
	3.5 Tree decomposition and block by block elimination

	4 Treewidth computation and approximation
	4.1 Exact solution algorithms
	4.2 Approximation of the treewidth with guarantee
	4.3 Treewidth in practice

	5 From Variable Elimination to Message Passing
	5.1 Message passing and belief propagation
	5.2 Message Passing and Re-parametrization

	6 Heuristics and approximations for inference
	6.1 Variational approximations
	6.2 LBP heuristics as a variational method

	7 Illustration with coupled HMM
	7.1 Exact EM algorithm for coupled HMM
	7.2 Approximate E step for the EM algorithm

	8 Conclusion

