
Towards using a full spectrum of early clinical trial data:

a retrospective analysis to compare potential

longitudinal categorical models for molecular targeted

therapies in oncology

May 17th 2015

P. Colinab*, S. Micallefa, M. Delattrebc, P. Mancinia and E. Parentbc
aBiostatistique Oncologie, Sano� R&D, Vitry-sur-Seine, France.

bAgroParisTech, UMR 518 MIA, 75005 Paris, France.
cINRA, UMR 518 MIA, 75005 Paris, France

*Pierre.Colin@sano�.com - Biostatistique Oncologie, Sano� R&D, 13 quai Jules Guesde, BP
14, 94403 Vitry-sur-Seine Cedex, France.

Abstract

Following the pattern of Phase I clinical trials for cytotoxic drugs, dose-�nding clinical

trials in oncology of molecularly targeted agents (MTA) aim at determining the Maximal

Tolerated Dose (MTD). In classical phase I clinical trials, MTD is generally de�ned by

the number of patients with short-term major treatment toxicities (usually called dose-

limiting toxicities, DLT), occurring during the �rst cycle of study treatment (e.g. within

the �rst 3 weeks of treatment). However, S. Postel-Vinay (2011) highlighted that half of

grade 3 to 4 toxicities, usually considered as Dose Limiting Toxicities, occur after the �rst

cycle of MTA treatment. In addition, MTAs could induce other moderate (e.g. grade

2) toxicities which could be taken into account depending on their clinical importance,

chronic nature and duration. Ignoring these late toxicities may lead to an underestimation

of the drug toxicity and to wrong dose recommendations for phase II and III clinical

trials. Some methods have been proposed, such as the Tite-CRM (Cheung 2000 and

Mauguen 2011), to take into account the late toxicities. We suggest approaches based

on longitudinal models (Doussau 2013). We compare several models for longitudinal

data, such as transitional or marginal models, to take into account all relevant toxicities
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occurring during the entire length of the patient treatment (and not just the events within

a prede�ned short-term time-window). These models allow the statistician to bene�t from

a larger amount of safety data which could potentially improve that accuracy in MTD

assessment.

Keywords: Late Toxicities; Longitudinal data; Dose-Finding; Oncology

1 Introduction & Motivation

The �nal goal of early phase oncology trials consists in choosing a Recommended Phase 2 Dose
(RP2D) among a set of di�erent explored doses. Selecting the RP2D is of major interest since
it conditions the following clinical development phases[1, 2, 3]. On top of the importance of the
task, recommending a dose is di�cult for many reasons: limited amount of data, heterogeneous
population, complex mechanism of distribution and target reaching. Because of study duration
constraints or incompleteness of the data, designs generally rely on early acute toxicity but
�nal dose recommendation should handle any kind of clinical meaningful toxic event and not
just the early acute adverse events.

In this paper, we propose an approach reassessing the Maximum Tolerated Dose (MTD)
at the end of the trial when most of the late toxicity data are observed. We think that the
�nal recommended dose should not necessarily be the latest explored one, as it is the case with
classical design. Indeed, the latest explored dose usually corresponds to the one closest of a
targeted rate of early severe toxicity [5], or to the highest limiting early acute toxicity risks
[6, 7] but is not necessarily admissible in terms of overall safety.

For more than a decade, targeted therapies have been appearing with complex mechanisms
of action targeting speci�c pathways, and with complex pharmacokinetic pro�les. These Molec-
ular Targeted Agents (MTA) do not aim at eradicating tumor cells in a short time frame as
cytotoxic treatments do, but rather they try to continuously repair the pathological behaviour
of tumor cells. Usually, they are administered in a chronic fashion with a high frequency
(weekly or even daily). These speci�cities lead to a change in the nature of related toxic
events and therefore, potentially, in the adverse events limiting the dose[1, 8]. In particular,
severe late onset toxicities could appear due to drug accumulation following a chronic schedule.
Prolonged or repeated moderate toxicity are also relevant for consideration: some moderate
toxicities, although deemed to be tolerable when single, signi�cantly impact patient health
when becoming chronic, acquiring an intolerable character [8, 9]. Therefore, these late onset
toxicities and moderate grade repeated adverse events should be considered when MTD is
established. When dealing with compounds causing such toxicities, MTD assessment based on
binary endpoint of toxicity occurring within a short time period leads to the recommendation
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of a �nal dose regimen which is not tolerated well in the long-term.
Therefore, for MTA, even if early Dose Limiting Toxicities (DLT) are still largely used for

driving dose escalation, experts have come to an agreement that, at the end of the study, a
dose should be recommended on the basis of any major toxic events whatever the time window
within which they appear[9]. Models are then needed to predict late, repeated or prolonged
events with their severity to help in the assessment of the recommended dose, and thus process
all information conveyed by the data.

In this paper, we consider the position of data prediction for dose recommendation at
the end of study when no more data are awaited. The purpose is not to try to deal with
incompleteness of the data as in an ongoing study framework but rather to propose models
able to predict any relevant safety data with their time of occurrence as a function of dose for
�nal dose recommendation purposes.

Di�erent approaches have already been proposed for working with late toxicity data, even
if time is still needed to translate this research based knowledge into operational practice.
Time-to-Event Continuous Reassessment Method (TITE-CRM) [10] is probably the simplest
of the proposed methods. It was the �rst attempt to incorporate information coming from
late event in partially observed subjects. This method consists in using a binomial likelihood
weighted according to the proportion of observation duration. Another interesting method
is the time to event approach. Commonly used to model e�cacy data, the time to event
approach has also been used for safety data in the context of dose-�nding trials [11]. A 2-
parameter Weibull distribution is used to model the occurrence of DLT at any time during
study with a DLT log-hazard function increasing linearly with the dose. Toxicity scores (TS)
is another approach which consists in de�ning and modelling a score describing the intensity of
the cumulated toxicity events observed in patients. By setting a target score, MTD is assessed.
This approach is derived in di�erent ways by considering: 1. di�erent toxicity score functions,
such as the toxicity index proposed by Rogatko [12], the Equivalent Toxicity Level [13] or the
toxicity burden score [14] 2. di�erent regression models, such as the probit model [15], the Beta
regression model [16], or the Multinomial regression [17]. TS methods allow an assessment of
the toxicity load taking into account the type and the severity of the adverse events regardless
of the time they occur, since a toxicity score function can be elicited.

Even if all of these methods are interesting for MTD assessment, only the model proposed
by Doussau et. al [18] is able to model at the same time, the severity of an adverse event,
the time to the occurrence of the event and its duration. TITE-CRM and TS methods do
not allow time to event occurrence to be modelled. TITE-CRM approach and time to event
methods do not allow the severity of the events to be modelled.

In this work, we propose to explore di�erent marginal and Markov models able to pre-
dict longitudinal categorical data as is typically observed in early phase trials for the �nal
assessment of MTD. Both population-averaged and mixed-e�ect versions of these models are
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investigated. In the next section, the statistical models under assessment will be described.
Section 3 reports the simulation plan allowing the comparison of the competing models and
the corresponding results. Finally, we discuss in Section 4 how the retained models can help
in the recommendation of a dose at the end of a typical phase I trial.

2 Statistical models

Let N be the number of patients included in the clinical trial, and let Yij be the random
variable of toxicity observation for individual i = 1, . . . , N at jth time point after drug intake,
j = 1, . . . , ni. For the sake of simplicity, the Yij's are assumed regularly spaced in time. Let
Yi = (Yi1, . . . , Yi,ni

)′, where ni is the total number of observations for patient i. Note that
the number of individual toxicity observations ni is not necessarily the same for all patients,
typically when early withdrawals occur during the clinical trial. Most often when dealing with
toxicities, Yij is an ordered categorical variable taking integer values from 0 (no severe toxicity
events) to K (most severe toxicity events) corresponding to a grading of the event severity.
Implicitly, an initial observation at time 0 (just before drug intake) Yi0 is assumed, but not
measured. It will be considered hereinafter that Yi0 ≡ 0 for all i = 1, . . . , N . This implies that
immediate toxic reactions at very �rst drug administration will only be explained by baseline
covariates, since treatment duration and cumulative drug exposure will be both close to zero.
Hereafter, such an assumption on Yi0 will be especially useful for Markov approaches for full
speci�cation of the corresponding models. Let xij = (x1ij, . . . , x

p
ij) ∈ Rp denote some possibly

time-varying explanatory variables for individual i (such as the time to the beginning of the
treatment of the jth record) and let xi = (xij)j∈1,...,ni

be the matrix of explanatory variables of
subject i for the whole observation period with possibly subject-speci�c parameter ϕi. The N
patients are reasonably assumed to be independent, thus two observation variables Yij |xi, ϕi
and Yi′j′ |xi′ , ϕi′ would be considered independent when i 6= i′ hereinafter. The objective of
the present section is to propose statistical models for the Yij's which adequately describe and
explain the variability in the occurrence of toxic e�ects. As Figure 1 exempli�es, this variability
is typically split into some between-patient variability (ie some patients are more susceptible to
the toxic e�ects than others) and some within-patient variability (ie toxicity manifestations for
a given patient vary over time). Speci�cally, toxic e�ects induced by MTA-based treatments
turn out to be persistent, suggesting some dependence between the observations of a single
patient. The graphs in Figure 1 show that when a toxic e�ect appears, it is more likely to
persist several weeks. The usual statistical models proposed for the analysis of early clinical
trials in oncology are not longitudinal data models, and therefore, they do not account for this
dependence between the observations of each patient. Doussau et al [18] proposed a mixed-
e�ect categorical model for toxicity data. Several modelling approaches are suggested in what
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follows through either population-averaged models or random e�ects models. For the sake of
simplicity, these modelling approaches are presented in detail for the simplest case of binary
responses (K = 1) but they could be easily extended to any value of K as brie�y shown in
subsection 2.2.

2.1 Models for binary longitudinal data

2.1.1 Population-averaged models

In population-averaged models, the relation between the observations and the subject-speci�c
explanatory variables is assumed to be the same for all subjects. This relation is entirely
parametrized by the set of parameters ϕ ∈ Rq which is common to the N subjects (this is
equivalent to setting ϕi ≡ ϕ for all individuals i ∈ 1, . . . , N in the population). With such
an approach, the variability between subjects is supposed to be fully (and only) described by
means of the explanatory variables. Two population averaged modelling strategies are mainly
referenced in the literature to model longitudinal data: marginal models and transition models
(see for instance [19] and [20]). The use of either marginal or transition models depends on the
main scienti�c question in hand and corresponds to di�erent handlings of the within-subject
variability in the data, as we shall see hereafter. Thus, the major di�erence between these two
modellings lies in the interpretation of the regression coe�cients.

a) Markov models

Focusing on time transitions, Markov models are a possible way to describe longitudinal
data: one is then interested in how some explanatory variables in�uence the change of toxicity
level over time. The idea of parsimony behind these models is that what will happen in the
future is only conditioned by the present state of the system, not by its entire past history.
Since some toxic e�ects might be persistent in time, this seems to be a reasonable assumption in
oncology. Here, one is interested in toxic e�ects induced by a given treatment. Since according
to our notations j = 0 matches the beginning of the treatment period, it can reasonably be
assumed that treatment-related toxic e�ects are never recorded at time ti0, thus the following
known initial state for the Markov chain:

P(Yi0 = 0) = 1. (1)

Extensions to any other (possibly ϕ-parametrized) initial distributions would naturally be
straightforward. Let us denote Hij = (Yi,j−1, . . . , Yi1) the past recorded trajectory until record
Yij with the convention that Hi1 = ∅. Additive time homogeneous transition models could be
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speci�ed in the following general form:

P(Yij = 1|Hij, ϕ) = F (µ+

p∑
`=1

β`x
`
ij + f(Hij, α)), (2)

where

f(Hij, α) =
min(q,j)∑
r=1

αr1(Yi,j−r = 0) if j > 1,

f(Hi1, α) = 0.

(3)

Here, parameters µ, β` and αr are unknown constants making up the parameter set ϕ, F stands
for any cumulative distribution function, and q is the order of the Markov chain. First-order
Markov models (q = 1) are the most widely used transition models. By noting pϕij(1|k′) the
probability P(Yij = 1|Yi,j−1 = k′, ϕ), k′ = 0, 1, equation (3) becomes

pϕij(1|0) = F (µ+
∑p

`=1 β`x
`
ij + α1) ,

pϕij(1|1) = F (µ+
∑p

`=1 β`x
`
ij),

(4)

the transition matrix from time j − 1 to time j of subject i can be easily derived as:

Qϕ
ij =

(
1− pϕij(1|0) pϕij(1|0)
1− pϕij(1|1) pϕij(1|1)

)
(5)

and the full set of (unknown) model parameters is given by ϕ = (µ, β1, . . . , βp, α1).

In transition models de�ned through equation (2), the joint distribution of the data vectors
Yi can be easily derived through the Markov property that lends a parsimonious form to the
general decomposition:

P(Yi|ϕ) = P(Yi0|ϕ)

ni∏
j=1

P(Yij |Hij, ϕ). (6)

Thus, likelihood-based methods as well as moment-based ones can be implemented to estimate
the unknown parameter ϕ from the observations. In particular, the reader's attention is
drawn to the fact that here, equation (2) speci�es a Generalized Linear Model (GLM) for the
conditional distribution of Yij given the past responses Hij. Indeed, equation (2) regresses
Yij on an extended set of explanatory variables which combines the xij's and Hij. Thus, it is
possible to proceed with estimation of the transition parameters ϕ using inferential techniques
speci�c to GLMs for independent data. Since the resolution of the estimating equations is
generally intractable in GLMs, some numerical tricks are required. The well-known Iterative
Weighted Least Squares (IWLS) method is such a technique [21]. It is implemented in the
standard glm function of the R software.
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b) Marginal models with incomplete speci�cation

When choosing marginal models, by de�nition, one focuses on the potential e�ect of ex-
planatory variables on the marginal distributions of the individual temporal observations Yij
(theoretically obtained after integrating out all other Yij′ , j

′ 6= j in equation (6)). Marginal
models are usually stated in two steps: the marginal distributions of the Yij's are modelled
separately from the within-subject correlations. In a very general setting, marginal models
could be written as follows:

• Step 1: speci�cation of the marginal distribution of each variable Yij as a function of
explanatory variables

P(Yi,j = 1|ϕ) = F (µ+

p∑
`=1

β`x
`
ij) , 1 ≤ i ≤ N , 1 ≤ j ≤ ni, (7)

• Step 2: speci�cation of the correlation structure between two toxicity observations Yij
and Yik from the same subject

Corr(Yi,j, Yi,k|ϕ) = ρjk(α) , 1 ≤ i ≤ N , 1 ≤ j, k ≤ ni. (8)

Here, F could be any cumulative distribution function, parameters µ and β` are constants to
be estimated, and ρjk is a known function of an unknown set of parameters α which speci�es the
nature of the autocorrelation. One speci�c example might be the autoregressive autocorrelation
model:

ρjk(α) = α|j−k| , α ∈ [0, 1], (9)

which assumes that measurements spaced in time are positively correlated, but less correlated
than measurements close in time. Many other autocorrelation models can be chosen depending
on the user's assumptions concerning the dependence between individual observations. Again,
setting β = (β1, . . . , βp), the full set of (unknown) model parameters is given by ϕ = (µ, β, α).
Note that, although similar notations are used for the parameters as in the Markovian case,
they do not entail the same interpretation (see subsection 2.3 below).

In addition, with the most remarkable exception of independence P(Yi|ϕ) =

ni∏
j=1

P(Yij|ϕ)

, equations (15) and (16) are not su�cient to specify the entire model properly. Indeed,
it is generally not possible to derive the joint distribution of the whole vector of individual
observations Yi from (15) and (16). Thus, likelihood methods cannot be implemented to
estimate the unknown parameters ϕ from the observations. For this reason, a well-known
alternative comes with the resolution of Generalized Estimating Equations (GEE), see for
example [22] for details. Marginal models also fall within the scope of marginal quasi-likelihood
and penalized quasi-likelihood methods introduced in [24] and [25] respectively.
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2.1.2 Random e�ects models

In many cases however, the knowledge of the xij's is not su�cient to fully describe the inter-
patient variability. In such cases, it is preferable to adopt a subject-speci�c approach in which
the responses (ie the temporal toxicity observations) are modelled as a function of covariates
and subject-speci�c random e�ects ϕi. Such models are usually de�ned hierarchically by
de�ning the ϕi's as random variables, so that population-averaged conclusions can still be
derived through the so-called population parameters θ. De�ning the individual parameters as
random variables is also a way to handle the correlations between temporal observations from
each subject. Random-e�ects models are speci�ed in two stages:

• Stage 1 : the conditional distribution of the individual observations Yi given the individual
parameters ϕi assumes the same kind of relation between the temporal observations and
the explanatory variables for the N subjects:

Yi|ϕi, xi ∼ p(·|ϕi, xi), (10)

• Stage 2 : the individual parameters ϕi are de�ned as independent random variables, the
distribution of which is parametrized by a set of population parameters θ:

ϕi ∼
i.i.d.

p(·|θ). (11)

In most cases, the individual parameters are assumed to be Gaussian random variables.
Multiple variations of the random-e�ects model could be derived for longitudinal categorical
toxicity observations. Two speci�c examples of interest among so many others are given here:

1. The generalized linear mixed-e�ects model :

P(Yi,j = 1|ϕi) = F (µi +

p∑
`=1

βi,`x
`
ij) ,

P(Yi,j, Yi,j′|ϕi) = P(Yi,j|ϕi)× P(Yi,j′ |ϕi) ,
ϕi = (µi, βi,1, . . . , βi,p)

′ ∼
i.i.d.
N (ϕ,Ω). (12)

2. The mixed-e�ects �rst-order Markov model, an extension of the above transition models
(2) - (3) in a random-e�ects approach:

P(Yij = 1|Yi,j−1, ϕi) = F (µi +

p∑
`=1

βi,`x
`
ij + αi1(Yi,j−1 = 0)),

ϕi = (µi, αi, βi1, . . . , βip)
′ ∼
i.i.d.
N (ϕ,Ω). (13)
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In both examples, the population parameters are taken as the mean and the covariance matrix
of normal population distribution θ = (ϕ,Ω).

Inference of the population parameters θ in mixed-e�ects models is classically performed by
maximization of the model likelihood. Owing to their hierarchical de�nition through equations
(10) and (11), the joint marginal likelihood of each individual sequence of observations is
straightforwardly given by integrating out p(·, xi|ϕi) over the distribution of the random e�ects:

P(Yi|θ) =

∫
p(Yi|ϕi, xi)p(ϕi|θ)dϕi. (14)

In many cases, equation (14) does not have any explicit expression. Thus, maximum likelihood
is often performed based on linearizations of (14) (see for instance chapter 6 in [26]), numerical
approximations of the integral or via EM-based algorithms[23]. Marginal quasi-likelihood [24]
and penalized pseudo-likelihood methods [25] have also been speci�cally developed to perform
parameter estimation in mixed-e�ects generalized linear models. As in the �xed-e�ects setting,
by de�nition of the Markov models given above, mixed-e�ects Markov models fall within the
scope of this method. To �t generalized linear mixed models, one could use the function glmer

of the R software, which approximates the integral in (14) by quadrature methods.

2.2 Models for ordinal longitudinal data

In practice, toxicity data may fall into more categories than just two possibilities, the possible
toxicity values establishing a ranking between symptoms (see Figure 1 for instance). Some
Markov and marginal models for longitudinal ordinal data could be easily derived from the
longitudinal models for binary data presented in Section 2.1 whether in a �xed-e�ects setting
or in a random e�ects setting. Without loss of generality, it is considered here that the
grades of toxicity are integer values from 0 (no severe toxic event) to K (the most severe toxic
events). Some possible models for this setting are listed below, but not detailed. Indeed, their
interpretation and inference are basically similar to those for the corresponding binary data
models.

(a) Fixed-e�ects (population averaged) Markov models:

P(Yij ≤ k|Hij, ϕ) = F (µk +
∑p

`=1 β`x
`
ij + f(Hij, α)) 0 ≤ k ≤ K − 1,

P(Yij ≤ K|Hij, ϕ) = 1,

f(Hij, α) =
min(q,j)∑
r=1

K−1∑
k=0

αrk1(Yi,j−r = k) if j > 1,

f(Hi1, α) = 0 otherwise,

where parameters µ0 < µ1 < . . . < µK−1, β` and αrk are unknown constants and compose
the parameter set ϕ, F stands for any cumulative distribution function, and q is the order
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of the Markov chain. As above, for q = 1 (�rst-order Markov models), the transition
matrix from time j− 1 to time j of subject i can be easily derived from the probabilities
P(Yij ≤ k|Hij, ϕ).

(b) Fixed-e�ects (population-averaged) marginal models with incomplete speci�cation: As
above, marginal models for longitudinal ordinal data are de�ned in two steps:

• Step 1: speci�cation of the marginal distribution of each variable Yij as a function
of explanatory variables

P(Yi,j ≤ k|ϕ) = F (µk +
∑p

`=1 β`x
`
ij) , 0 ≤ k ≤ K − 1,

P(Yi,j ≤ K|ϕ) = 1 , 1 ≤ i ≤ N , 1 ≤ j ≤ ni,
(15)

• Step 2: speci�cation of the correlation structure between two toxicity observations
Yij and Yij′ from the same subject

Corr(Yi,j, Yi,j′|ϕ) = ρjj′(α) , 1 ≤ i ≤ N , 1 ≤ j, j′ ≤ ni. (16)

F stands for any cumulative distribution function, ϕ = (µ0, . . . , µK−1, β1, . . . , βp, α) is the
unknown vector of model parameters to be estimated, such that µ0 < µ1 < . . . < µK−1,
and ρjj′ is a known function of an unknown set of parameters α which speci�es the nature
of the autocorrelation, for example an autoregressive one.

(c) Generalized linear mixed-e�ects models :

P(Yi,j ≤ k|ϕi) = F (µik +

p∑
`=1

βi,`x
`
ij) , 0 ≤ k ≤ K − 1,

P(Yi,j ≤ K|ϕi) = 1 ,

P(Yi,j, Yi,j′|ϕi) = P(Yi,j|ϕi)× P(Yi,′j|ϕi) ,
ϕi = (µi0, . . . , µi,K−1, βi1, . . . , βip)

′ ∼
i.i.d.
N (ϕ,Ω), (17)

where F is a given cumulative distribution function and θ = (ϕ,Ω) is the set of population
parameters.
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(d) Mixed-e�ects Markov models:

P(Yij ≤ k|Hij, ϕi) = F (µik +

p∑
`=1

βi,`x
`
ij + f(Hij, αi)) , 0 ≤ k ≤ K − 1,

P(Yij ≤ K|Hij, ϕi) = 1,

f(Hij, αi) =

j−1∑
r=1

K−1∑
k=0

αirk1(Yi,j−r = k),

ϕi = (µi0, . . . , µi,K−1, βi1, . . . , βip, αi)
′ ∼
i.i.d.
N (ϕ,Ω), (18)

where, as above, F is a given cumulative distribution function and θ = (ϕ,Ω) is the set
of population parameters.

2.3 Some examples

To cast light on the di�erence between the previous model families (Markov and marginal
models whether in a population-averaged or a random-e�ects setting), as well as on the nature
of this di�erence, a few model examples are presented and compared. For the sake of simplicity,
the toxicity observations are considered as binary outcomes. This would correspond to cases
where the user's interest would be for instance the presence (Yij = 1) or absence (Yij = 0) of
toxic e�ects over time or correspond to the appearance with time of disabling (Yij = 1)/non-
disabling (Yij = 0) toxic e�ects. Once again, in practice, there may be more categories than
just two possibilities, but the binary situation will capture the essence of the example, whilst
avoiding arithmetic and notational complexities. For the purpose of the example here, only
one time non-varying explanatory variable ci is considered. The main focus will be on the
meaning of the regression coe�cient β related to covariate ci. For that purpose, the expression
of the marginal distribution of the temporal observations with respect to the model parameters
in each example - entirely given by the probability P(Yij = 1) since the data are binary - will
be introduced. The probit function, denoted as Φ, is chosen for specifying the model examples
for the comparative study. Consider

• a) the generalized linear model (regardless of the correlation structure between the ob-
servations of each subject) given by

P(Yij = 1) = Φ (µ+ βci) ,

• b) the mixed e�ects generalized linear model such that

P(Yij = 1|ηi) = Φ (µ+ (β + ηi)ci) , ηi ∼
i.i.d.
N (0, ω2),
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• and c) the Markov model given by

P(Yij = 1|Yi,j−1 = k) = Φ (µ+ βci + αk) .

In the last two examples, the marginal distribution of Yij can be derived, although not neces-
sarily explicitly. Moreover, it generally does not lead to an equality with Φ (µ+ βci) as in the
simple GLM case. In the mixed-e�ects GLM, it requires integration over the random e�ect ηi
distribution:

P(Yij = 1) =

∫
Φ (µ+ (β + ηi)ci) p(ηi|ω2)dηi,

6= Φ (µ+ βci) ,

whereas in the Markov model, it requires summing over all possible values for the past obser-
vations from time 0 up to time j − 1:

P(Yij = 1) =
1∑

k0=0

1∑
k1=0

. . .
1∑

kj−1=0

[
P(Yi0 = k0)

j∏
l=1

P(Yil = kl|Yi,l−1 = kl−1),

]
6= Φ (µ+ βci) ,

with P(Yil = kl|Yi,l−1 = kl−1) given by Φ (µ+ βci + αkl−1) if kl = 1 and 1−Φ (µ+ βci + αkl−1)
otherwise.

Figure 2 illustrates how P(Yij = 1) changes according to the value of β in cases a), b) and c).
The larger ω, the more distant the marginal distributions of b) and a) will be. Moreover, while
the marginal distribution remains common to all the Yij's of a given subject with �xed and
random e�ects GLMs, it does di�er from time point to time point in the Markov model. This
corroborates the fact that the interpretation of parameter β is completely di�erent according to
the model. In the �xed-e�ects GLM, β characterizes the e�ect of covariate ci on the probability
for observing presence Yi,j = 1 at time j at the population level, whereas in the random-e�ects
GLM, it has a similar meaning at the individual level, i.e. it is conditional to the individual
parameters. Population and individual conclusions are of course combined when the between-
subject variability is null. On the contrary, in model c), β is to be interpreted in terms of
transitions.

3 Simulation study

3.1 Objectives and simulation settings

The simulation study is performed to compare several longitudinal models with a speci�c focus
on their predictive characteristics, on a whole cohort of patients (�rst simulation study) as well

12



as on small groups of patients treated with similar dose levels (second simulation study). In
both cases, the robustness to model misspeci�cation, thanks to di�erent simulation scenarios
speci�ed thereafter, is also explored. The whole study is based on original datasets of two
similar Phase I studies on an MTA where the toxicity is measured on scale from 0 to 5. Since
the models, data generation procedures and predictive criteria are common to the di�erent
steps of the simulation study, they are described once for clarity before summarizing the
results of the two simulation studies.

3.1.1 Model construction from real clinical data

The subsequent simulation studies are based on four models which correspond each to one
modelling approach introduced in Section 2. Each one assumes the subjects to be independent
of one another. Two of these four models are Generalized Linear Models, with independent
and correlated data respectively, and the others two are transitional models, with �xed and
random e�ects respectively. These four models are built using two real datasets from similar
early clinical trials investigating the same MTA. In these trials, the toxicity observations are
binary outcomes (K = 1): Yij = 0 if the observed toxicity level is 0 or 1, Yij = 1 otherwise,
and the observations are collected at regular times, ie tij = j for all i = 1, . . . , N and all
j = 1, . . . , ni. Many covariates are available to predict the toxicity responses. Some of these
covariates are highly correlated as, for example, the dose level (ie the dose administered at
each administration) and the dose intensity (i.e. the average administered dose according to
time of treatment). Since highly correlated covariates may provide poor parameter estimations
and lead to possible misinterpretations, the available covariates are grouped into 4 categories
and �nal covariate selection for each model is performed by Information criteria (AIC) under
restrictions that no more than one covariate from each group may be included in the model.
The following covariate categories are considered: -1. Individual characteristics like age or
gender -2. Treatment period and time from the last drug administration (TFLDA) -3. Measure
of administered treatment like dose level (DL) or dose intensity (DI) -4. Cumulated treatment
exposure like cumulated dose (CumDose) or cumulated AUC of patients' pharmacokinetic
curves (CumExp). For most of these covariates, the logarithmic transformations have also
been proposed (and assigned to their corresponding categories). The following models are
selected this way, with Φ denoting for the probit link:

• GLM (Generalized linear model): for each subject i, the temporal toxicity observa-
tions are given by:

P(Yij = 1|ϕ0) = Φ(µ(0) + β
(0)
1 log tij + β

(0)
2 TFLDAij + β

(0)
3 log DIi + β

(0)
4 CumDoseij),

j = 1, . . . , ni, where ϕ0 = (µ(0), β
(0)
1 , β

(0)
2 , β

(0)
3 , β

(0)
4 ).

13



• AR (Marginal model with autoregressive correlation structure): for each sub-
ject i, the moments of the temporal toxicity observations are assumed to be such that:

P(Yij = 1|ϕ1) = Φ(µ(1) + β
(1)
1 tij + β

(1)
2 TFLDAij + β

(1)
3 DIi + β

(1)
4 log CumExpij),

Corr(Yi,j, Yi,k|ϕ1) = ρ|k−j|,

1 ≤ j, k ≤ ni, where ϕ1 = (µ(1), β
(1)
1 , β

(1)
2 , β

(1)
3 , β

(1)
4 , ρ).

• F.markov (Fixed-e�ects Markov model): for each subject i, the temporal toxicity
observations are given by:

P(Yij = 1|Yi,j−1, ϕ2) = Φ(µ(2) + β
(2)
1 t2ij + β

(2)
2 log DIi + β

(2)
3 CumExpij + α(2)Yi,j−1),

where ϕ2 = (µ(2), β
(2)
1 , β

(2)
2 , β

(2)
3 , α(2)).

• M.markov (Mixed-e�ects Markov model): given some subject-speci�c parameters
ϕi, the temporal observations of each subject are given by the same structural model:

P(Yij = 1|Yi,j−1, ϕi) = Φ(µ
(3)
i + β

(3)
i1 log tij + β

(3)
i2 TFLDAij + β

(3)
i3 DoseLeveli + α

(3)
i1 Yi,j−1).

Here, the individual parameters are ϕi = (µ
(3)
i , β

(3)
i1 , β

(3)
i2 , β

(3)
i3 , β

(3)
i4 , α

(3)
i1 ). To model the

between-patient variability, the simplifying assumption that only parameter α
(3)
i1 is a

random e�ect: α
(3)
i1 ∼

i.i.d.
N (α

(3)
1 , ω2

α), whilst the other individual parameters are shared

among subjects with ignorable variation such that ∀iµ(3)
i ≡ µ(3), β

(3)
i` ≡ β

(3)
` , ` = 1, . . . , 4.

Thus, the population parameters are θ = (µ(3), (β
(3)
` )`=1,...,4, α

(3)
1 , ω2

α).

Parameter estimation in GLM and F.markov is provided by maximization of the like-
lihood (Iteratively Re-weighted Least Squares algorithm [21]), AR parameters estimation is
based on a Penalized Quasi-Likelihood maximization method [25, 24] and in M.markov, it is
given by maximization of the likelihood through the Gauss-Hermite quadrature method [27].

3.1.2 Predictive criteria

The ensemble (i.e. whatever the dose level) predictive performance and the dose-speci�c
predictive performance of models GLM, AR, F.markov and M.markov will be assessed
according to the three criteria below.
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1. First, the ability for each model to predict which patients may or may not have a toxicity
event over their period of participation in the trial will be examined. This will be
evaluated by means of the Brier score [28], which is a proper score generally used to
quantify the quality of such binary predictions. This score reaches its minimum when a
perfect matching between the probabilistic forecast and the distribution of the event to
be predicted is obtained.

2. The second examined criterion is how accurately each model predict the number of
adverse events occurring for each patient during the trial. Since the number of reported
toxicities induced by MTAs is likely to be larger for long periods than for short ones,
the number of adverse events is scaled according to the duration of the follow-up. The
predictions of the number of adverse events are then evaluated with the Continuous Rank
Probability Score (CRPS) [29], which is also a proper score. Thus, the better the model
predicts the number of adverse events, the smaller the CRPS will be.

3. Third, the predicted number of weeks with a toxicity response is controlled. As for
previous criteria, the number of weeks with a toxicity response is brought back to the
duration of the follow-up and the CRPS is used to evaluate the ability for each model to
provide such good predictions.

3.2 Simulation study 1: comparison on overall predictive character-

istics

This �rst simulation study aims at comparing the predictive properties of models GLM, AR,
F.markov and M.markov without any distinction between the patient dose levels of the
MTA of interest.

3.2.1 Data generation

Three simulation scenarios are considered. To simulate realistic data, individual pro�les (dose
level, drug exposure, time of treatment, etc) are sampled with replacement from the original
datasets. Under Scenario1, a sort of bootstrap scenario, the patients' pro�les (i.e. values for
the covariates and length of follow-up) and the corresponding toxicity longitudinal responses
are sampled with replacement from the original dataset. Such a simulation technique will help
identify the best predictive model without any idea of the true model. Two other simulation
scenarios, Scenario2 and Scenario3, are then used to investigate the robustness to model mis-
speci�cation. In both, the simulated patients' clinical characteristics are obtained by random
sampling with replacement from the initial data as in Scenario1, but the corresponding toxic-
ity longitudinal responses are simulated according to mixed-e�ects Markov model M.markov
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(using the parameters values µ(3) = −6.85, β
(3)
1 = 1.30, β

(3)
2 = 0.14, β

(3)
3 = 0.01, α

(3)
1 = 1.53

and ωα = 0.48) and marginal model with autoregressive correlation structure AR respectively

(using the parameters values µ(1) =, β
(1)
1 =, β

(1)
2 =, β

(1)
3 =, β

(1)
4 = and ρ =). Since marginal

models are rarely completely speci�ed, it is hard to simulate data according to such models.
Thus, the simulation technique introduced in [30] is used to generate the data under Scenario3.

For each of these three data generation scenarios, the procedure is the following. 1000 pairs
of independent datasets with N patients each are simulated. The �rst one (Trk) is a "training
sample" and the second one (Tek) is a "test sample", k = 1, . . . , 1000. For each value of k,
the four models GLM, AR, F.markov and M.markov are inferred from Trk regardless of
the scenario used for generating the data, whereas the predictive properties of the models are
computed by Monte Carlo from Tek by comparing each patient's responses from Tek with
1000 probable longitudinal toxicity responses under the estimated model. Two sample sizes
are investigated: N = 30, which corresponds more or less to the size of most phase I studies,
and N = 50, which is the size of the original datasets used to design the present study.

3.2.2 Results

Figures 3, 4 and 5 display the results related to the prediction of at least one toxic event,
to the prediction of the duration of adverse events and to the prediction of the total number
of adverse events respectively. On each �gure, the �rst line displays the model performance
under the three simulation scenarios in cases of small datasets (N = 30) and the second line
displays the model performance under the three simulation scenarios in cases of larger datasets
(N = 50).

The �rst noticeable result is that under the bootstrap simulation scenario (Scenario 1)
and whatever the sample size, models AR and M.markov lead to Brier scores and CRPSs
smaller than those given by models GLM and F.markov, without much di�erence between
the performance of AR and M.markov. This especially means that the assumption on the
nature of the dependence between longitudinal toxicity observations underlying these two
models provides an adequate description of the toxic reactions.

Simulation scenarios Scenario 2 and Scenario 3 are aimed at evaluating the robustness of the
candidate models to model misspeci�cation. Under Scenario 2, data are generated according a
mixed-e�ects Markov model. Figures 3, 4 and 5 show that the best predictive model according
to the three chosen criteria is either the �xed-e�ects Markov model (F.markov) or the mixed-
e�ects Markov model (M.markov) when N = 30 and always the mixed-e�ects Markov model
when N = 50. The di�culty of recovering the true model from small datasets is probably
linked to the di�culty of correctly evaluating the between-patient variability in this case but
the main assumption of a Markov structure of dependence between observations is su�cient
to provide correct predictions. Under Scenario 3, data are generated according to a marginal
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model with an autoregressive correlation structure. Under this scenario, no clear di�erence
is evidenced between the four models whatever the sample size. Indeed, the median and the
dispersion of the three scores are quite similar from one model to another.

As an overall conclusion, this �rst simulation study shows that assuming a dependence
structure (autoregressive or Markov) between longitudinal toxicity records leads to the most
appropriate predictions of the toxic reactions to MTAs. More precisely, Markov models, in par-
ticular mixed e�ects Markov models, would be a robust model choice for accurately describing
longitudinal toxicity records.

3.3 Simulation study 2: comparison on dose-speci�c predictions

Beyond the comparison of models AR andM.markov according to their overall performances
in predicting toxic events for entire cohorts of patients, their predictive performance is also
compared on the scale of subgroups of patients having been given the same dose levels. This
second simulation study aims at assessing the ability of each model to discriminate between
doses, thus at assessing the appropriateness of each model in dose-�nding.

3.3.1 Data generation

Two situations are investigated: a) an ideal case where the dose groups are balanced, and b)
a more realistic case where the patients' allocation to dose groups is not balanced. 5 dose
groups are considered, further denoted as DI1, DI2, DI3, DI4 and DI5. In situation b), the
number of simulated patients in each dose group varies from one simulated dataset to another,
since in this case, dose level is assigned by randomly choosing a patient and his dose level
among those of the original datasets. In both balanced and unbalanced con�gurations, 1000
pairs of cohorts of 50 patients are simulated assuming the same monitoring duration for all
patients, including 9 weeks of treatment and 6 weeks of follow-up. The patients' drug exposure
(i.e. the values over time of explanatory variable CumExp) is simulated according to a log-
linear model, previously inferred from the original datasets: logCumExpij = µ + ui + β1 ×
tij + β2 × log(tij) + β3 × DIi + beta4 × log(DIi) + εij, where µ = −16.4, ui ∼ N (0, 1.752),
β1 = −0.011, β2 = 1.02, β3 = −0.027, β4 = 4.96 and εij ∼ N (0, 0.162). Their dose intensities
are also simulated. As in previous simulation study, robustness of predictions by dose level
to model misspeci�cation is assessed by simulating the patients' toxicity events according to
di�erent scenarios. Under Scenario 4, a mixed e�ects Markov model (M.markov) is used to

simulate the toxicities, with the following parameter values: µ(3) = −6.3, α
(3)
1 = 0.9, β

(3)
1 =

0.9, β
(3)
2 = −0.1, β

(3)
3 = 0.025, ω2

α = 1; and under Scenario 5 the toxicities are simulated
according to a marginal model with autoregressive correlation structure (AR), using parameter

values µ(1) = −1.78, β
(1)
1 = 0.156, β

(1)
2 = −0.128, β

(1)
3 = 0.01, β

(1)
4 = 0.153, ρ = 0.83. The
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corresponding theoretical probabilities of having at least one toxic event over the 15 weeks of
monitoring are 0.06, 0.11, 0.19, 0.3, 0.41 respectively for doses DI1, DI2, DI3, DI4 and DI5
under Scenario 4 and 0.08, 0.19, 0.32, 0.42, 0.50 under Scenario 5.

Each pair of simulated datasets includes, as above, one training set and one validation set.
Whatever the scenario used for data simulation (Scenario 4 or Scenario 5), the procedure is
the following. For each of the 1000 simulated training cohorts, the two competing models (AR
and M.markov) are �rst inferred; then, using the estimated model parameters, the predicted
probability of having at least one toxic event is computed for each patient of the corresponding
validation cohort. The empirical distributions of the predicted probabilities of having at least
one toxic event over the 15 weeks of monitoring can be deduced from the 1000 simulated
cohorts. It is then compared to the theoretical probabilities stated above using the CRPS.

3.3.2 Results

The results are depicted Figure 6. The �rst line gives the results obtained when simulating
balanced dose level groups, whereas the second line displays the results arising from simulating
unbalanced dose level groups. On the left, data are simulated according to a mixed-e�ects
hidden Markov model (Scenario 4 ); on the right, data are simulated according to a generalized
linear model with an autoregressive correlation structure (Scenario 5 ). In case a) (balanced
dose level groups), modelAR provides better predictions on low dose intensities (DI1 andDI2)
whatever the scenario used for data simulation, while modelM.markov tends to provide better
predictions on higher dose intensities (from DI3 to DI5), which are closer to the MTD (e.g.
35%). In case b) (unbalanced dose level groups), model M.markov provides better overall
predictions whatever the scenario used for data simulation. Indeed, the CRPS distributions for
each dose group show a lower median score and smaller variability in prediction when obtained
by inferring the autoregressive model.

4 Discussion

4.1 Categorical and temporal extensions

One can imagine many extensions of the longitudinal data models described above. First of all,
although the illustrative examples presented in Sections 2.3 and 3.1.1 restrict for simplicity the
temporal toxicity responses to binary outcomes (typically presence or absence of side e�ects),
we emphasize that the approach also applies to more general types of outcomes like ordinal
categorical ones. The model can consider di�erent grades of toxicity, for instance from 0 to 5
according to NCI-CTCAE nomenclature, which would allow for a more sophisticated descrip-
tion of the evolution of toxicity over time with respect to the clinician's interest. Secondly, our
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presentation focused on modelling some unidimensional temporal toxicity responses. However,
just like standard oncology therapies, MTAs are likely to induce several kinds of toxic e�ects
like, without being exhaustive, ocular toxicities, peripheral neuropathies or urinary toxicities.
When determining the Maximum Tolerated Dose, one should take into account the way all
these toxicities jointly occur over time, for which the unidimensional longitudinal models pre-
sented in Section 2 o�er limited prospects. There is indeed no reason to consider that the
underlying mechanisms for these di�erent categories of toxicities are the same or that these
toxic e�ects arise independently. Therefore, it is of strong interest to ultimately extend the
models above to (possibly correlated) multidimensional temporal responses. Data augmenta-
tion as in [31] is the convenient entry point to develop hierarchical stochastic structures with
increased complexity: introducing a latent multivariate (normal autoregressive) layer is the
price to pay in order to match all these operational requirements.

By nature, the serial dependence is implemented in the Markov models we considered, in
addition to a between-individual variability induced by the random e�ects for the last one.
A hidden Markov model (HMM) may be an attractive alternative for the case study ([32]).
Instead of establishing a direct transition between observable states Yik as given by equation
2, in HMM, the time dependence stems from a latent Markov model Z. For instance a �rst
order Normal AR model would be written:

Zij = ρiZi (j−1) + σiεij

εij ∼ N(0, 1).

Although ρi can be high to keep the latent process Zij tight enough during long sequences,
some dispersion is nevertheless allowed thanks to the stochastic observation equation given by:

P(Yij = 1|Zij) = Φ (µ+ βci + Zij)

Such HMM with random e�ects ((ρi, σi) ∼ p(.|θ)) have recently been proposed by [33] in
the advanced statistical literature.

4.2 On the path of personalized medicine

The present study mainly focused on the interests of longitudinal data models at the population
scale, the idea being to depict the mechanism of the appearance of toxic e�ects over time
and their variations around some population average. But the other aspect of interest for
longitudinal data models lies at the individual level. Once the model is inferred from the
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whole trial data, one can take advantage of its predictions at the individual levels. Borrowing
strength from neighbours but allowing for some heterogeneity among individuals, random e�ect
models seem here to be e�cient tools purposely tailored.

4.3 Missingness

Getting personalized knowledge about individuals appears particularly relevant in the context
of phase I clinical trials in oncology since overly strong adverse events lead to early withdrawal
from the trial. It is worth noting that such early drop-out cannot be considered independently
of the observable and missing data. Describing the missingness mechanism yields additional
modelling and inference challenges not dealt with this paper as well as extra programming not
available in standard software. [20] provides an overview of the various modelling frameworks
for non-Gaussian longitudinal data, with non ignorable missingness processes. Once a patient
shows a critical toxicity pro�le, the model can help predict his near future and anticipate
stronger adverse e�ects and can therefore possibly adapting his treatment for more comfort.

4.4 Words of caution

The introduction of longitudinal models in contexts of phase I clinical trials in oncology however
is not exempt from some caveats. First, longitudinal models allow the use of time-varying
covariates to predict the toxicity outcomes, which was not possible with approaches based on
a one-shot outcome (non longitudinal models). Clearly, these time-varying covariates are a very
rich source of information but also a potential source of confusion with the temporal memory of
toxicity responses. It is however up to the user to use these time-varying covariates cautiously
in a way to avoid misinterpretation of the model parameter estimations. A typical situation
where some problems may arise is when the treatment is readjusted (delayed administration or
reduced dose administration) because of the occurrence of disabling or persistent toxic e�ects.
In such a situation, the causal relationship between toxicities and drug exposure becomes
ambiguous since it works in both directions.

A second warning concerns the amount of data required to satisfactorily infer complex
longitudinal models. The more sophisticated the model becomes, the more data is needed to
get trustworthy parameter estimations. Yet the size of studied groups in phase I clinical trials
is often rather limited, from say 20 to 80 patients. As usual, model complexity has to be
weighted with sample size.
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5 Conclusion

5.1 From retrospective analysis to experimental design

In this paper, the retrospective analyses based on data collected from phase I clinical trials in
oncology plead in favour of the use of longitudinal models, especially Markovian models with
random e�ects. We believe that these advanced stochastic structures are not limited to the
statistical description of the data, but in this section we show that they could also develop as
operational tools. Our work was particularly motivated by the recent development of MTAs,
which rely on more complex mechanisms of action than do standard oncology treatments.
Multiple dose administrations to the same patient are performed over multiple cycles. MTAs
provoke repeated side e�ects of variable intensity in the long term that are recorded in the
follow-up of each patient (for instance such follow-up may last over six cycles of one month).
In the practice of clinical trials however, the next cohort of patients to be treated is launched
long before all the data of the previous cohort has been completely recorded, say on a monthly
basis. To cope with this short horizon, most studies currently reduce the data from the previous
cohorts to a binary end point, the occurrence of a toxicity, ignoring the incompleteness of the
data, the recurrence pattern of events and the various grades of toxicity. Such preliminary
"syntheses" to sum up the follow-up data yield a substantial loss of information, particularly
on the temporal evolution of toxicities, and therefore present the risk of recommending an
unadapted dose. Longitudinal data models give clinicians the opportunity to take advantage
of all available information from the clinical trial. Following the same avenue of thought of the
continuous reassessment method, more re�ned dose-�nding strategies could be elaborated after
updating the knowledge about the longitudinal model parameters as information accumulates
and late toxicities from previous cohorts come out.

5.2 Avoiding dose limiting toxicities

Up to now, unless a dose limiting toxicity occurs, the dose received by a patient is usually
not changed from one cycle to the next. Longitudinal models intend to assess the mechanisms
underlying the appearance of toxicities over time and allow for the incorporation of time-
varying covariates. They account for the dependence between consecutive observations and
thus make us able to assess di�erent toxicity pro�les like late, repeated or persistent toxicities.
We show that these models also have interesting predictive properties for separate pre-de�ned
dose categories. Therefore the extra information gained from each cycle provides more precise
estimation to understand the individual patient's behaviour with respect to toxicity during the
follow-up period and might even enable a better adaptation of the dose within the cycles of a
given patient.
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5.3 Rede�ning the MTD

However over-simplistic the statistical approaches presently retained for phase I clinical trials
in oncology may be, they have the great merit of designing clinical trials targeting MTD.
Nevertheless, as a direct end-product of these simple models, the MTD is in essence a statistical
quantile. The single summarizing outcome per patient follow-up is considered as a Bernoulli
event, and the MTD is merely the dose corresponding to the 33% quantile of the probability
model that rules such Bernoulli events, with one shot per patient. Now, phase I oncology
experts have come to the agreement that new recommendations for toxicity evaluation are
needed, in particular requiring the assessment of new MTD based on multiple endpoints [8, 34].

In the present work, we study alternative models allowing us to learn from multivariate
longitudinal categorical data. Unlike previous one-shot Bernoulli models, such longitudinal
models o�er the appropriate framework to enrich the de�nition of the Maximum Tolerated
Dose (which remains the main objective of a Phase I clinical trial in oncology) by taking into
consideration di�erent endpoints longitudinally followed. A renewed de�nition of the Maxi-
mum Tolerated Dose appropriate to MTA compounds should take into consideration acute,
late-onset, repeated or prolonged toxicities of many kinds along with their related severity. For
instance, the MTD could be seen as the maximum dose verifying that di�erent toxic events
occur with some prede�ned controlled risks:

arg
d

((
P(E1|d) < t1

)
∧
(
P(E2|d) < t2

)
∧, ...,∧

(
P(ES|d) < tS

))
where Es(s = 1 . . . S) are the toxic events of interest and ts the consented risks of occurrence
of these events. As an example, Es could be a late onset peripheral neuropathy event with a
grade above or equal to 3 according to NCI-CTCAE, or a Grade 2 to 4 ocular toxicity event
lasting more than 4 weeks, or even the simultaneity of those two toxic events. Inasmuch as
enough data becomes available to perform a relevant inference, the proposed longitudinal data
models allow MTD to be assessed based on the richer de�nitions that phase I oncologists are
willing to promote.
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Figure 1: Typical toxicity records from an early phase clinical trial of a speci�c MTA. Each
graph corresponds to a patient and represents the evolution over weeks of the intensity of toxic
e�ects after drug intake on a scale from 0 (no toxic e�ect) to 4 (disabling e�ect).
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Figure 2: Relation between P(Yij = 1) and β in models a) (red), b) (blue) for di�erent values
of ω (the greater ω is, the more the thicker the line is) and c) (black dotted lines) for di�erent
values of α. Each graph corresponds to a di�erent time point j (j = 1 on the left, j = 2 on
the right). The following values are used: µ = 0.1 and ci = 1.
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Figure 3: Brier score distributions obtained among 1000 simulations for each model and each
simulation scenario. The �rst line and the second line respectively display the results for small
datasetsN = 30 and large datasetsN = 50. From left to right on each line, the results obtained
under Scenario1 (a), Scenario2 (b) and Scenario3 (c) are displayed. Whiskers represent the
95% con�dence intervals. The Brier score is used to evaluate the model capability to predict
the probability of having at least one toxic event. The lower the Brier score is, the better the
model prediction is.
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Figure 4: Continuous Rank Probability Score distributions for the number of weeks with
adverse event obtained among 1000 simulations for each model and each simulation scenario.
The �rst line and the second line respectively display the results for small datasets N = 30 and
large datasets N = 50. From left to right on each line, the results obtained under Scenario1
(a), Scenario2 (b) and Scenario3 (c) are displayed. Whiskers represent the 95% con�dence
intervals. The lower the CRPS score is, the better the model prediction is.
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Figure 5: Continuous Rank Probability Score distributions for the number of Adverse Events
obtained among 1000 simulations for each model and each simulation scenario. The �rst line
and the second line respectively display the results for small datasets N = 30 and large datasets
N = 50. From left to right on each line, the results obtained under Scenario1 (a), Scenario2
(b) and Scenario3 (c) are displayed. Whiskers represent the 95% con�dence intervals. The
lower the CRPS is, the better the model prediction is.
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Figure 6: Continuous Rank Probability Score distributions applied on the predicted probability
of having at least one adverse event over the 15 weeks of follow-up for several dose intensity
values according to models AR and M.markov. Whiskers represent the 95% con�dence
intervals. The lower the CRPS is, the better the model prediction is. The �rst line depicts
results obtained on 1000 cohorts of 50 patients allocated in balanced dose level groups (10
patients per dose level). The second line: depicts results obtained on 1000 cohorts of 50
patients allocated in unbalanced dose level groups. Left: longitudinal toxicity responses are
simulated according to a mixed e�ect Markov model Scenario 4. Right: longitudinal toxicity
responses are simulated according to a �xed-e�ects generalized linear model with autoregressive
correlation structure Scenario 5.
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