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Bayesian Inference for Partially Observed
Multiplicative Intensity Processes

Sophie Donnet∗ and Judith Rousseau†

Abstract. Poisson processes are used in various applications. In their homoge-
neous version, the intensity process is a deterministic constant whereas it depends
on time in their inhomogeneous version. To allow for an endogenous evolution
of the intensity process, we consider multiplicative intensity processes. Inference
methods for such processes have been developed when the trajectories are fully
observed, that is to say, when both the sizes of the jumps and the jumps instants
are observed. In this paper, we deal with the case of a partially observed process:
we assume that the jumps sizes are non- or partially observed whereas the time
events are fully observed. Moreover, we consider the case where the initial state
of the process at time 0 is unknown. The inference being strongly influenced by
this quantity, we propose a sensible prior distribution on the initial state, using
the probabilistic properties of the process. We illustrate the performances of our
methodology on a large simulation study.

MSC 2010 subject classifications: Primary 62F15, 62M09, 62P30; secondary
62N01.

Keywords: Bayesian analysis, counting process, latent variables, multiplicative
intensity process.

1 Introduction

Counting processes (say X(t)) are commonly used in various fields of applications such
as medicine (see Gusto and Schbath (2005), for instance), public health biology or re-
liability (see Chen (2011), for instance), or more generally in risk theory (see Ogata
(1999), for instance). These processes are driven by their intensity process. The most
simple counting processes are homogeneous Poisson processes, whose intensity process
is a constant deterministic positive number. A classical generalization of the homoge-
neous Poisson process is the inhomogeneous Poisson process whose intensity process is
a positive deterministic function. Although widely used in practice and flexible, these
processes are limited by the fact they do not allow for endogenous evolution of the
intensity function. Multiplicative intensity processes (see Aalen (1978)) allow for such
an evolution. In this case the intensity process is expressed as Y (t)α(t), where α is a
positive deterministic function – namely, the intensity function of the process – and
Y (t) is a positive predictable process – the exposure process – (see, for instance, Chen
(2011)). These processes have been commonly used; they encompass in particular sur-
vival analysis and finite states Markov processes applications, see, for instance, Andersen
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et al. (1993). Parametric and nonparametric methods have been developed when the
trajectories (Y (t), X(t), t ∈ [0, 1]) are fully observed starting from the paper by Aalen
(1978) (see, for instance, Chen (2011), Ishawaran and James (2004), Reynaud-Bouret
and Schbath (2010) and references therein for nonparametric estimation, and Ogata
(1999) for parametric estimation). It is, however, sometimes the case that the process,
typically Yt, is only partially observed. In this paper we propose a Bayesian analysis of
a family of partially observed multiplicative intensity processes.

A particular multiplicative Poisson process with partial observations The processes
we study are pure-birth processes with multi-size immigrations. More precisely, we con-
sider a population of particles such that the particles give birth (randomly) to j0 par-
ticles (or equivalently, divides into j0 + 1 particles) with rate ν0(t) and immigration
groups of sizes j1, . . . , jK arrive with respective rates ν1(t), . . . , νK(t). Let X(t) be the
number of particles at time t: X(t) is a counting process with exposure process Y (t)
being

Y (t) = X(t−)ν0(t) +
K∑

k=1

νk(t) where X(t−) = lim
s→t,s<t

X(t),

X(t−) is predictable and νk(t) (k = 0, . . . ,K) are positive functions.

Remark 1. Note that contrariwise to compound Poisson processes, the above counting
process is self-excited, in other words, the (conditional) intensity depends on the past
trajectory of the process and not on some external stochastic process. It is thus strongly
related to multivariate Hawkes processes as used in seismicity analysis, see Ogata (1999)
or in DNA analysis Gusto and Schbath (2005). However, instead of considering only
two point processes as in their cases we have K point processes. Also compared to Ogata
(1999) we do not have the same parametric form for the intensity process, and com-
pared to Gusto and Schbath (2005) we have infinite memory in our construction of the
intensity point process. It can also be seen as a Markov jump process, as considered,
for instance, in Rao and Teh (2013) and references therein, except that in our case the
Markov process may be inhomogeneous.

The aim is then to estimate the different rate functions from the observation of the
counting process over a finite period [τ0, τ0 + τ ]. We consider a parametric context, i.e.
∃ θ ∈ Θ ⊂ R

d such that

(ν0(t), . . . , νK(t)) = (ν0(t, θ), . . . , νK(t, θ)) (1)

and θ is the parameter of interest. If the rates are constant in time, then (ν0(t), . . . ,
νK(t)) = (ν0, . . . , νK) = θ. Time varying functions can be used to model particle aging,
for instance, ν0(t) = α0t+ β0 or ν0(t) = α011t<t1 + α021t≥t1 , or an acceleration of the
immigration process, νk(t) = αkt+ βk.

Our aim is to estimate θ. We thus consider the following identifiability assumption:

Assumption H0: νk(t; θ) = νk(t; θ
′), ∀k = 0, . . . ,K ∀t ∈ (τ0, τ0 + τ) ⇒ θ = θ′.
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Estimating θ can be very different whether we observe the counting process com-
pletely or partially. In the following, observing X completely over [τ0, τ0 + τ ] means
not only observing the number of jumps N� and the jump instants T1, . . . , TN� of
the process but also the types of the jumps (birth or immigration) and so their sizes
(∈ {j0, . . . , jK}).

In this paper, we provide a Bayesian estimation procedure based on a non-standard
partial observation of the process. There are various meanings for the notion partial ob-
servations in counting processes. One can observe X(t) only at discrete times t1, . . . , tn:
see, for instance, the counting processes used in epidemiology where we observe the
number of newly infected people weekly, or more generally, models based on Markov
jump processes (see Rao and Teh, 2013, for instance). Another possibility is to observe
a noisy version of X, as in state space models, where the counting process X represents
the latent state of the dynamical system, see, for instance, Godsill (2007) or Whiteley
et al. (2011). However, in this paper, we consider a different case of “partial observation”
assuming that we have access – on a fixed period [τ0, τ0 + τ ] – to all the jumps instants
of the process T1, . . . , TN� but we do not observe (or partially observe) the types (birth
or immigration) / sizes of the jumps (possibly j0, j1, . . . , or jK). This can be framed
into the setup of the state space model of Godsill (2007), where the distribution of the
observation given the state is a point mass at the observed time points (which is part of
the latent variable), but it is a rather artificial expression of the model, since our model
is simpler. Note that in Godsill (2007), there are no parameters – apart from the latent
states – to be estimated and the paper deals with the filtering problem, while here we
are interested in recovering the parameters and possibly the process X.

Moreover, the feasibility and quality of the inference are also highly conditioned by
the observation or not of the number of particles at the beginning of the observation
period X(τ0). Dealing with the rates estimation when X(τ0) is unknown is a challenging
issue that we propose to tackle here. In this special case, the Bayesian approaches are
a natural way to handle this missing data framework (see Section 3.1).

Application This work is motivated by the analysis of an electrical network through
time. To simplify the exposure, assume that the electrical network is composed of a cable
(of constant length d) and accessories (such as joints, etc.). We observe the evolution
of the network and, more precisely, the sequences of incidents (failures) taking place
either on the cable itself or on the accessories. When an incident takes place on the
cable, it is repaired by exchanging the damaged part (very small) of the cable by a
new piece of cable, connected to the remaining network by two accessories. When an
incident takes place on an accessory, a small part of the network containing the damaged
accessory is removed and replaced by a new piece of cable connected to the network by
two accessories. (see Figure 1 for a graphical illustration of the reparation process).

Let X(t) be the number of accessories (i.e. particles) on the network. An incident
on an accessory corresponds to the birth of one particle (j0 = 1) whereas a break-
down on the cable corresponds to the immigration of two particles (K = 1, j1 = 2). The
cable incident rate is assumed to be proportional to the length of the cable (ν1(t) = dνc)
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Figure 1: Electrical network. The horizontal line represents a cable, each node on the
line represents an accessory. On the left (failure on an accessory) the accessory is
replaced by two of them. On the right (failure on the cable) a new cable is connected
to the remaining network by two additional accessories.

whereas the accessory incident rate is proportional to the number of accessories
(νaX(t−)), leading to the following exposure process:

Y (t) = νaX(t−) + νcd.

Remark 2. The motivating example just described is related to repairable systems as de-
scribed, for instance, in Gamiz et al. (2011), however, contrariwise to minimal repairable
systems considered in Gamiz et al. (2011), which are counting processes with determin-
istic intensity functions, in our context the intensity function is modified through time
by the state of the system.

νa and νc are the parameters of interest since they will allow predicting the evolution
of the network in the future. Moreover, νa and νc can be specific to the material or the
geographical position of the network, and so their estimation can help to compare the
types of material.

In this practical context, we have access to the instants of intervention (reparation)
but only partially to the types of reparation (e.g. type of breakdown). More precisely,
the instants of intervention are reported precisely whereas the types of intervention are
reported with so much error that it is preferable to ignore that information (this point
will be discussed at the end of the paper). As a consequence, we are in the situation
described above: the observations are reduced to the jump instants denoted Ti; the
heights of the jumps in the counting process – i.e. in this case, the cause of the incidents
(cable or accessories) – are unobserved or partially observed.

Moreover, in general, the beginning of the observation period does not coincide with
the installation of the network. More precisely the number of accessories is known at
the installation of the electrical network, but the systematic collection of the incident
times starts a long time after the installation instant.

0 · · · −−−−−→ τ0 −−−−−−−−−−−−→ τ0 + τ

X(0) X(τ0) X(τ0 + τ)
Installation ] ←− Observation −→ ]

(2)

Consequently, the number of accessories at the beginning of the observation period
X(τ0) is unknown and this quantity has to be inferred.
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Hence, in this paper, we (i) propose a parametric Multiplicative Poisson process
which is flexible and adapted to many problems including linear assets management
and reliability evaluation for repairable systems and (ii) propose a general Bayesian
procedure for inference from either complete or partial observation of the process. In
the particular case where the number of particles at the beginning of the observation
period X(τ0) is unknown, we (iii) construct an ad-hoc prior distribution on X(τ0), this
semi-informative prior being based on the structure of the processX (and more precisely
its asymptotic properties).

The paper is organized as follows. In Section 2, we introduce the notations and give
the likelihood expression. Bayesian estimation is addressed in Section 3. In Section 3.1,
we explain how we conduct the inference under a fully observed process. Section 3.2
describes how we extend the previous analysis to the setup of a partially observed
process. We first consider the case where X(τ0) is known and highlight the influence of
X(τ0) on the inference. Then, we treat the case with unknown X(τ0) by constructing
a prior distribution on X(τ0) derived from the asymptotic behavior of the process.
Section 4 presents an extensive numerical study. Finally, in Section 5, we discuss how
the family of processes we have considered can be extended.

2 Notations and likelihood

We consider a pure birth process with multi-size immigrations. In the following, an
“event” denotes either a birth or an arrival of immigrants. The particles (or individual)
give birth to j0 children (or equivalently, divides into j0 + 1 particles), meaning that
after one birth there are j0 more particles. Groups of immigrants are of respective sizes
j1 < j2 < · · · < jK .

Let N(t) be the total number of events occurred in [τ0, t]. For the sake of simplicity,
in the following, we use the following notation: N� := N(τ0 + τ), i.e. N� is the total
number of events occurring in the observation period.

For every k = 1, . . . ,K, we denote by Nk(t) the number of immigration events of
size jk occurred in [τ0, t], and N0(t) is the number of birth events occurred in [τ0, t].
Obviously, N(t) = N0(t)+N1(t)+ · · ·+NK(t). {N0:K(t), τ0 ≤ t ≤ τ0+τ} is a multivari-
ate counting process with multiplicative intensity (ν0(t)X(t−), ν1(t), . . . , νK(t)) where
X(t−) = lims→t,s<t X(t) and X(t) is the number of particles at time t. We have

X(t) = X(τ0) +

K∑
k=0

jkNk(t). (3)

Let T1, . . . , TN� be the occurrence times of the events during the observation period
[τ0, τ0 + τ ]. Let Zi be a discrete variable representing the type of the jth event: Zi ∈
{0, . . . ,K} is equal to k if the ith event is of type k, then we have

X(Ti) = X(Ti−1) +

K∑
k=0

jk1Zi=k = X(Ti−1) + jZi .
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Definition 1. With these notations, the process is said to be fully observed if N0:K(·)
is continuously observed on [τ0, τ0 + τ ], or equivalently, if the total number of events
N�, the time events {Ti}i=1...N� and the nature of the events {Zi}i=1...N� are observed.

Remark 3. Note that continuously observing N0:K(·) on [τ0, τ0+τ ] is not equivalent to
continuously observing X(·) (the number of particles) unless j0 /∈ {j1, . . . , jK}. Indeed,
if j0 is equal to one of the j1, . . . , jK , then a birth and an immigration event will lead
to the same increase of particles.

In the fully observed setup, the likelihood is (see Andersen et al. (1993)):

L(N�, (Ti, Zi)i=1,...,N� ; θ,X(τ0)) =

K∏
k=0

N�∏
i=1

νk(Ti, θ)
1Zi=k

N�∏
i=1

X(Ti−1)
1Zi=0

× exp

[
−

N�+1∑
i=1

X(Ti−1)

∫ Ti

Ti−1

ν0(t, θ)dt− V (τ, θ)

]
(4)

where T0 = τ0, TN�+1 = τ + τ0 and V (τ, θ) =
∑K

k=1

∫ τ0+τ

τ0
νk(t, θ)dt. This quantity

is referred to as the complete likelihood. Note that in the case of time independent
intensities the complete likelihood simplifies into

L(N�, (Ti, Zi)i=1,...,N� ; θ,X(τ0)) =

K∏
k=0

ν
Nk(τ0+τ)
k

N�∏
i=1

X(Ti−1)
1Zi=0

× exp

[
−ν0

N�∑
i=1

(Ti − Ti−1)X(Ti−1)− ν•τ

]
(5)

where ν• =
∑K

k=1 νk

In Section 3.1, we consider the estimation of θ when the process is fully observed.
Section 3.2 deals with the case where the time events {Ti}i=1,...,N� are observed but
the nature of the events and the initial number of particles X(τ0) are non or partially
observed. The estimation procedures are detailed for the case where the intensities are
constant but the cases of time dependent densities are discussed at each step.

3 Bayesian inference

3.1 Estimation from the complete observation

In this section, we assume that we completely observe the multivariate process {N0:K(t),
τ0 ≤ t ≤ τ0 + τ} and the initial number of particles X(τ0) is known.

From (4), we can derive the identifiability of the parameter θ.

Proposition 1. Assume that (H0) holds. Let θ and θ′ be two sets of parameters such
that for any complete dataset (N�, (Ti, Zi)i=1,...,N�),

L(N�, (Ti, Zi)i=1,...,N� ; θ) = L(N�, (Ti, Zi)i=1,...,N� ; θ′).
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Then θ = θ′.

The proof is given in Appendix A.

Bayesian estimation Inference under such models obviously depends on the paramet-
ric form of the νj(t; θ). In order to understand the role of X(τ0) in the estimation, we
detail the simplest case where νk(t) = νk. In this case θ = (ν0, . . . , νK).

Constant intensity rates In the case of constant intensity rates, we set Gamma prior
distributions on these parameters:

νk ∼ Γ(αk, βk), ∀k = 0, . . . ,K, independently

with (αk, βk) ∈ (R∗+)2 such that E[νk] =
αk

βk
.

In the fully observed case, we deduce from (5) that the Gamma distributions are
conjugate and the posterior distributions on the νk’s are given by:

ν0|N�, (Ti, Zi)i=1,...,N� , X(τ0) ∼ Γ
(
α0 +N0(τ0 + τ), β0 +

∑N�+1
i=1 (Ti − Ti−1)X(Ti−1)

)
,

νk|N�, (Ti, Zi)i=1,...,N� , X(τ0) ∼ Γ (αk +Nk(τ0 + τ), βk + τ) ∀k = 1, . . . ,K.
(6)

As a consequence we obtain the following posterior expectation estimators:

ν̂0 = E[ν0|N�, (Ti, Zi)i=1,...,N� , X(τ0)] = α0+N0(τ0+τ)

β0+
∑N�+1

i=1 (Ti−Ti−1)X(Ti−1)
,

ν̂k = E[νk|N�, (Ti, Zi)i=1,...,N� , X(τ0)] = αk+Nk(τ0+τ)
βk+τ , ∀k = 1, . . . ,K.

(7)

Role of X(τ0) in the estimators From (7), we note that the estimators {ν̂k, k =
1, . . . ,K} only depend on the number of events of type k:

ν̂k =
αk +Nk(τ0 + τ)

βk + τ
, ∀k = 1, . . . ,K.

As a consequence, even if X(τ0) is unobserved, we are able to estimate the immigration
rates (νk)k=1...K , provided we observe the number of events of each type (Nk(τ0 +
τ))k=1...K . It is not the case for ν0. Indeed, using the following reformulation:

N�+1∑
i=1

(Ti − Ti−1)X(Ti−1) =

N�∑
i=1

TijZi + τX(τ0) + (τ + τ0)

K∑
k=0

Nk(τ0 + τ)jk,

we obtain

ν̂0 =
α0 +N0(τ0 + τ)

β0 +
∑N�

i=1 TijZi + (τ + τ0)
∑K

k=0 Nk(τ0 + τ)jk + τX(τ0)
. (8)

Expression (8) enlightens the influence of X(τ0). We will see in Sections 4.2 and 4.3
how partial observation of either Nk or X(τ0) impacts the quality of the inference.

Remark 4. If the intensities are time dependent, the conditional distribution is likely
to be non-conjugate, and we would have to resort to an ad-hoc Metropolis–Hastings
algorithm to sample the posterior distribution.
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3.2 Estimation from the partial observation of the process

We now consider the case where we partially observe the process: more precisely, we
observe all the instants of occurrences T1:N� and partially the types of the events
(Zj)j=1...N� .

Let Z denote (Z1, . . . , ZN�). We introduce nnobs and nobs as the numbers of non-
observed and observed event types, respectively. Obviously, we have nnobs + nobs =
N� and 0 ≤ nobs ≤ N�. Let {i1, . . . , innobs

} be the non-observed indices, Znobs =
(Zi1 , . . . , Zinnobs

) is the vector composed of the non-observed Zi’s and Zobs = Z \Znobs

is the vector composed of the observed Zi’s. We first consider the case where we estimate
the parameter from the partial observation (N�, T1:N� ,Zobs), X(τ0) being known.

Case 1. X(τ0) is known

The likelihood of the observations (N�, T1:N� ,Zobs) is

L(N�, T1:N� ,Zobs; θ) =
∑

z∈{0,...,K}nnobs

L(N�, T1:N� ,Zobs, z; θ). (9)

Interestingly, even if nobs = 0, i.e. if none of the types of events are observed, the pa-
rameter θ can still be identified (proof given in Appendix A). We consider the following
assumption:

H1 : ν0(·, θ) is such that

e−j0
∫ τ0+τ
t ν0(u,θ)du − 1

ν0(τ + τ0; θ)
=

e−j0
∫ τ0+τ
t ν0(u,θ

′)dt − 1

ν0(τ + τ0; θ′)
, ∀t ∈ [τ0, τ+τ0] ⇒ ν0(·, θ) = ν0(·, θ′).

Then

Proposition 2. Assume that H0 and H1 hold. Let θ and θ′ be two sets of parameters
such that for any partial dataset (N�, T1:N� ,Zobs),

L(N�, T1:N� ,Zobs; θ) = L(N�, T1:N� ,Zobs; θ
′).

Then θ = θ′.

Remark 5. H1 holds, for instance, when ν0 is polynomial (see Appendix A Subsection
A.4).

Bayesian estimation For the ease of simplicity, we detail the Bayesian estimation
for constant rates: νk(t) = νk; ∀k = 0, . . . ,K. As soon as nnobs becomes moderately
large, the sum in the likelihood (9) is intractable. Moreover, the conjugacy of the prior
distributions is no more ensured. However, we can use a Gibbs algorithm to sample the
posterior distribution which consists in sampling the latent types Znobs, in the usual
data augmentation scheme as proposed by Tanner and Wong (1987). This makes the
use of the conjugate Gamma priors considered in Section 3.1 particularly useful, in the
case where the intensities νj are assumed constant.
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The non-observed types are simulated and updated iteratively. To generate a non-
observed type Zil conditionally on all the other quantities, we proceed in the following
way. For each possible value of Zil ∈ {0, . . . ,K}, we compute its conditional probability
pil,k = P (Zil = k|N�, T1:N� ,Z(�−1) \ {Zil}; θ(�)), this probability being proportional to
the complete likelihood evaluated for the Z where the missing type Zil has been replaced

by k. Once the probabilities have been computed, we sample Z
(�)
il

∼
∑K

k=0 pil,kδ{k}
(where δ• is the Dirac distribution).

We thus have the following pseudo-code:

Posterior distribution sampling for partial observation with X(τ0) known

• At iteration (0), initialize the algorithm on Z
(0)
nobs chosen arbitrarily.

• At iteration (� ≥ 1)

Set Z(�−1) = (Zobs,Z
(�−1)
nobs ) and compute the following statistics:

X(�−1)(Ti) = X(�−1)(Ti−1) + j
Z

(�−1)
i

∀i = 1, . . . , N�,

N
(�−1)
k =

∑N�

i=1 1
Z

(�−1)
i =k

∀k = 0, . . . ,K.

[1.] Generate the parameters conditionally on N�, X(τ0), T1:N� ,Z(�−1):

ν
(�)
0 |N�, T1:N� ,Z(�−1) ∼ Γ

⎛⎝α0 +N
(�−1)
0 (τ0 + τ), βk +

N�+1∑
j=0

(Tj − Tj−1)X
(�−1)(Tj−1)

⎞⎠ ,

ν
(�)
k |N�, T1:N� ,Z(�−1) ∼ Γ

(
αk +N

(�−1)
k (τ0 + τ), βk + τ

)
∀k = 1, . . . ,K.

[2.] Generate the non-observed event types Z
(�)
nobs conditionally on (N�, T1:N� ,

Zobs, ν
(�)
0 , . . . , ν

(�)
K ):

Set Z̃ = Z(�−1), ∀l = 1, . . . , nnobs.

[2.1 ] For any of the possible type k = 0, . . . ,K, compute the conditional probability

pil,k = P (Zil = k|N�, T1:N� ,Z(�−1)\{Zil}; θ(�)) ∝ L(N�, T1:N� , Z̃k,l; ν
(�)
0 , . . . , ν

(�)
K )

with Z̃k,l
i = Z̃i, for i 
= il and Z̃k,l

il
= k.

[2.2 ] Generate Z
(�)
il

∼
∑K

k=0 pil,kδ{k}.

[2.3 ] In Z̃ replace its ilth component by Z
(�)
il

and return to [2.1] with l := l + 1 until

l = nnobs and set Z(�) = Z̃.
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Remark 6. Note that in practice, the order of simulation of the latent types Zil is
chosen randomly at each iteration. For the sake of simplicity in the previous pseudo-
code, this point has not been detailed.

Remark 7. In case of time dependent rates, the Gibbs algorithm has to be adapted.
Indeed, for a general form of the rates, the various conditional distributions may not be
explicit anymore. Consequently, we may have to resort to the use of Metropolis–Hastings
kernels which have to be designed for each particular case.

In Section 4.2, we illustrate the influence of the partial or non-observation of Z on the
quality of estimation of θ. X(τ0) characterizes the state of the system at the beginning
of the study. However, in situations where the Zj ’s are only partially observed, it is often
the case that X(τ0) is not observed either. Inference in this case can be dramatically
impacted by a miss-specification of X(τ0) (see Figures 4 and 5). We present in the
following section our inference procedure when X(τ0) is not observed.

Case 2. X(τ0) is unknown

In this section, we assume that X(τ0) is not observed and has to be inferred. We first
prove the identifiability of the model:

Proposition 3. Let (θ,X(τ0)) and (θ′, X ′(τ0)) be two sets of parameters such that for
any partial dataset (N�, T1:N� ,Zobs),

L(N�, T1:N� ,Zobs; θ,X(τ0)) = L(N�, T1:N� ,Zobs; θ
′, X ′(τ0)).

Then θ = θ′ as soon as H1 and H0 hold.

The proof is given in the Appendix A for the least favourable case when nobs = 0.

Prior derivation on X(τ0) Since X(τ0) has a strong influence on the inference, the
choice of its prior π is a key issue. A first solution is to propose a uniform distribution on
{x(τ0)−, . . . , x(τ0)+} ⊂ N: X(τ0) ∼ U{x(τ0)−,...,x(τ0)+}. In practice, x(τ0)

− and x(τ0)
+

would typically be elicited using expert knowledge. However, when x(τ0)
− is much

smaller than x(τ0)
+, posterior inference on the other parameters can become too diffuse

to be of any practical use, see Section 4.3, Figure 4 for a numerical illustration of this
phenomenon.

An alternative is to use the probabilistic structure of the counting process N0:K

to construct a coherent prior distribution on X(τ0). It is often the case (see, for in-
stance, linear assets, as in our motivating example based on the electrical network)
that although X(τ0) is not known, the state of the network at its installation – several
decades prior to the beginning of the study at time τ0 – is known. When the observation
period starts, the system has evolved until a certain number X(τ0) of particles. As a
consequence we propose to derive the prior distribution on X(τ0) from the asymptotic
distribution of the number of particles.
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Proposition 4 gives the exact distribution of X(t) for all t ≥ 0 through its moment
generating function, in terms of X(0) = x0, the {jk, k = 0, . . . ,K} and the intensity
rates {νk(·), k = 0, . . . ,K}. Theorem 1 provides a more explicit expression of its asymp-
totic distribution as t goes to infinity under some conditions on the jk’s and νk’s.

Proposition 4. Let X(t) be the number of particles issued from the pure birth multi-
immigration process described in Section 2. We assume that X(0) = x0. We set V (t) =∑K

k=1

∫ t

0
νk(u)du and V0(t) =

∫ t

0
ν0(u)du. Then we have

Φ(s, t) = E[sX(t)] =
[
1− ej0V0(t)(1− s−j0)

]−x0/j0
e−V (t) exp{J (s, t)}

where

J (s, t) =

K∑
k=1

∫ t

0

νk(u)
[
1− (1− s−j0) exp(j0V0(t− u))

]−jk/j0
du.

A developed expression of Φ(s, t) for the electrical network is given in Section 4, see
(10).

A power series development supplies X(t)’s probability distribution. As a conse-
quence, a first way to propose a prior distribution on X(τ0) would be to use that exact
distribution. However, the calculations can be burdensome. In case where τ0 is large
enough, we propose to use the asymptotic distribution instead of the exact distribution.
In some cases, this asymptotic distribution is quite easy to handle and can be used as
prior distribution on X(τ0). This asymptotic distribution is given in Theorem 1.

Theorem 1. Let X(t) be the number of particles issued from the pure birth multi-
immigration process described in Section 2. We assume that X(0) = x0 and the following
two conditions:

(i) ∀k = 1, . . . ,K, jk/j0 = rk ∈ N
∗.

(ii) For all k ≥ 1 νk(t) = νk and there exists t1 > 0 such that ν0(t) = ν0,11t≤t1 +
ν0,21t>t1 with 0 < ν0,1 ≤ ν0,2.

Then using the same notations as in Proposition 4, with ν• =
∑K

k=1 νk,

e−j0V0(t)X(t)
L−−−−→

t → ∞
Γ

(
x0

j0
,
1

j0

)
+

rK−1∑
l=0

Zl

where the Zl’s are independent random variables with Z0 ∼ Γ( ν•
ν0,2j0

, 1
j0
) and for l =

1, . . . , rK − 1,

Zl ∼
∞∑
j=1

ωj,lΓ

(
jl,

1

j0

)

with ωj,l = eλl
λj
l

j! , λl =
αl

lν0,2j0
, αl = ν•, ∀l ∈ {1, . . . , r1 − 1} and αl = νl + · · · + νK ,

∀l ∈ {rk−1, . . . , rk − 1}, ∀k = 2, . . . ,K.
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The proof is given in Appendix B. Theorem 1 shows that as τ0 becomes large,
conditional on the νj ’s and x0, X(τ0)’s distribution can be approximated by ej0V0(τ0)

times the sum of infinite mixtures of Gamma random variables. In other words, it
increases exponentially quickly with τ0. A numerical illustration of the precision of this
approximation is illustrated in Section 4.3, in the case where ν0,1 = ν0,2. It is interesting
to note that in the simple case where only ν0 is allowed to vary by taking two possible
values, the limiting rate j0V0(·) depends on the whole function ν0(·), but the remaining
part of the distribution only depends on ν0,2.

Neglecting the modification of the system through time can lead to strongly biased
estimation, as soon as V0(τ0)j0 is not negligible. For an intermediate value of τ0 it
is possible to improve the approximation by re-centring the distribution using the true
mean of X(τ0) which can be deduced from the Laplace transform given in Proposition 4.
We denote by πR

∞ the re-centred asymptotic distribution.

Remark 8. Note that the result applies for the electrical context described previously.

Posterior sampling for Bayesian inference We now detail the posterior sampling algo-
rithm forX(τ0) and θ in the case of constant rates. In this case, the parameter of interest
is (θ,X(τ0)) = (ν0, . . . , νK , X(τ0)), and we set the hierarchical prior distribution:

X(τ0)|(ν0, . . . , νK) ∼ πR
∞(X(τ0); ν0, . . . , νK),

νk ∼ Γ(αk, βk), k = 0, . . . ,K.

With this new prior distribution on X(τ0) the model is not fully conjugate (see (5)
with πR

∞(X(τ0); θ) equal to the infinite Poisson mixture of Gamma distributions). As
a consequence, we have to resort to a Metropolis–Hastings algorithm to sample the
posterior distribution. The proposal distributions on X(τ0) and (ν0, . . . , νK) are detailed
hereafter and have proved their efficiency in the simulation study.

Posterior distribution sampling for partial observation with X(τ0) unknown

• At iteration (0), initialize the algorithm on (Z
(0)
nobs, θ

(0), X(0)(τ0)).
• At iteration (�)

[1.] For k = 0, . . . ,K

• Propose log ν̃k = log ν
(�−1)
k +σk N (0, 1) and set θ̃ = (ν

(�)
0 , . . . , ν

(�)
k−1, ν̃k, ν

(�−1)
k+1 , . . . ,

ν
(�−1)
K ).

• Compute

αk = min

{
1,

L
(
N�,T1,...,TN� ,Z

(�−1)
nobs ,Zobs;θ̃,X

(�−1)(τ0)
)

L
(
N�,T1,...,TN� ,Z

(�−1)
nobs ,Zobs;θ(�−1),X(�−1)(τ0)

) πR
∞(X(�−1)(τ0)|θ̃)

πR
∞(X(�−1)(τ0)|θ(�−1))

π(ν̃k)

π
(
ν
(�−1)
k

) q
(
ν
(�−1)
k |ν̃k

)
q
(
ν̃k|ν(�−1)

k

) } .
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• Set

θ(�) =

{
θ̃ with probability αk,
θ(�−1) with probability 1− αk.

[2.] Generate non-observed event types Znobs using step [2.] in the algorithm presented
in Section 3.2.
[3.] Generate X(τ0)

• Propose X̃(τ0) ∼ πR
∞(·|θ(�)).

• Compute

α(X(�−1)(τ0), X̃(τ0)) = min

{
1,

L(N�,T1,...,TN� ,Z
(�)
nobs,Zobs;X̃(τ0),θ

(�))

L(N�,T1,...,TN� ,Z
(�)
nobs,Zobs;X(�−1)(τ0),θ(�))

}
.

• Set

X(τ0)
(�) =

{
X̃(τ0) with probability α(X(�−1)(τ0), X̃(τ0)),

X(�−1)(τ0) with probability 1− α(X(�−1)(τ0), X̃(τ0)).

The σk’s are tuned to achieve an reasonable acceptance rate. As described above, X̃(τ0)
is proposed using the prior distribution πR

∞. This choice has proved its efficiency (for
instance, with respect to a random walk).

4 Numerical studies

We now illustrate and study our model and procedure using an extensive simulation
study. All the simulations take place in the electrical network context evoked in the
introduction. We first suppose that the initial state of the process X(τ0) is known and
we study the influence of the non-observation of Z on the quality of estimation of the
parameters. In a second part, we assume that X(τ0) is unknown and has to be estimated
too: we first describe various prior distributions derived from the asymptotic behaviour
of the process and then we compare the results obtained when a uniform prior on X(τ0)
is chosen with those obtained with its asymptotic distribution. Finally, we conduct a
study on a pseudo-real dataset.

4.1 Notations and useful quantities

Recall that in our framework the electrical network is composed of electrical cables and
accessories. A failure of a joint implies the birth of a new accessory and a failure of the
cable implies the immigration of two accessories. As a consequence, we have

j0 = 1, K = 1, j1 = 2.

From now on, we use the following notations: ν0 := νa is the failure rate on the acces-
sories; ν1 := νcd is the failure rate of the cable and so the immigration rate where d is
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the length of the cable; νa and νc are the parameters of interest. We set Gamma prior
distributions, νa ∼ Γ(αa, βa) and νc ∼ Γ(αc, βc). The number of accessories at the time
of installation X(0) is known and equal to x0. Applying Proposition 4 to this case, we
have the following expression for the probability generating function:

Ψ(s, t) = E[sX(t)]

= e−νcdt
[
1− s(1− e−νat)

]−ρ
e−ρseρ(1−eνat(1−1/s))−1

(1− eνat(1− 1/s))−x0

(10)

where ρ = νcd/νa. From (10) we can deduce

E[X(τ0)] = eτ0νa [2ρ(1− e−τ0νa) + x0] ,
V [X(τ0)] = (eτ0νa − 1) [x0e

τ0νa + ρ(3eτ0νa − 1)] .
(11)

From Theorem 1, we derive the asymptotic distribution of the number of accessories

e−τ0νaX(τ0)
L−−−→

t→∞
Z where Z

L
=
∑∞

k=0 e
−ρ ρk

k! Γ (k + ρ+ x0, 1) . (12)

We denote by π∞ the asymptotic distribution ofX(τ0) given by (12). The corresponding
asymptotic expectation and variance are

Eπ∞ [X(τ0)] = eτ0νa [2ρ+ x0] Vπ∞ [X(τ0)] = e2τ0νa [3ρ+ x0] . (13)

These quantities will be used in the following numerical experiments.

4.2 X(τ0) is known, influence of partial observation of Z

In this first numerical experiment, we suppose that X(τ0) is known and study the
influence of the amount of missing data on the estimation of νa and νc. The data are
simulated with

νa = 10−4, νc = 2× 10−6, X(τ0) = 400, τ = 10 years, d = 8000,

which are realistic values in an electrical network. With these parameter values we
simulate 100 datasets whose summary statistics are given in Table 1. For each dataset,

min mean max
N� 199 254.08 308

Na(τ0 + τ) 150 197.18 240
Nc(τ0 + τ) 34 56.90 75

Table 1: Simulation study 1 (X(τ0) known and fixed). Statistics of the datasets: number
of events N�, number of failures on the accessories Na(τ0 + τ), number of failures on
the cable Nc(τ0 + τ).

we sample from the posterior distribution of νa and νc in the following 4 scenarios.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

νa
Relative Bias (%) –0.85 –0.99 –1.46 –3.36
RMSE (%) 6.58 7.14 8.31 8.66

νc
Relative Bias (%) –2.12 –3.09 –1.47 4.76
RMSE (%) 12.34 14.06 18.48 11.48

Table 2: Simulation study 1 (X(τ0) known and fixed): relative bias and RMSE (per-
centages) for ν̂a and ν̂c in the 4 scenarios.

• Scenario 1. We suppose that the whole sequence Z1, . . . , ZN� is observed. In this
context, the posterior distribution of (νa, νc) has an explicit expression given by:

νa|T1, . . . , TN� , Z1, . . . , ZN� , X(τ0) ∼ Γ
(
αa +Na(τ0 + τ),

βa +
∑N�+1

i=0 (Ti − Ti−1)X(Ti−1)
)
,

νc|T1, . . . , TN� , Z1, . . . , ZN� , X(τ0) ∼ Γ (αc +Nc(τ0 + τ), βc + dτ) .

(14)

• Scenario 2. One third of the Z1, . . . , ZN� are unobserved (the unobserved Zj are
randomly chosen). In that case, the posterior distribution of (νa, νc) is sampled by a
Gibbs algorithm described in Section 3.2, performed with 10.000 iterations and a burn-in
period of 5000 iterations.

• Scenario 3. Two thirds of Z1, . . . , ZN� are unobserved. The observed Zj are ran-
domly chosen among those of Scenario 2.

• Scenario 4. Z1, . . . , ZN� are completely unobserved.

Remark 9. In order to avoid too many figures in the paper, we do not provide trajec-
tories of the Gibbs outputs for Scenarios 2, 3 and 4. Convergence assessment tools of
the MCMC / Gibbs algorithms will be provided in Subsection 4.4, in the least favourable
case when not only Z but also X(τ0) have to be sampled.

In Figure 2, we plot the prior and the four marginal posterior distributions of νa
(top) and νc (bottom), one per scenario, for one typical dataset. As expected, the smaller
nobs, the more spread the posterior is. This phenomenon is enhanced when the sequence
Z1, . . . , ZN� is completely non-observed.

Denoting by ν̂
(m)
a and ν̂

(m)
c the posterior means of νa and νc respectively associated to

datasetm, we compute the relative bias and relative root-mean-square-error respectively
given by

Bias =
100∑
m=1

ν̂(m) − ν

ν
, RMSE = 10

√√√√ 100∑
m=1

(ν̂(m) − ν)2

ν2

and displayed in Table 2 in percentages. As expected, the quality of estimation decreases
when the number of observations decreases.
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Figure 2: Influence of the non-observation of Z1, . . . , ZN� on the posterior distributions
of νa (upper figure) and νc (bottom figure). Prior distribution (plain line), posterior
distribution in Scenario 1 (plain line with triangles), posterior distribution in Scenario
2 (· · · ), posterior distribution in Scenario 3 (· − ·), posterior distribution in Scenario 4
(dashed line).

4.3 Estimation of (νa, νc) when X(τ0) is unknown

In case where X(τ0) is unknown, we have to set its prior distribution. As exposed before,

we propose to deduce this prior distribution from the asymptotic properties of the

counting process. To assess this choice, in a first step, we compare the true distribution
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of the number of accessories X(t) with three other distributions deduced from the
asymptotic behaviour. We then study the influence of this choice on the estimation of
νa and νc.

Properties of the asymptotic approximation of the distribution of (X(t))t≥0

To assess the validity of Theorem 1 and propose an adequate prior distribution, we
conduct the following numerical study. We fix the parameter values to the following
values:

νa = 4.10−4, νc = 4.10−6, d = 4000, x0 = 10,

and consider 3 values for τ0: 5, 25 and 130 years. For each τ0, we simulate 10 000
trajectories of our branching process starting at x0 and store the number of accessories
at the end of the period. The true distribution of the number of accessories is estimated
from these samples through a kernel estimation method.

1. We first compare it to the asymptotic distribution π∞ given by (12) (plotted in
Figure 3 with squares �).

2. By comparing the true and asymptotic expectations – given in (11) and (13) –
we deduce that the asymptotic distribution has an inflated expectation with respect to
the true one. As a consequence, we propose to correct the asymptotic distribution by
re-centring it around the true expectation. We denote by πR

∞ the re-centred asymptotic
distribution (plotted with triangles 	 in Figure 3).

3. Finally, one could be attracted by the use of a simple Poisson distribution with
mean E[X(τ0)] given by (11) (plotted with circles ◦ in Figure 3). This choice could be
considered as an easier alternative prior to avoid the use of the asymptotic distribution
(12).

The density functions are plotted in Figure 3. We observe that for a long elapsed time
(τ0 = 130 years, bottom figure) the asymptotic, the true and the re-centred distributions
overlap and cannot be distinguished. The Poisson distribution is far much narrower and
has not been plotted in the bottom panel. For an intermediate time period (τ0 = 25
years), the asymptotic distribution overestimates the number of accessories and cannot
be used as a good approximation. However, the re-centred asymptotic distribution is a
much better approximation, still retaining heavier tails than the true one. In the per-
spective of its use as a prior distribution on X(τ0), this makes it a reasonable option. On
the contrary, the Poisson distribution is far too narrow to be used as a prior distribution.
This phenomenon could have been deduced from the comparison of the variances (given
in (11) and (13)) but is well illustrated on the plot. When the time period is really short
(τ0 = 5 years) the re-centred asymptotic distribution is much larger than the true one.
As a consequence, this choice of prior distribution can appear to be less interesting.
However, taking into account the fact that the asymptotic distribution has an explicit
density expression and does not require the tuning of any hyper-parameter, it finally
stays competitive with respect to the exact distribution or a uniform prior distribution,
from an implementation point of view. We will see in the following that this choice also
leads to better estimation results when compared to the uniform distribution.
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Figure 3: Distribution of X(τ0): the estimated true distribution (plain line), asymptotic
distribution (�), re-centred asymptotic distribution (	), Poisson distribution (◦); (top)
τ0 = 5 years, (middle) τ0 = 25 years, (bottom) τ0 = 130 years.

Influence of X(τ0) and estimation

We now pay attention to the way to infer X(τ0) (either fixing or estimating it using the
previously described priors) and will study how the strategy influences the estimation
of νa and νc.

When X(τ0) is unknown we consider several solutions: fixing it at some arbitrary
value or estimating it using either a uniform prior distribution or using the re-centred
asymptotic distribution as a prior. Using the following parameter values:

νa = 1.10−5, νc = 4.10−6, d = 4000,
x0 = 0, τ0 = 40 years, τ = 15 years,
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we simulate 100 trajectories starting at x0 = 0 during a time interval of length τ + τ0.
For these datasets, the statistics are summarized below, in Table 3.

min mean max
X(τ0) 432 504.95 650

N� 87 121.26 151
Na(τ0 + τ) 19 32.77 48
Nc(τ0 + τ) 66 88.49 112

Table 3: Simulation study 2 (influence of X(τ0)), summary statistics of the datasets.

Now, for each dataset we estimate the parameters νa and νc using 4 scenarios. Note
that in order to separate the sources of imprecision, in this study, we suppose that
Z1, . . . , ZN� are observed.

• Scenario 0. Scenario 0 will refer to the case where X(τ0) is known (and so set to
its true value) and will be our reference. In that case, the model is conjugate and the
posterior distributions on νa and νc have been given by (14).

• Scenario 1. The naive solution is to set X(τ0) to its value at the instant of installa-
tion of the network (x0), neglecting the evolution of the process between the installation
and the beginning of the study. However, in our simulation study x0 is equal to 0 and
X(τ0) is around 500, leading to dramatically bad estimations. Instead, we set X(τ0) to
X(τ0)/2.

• Scenario 2. We consider a uniform prior distribution: X(τ0) ∼ U{x(τ0)−···x(τ0)+}
with x(τ0)

− = 100 and x(τ0)
+ = 1000.

• Scenario 3. We consider the re-centred asymptotic distribution πR
∞ on X(τ0) given

by (12).

Results In Figure 4, we plot the posterior densities of νa (upper) and νc (bottom)
for one arbitrarily chosen dataset. As expected, X(τ0) does not influence the posterior
distribution of νc and the posterior densities corresponding to the 4 scenarios nearly
overlap. On the contrary, the posterior density for νa clearly depends on X(τ0). If X(τ0)
is under-evaluated (Scenario 1), the posterior density of νa (dashed line) is shifted to
the right: this phenomenon was clearly expected from (8). When a prior on X(τ0) is
considered, the re-centred asymptotic prior distribution clearly outperforms the uniform
prior distribution: first of all, the asymptotic prior distribution does not require the
elicitation of the support {x(τ0)− · · ·x(τ0)+} and above all the posterior distribution
for νa is clearly narrower and closer to the reference posterior distribution (Scenario 0)
when πR

∞ is used.

Remark 10. Note that the implementation of the Metropolis–Hastings algorithm for
X(τ0) requires the evaluation of πR

∞(X(τ0)|νa, νc):

πR
∞(X(τ0)|νa, νc) = e−τ0νa

∞∑
k=0

e−ρ ρ
k

k!
fΓ(k+ρ+x0,1)(e

−τ0νa(X(τ0) + 2ρ))
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Figure 4: Influence of the non-observation of X(τ0) on the posterior distributions of
νa (upper figure) and νc (bottom figure) for one dataset: prior distribution (plain line
with diamonds), posterior distribution with the true X(τ0) (Scenario 0) (plain line),
posterior distribution with under-evaluated X(τ0) (Scenario 1) (dashed line), posterior
distribution with a uniform prior distribution on X(τ0) (Scenario 2) ( ·−·) and posterior
distribution with asymptotic prior distribution on X(τ0) (dotted line).

where fΓ(a,b) is the density function of the Gamma distribution of parameters (a, b). In

practice, this infinite summation has to be truncated, depending on the current value of

θ: in our algorithm, we have used a truncated version of the prior πR
∞ defined by
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πR
∞(X(τ0)|νa, νc) = e−τ0νa

K(θ)∑
k=0

e−ρ ρk

k!Sθ
fΓ(k+ρ+x0,1)(e

−τ0νa(X(τ0) + 2ρ)),

with Sθ =
∑K(θ)

k=0 e−ρρk/k! and

K(θ) = inf

{
k ≥ ρ|e−ρ ρ

k

k!
< 10−324

}
.

We compute for each dataset and each scenario the posterior means and variances
of νa and νc which we denote by denote by E[ν�,sa |Y�] , E[ν�,sc |Y�], V ar[ν�,sa |Y�] and
V ar[ν�,sc |Y�] , respectively, with s ∈ {0, . . . , 3} and � ∈ {1, . . . , 100} indexing the sce-
nario and the dataset, respectively. In Figure 5, a summary of these quantities is pre-
sented in the form of their posterior densities.

As already remarked, the posterior variance and expectation of νc are not influenced
by X(τ0) (Figure 5, bottom left and right). On the contrary, an under-estimated X(τ0)
leads to a large positive bias on νa (Figure 5, top left, density in dashed line). When a
uniform prior distribution is used on X(τ0) we observe a large posterior variance on νa
(Figure 5, top right, density in · − · line) whereas the use of the re-centred asymptotic
prior distribution on X(τ0) leads to a much more sensible posterior variance (Figure 5,
top right, density in dotted line).

4.4 Estimation on pseudo-real dataset

To illustrate the performance of our prior distribution and our estimation method, we
propose to consider a pseudo-real dataset, that is to say, a realistic context with X(τ0)
unknown and Z partially unobserved.

We consider a d = 40000 metre network, τ0 = 25 year old at the beginning of
the study. The study lasts τ = 4 years, and half of the breakdowns types are reported
whereas the other ones are unknown. x0 is known to be equal to 10. Among theN� = 276
occurred breakdowns, half of them are observed (nobs = 138). Among the observed
breakdowns, 114 are due to the cable and 24 take place on the accessories.

We use the centred asymptotic prior distribution πR
∞ for X(τ0).

Initialization and tuning of the MCMC algorithm We sample the posterior distribution
using the MCMC algorithm described in Section 3.2. Since νc does not depend on X(τ0)
but only on the number of events taking place on the cable, we initialize

ν(0)c =
N�

nobs

1

τd

nobs∑
i=1

1Zobs,i=1

using the fraction of event types we observe. No easy way to initialize νa could be
found: in the following, we generate 10 chains starting from starting from 10 different
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Figure 5: Influence of the non-observation of X(τ0) on the posterior expectation (left)
and variance (right) of νa (top) and νc (bottom) for the 100 datasets: estimated density
with the true X(τ0) (Scenario 0) (plain line), with under-evaluated X(τ0) (Scenario 1)
(dashed line, (−−−−)), with a uniform prior distribution on X(τ0) (Scenario 2) ( ·− ·)
and with asymptotic prior distribution on X(τ0) (dotted line (· · · )).
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ν
(0)
a regularly distributed between 10−4 and 2.10−2. Conditionally on ν

(0)
a , we set

X(0)(τ0) = eτ0ν
(0)
a

(
2
ν
(0)
c d

ν
(0)
a

(1− e−τ0ν
(0)
a ) + x0

)
.

The Znobs,i’s are all initialized at 0. Some trials with other initializations on Znobs,i

(Znobs,i randomly chosen to be 0 or 1) were run without showing any interesting effect.
The random walks on log νa and log νc are implemented with σa = 0.2 and σc = 0.05
leading to acceptation rates around 60%.

Convergence assessment of the MCMC algorithm

The algorithm is implemented with 50000 iterations. A period of burn-in of 20000
iterations is removed. As described before, we generate 10 MCMC chains, starting from

10 different ν
(0)
a regularly distributed between 10−4 and 2.10−2. We use these 10 chains

to assess the convergence of the MCMC algorithm. More precisely, for each of them, we
compute the variance intra-chain and compare it to the inter-chains variance through
the potential scale reduction factor (Gelman and Rubin, 1992). We obtain

Rνa = 1.014351 Rνc = 1.003598 RX(τ0) = 1.0021661,

all of them being smaller than 1.2. We also provide two graphical tools. For one ar-
bitrarily chosen chain, we plot the auto-correlation function for the three parameters
of interest (see Figure 7). The autocorrelations quickly decrease for X(τ0) and νc, the
decrease is slower for νa but remains acceptable. Finally, in Figure 6, we plot – for the
same chain – the trajectories produced by the MCMC, assessing that we have reached
the stationary distribution.

In Figure 8, we plot the posterior distributions of X(τ0), νa and νc estimated by
kernel density estimation from the concatenation of one over 5 values from the last
25000 iterations of the 10 chains. The prior distribution is plotted in dashed line. It is
interesting to note that even when X(τ0) is unknown, the posterior distributions of νa
and νc lead to accurate estimation of these parameters.

5 Discussion and possible extensions of the model

In this section, we discuss some directions in which the model can be extended.

First, in this model, we assume that the Z1, . . . , ZN(τ) are partially observed. An
other interesting scenario would be to consider a mis-reporting of the event types Zj ’s.
More precisely we observe types of events Zr

1 , . . . , Z
r
N(τ) which are reported with error,

defined by a probabilistic model P [Zr|Z]. Writing the new full likelihood

L̃(N∗, (Ti, Zi, Z
r
i )i=1,...,N∗ , X(τ0)) = L(N∗, (Ti, Zi)i=1,...,N∗ , X(τ0))×

N∗∏
i=1

P [Zr
i |Zi]

we obtain a tractable posterior distribution on (Z, X(τ0), θ) which we can simulate
using a Gibbs sampler.
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Figure 6: Pseudo-real dataset. Trajectories of the MCMC algorithm: (left) X(τ0), (mid-
dle) νa, (right) νc.

Figure 7: Pseudo-real dataset. Autocorrelation functions of the output of one particular
chain for the 3 parameters: (left) X(τ0), (middle) νa, (right) νc.
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Figure 8: Pseudo-real dataset. Posterior distribution (plain) line and prior distribution
in dashed line: (left) X(τ0), (middle) νa, (right) νc.

In our description of the model and methodology, emphasis has been put on the case
where the rates νj are constant. We have already explained how the methodology can be
extended to the case where they depend on time in a parametric way. The structure of
the algorithms would remain the same, apart from the possible loss in conjugacy so that
Metropolis–Hasting steps within Gibbs might have to be considered in such situations,
depending on the parametric form of the function νj(t; θ). Depending of the form of
νj(t; θ), and using Proposition 4, extensions of Theorem 1 to cases where the νk’s are
allowed to vary could be obtained.

Another direct extension from our model is to consider covariates which do not vary
with time. In that case, a hierarchical formulation of our Bayesian model can be stated
as follows. Let C denote the covariate taking values in a set C (typically C would be
finite). Then given C, define a process (NC(t), XC(t), t ∈ [0, T ]) as in Section 2 with
parameters νC = (νC,0, . . . , νC,K), assume that the parameters νC are independent and
identically distributed from the prior distribution proposed in Section 3.1.

An easier way to consider aging in the system is to say that after a given time τ�,
the accessories are replaced by a new type of material with their proper failure rate ν�.
In that context, we would have a multi-type counting process. Let X�(t) denote the
number of new type-accessories and X(t) the number of old type accessories. After τ∗,
at each event (immigration or birth) X(t) decreases and X�(t) increases conjointly. The
study of that process and the estimation of the parameters would remain essentially the
same as the one presented in the paper.
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Appendix A: Proof of identifiability (Propositions 1, 2
and 3)

Let us recall the expression of the complete likelihood:

L(N�, (Ti, Zi)i=1,...,N� ; θ,X(τ0)) =

[
K∏

k=0

N�∏
i=1

νk(Ti, θ)
1Zi=k

N�∏
i=1

X(Ti−1)
1Zi=0

]

× exp

⎡⎣−N�+1∑
j=1

X(Tj−1)

∫ Tj

Tj−1

ν0(t, θ)dt−
K∑

k=1

∫ τ0+τ

τ0

νk(t, θ)dt

⎤⎦
(15)

where T0 = τ0, TN�+1 = τ + τ0.

A.1 Proof of Proposition 1

We prove the identifiability of the model from the complete observation of the process

(Proposition 1) andX(τ0) known. Let θ and θ′ be such that for any complete observation

of the process, we have

L(N�, (Ti, Zi)i=1,...,N� ; θ,X(τ0)) = L(N�, (Ti, Zi)i=1,...,N� ; θ′, X(τ0)). (16)

Note that (16) has to be verified for any possible dataset N�, (Ti, Zi)i=1,...,N� . As a

consequence, we propose to deduce the identifiability from two particular cases, namely

N� = 0 and N� = 1. These special values present the advantage to make the calculus

easy.

• For the particular case where N� = 0, applying (15) gives

exp

[
−X(τ0)

∫ τ+τ0

τ0

ν0(t, θ)dt−
K∑

k=1

∫ τ+τ0

τ0

νk(t, θ)dt

]

= exp

[
−X(τ0)

∫ τ+τ0

τ0

ν0(t, θ
′)dt−

K∑
k=1

∫ τ+τ0

τ0

νk(t, θ
′)dt

]
,

or equivalently,

R(θ,X(τ0)) = exp
[
−
∑K

k=0

∫ τ+τ0
τ

νk(t, θ)X(τ0)
1k=0dt

]
= exp

[
−
∑K

k=0

∫ τ+τ0
τ

νk(t, θ
′)X(τ0)

1k=0dt
]
= R(θ′, X(τ0)).

(17)

• Now, if we observe N� = 1 event, which is a birth (Z1 = 0) occurring at time T1, we
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can write the likelihood as (using the fact that X(T1) = X(τ0) + j0)

L(1, T1, Z1; θ,X(τ0))

= ν0(T1, θ)X(τ0) exp
[
−X(τ0)

∫ T1

τ0
ν0(t, θ)dt−X(T1)

∫ τ0+τ

T1
ν0(t, θ)dt

−
∑K

k=1

∫ τ+τ0
τ0

νk(t, θ)dt
]

= ν0(T1, θ)X(τ0) exp
[
−j0

∫ τ0+τ

T1
ν0(t, θ)dt−

∑K
k=0

∫ τ+τ0
τ0

νk(t, θ)X(τ0)
1k=0dt

]
.

Applying (17), the equality of likelihoods implies

X(τ0)ν0(T1, θ) exp

[
−j0

∫ τ0+τ

T1

ν0(t, θ)dt

]
= X(τ0)ν0(T1, θ

′) exp

[
−j0

∫ τ0+τ

T1

ν0(t, θ
′)dt

]
(18)

∀T1 ∈ [τ0, τ0 + τ ], which is equivalent to having ∀x ∈ [τ0, τ0 + τ ]

∂ exp
[
−j0V 0(x; θ)

]
∂x

=
∂ exp

[
−j0V 0(x; θ

′)
]

∂x

where V 0(x; θ) =
∫ τ0+τ

x
ν0(t, θ)dt. Hence,

exp[−j0V 0(x; θ)] = exp[−j0V 0(x; θ
′)] + C, ∀x ∈ [τ0, τ + τ0].

Using the fact that V 0(τ + τ0, θ) = V 0(τ + τ0, θ
′) = 0, we obtain C = 0 and, by

derivation,

ν0(t, θ) = ν0(t, θ
′) ∀t ∈ [τ0, τ + τ0].

• Assuming now that N� = 1 and Z1 = k for any k = 1, . . . ,K, we once again write
the corresponding likelihood. Using the fact that X(T1) = X(τ0) + jk, we obtain

νk(t, θ) exp
[
−jkV 0(t; θ)

]
= νk(t, θ

′) exp
[
−jkV 0(t; θ

′)
]
.

Using ν0(t, θ) = ν0(t, θ
′), we obtain

νk(t, θ) = νk(t, θ
′) ∀k = 1 . . .K, ∀t ∈ [τ0, τ + τ0].

Finally, we have νk(t, θ) = νk(t, θ
′), ∀k = 0, . . . ,K, ∀t ∈ [τ0, τ + τ0] and so by condition

H0, θ = θ′.

A.2 Proof of Proposition 2

We now assume that we observe N�, (Tj)j=1,...,N� , X(τ0) is known, but we do not
observe Z1, . . . , ZN� .

• As before, we set N� = 0, which leads to R(θ,X(τ0)) = R(θ′, X(τ0)).



28 Partially Observed Multiplicative Intensity Processes

• Now, we set N� = 1. In this case, the likelihood is written as a marginal version
of (15) (integrated over Z1),

L(1, T1; θ,X(τ0)) =
∑K

k=0 νk(T1, θ)(X(τ0))
1k=0

exp
[
−X(τ0)

∫ T1

τ0
ν0(t, θ)dt− (X(τ0) + jk)

∫ τ0+τ

T1
ν0(t, θ)dt

−
∑K

k=1

∫ τ+τ0
τ0

νk(t, θ)dt
]

= exp
[
−
∑K

k=0

∫ τ+τ0
τ0

X(τ0)
1k=0νk(t, θ)dt

]
∑K

k=0 νk(T1, θ)(X(τ0))
1k=0 exp

[
−jk

∫ τ0+τ

T1
ν0(t, θ)dt

]
= R(θ,X(τ0))

∑K
k=0 νk(T1, θ)(X(τ0))

1k=0e−jk
∫ τ0+τ

T1
ν0(t,θ)dt.

Let us introduce for n ≥ 0 and t ∈ [τ0, τ0 + τ ]

Mn(t, θ,X(τ0)) =

K∑
k=0

jnk νk(T1, θ)(X(τ0))
1k=0e−jk

∫ τ0+τ

T1
ν0(t,θ)dt.

L(1, T1; θ,X(τ0)) = L(1, T1; θ
′, X(τ0)) implies, using (17),

M0(t, θ,X(τ0)) = M0(t, θ′, X(τ0)) ∀t ∈ [τ0, τ + τ0]. (19)

• Now, set N� = 2. Then the likelihood is

L(2, T1, T2; θ,X(τ0))

= e
−
∑K

k=1

∫ τ+τ0
τ0

νk(t,θ)dt
K∑

k1,k2=0

νk1(T1, θ)(X(τ0))
1k1=0νk2(T2, θ)(X(T1))

1k2=0

exp

[
−X(τ0)

∫ T1

τ0

ν0(t, θ)dt− (X(τ0) + jk1)

∫ T2

T1

ν0(t, θ)dt

− (X(τ0) + jk1 + jk2)

∫ τ0+τ

T2

ν0(t, θ)dt

]

= R(θ,X(τ0))

K∑
k1=0

νk1(T1, θ)(X(τ0))
1k1=0e−jk1

∫ τ0+τ

T1
ν0(t,θ)dt

[
K∑

k2=1

νk2(T2, θ)e
−jk2

∫ τ0+τ

T2
ν0(t,θ)dt + ν0(T2, θ)(X(τ0) + jk1)e

−j0
∫ τ0+τ

T2
ν0(t,θ)dt

]
.

Denoting

φ0(t, θ) = ν0(t, θ)e
−j0

∫ τ0+τ
t ν0(u,θ)u,

we have

L(2, T1, T2; θ,X(τ0)) = R(θ,X(τ0))
K∑

k1=0

νk1(T1, θ)(X(τ0))
1k1=0e−jk1

∫ τ0+τ

T1
ν0(t,θ)dt
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×
[

K∑
k2=0

νk2(T2, θ)X(τ0)
1k2=0e−jk2

∫ τ0+τ

T2
ν0(t,θ)dt + ν0(T2, θ)jk1e

−j0
∫ τ0+τ

T2
ν0(t,θ)dt

]
= R(θ,X(τ0))

[
M0(T1, θ,X(τ0))M

0(T2, θ,X(τ0))
]

+R(θ,X(τ0))

[
φ0(T2, θ)

K∑
k1=0

jk1νk1(T1, θ)X(τ0)
1k1=0e−jk1

∫ τ0+τ

T1
ν0(t,θ)dt

]
= R(θ,X(τ0))

[
M0(T1, θ,X(τ0))M

0(T2, θ,X(τ0)) + φ0(T2, θ)M
1(T1, θ,X(τ0))

]
.

(20)

Let θ and θ′ such that for any τ0 < T1 < T2 < τ0 + τ we have

L(2, T1, T2; θ,X(τ0)) = L(2, T1, T2; θ
′, X(τ0)).

From (17) and (19) we have R(θ,X(τ0)) = R(θ′, X(τ0)) and M0(T1, θ,X(τ0)) =
M0(T1, θ

′, X(τ0)). As a consequence, for any T1, T2

φ0(T2, θ)M
1(T1, θ,X(τ0)) = φ0(T2, θ

′)M1(T1, θ
′, X(τ0)), (21)

or equivalently,
φ0(T2, θ)

φ0(T2, θ′)
=

M1(T1, θ
′, X(τ0))

M1(T1, θ,X(τ0))
. (22)

So each ratio is a constant with respect to its variable, i.e. ∃Cθ,θ′ independent of T2 so
that

φ0(T2, θ) = ν0(T2, θ)e
−j0

∫ τ0+τ

T2
ν0(t,θ)dt

= Cθ,θ′ν0(T2, θ
′)e−j0

∫ τ0+τ

T2
ν0(t,θ

′)dt = Cθ,θ′φ0(T2, θ
′).

Setting T2 = τ + τ0, we can compute Cθ,θ′

ν0(τ + τ0; θ) = Cθ,θ′ν0(τ + τ0; θ
′).

So
ν0(T2, θ)

ν0(τ + τ0; θ)
e−j0

∫ τ0+τ

T2
ν0(t,θ)dt =

ν0(T2, θ
′)

ν0(τ + τ0; θ′)
e−j0

∫ τ0+τ

T2
ν0(t,θ

′)dt.

Integrating out this equality, there exists Dθ,θ′ such that

1

ν0(τ + τ0; θ)
e−j0

∫ τ0+τ

T2
ν0(t,θ)dt =

1

ν0(τ + τ0; θ′)
e−j0

∫ τ0+τ

T2
ν0(t,θ

′)dt +Dθ,θ′ .

Once again, setting T2 = τ + τ0, we obtain

1

ν0(τ + τ0; θ)
=

1

ν0(τ + τ0; θ′)
+Dθ,θ′ .

So ν0(t, θ) and ν0(t, θ
′) verify

e−j0
∫ τ0+τ

T2
ν0(t,θ)dt − 1

ν0(τ + τ0; θ)
=

e−j0
∫ τ0+τ

T2
ν0(t,θ

′)dt − 1

ν0(τ + τ0; θ′)
, ∀t ∈ [τ0, τ + τ0].
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From assumption H1, we obtain

ν0(t; θ) = ν0(t; θ
′), ∀t ∈ [τ0, τ + τ0]. (23)

Combining (21) and (23), we get M1(T1, θ,X(τ0)) = M1(T1, θ
′, X(τ0)), i.e. for all t ∈

[τ0, τ + τ0],

K∑
k1=1

jk1νk1(t, θ)e
−jk1

∫ τ0+τ
t ν0(u,θ)du =

K∑
k1=1

jk1νk1(t, θ
′)e−jk1

∫ τ0+τ
t ν0(u,θ

′)du.

• The same type of calculus can be done for N� = 3, 4, . . . and we obtain (for all n ≥ 2)

K∑
k=1

jnk νk(t, θ)e
−jk

∫ τ0+τ
t ν0(u,θ)du =

K∑
k=1

jnk νk(t, θ
′)e−jk

∫ τ0+τ
t ν0(u,θ)du.

Moreover, since 0 < j1 < · · · < jK , letting n go to infinity in the above equation leads
to

νK(t, θ) = νK(t, θ′) ∀t ∈ [τ0, τ0 + τ ],

and subsequently, ∀k
νk(t, θ) = νk(t, θ

′) ∀t ∈ [τ0, τ0 + τ ]

which combined with H0 leads to θ = θ′.

A.3 Proof of Proposition 3

We now consider that X(τ0) is unknown. The calculus are the same, except that X(τ0)
is now included in the parameters. We now obtain the following equations:

R(θ,X(τ0)) =

K∑
k=0

∫ τ+τ0

τ0

X(τ0)
1k=0νk(t, θ)dt

=

K∑
k=0

∫ τ+τ0

τ0

X ′(τ0)
1k=0νk(t, θ

′)dt = R(θ′, X ′(τ0)), (24)

M0(t, θ,X(τ0)) = M0(t, θ′, X ′(τ0)) (25)

and
φ0(T2, θ)

φ0(T2, θ′)
=

M1(T1, θ
′, X ′(τ0))

M1(T1, θ,X(τ0))
(26)

where φ0(·, θ) and M1(·, θ,X(τ0)) have been defined before. The same deductions can be
done as before, and we obtain ν0(t, θ) = ν0(t, θ

′). Exactly as in the proof of Proposition 2,
we derive that for all t ∈ [τ0, τ + τ0],

Mn(T1, θ,X(τ0)) = Mn(T1, θ
′, X ′(τ0)), ∀n ≥ 0,
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or equivalently, for all n ≥ 0, for all t ∈ [τ0, τ + τ0],

K∑
k=1

jnk (X
′(τ0))

1k=0νk(t, θ)e
−jk

∫ τ0+τ
t ν0(u,θ)du

=

K∑
k=0

jnkX(τ0)
1k=0νk(t, θ

′)e−jk
∫ τ0+τ
t ν0(u,θ)du

which leads, using the same arguments, to X ′(τ0) = X(τ0) and θ = θ′.

A.4 Comments on the assumption H1

We now verify assumption H1 when ν0(·, θ) is polynomial in t. Recall that, under H1,
ν0(·, θ) is such that

e−j0
∫ τ0+τ
t ν0(u,θ)du − 1

ν0(τ + τ0; θ)
=

e−j0
∫ τ0+τ
t ν0(u,θ

′)du − 1

ν0(τ + τ0; θ′)
, ∀t ∈ [τ0, τ+τ0] ⇒ ν0(·, θ) = ν0(·, θ′).

The assumption can be transformed into:

e−j0
∫ τ0+τ
t ν0(u,θ)du =

ν0(τ + τ0; θ)

ν0(τ + τ0; θ′)
(e−j0

∫ τ0+τ
t ν0(u,θ

′)du − 1) + 1 ⇒

−j0

∫ τ0+τ

t

ν0(u, θ)du = log

[
ν0(τ + τ0; θ)

ν0(τ + τ0; θ′)
(e−j0

∫ τ0+τ
t ν0(u,θ

′)du − 1) + 1

]
. (27)

If ν0(·, θ) is a polynomial function, i.e. ν0(t, θ) =
∑P

k=0 θk(τ0+τ−t)k, then ν0(τ+τ0, θ) =
θ0 and (27) becomes: ∀u ∈ [0, τ ],

−j0

P+1∑
k=1

θk−1

k
uk = log

[
θ0
θ′0

(e−j0
∑P+1

k=1

θ′k−1
k uk − 1) + 1

]
.

The left-hand side is a polynomial function of degree P +1. Having a look, for instance,
at the power series expression of the right-hand term of the equality, we clearly see that
it cannot be a polynomial function of degree P+1, unless θ0 = θ′0. If ν0(τ+τ0, θ) = θ0 =
θ′0 = ν0(τ + τ0, θ

′), then, going back to the first equation, we obtain ν0(t, θ) = ν0(t, θ
′)

for all t ∈ [τ0, τ + τ0].

The result is directly extended for ν0 being exponential. For any other function, the
previous demonstration has to be adapted.

Appendix B: Asymptotic study of (X(t))t≥0. Proof of
Proposition 4 and Theorem 1

In Proposition 4, we give an integral expression of the generating function of the j0-Yule
process with multi-size immigration described in Section 2. More precisely, let X(t) be
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a branching process such that each particle gives birth to j0 particles at random time
distributed with E(ν0) and such that groups of jk immigrants arrive at random times
distributed with E(νk), for k = 1, . . . ,K. We assume that X(0) = x0.

B.1 Proof of Proposition 4

The proof of Proposition 4 can be divided into two parts. First, the x0 particles existing
at time 0 will give birth to x0 independent pure birth processes (each particle giving birth
to j0 particles). Once the processes derived from those particles have been taken into
account, we can reduce the study to a pure birth process with multi-size immigration
starting from 0 particles.

In Lemma 1, we recall the expression of the generating function of a pure birth
process starting with one particle and study its asymptotic distribution. The generating
function of the process of interest starting with X(0) = 0 particle is then detailed. The
proof is similar to the one given in Shonkwiler (1980) but adapted to our particular
case. In the particular case where the sizes of the immigration groups are proportional
to j0, we derive an explicit expression of the limiting distribution in Section B.2.

Lemma 1. Let Y (t) be a branching process starting with Y (0) = y0 particle such
that each particle gives birth to j0 particles within a non-homogeneous Poisson process
distribution of intensity ν0(t). Then we have

Ψ(s, t) = E[sY (t)] =
[
1− (1− s−j0) exp(V0(t)j0)

]−y0/j0
.

Moreover,

lim
t→∞

e−j0V0(t)Y (t) = Γ

(
y0
j0

,
1

j0

)
(L)

where V0(t) =
∫ t

0
ν0(u)du.

Proof of Lemma 1. We first assume that Y (0) = 1. By construction of the process
Y (t), Qi,j(t, h) = P (Y (t+ h) = j|Y (t) = i) only depends on t, h, i, j. When h is small,
Qi,j(t, h) verifies

Qi,j(t, h) =

⎧⎨⎩
ν0(t)ih+ o(h) if j = i+ j0,
1− ν0(t)ih+ o(h) if j = i,
o(h) if j /∈ {i, i+ j0}.

(28)

We now derive a partial differential equation fulfilled by the probability-generating
function. Using the fact that Y (t) take its values in {j0k + 1, k ∈ N} we have

Ψ(s, t) = E[sY (t)] =
∑
k∈N

P (Y (t) = j0k + 1|Y (0) = 1)sj0k+1 =
∑
k∈N

Q1,j0k+1(0, t)s
j0k+1.

(29)
Using a backward-equation, we derive an expression for Q1,j0k+1(0, t) = P (Y (t) =
j0k + 1|Y (0) = 1). Indeed,

Q1,j0k+1(0, t+ h) = P (Y (t+ h) = j0k + 1|Y (0) = 1)
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=

∞∑
l=0

P (Y (t+ h) = j0k + 1|Y (t) = j0l + 1)P (Y (t) = j0l + 1|Y (0) = 1)

=

∞∑
l=0

Qj0l+1,j0k+1(t, h)Q1,j0l+1(0, t)

= (1− ν0(t)(j0k + 1)h)Q1,j0k+1(0, t) +Q1,j0(k−1)+1(0, t)ν0(t)(j0(k − 1) + 1)h+ o(h),

using (28). We directly obtain the following ODE:

Q′
1,j0k+1(0, t) = limh→0

Q1,j0k+1(0,t+h)−Q1,j0k+1(0,t)

h

= −ν0(t)(j0k + 1)Q1,j0k+1(0, t) + ν0(t)(j0(k − 1) + 1)Q1,j0(k−1)+1(0, t).
(30)

We now derive from (30) and (29) a partial differential equation for Ψ(s, t),

∂

∂t
Ψ(s, t) =

∑
k∈N

Q′
1,j0k+1(0, t)s

j0k+1 =

∞∑
k=1

Q′
1,j0k+1(0, t)s

j0k+1

=

∞∑
k=0

sj0k+1
[
−ν0(t)(j0k + 1)Q1,j0k+1(0, t) + ν0(t)(j0(k − 1) + 1)Q1,j0(k−1)+1(0, t)

]
= −ν0(t)

∞∑
k=0

sj0k+1(j0k + 1)Q1,j0k+1(0, t)

+ ν0(t)

∞∑
k=1

(j0(k − 1) + 1)Q1,j0(k−1)+1(0, t)s
j0k+1

= −ν0(t)

∞∑
k=0

sj0k+1(j0k + 1)Q1,j0k+1(0, t) + ν0(t)

∞∑
k=0

(j0k + 1)Q1,j0k+1(0, t)s
j0(k+1)+1

= −ν0(t)s
∂

∂s
Ψ(s, t) + ν0(t)s

j0+1 ∂

∂s
Ψ(s, t)

= ν0(t)s(s
j0 − 1)

∂

∂s
Ψ(s, t).

As a consequence, Ψ(s, t) satisfies the following equation:

∂

∂t
Ψ(s, t) = ν0(t)s(s

j0 − 1)
∂

∂s
Ψ(s, t), Ψ(s, 0) = s. (31)

The solution of this equation is

Ψ(s, t) =
[
1− eV0(t)j0(1− s−j0)

]−1/j0
where V0(t) =

∫ t

0

ν0(u)du.

We now study the asymptotic distribution of Z̃(t) = e−V0(t)j0Y (t) through its moment-
generating function

ΦZ̃(t)(θ) = E[eθZ̃(t)] = E[eθe
−V0(t)j0Y (t)] = E[(eθe

−V0(t)j0
)Y (t)] = E[s

Y (t)
t ] = Ψ(st, t)
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where st = eθe
−V0(t)j0 �t→∞ 1 + θe−V0(t)j0 if limt→∞ V0(t) = ∞.

We easily obtain the following limit, for all θ, with |θ| < 1/j0,

lim
t→∞

ΦZ̃(t)(θ) =
1

(1− j0θ)1/j0

and recognise the moment generating function of the Γ( 1
j0
, 1
j0
).

Now, if the process starts with Y (0) = y0 particles, each of them initiates a j0-Yule
process which is independent of the other ones, leading to

Ψ(s, t) =
[
1− (1− s−j0) exp(V0(t)j0)

]−y0/j0

and

lim
t→∞

e−j0V0(t)Y (t) = Γ

(
y0
j0

,
1

j0

)
. (L)

We now use Lemma 1 to study the distribution ofX(t), the number of particles issued
from the multi-immigration j0-Yule process described in Section 2. We first assume that
X(0) = 0. Let φ(s, t) denote the probability-generating function of (X(t))t≥0,

φ(s, t) = E[sX(t)] =
∞∑

n=0

Pn(t)s
n

where Pn(t) = P (X(t) = n) is the probability to have n particles at time t. This
probability can be decomposed into

Pn(t) = Pn|0(t)m0(t) +
∞∑
k=1

Pn|k(t)mk(t) (32)

where mk(t) is the probability that k immigration groups arrived in the time interval
[0, t) and Pn|k(t) denotes the probability there are n particles at time t given that k
immigration groups arrived during [0, t). Moreover, Pn|0(t) = δn0 because X(0) = 0.

Using the independence of the immigration events, Pn|k(t) can also be decomposed
as

Pn|k(t) =
∑

i1+···+ik=n

Ui1(t) · · ·Uik(t) (33)

where Um(t) denotes the probability that an immigration group leads (by the branching
mechanism) to m particles at time t given that the group immigrates during the interval
[0, t). Combining (33) and (32), we can rewrite the probability-generating function φ(s, t)
as

φ(s, t) =

∞∑
n=0

Pn(t)s
n = m0(t) +

∞∑
n=0

sn
∞∑
k=1

mk(t)
∑

i1+···+ik=n

Ui1(t) · · ·Uik(t)
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=

∞∑
k=0

mk(t)

( ∞∑
n=0

snUn(t)

)k

.

Denoting J(s, t) =
∑∞

n=0 s
nUn(t), we obtain

φ(s, t) =

∞∑
k=0

mk(t)J
k(s, t) (34)

where mk(t) is the probability that k immigration groups arrived in the time interval
[0, t). Using the Poisson properties of our immigration process we have

mk(t) = e−μ(t) (μ(t))
k

k!
, with μ(t) =

K∑
j=1

∫ t

0

νj(u)du

and so by (34),

φ(s, t) =

∞∑
k=0

e−μ(t)μ(t)
k

k!
Jk(s, t) = e−μ(t) exp{μ(t)J(s, t)}. (35)

We now compute J(s, t) and to that purpose we first study Un(t). Recall that Un(t)
is the probability that an immigration group leads (by the branching mechanism) to
n particles at time t given that the group immigrates during the interval [0, t). As a
consequence, using the infinitesimal probabilities, Un(t) can be decomposed into

Un(t) =

∫ t

0

K∑
k=1

rk(u)Q(n, t|jk, u)duN(u|t) (36)

where

• duN(u|t) is the conditional infinitesimal immigration rate, i.e. the probability that
there is exactly one immigration group during the infinitesimal interval [u, u+du) ⊂ [0, t)
given there is exactly one immigration group in the interval [0, t). In the case of an

inhomogeneous Poisson process, duN(u|t) = dμ(u)
μ(t) = ν•(u)du

μ(t) where ν•(t) =
∑K

k=1 νk(t).

• rk(u) is the probability that the immigration group is of size jk given that it arrived
at time u, k = 1, . . . ,K. Using the Poisson properties of our immigration process, we
have

rk(u) =
νk(u)

ν1(u) + · · ·+ νK(u)
=

νk(u)

ν•(u)
.

• Q(n, t|jk, u) denotes the probability that an immigration occurring at time u and
consisting of jk particles leads to n particles at time t. Q(n, t|jk, u) only relies on the
branching part of the process and can be decomposed as previously

Q(n, t|jk, u) =
∑

i1+···+ijk=n

Q1,i1(t− u) · · ·Q1,ijk
(t− u) (37)
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where Q1,i(t) is the probability that one particle leads to i particles by division process
in a period of length t. Indeed, once arrived, each particle is the initial point of a
branching process which evolves independently during the remaining time t− u.

As a consequence, we can express J(s, t) as

J(s, t) =

∞∑
n=0

snUn(t) =

∞∑
n=0

K∑
k=1

1

μ(t)
sn
∫ t

0

νk(u)Q(n, t|jk, u)du

=

K∑
k=1

1

μ(t)

∫ t

0

νk(u)

∞∑
n=0

sn
∑

i1+···+ijk=n

Q1,i1(t− u) · · ·Q1,ijk
(t− u)du

=

K∑
k=1

1

μ(t)

∫ t

0

νk(u)

[ ∞∑
n=0

snQn(t− u)

]jk
du.

Let Ψ(s, t) =
∑∞

n=0 s
nQn(t) be the probability-generating function of a j0-Yule

process without immigration, starting with one particle, then

J(s, t) =

K∑
k=1

1

μ(t)

∫ t

0

νk(u)(Ψ(s, t− u))jkdu (38)

which, combined with Lemma 1, leads to

J(s, t) =

K∑
k=1

1

μ(t)

∫ t

0

νk(u)
[
1− (1− s−j0) exp(j0V0(t− u))

]−jk/j0
du.

Defining J (s, t) = μ(t)J(s, t), we obtain the result of Proposition 4.

We now use Proposition 4 to prove Theorem 1.

B.2 Proof of Theorem 1

Let us set X̃(t) = e−j0V0(t)X(t). We study the limit of its moment-generating function

ΦX̃(t)(θ) = E[e−θX̃(t)] as t tends to ∞ under the assumptions given in Theorem 1,
namely:

(i) ∀k = 1, . . . ,K, jk/j0 = rk ∈ N
∗.

(ii) For all k ≥ 1 νk(t) = νk and there exists t1 > 0 such that ν0(t) = ν0,11t≤t1 +
ν0,21t>t1 with 0 < ν0,1 ≤ ν0,2.

Defining
st = exp(θe−j0V0(t))

which converges to 1 as t tends to ∞, we have

ΦX̃(t)(θ) = E[(eθe
−j0V0(t)

)X(t)] = Φ(st, t). (39)
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Using Proposition 4, we have

Φ(st, t) =
[
1− ej0V0(t)(1− s−j0

t )
]−x0/j0

e−μ(t) exp{J (st, t)}

=
[
1− ej0V0(t)(1− s−j0

t )
]−x0/j0

exp{J (st, t)− μ(t)} (40)

with

J (st, t)− μ(t) =

K∑
k=1

∫ t

0

νk(u)
[
1− (1− s−j0

t ) exp(j0V0(t− u))
]−jk/j0

du− ν•t.

• By definition of st = exp(θe−j0V0(t)), we have

1− (1− s−j0
t ) exp(j0V0(t− u)) = 1− θj0 exp(j0[V0(t− u)− V0(t)])(1 + o(1)).

• The study of J (s, t) depends on the forms of νj(t). Under conditions (i) and (ii), for
all t ≥ t1, V0(t) = ν0,1t1+ν0,2(t− t1) and if u ≤ t− t1 V0(t−u) = ν0,1t1+ν0,2(t−u− t1)
and if u > t− t1, V0(t− u) = ν0,1(t− u). This leads to

J (st, t)− μ(t) = − ν•t+
K∑

k=1

νk

(∫ t−t1

0

[1− θj0 exp(−j0ν0,2u)(1 + o(1))]
−jk/j0 du

+

∫ t

t−t1

[1− θj0 exp(−j0ν0,1u

− j0(ν0,2 − ν0,1)(t− t1))(1 + o(1))]−jk/j0du

)
=

K∑
k=1

νk

∫ t−t1

0

[1− θj0 exp(−j0ν0,2u)(1 + o(1))]
−jk/j0 du

+ t1

K∑
k=1

νk + o(1)− ν•t

=

K∑
k=1

νk

∫ t−t1

0

[1− θj0 exp(−j0ν0,2u)(1 + o(1))]
−jk/j0 du

+(t1 − t)ν• + o(1).

In that case, we can make the following variable change. Substituting v =
θj0 exp(−j0ν0,2u) into the integral gives∫ t−t1

0

[1− θj0 exp(−j0ν0,2u)]
−jk/j0 du =

1

ν0,2j0

∫ θj0

θj0 exp(−j0ν0,2(t−t1))

1

(1− v)jk/j0v
dv.

The usual decomposition of 1
(1−v)rkv into fractions leads to∫ t−t1

0

[1− θj0 exp(−j0ν0,2u)]
−jk/j0 du
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=
1

ν0,2j0

[
log(v)− log(1− v) +

rk−1∑
l=1

1

l(1− v)l

]θj0
θj0 exp(−j0ν0,2(t−t1))

=
1

ν0,2j0

[
j0ν0,2(t− t1)− log(1− θj0) +

rk−1∑
l=1

1

l

(
1

(1− θj0)l
− 1

)
+ o(1)

]
.

We obtain the following for J (st, t)− μ(t):

J (st, t)− μ(t)

=

K∑
k=1

νk
1

ν0,2j0

[
j0ν0,2(t− t1)− log(1− θj0) +

rk−1∑
l=1

1

l

(
1

(1− θj0)l
− 1

)]
+(t1 − t)ν• + o(1)

=
K∑

k=1

νk
1

ν0,2j0

[
− log(1− θj0) +

rk−1∑
l=1

1

l

(
1

(1− θj0)l
− 1

)]
+ o(1)

= − ν•
ν0,2j0

log(1− θj0) +

K∑
k=1

νk
ν0,2j0

rk−1∑
l=1

1

l

(
1

(1− θj0)l
− 1

)
+ o(1).

We define

J0 = − ν•
ν0,2j0

log(1− θj0)

and for 1 ≤ l ≤ Rk − 1

Jl(st, t) =
1

ν0,2j0

1

l

(
1

(1− θj0)l
− 1

)
.

Then we can write J (st, t) = J0(st, t) +
∑K

k=1 νk
∑rk−1

l=1 Jl(st, t). A rearrangement of
the sums (using the fact that r1 < r2 < · · · < rK) leads to

J (st, t)− μ(t) = J0(st, t) + (ν1 + · · ·+ νK)(J1(st, t) + · · ·+ Jr1−1(st, t))
+ (ν2 + · · ·+ νK)(Jr1(st, t) + · · ·+ Jr2−1(st, t))
+ · · ·
+ νK(JrK−1

(st, t) + · · ·+ JrK−1(st, t)).

Setting

αl =

{
ν• for 0 ≤ l ≤ r1 − 1,

νk + · · ·+ νK for any rk−1 ≤ l ≤ rk − 1 and for any k = 2, . . . ,K,

we obtain

J (st, t)− μ(t) = J0(st, t) +

rK−1∑
l=1

αlJl(st, t).
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Going back to Φ(st, t) given in (40), we obtain

φ(st, t) = (1− θj0)
−x0/j0(1− θj0)

−ν•/(j0ν0,2)
rK−1∏
l=1

exp

[
αl

lν0,2j0

(
(1− j0θ)

−l − 1
)]

= E[eθY
∗
0 ]E[eθY0 ]

rK−1∏
l=1

E[eθYl ]

where Y ∗
0 ∼ Γ(x0

j0
, 1
j0
), Y0 ∼ Γ( ν•

ν0,2j0
, 1
j0
), and Yl is such that its moment-generating

function is exp[ αl

lν0,2j0
((1− j0θ)

−l−1)]. This generating function can be reformulated as

exp

[
αl

lν0,2j0

(
(1− j0θ)

−l − 1
)]

=

∞∑
k=0

exp

[
− αl

lν0,2j0

](
αl

lν0,2j0

)k
1

k!

1

(1− j0θ)kl

=

∞∑
k=0

ρkl
1

(1− j0θ)kl

where ρkl = exp[− αl

lν0,2j0
]( αl

lν0,2j0
)k 1

k! is the probability that a Poisson random variable of

parameter αl

lν0,2j0
is equal to k. So Yl is distributed as an infinite mixture of {Γ(kl, 1

j0
)}k≥0

with Poisson weights.

Finally, e−j0V0(t)X(t) converges in distribution to Γ(x0

j0
, 1
j0
) plus a sum of rK inde-

pendent variables
∑rK−1

l=0 Yl where the Y0 ∼ Γ( ν•
ν0,2j0

, 1
j0
) and Yl ∼

∑∞
k=0 ρklΓ(kl,

1
j0
)

with ρkl = exp[− αl

lν0,2j0
]( αl

lν0,2j0
)k 1

k! . The theorem is proved.
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