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Abstract
In this paper, we consider the Integrated Completed Likelihood (ICL) as a useful criterion for

estimating the number of changes in the underlying distribution of data, specifically in problems
where detecting the precise location of these changes is the main goal. The exact computation of
the ICL requires O(Kn2) operations (with K the number of segments and n the number of data-
points) which is prohibitive in many practical situations with large sequences of data. We describe
a framework to estimate the ICL with O(Kn) complexity. Our approach is general in the sense
that it can accommodate any given model distribution. We checked the run-time and validity of
our approach on simulated data and demonstrate its good performance when analyzing real Next-
Generation Sequencing (NGS) data using a negative binomial model. Our method is implemented in
the R package postCP and available on the CRAN repository.

Hidden Markov Model ; Integrated Completed Likelihood ; Model Selection ; Negative Binomial ;
Segmentation

1 Introduction
The estimation of the number of segments is a central aspect in change-point methodology. For instance,
in the context of CGH-array or Next-Generation Sequencing experiments, identifying the number and
corresponding location of segments is crucial as the segments may relate to a biological event of interest.
This theoretically complex problem can be handled in the more general context of model selection, leading
to the use of ad hoc procedures in practical situations.

Among the procedures are the use of classical criteria based on penalized likelihoods such as the
Akaike Information Criterion (AIC) and the Bayes Information Criterion [BIC or SIC, Yao, 1988]. How-
ever, when choosing the number of segments, the BIC criterion uses a Laplace approximation requiring
differentiability conditions not satisfied by the model, which thus may not be appropriate when the num-
ber of observations in each segment are unequal and unknown. These criteria also tend to overestimate
the number of segments as the clustering within segments tends to be ignored, as shown by Zhang and
Siegmund [2007] who proposed a modified BIC criterion using a Brownian motion model with changing
drift for the specific case of normal data.

For this reason, there has been an extensive literature influenced by Birgé and Massart [2001] which
proposes new penalty shapes and constants in order to select a lower number of segments in the profile.
The idea is to choose the model that, within a set of models, performs closest to the true value by
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deriving a tight upper bound on the variance term. This leads to penalties that generally depend only
on the number of segments K, and whose constants can be chosen adaptively to the data [Lavielle, 2005,
Lebarbier, 2005]. However, a large proportion of those methods focused on normal data, and are not
applicable to count datasets modeled by the Poisson or the negative binomial distributions.

Other approaches for model selection appearing in the literature include sequential likelihood ratio
tests [Haccou and Meelis, 1988] and Bayesian approaches through estimating model posterior probabilities
by various MCMC methods [Green, 1995, Chib, 1998, Andrieu et al., 2001, Fearnhead, 2005]. However,
the Bayesian approaches are often computationally intensive as they require re-sampling.

In the context of incomplete data models (e.g. mixture model for clustering) Biernacki et al. [2000]
proposed a model selection criterion accounting for both observed and unobserved variables based on the
Integrated Completed Likelihood (ICL):

∑
S P(S|X) logP(S|X) where X are the observations and S are

the corresponding (unknown) clustering membership.
Rigaill et al. [2012] proposed the use of the ICL criterion in the multiple change-point detection

context. Hence, the segmentation S can be considered as a set of unobserved variables in the sense
that the segment-labels of each datapoint are not known. In this context, we can select the number of
segments as:

K̂ = arg min
K

ICL(K) where ICL(K) = − logP(X,K) +H(K), (1)

with H(K) = −
∑
S∈MK

P(S|X,K) logP(S|X,K), andMK representing the set of all segmentations of
the signal in K segments.

The entropy term H(K) can be viewed as an intrinsic penalty to quantify the reliability of a given
model with K segments by characterizing the separation of the observations in different segments. In
other words, for fixed K segments, the entropy H(K) thus will be lower when the best segmentation
provides a much better fit compared to other segmentations with the same number of segments, hence
favoring models which provide the most evidence of similarity within the detected segments. While other
penalized likelihood approaches are designed to select the most likely number of segments by relying on
approximation of posterior probabilities or oracle inequalities, the ICL criterion aims at selecting the
number of segments with the lowest uncertainty.

In the context of Hidden Markov Models (HMMs), it is well known that the posterior distribution
P(S|X,K,ΘK) can be efficiently computed using standard forward-backward recursions with O(K2n)
complexity [Martin and Aston, 2012]. However, the HMM requires that emission parameters take their
values in a limited set of levels which are recurrently visited by the underlying hidden process.

In the segmentation context, where each segment has its own specific level, an exact algorithm with
O(Kn2) complexity computes the ICL in a Bayesian framework. In a simulation study, Rigaill et al. [2012]
showed that the ICL performed better than standard model selection criteria such as BIC or Deviance
Information Criterion (DIC). However the quadratic complexity and numerical precision restrict the use
of this Bayesian ICL to relatively small profiles.

In this paper we suggest a computation of the ICL conditionally to the segment parameters and we
propose a fast two-step procedure to compute this conditional ICL criterion with linear complexity in
order to select the number of segments within a set of change-point data. First, we specify a range of
possible K number of change-points, from one to a user-defined Kmax. We estimate the parameters of
the segmentation in K segments, and given these estimates, we compute the ICL for each value of K in
the range. Second, we select the K which minimizes the ICL criterion. In essence, our conditional ICL
explores only one aspect of the segmentation uncertainty, the position of the change-points, and ignores
the uncertainty due to the segment parameters.

Section 2 describes the ICL estimation procedure, through the use of a constrained hidden Markov
model and Section 3 validates the approach by presenting the results of different simulations for detecting
the correct number of change-points. Finally, Section 4 is a discussion of our method supported by a
comparison with a few segmentation algorithms on data-sets simulated by re-sampling real RNA-Seq
data, and an illustration on the original dataset from an experiment on a chromosome from the yeast
species from the same study.
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2 Integrated Completed Likelihood criterion estimation using a
constrained HMM

In this paper we use the following segment-based model for the distribution of X given a segmentation
S ∈MK :

P(X|S; ΘK) =
n∏
i=1

gθSi
(Xi) =

K∏
k=1

∏
i:Si=k

gθk
(Xi) (2)

where gθSi
(·) is the parametric distribution (ex: normal, Poisson, negative binomial, etc.) with parameter

θSi
, ΘK = (θ1, . . . , θK) is the global parameter, Si ∈ {1, . . . ,K} is the index of the segment at position i

(ex: S1:5 = 11222 corresponds to a segmentation of n = 5 points into K = 2 segments with a change-point
occurring between positions 2 and 3), and MK is the set of all possible partitions of S1, . . . , Sn with a
fixed K number of segments, such that S1 = 1 and Sn = K, and Si − Si−1 ∈ {0, 1} for all i = 2, . . . , n.

One should note that although this model has the same emission probabilities as its HMM counterpart,
the constraints on the sequence S correspond exactly to the segmentation model where each segment has
its own level, and not to any HMM where levels take their value in a recurring set.

2.1 Fast estimation of posterior quantities in ICL criterion
Our goal is to compute the conditional ICL given by the following equation :

K̂ = arg min
K

ICL(K|ΘK)

where ICL(K|ΘK) = − logP(X,K|ΘK) +H(K|ΘK). (3)

The objective of this conditional ICL is to reproduce the performance of the non-conditional ICL (in
Equation 1). The conditional ICL criterion is well defined given a prior distribution on the segmentations:
P(S,K). We will only consider priors that can be decomposed as: P(S,K) = P(S|K)P(K); this choice is
discussed in a later section. In both the conditional and non-conditional ICL, the first term, logP(X,K)
(and respectively logP(X,K|ΘK)), depends on both P(S|K) and P(K), however, the entropy term only
depends on P(S|K).

To estimate this entropy term, we consider a specific hidden Markov model with constraints chosen
specifically to correspond to a segmentation model [Luong et al., under review] where the change-points
separate segments consisting of contiguous observations with the same distribution. Introducing a prior
distribution P(S,K) on any S ∈MK , yields the posterior distribution of the segmentation:

P(S,K|X; ΘK) = P(X|S,K; ΘK)P(S,K)∑
R P(X|R,K; ΘK)P(R,K) . (4)

Considering the prior P(S,K) = P(S|K)P(K) and fixing the value of K, let us assume that S is
a heterogeneous Markov chain over {1, 2, . . . ,K,K + 1}. We only allow for transitions of 0 or +1 by
constraining the chain with:

P(S1 = 1) = 1

∀2 6 i 6 n, ∀1 6 k 6 K,

{
P(Si = k|Si−1 = k) = 1− ηk(i)

P(Si = k + 1|Si−1 = k) = ηk(i),

where ηk(i) is the transition probability from the kth segment to k + 1 for observation i.
In the general case where K is not fixed, the choice of prior on S is known to be a critical point.

However previous methods include the use of non-informative priors [Zhang and Siegmund, 2007] when
K is fixed. For that reason, we focus on the uniform prior by setting ηk(i) = η for all k and i. Note
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that this particular case corresponds to the uniform prior P(S|K) = 1/
(
n−1
K−1

)
= 1/|MK | which is used

in Rigaill et al. [2012].
To estimate the properties of the Kth state we introduce a ‘junk’ state K + 1, and for consistency

we choose P(Si = K + 1|Si−1 = K + 1) = 1. We then estimate the emission distribution by using the
maximum likelihood estimate gθ̂k

(xi), or alternatively the E-M algorithm.
We define the forward and backward quantities as follows for observation i and state k: For 1 6 i 6

n− 1:

Fi(k) = P(X1:i = x1:i, Si = k|Θ̂k)
Bi(k) = P(Xi+1:n = xi+1:n, Sn = k|Si = k, Θ̂k).

We may use the following recursions to estimate the forward and backward quantities:

F1(k) =
{
gθ̂1

(x1) if k = 1
0 else

Fi+1(k) = [Fi(k)(1− ηk(i+ 1)) + 1k>1Fi(k − 1)ηk(i+ 1)] gθ̂k
(xi+1)

Bn−1(k) =


ηK(n)gθ̂k

(xn) if k = K − 1
(1− ηK(n))gθ̂k

(xn) if k = K

0 else
Bi−1(k) = (1− ηk(i))gθ̂k

(xi)Bi(k) + 1k<Kηk+1(i)gθ̂k+1
(xi)Bi(k + 1)

These quantities can then be used to obtain the marginal distributions µi and the transition πi, being
terms needed for the calculation of the entropy H(K|Θ̂K) with:

µi(k) = Fi(k)Bi(k)
F1(1)B1(1) (5)

πi(k, k′) =
P(Si = k′|Si−1 = k)gθ̂k

(xi)Bi(k′)
Bi−1(k) . (6)

where

P(Si = k′|Si−1 = k) =

 1− η if k′ = k
η if k′ = k + 1
0 else

.

2.1.1 Calculation of logP(X,K|ΘK)

The non-conditional term P(X,K) can be written as∑
S∈MK

P(S,K,X) =
∑

S∈MK

P(X|S,K)P(S|K)P(K).

In our constrained HMM approach we will therefore compute, for a given parameter Θ̂K for which the
choice will be discussed later on, P(X,K|Θ̂K) as

∑
S∈MK

P(X|S,K, Θ̂K)P(S|K)P(K), using the classic
priors P(K) = α and the previously discussed uniform prior P(S|K) = 1/

(
n−1
K−1

)
. The remaining term∑

S∈MK
P(X|S,K, Θ̂K) is then obtained directly using forward-backward recursions. Specifically, we

obtain: ∑
S∈MK

P(X,S ∈MK |K, Θ̂K) = F1(1)B1(1) and

P(S ∈MK |K, Θ̂K) = F 0
1 (1)B0

1(1)
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where Fi(k) and Bi(k) are the HMM forward and backward recursions as described, and F 0
i (k) and B0

i (k)
are forward and backward terms obtained with the usual recursions where each emission probability is
replaced by 1.

The likelihood term is finally obtained as

P(X,K|Θ̂K) = P(K)(
n−1
K−1

) F1(1)B1(1)
F 0

1 (1)B0
1(1) . (7)

2.1.2 Estimation of H(K)

The ICL can be expressed as [Biernacki et al., 2000]:

ICL(K|Θ̂K) = P(X,K|Θ̂K) +H(K|Θ̂K), (8)

with the entropy term H(K) estimated by H(K|Θ̂K) = −
∑
S P(S|X,K, Θ̂K) logP(S|X,K, Θ̂K), and K

being the number of segments.
For a fixed K, the constrained HMM is an efficient way to estimate the posterior segmentation

distribution P(S|X,K, Θ̂K) for a given set of parameters Θ̂K . This model consists of a heterogeneous
Markov chain (HMC) with marginal distribution µi(Si) = P(Si|X,K, Θ̂K) and heterogeneous transition
πi(Si−1, Si) = P(Si|Si−1, X,K, Θ̂K). Those quantities can be computed with the recursive formulas as
described above.

It is hence easy [Hernando et al., 2005] to derive the following expression for the entropy term:

H(K|Θ̂K) = −

[∑
S1

µ1(S1) logµ1(S1)

+
n∑
i=2

∑
Si−1,Si

µi−1(Si−1)πi(Si−1, Si) log πi(Si−1, Si)

 (9)

Note that information theory ensures that we have 0 6 H(K|Θ̂K) 6 log
(
n−1
K−1

)
.

The original entropy term, H(K) has an expression including posterior probabilities, thus requiring
the estimation of the posterior distribution of S as detailed in Section 2.1. While it can be computed
with quadratic complexity O(Kn2) [Rigaill et al., 2012] and intensive operations on probability matrices,
its exact computation is usually intractable for large datasets of tens of thousands points or more. The
forward-backward recursions of the HMM and Equation (9) allow its estimation with linear complexity
O(Kn). One should note that the key point for fast computation lies in the fact that we work conditionally
to Θ̂K rather than considering the whole parameter space.

2.2 Model selection procedure using ICL
For any given K, using our constrained HMM method requires a set of initial parameters ΘK =
{θ̂k}1≤k≤K . Because the quality of the results depends on the choice of those initial values, we pro-
pose the use an effective segmentation algorithm to obtain a set of K − 1 change-points, which can in
turn be used to estimate the parameters Θk through maximum likelihood estimation.

We considered several options for the initialization algorithm: for normally distributed data we con-
sidered a K-means algorithm [Hartigan and Wong, 1979, Comte and Rozenholc, 2004], which is a greedy
method that minimizes the least-squares criterion, as well as binary segmentation [Scott and Knott, 1974],
a fast heuristic to optimize the log-likelihood criterion. We also used the pruned dynamic programming
algorithm [Rigaill, under review], a fast algorithm to compute the optimal segmentation according to
loss functions including Poisson, negative binomial or normal losses. We then use the Viterbi algorithm
[Viterbi, 1967] to obtain the a posteriori most probable set of change-points.
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To estimate the ICL of a change-point model with K segments, we compute the posterior probabilities
of interest through the forward-backward algorithm as previously described, which is implemented in the
postCP package (available on the CRAN : http://cran.r-project.org/web/packages/postCP).

This procedure is repeated for a range of possible values of K: Krange = {1, . . . ,Kmax}. We finally
choose the number of segments by minimizing the ICL criterion upon all values of K in Krange, i.e.

K̂ICL = arg min
K∈Krange

ICL(K|Θ̂K). (10)

3 Validation
To validate the quality of our approach we first evaluated the impact of the initialization parameters.
We implemented the Baum-Welch algorithm [Baum et al., 1970] for use as a reference, and computed
the Rand-Index between the segmentation resulting from the Baum-Welch approach to those resulting
from our algorithm with different other initialization methods. The Rand-Index compares the adequacy
between different segmentations by computing the proportion of concordant pairs of data-points, including
the proportion of pairs that either belong to the same segment in the two competitive segmentations, or
that are in different segments in both segmentations. In a second step, we evaluated the results of our
algorithm in terms of model selection on two sets of simulations.

3.1 Impact of initialization parameters
Because of the long run-time of the Baum-Welch (BW) algorithm, we considered a small simulation
study where the data of size n = 1, 000 is simulated from the Poisson distribution with parameter
λ subject to 9 change-points (at locations 100, 130, 200, 475, 500, 600, 630, 800 and 975) and taking the
successive values 1, 4.3, 1.15, 6 and 4.2 repeated twice. On each of the 1, 000 replications, we ran our
constrained HMM segmentation approach considering the number of segments to be known, but with
different initialization parameters: those obtained by the Baum-Welch algorithm, those obtained by
the pruned dynamic programming algorithm (PDPA), those obtained with a k-means approach and
those obtained by running the Binary Segmentation (BinSeg) [Scott and Knott, 1974] for the Poisson
distribution.

The results are illustrated in Figure 1. As expected, the Rand-Index between the estimation by
the Baum-Welch algorithm and the PDPA algorithm is very close to 1, and it decreases with other
initialization methods that are not exact. Moreover, on average the Baum-Welch algorithm required 15.2
iterations when itself initialized with the PDPA output, while the run-time for the initialization by PDPA
requires 0.24 seconds and an iteration of BW, 0.04 seconds. This finding suggests that the combination of
PDPA and postCP is advantageous in terms of run-time with a negligible difference in results, especially
since the number of iterations of BW grows as n and the number of segments increase (not shown here).

3.2 Validation of the ICL approach
Our first simulation study consisted of relatively small signals (n = 500 points) where we compared our
approach to the quadratic non-conditional algorithm. In our second simulation study, with larger signals
(n = 50, 000), we only ran our fast ICL criterion due to computing limitations.

The simulation designs were as follows:

Small design. We used a similar simulation design suggested by Rigaill et al. [2012]: we simulated a
sequence of 500 observations from a Poisson model (requiring the choice of only one parameter) affected
by six change-points at the following positions: 22, 65, 108, 219, 252 and 435. Odd segments had a mean
of 1, while even segments had a mean of 1 + λ, with λ varying from 0 to 9. Thus, the true number of
change-points were more easily identified with higher values of λ. For each configuration, we simulated
1,000 sequences.
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Figure 1: Rand-Index for the comparison of initialization methods. Boxplot of the Rand-Index
comparing the segmentation proposed by the method depending on their initialization compared to the
full HMM model with Baum-Welch algorithm. As expected, the difference observed between BW and
initialization with the PDPA algorithm is very small.

Large design. We repeated the preceding procedure for large-scale datasets. We generated a sequence
of 50, 000 observations with K = 40 segments by randomly selecting 39 change-points whose locations
were drawn from a uniform distribution (without replacement), with each segment needing to be at
least of length 25. For this sample size, we focus on the results from our approximated ICL as the
non-conditional ICL implementation is not fast enough to be practical in this situation. For each config-
uration, we simulated 100 sequences.

We compared the performances of three different criteria:

• The conditional ICL greedy (C-ICL-g) criterion where initial parameters are obtained by the greedy
algorithm using least-squares, and using the criterion described in the previous section and given
by Equation (10) .

• The conditional ICL exact (C-ICL-e) criterion which corresponds to an initialization of the param-
eters using the pruned dynamic programming algorithm with Poisson loss.

• The non-conditional ICL (NC-ICL) criterion as described in Rigaill et al. [2012]. The hyper-
parameters used for the prior on the data-distribution were set to 1. This choice is discussed in the
previous paper. In this simple scenario, the results were robust to changes in the hyper-parameters
(result not shown).

Figure 2 summarizes the results of the simulation study for simulations of length 500. While the non-
conditional ICL criterion had the highest amount of correct estimates of number of segments K̂, the faster
ICL with pruned PDPA performed almost as well. Of note, the average run-times of the methods were
4.2 seconds for the non-conditional approach, 0.001 and 0.12 seconds respectively for the initialization of
postCP with the k-means and PDPA algorithms, and 0.46 seconds for the postCP algorithm.

Figure 3 summarizes the results of the simulation study for simulations of length 50, 000. For these
larger sequences, the conditional ICL criteria performed much better when the initial change-point set
was detected by PDPA than with the greedy algorithm. As the segmentation problem becomes more
difficult with more segments, the greedy algorithm is less successful in providing accurate initial change-
point location estimates. As a result, less accurate values of Θ̂K are used and the conditional ICL is not
as effective in predicting the number of segments as in the smaller sample size example.
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Figure 2: Performance of our method on small datasets. Out of a thousand simulations on datasets
of length n = 500, percentage of times where each criterion, non-conditional ICL, conditional ICL with
greedy initialization and conditional ICL with exact initialization, selected the appropriate number of
segments, K = 7, as the segment-level ratio increases.
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Figure 3: Performance of our method on large datasets. Out of a hundred simulations on datasets
of length n = 50, 000, number of times the conditional ICL criteria (with greedy and with exact initial-
ization) selected the appropriate number of segments, K = 40, as the segment-level ratio increases.
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On the other hand, the conditional ICL combined with PDPA detected the correct number of segments
more than 80% of the time with larger inter-segmental differences of λ > 2. The average run-time for the
initialization was 1.32 seconds for k-means and 142 seconds for PDPA, while the model selection procedure
required on average 1, 240 seconds (≈ 20 minutes). Despite the longer run-time, it is advised to use the
PDPA for model selection in very long sequences as it provides a more accurate set of change-points than
greedy methods.

4 Discussion
4.1 Choice of Kmax

Our strategy to compute the estimate of the ICL proceeds in two steps. First, we recover all the best
segmentations in 1 to Kmax segments. Then, using the parameters from all these Kmax segmentations
as an initialization, we run a forward-backward algorithm.

The initialization step takes on average an O(Kmaxn logn) complexity using the PDPA [see Rigaill,
under review]. The complexity of the second step is in O(Kmaxn). Depending on the applications, it
might be desirable or not to consider Kmax of the order of n, [see Killick et al., 2012, for a discussion].
In the second case, our strategy is efficient. On the other hand, in the first case the initialization step is
on average in O(n2 logn) and at worst in O(n3), while the second step is in O(n2). The first step is thus
the limiting factor.

When the goal is to initialize the HMM by recovering all the best segmentations of 1 to n segments,
which we showed to be desirable for the quality of the procedure, there exists to our knowledge no faster
algorithms to obtain an exact solution to this problem. Moreover, in any case, enumerating the

∑n
k=1 k

change-points of these n segmentations is already quadratic in n. An alternative is to use the binary
segmentation heuristic [Venkatraman and Olshen, 2007] which is on average in O(log(Kmaxn)). In that
case the limiting factor is the second step which still is quadratic in n.

Thus, we believe our strategy is most suited for the second case, when Kmax is much smaller than n.
In the first case, when Kmax is of the order of n, our strategy is at least quadratic in n and its application
is limited to medium size profiles.

4.2 Re-sampling of yeast RNA-Seq data
To assess the quality of our criteria, we performed the following simulation study to compare two previ-
ously published packages on CRAN, segclust [Picard et al., 2007], which uses adaptive penalized likeli-
hoods and DNA copy, an implementation of binary segmentation for multiple change-points [Venkatraman
and Olshen, 2007], with our model selection method with the conditional ICL criterion. We performed
the following re-sampling procedure using real RNA-seq data. The original data, from a study by the
Sherlock Genomics laboratory at Stanford University, is publicly available on the NCBI’s Sequence Read
Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) with the accession number SRA048710. We clus-
tered the observed signal into the following classes: intronic region, low expressed, medium expressed
and highly expressed genes that we will refer to as levels 1, 2, 3 and 4. We then designed four simulation
studies, each repeated 100 times, by varying the number and level of segments as well as the signal and
segment sizes, as described in Figures 4(a) through 7(a). On each segment, the data was obtained by
re-sampling (with replacement) the observations in the classified clusters.

To assess the performance of our fast ICL approach in segmentation, we used three different dis-
tributions as the emission distribution gθ(·) a normal distribution (postCP-N), a Poisson distribution
(postCP-P) and negative binomial (postCP-NB) and used PDPA to obtain the initial set of parameters.
In all cases, we used homogeneous Markov chains with uniform priors; it is of note that the results of the
constrained HMM methods may improve with informative priors [Fearnhead, 2005], for example those
taken from a posteriori estimates. For segclust, DNAcopy, and postCP-N, which assume a normal dis-
tribution, we applied the methods to the data after the widely used log(x + 1) transformation. In all
our simulation studies, postCP-P grossly overestimated the number of segments, so the results are not
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displayed here.

In the simplest case, Figure 4(a) illustrates the resampling scheme for n = 1, 000 and K = 10 evenly
spaced segments, displaying the levels used for each segment and the change-point locations. Figure 4(b)
displays a boxplot of the number of segments found by each approach. In this quite unrealistic scenario,
postCP-BN estimated the correct number of segments in 63 of 100 replicates. The next best algorithms
were postCP-N and DNAcopy, respectively, which both slightly underestimated the number of segments.
The segclust procedure provided a consistent underestimate of the number of segments.
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(b) Boxplot of number of segments K̂

Figure 4: Algorithm comparison on short and regular dataset. n = 1, 000 datapoints and K = 10
equal segments. (a) Re-sampling schema displaying levels and lengths of segments. (b) Boxplot of
estimated number of segments K̂ for four different segmentation procedures for 100 simulations.

Figures 5(a) and 5(b) illustrates the re-sampling schemes and boxplots for a slightly different and more
realistic scenario of n = 1, 000 and K = 10, with unevenly spaced segments this time. The results are
comparable to the previous except that the methods performed slightly worse; the median postCP-NB
estimate was still correct but missed 1 or 2 segments in 43 replicates. This suggests that postCP has
more difficulties in detecting small segments.

We then replicated the methods for larger data sets and unevenly spaced segments. Figures 6(a) and
6(b) display the methods and results for a n = 5, 000 and K = 10 scenario. In this case, DNAcopy
performs best, with the median number of estimated segments being correct. The postCP-NB method
gave similar results but missed two change-points in 66 of the replicates. The segclust algorithm, once
again, found consistent but overly conservative estimates of the number of segments, while postCP-N
grossly overestimated the segments as the log-transformation was not adequate in this design.

To understand the results, we ran the PDPA on the simulated datasets to obtain the optimal segmen-
tations w.r.t. to negative binomial likelihood imposing K = 10 segments. We found that in 48 replicates
out of 100, this segmentation did not include the second true segment but rather sheared other segments
into more pieces. This finding suggests that, at least in these 48 replicates, precisely finding the position
of the first two changes might be prohibitively difficult. Thus by selecting K = 8 change-points rather
than 10, postCP-NB is coherent with the goal of the ICL (i.e. selecting a set of segments such that we
are confident in the position of these changes).

In a n = 10, 000 and K = 20 scenario with uneven segments (Figures 7(a) and 7(b)), DNAcopy was
again best, with postCP-N and postCP-NB almost as effective, the former method slightly underestimat-
ing the number of segments and the latter approach slightly overestimating them.

In the investigated scenarios, we found postCP, when the correct negative binomial distribution was
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(b) Boxplot of number of segments K̂

Figure 5: Algorithm comparison on short but irregular dataset. n = 1, 000 datapoints and
K = 10 uneven segments. (a) Re-sampling schema displaying levels and lengths of segments. (b) Boxplot
of estimated number of segments K̂ for 4 different segmentation procedures for 100 simulations.
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Figure 6: Algorithm comparison on medium length and irregular dataset. n = 5, 000 datapoints
and K = 10 uneven segments. (a) Re-sampling schema displaying levels and lengths of segments. (b)
Boxplot of estimated number of segments K̂ for 4 different segmentation procedures for 100 simulations.

specified, provided accurate and precise results when segments were evenly spaced, but provided slightly
less accurate results in more realistic scenarios where segment lengths were uneven. The results with
postCP-N and postCP-P suggest that the postCP approach may be susceptible to misspecification of the
emission distribution when there are very small segments present (Figure 6(b)). Given the goal of the
ICL this is to be expected. Indeed, it is reasonable to have high uncertainty in the identification of small
segments when the emission distribution is misspecified.

On the other hand, DNAcopy tended to underestimate segments in easier scenarios, where segments
where even, but obtained more accurate results with more realistic uneven segments. The hybrid seg-
mentation and clustering approach, segclust, generally was consistent but underestimated the number of
segments.
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Figure 7: Algorithm comparison on long and irregular dataset. n = 10, 000 datapoints and
K = 20 uneven segments. (a) Re-sampling schema displaying levels and lengths of segments. (b) Boxplot
of estimated number of segments K̂ for 4 different segmentation procedures for 100 simulations.

4.3 Application to a real data-set
We finally illustrate the procedure on the real data-set from the Sherlock study described above, whose
underlying characteristics are unknown. The signal corresponds to the positive strand of chromosome 1
from the yeast genome and has a length of 230, 218.

We used a negative binomial model with global overdispersion parameters and initialized our procedure
using the pruned dynamic programming algorithm (for a runtime of 25 minutes). The postCP algorithm
then required 4 hours to analyze the profile, resulting in a choice of 79 segments.

We also compared these results to those proposed by the previously cited methods. However, we
were not able to run the segclust algorithm on this long profile due to lack of memory capacity. With
a similar runtime, the postCP algorithm with the normal distribution applied to the log-transformed
data resulted in a choice of 80 segments, while DNAcopy analyzed the signal in 47 seconds for a final
choice of 465 segments. Figure 8 illustrates the segmentation proposed by each method. For clarity, we
focus on a region of length 50, 000 datapoints, and plotted the signal in a square-root scale. Even though
the constrained HMM approach chooses almost the same number of segments with different emission
distributions, their corresponding resulting segmentations differ.

4.4 Conclusion
We describe a fast procedure for estimating the ICL criterion in the context of model selection for
segmentation. While simulations showed that the performance of the conditional ICL approach was
almost as good as that of the non-conditional approach, several features allow for its use in a wide range
of applications. The described ICL algorithm is versatile as it can be applied to data of any model
distribution when provided with an initialization for the HMM, through either maximum likelihood
estimation or the expectation-maximization (E-M) algorithm. While there exists some model selection
criteria that could be adapted to our problem such as the BIC or the MDL [Davis et al., 2006] which
provide a balance between data fitting and model complexity, the ICL also takes into account the entropy
of the segmentation space. Given the very large collection of possible segmentations, we believe that the
ICL is an interesting alternative to more standard model selection criteria.

Furthermore, our procedure can be applied to long signals due to its fast run-time. With its effective
results in finding the number of segments, specifically those where the precise location of the change-
points can be estimated, this paper shows the practicality of the conditional ICL procedure in a wide
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Figure 8: Segmentation of yeast dataset. The profile corresponding to the positive strand of chro-
mosome 1 from the yeast genome is of length 230218 and was segmented by three different methods.
This figure illustrates the result on a region of the signal for our method with the negative binomial as
emission distribution (Top), with Gaussian as emission (Middle) and for the DNAcopy algorithm.

variety of segmentation problems.
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