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Abstract

One major question in molecular biology is whether the spatial distribution of observed molecules is random or organized
in clusters. Indeed, this analysis gives information about molecules’ interactions and physical interplay with their
environment. The standard tool for analyzing molecules’ distribution statistically is the Ripley’s K function, which tests
spatial randomness through the computation of its critical quantiles. However, quantiles’ computation is very cumbersome,
hindering its use. Here, we present an analytical expression of these quantiles, leading to a fast and robust statistical test,
and we derive the characteristic clusters’ size from the maxima of the Ripley’s K function. Subsequently, we analyze the
spatial organization of endocytic spots at the cell membrane and we report that clathrin spots are randomly distributed
while clathrin-independent spots are organized in clusters with a radius of 2 mm, which suggests distinct physical
mechanisms and cellular functions for each pathway.
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Introduction

Spatial organization of objects is essential in many scientific

areas because it provides information about objects’ interactions

and their interplay with their environment. Objects’ organization

can be studied at different scales, ranging from country size in

epidemiology [1] to atomic structures in physics [2]. For example,

the study of the distribution of leukaemia cases in Britain between

1966 and 1983 in epidemiology revealed some geographical

aggregation that may be related to environmental factors [3]. In

ecology, the analysis of spatial patterns across ten years in an

aspen-white-pine forest [4] showed that tree distribution tended

toward greater clumping than that expected from random

mortality, which is due to the clonal nature of aspen. At molecular

scale, the quantitative analysis of gold particle distribution in

electron microscopy helped to analyze the three-dimensional

distribution of pyramidal neurons and the related neural circuits

[5]. It also gave hints about the distribution of Ras proteins at the

plasma membrane [6,7] and the related organization of special-

ized micro-domains such as lipid rafts. Similarly, the analysis of the

spatial distribution of fluorescent markers attached to proteins of

interest in confocal microscopy shed light on underlying mecha-

nisms of various cellular processes, such as signaling at immuno-

logical synapses [8], and can be used to measure cellular

phenotype changes in different conditions, such as during

pathogen infection [9].

In all spatial organization studies, objects (disease cases, trees,

molecules …) are represented as points in a delimited field of view

(country, forest, cell …) and quantitative methods are used to

extract features about spatial point distributions. Classical methods

are either area-based or distance-based. In the first case, the

points’ pattern is characterized through its first-order properties

such as the spatial variation of its points’ density, which is often

estimated with patches or kernel methods [10], whereas in the

second case, distance-based methods rely on second-order

properties of the points’ pattern such as inter-point distances,

and a major milestone was established by Clark and Evans (1954)

who introduced statistics based on the distance of points to their

nearest neighbors. An essential piece of information is given by the

deviation of points’ distribution from complete spatial randomness

(CSR) and the concomitant detection of specific patterns such as

point clusters (Figure 1). Thus, the two major goals when building

a quantitative method are: 1) assess statistically whether observed

specific patterns such as clusters are not due to chance, that is to

say points are not randomly distributed in the field of view, and 2)
determine the characteristics of the observed patterns such as the

clusters’ size. While the first goal is often achieved by the

computation of the critical quantiles of the statistics used under

CSR, the second one mainly involves fitting to parametric models.

However, these classical methods are plagued with some

disadvantages: area-based methods cannot account globally for

objects’ interactions, and nearest-neighbors methods do not

describe objects’ interactions at several scales. To answer these

problems, a great advance was made by Ripley in 1977 [11] who

introduced the distance-based K function which describes the

spatial organization of any point process quantitatively at several

distance scales by taking into account all neighbors rather than
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only the nearest. Yet, Ripley’s K function still presents some

problems. First, there is no analytical formula that links the critical

quantiles of the K function to the number of points and the

geometry of the field of view. Consequently, the computation of

the critical quantiles is based on intensive Monte-Carlo resam-

pling, which induces an high computational load and requires an

initial calibration for each field of view due to specific edge effects.

Second, the quantification of pattern characteristics is also

problematic because model parameters are currently extracted

from fitting procedures involving a functional minimization, such

as least square method; few efforts have been made to directly

extract key spatial features such as the cluster radius or the

minimal distance between dispersed points from the essential

properties of the Ripley’s curve such as its extrema [12].

Here, we propose two major methodological improvements: 1)
give a closed-form expression of critical quantiles, and 2) relate

standard features such as cluster size to essential properties of the

Ripley’s K function. Point 1 alievates the need for Monte-Carlo

simulations and point 2 bypasses minimization procedures. Taken

together, these two points give rise to a fast, robust and analytical

method which is additionally implemented and freely available in

Icy [13] (http://icy.bioimageanalysis.org).

Thereafter, we used this method to characterize the spatial

organization of different endocytic pathways. Endocytosis is

indeed a key mechanism for cell homeostasis whereby cells engulf

signaling molecules and nutrients from the extra-cellular medium.

The most frequent endocytic pathway is mediated by the clathrin

protein that forms coats around specific receptors, leading to

membrane invagination and molecules entry [14–17]. Many other

important pathways do not rely however on clathrin, notably the

internalization of interleukin 2 (IL-2) and its receptor (IL-2R) [18]

during the cell mediated immunity [19,20]. In both cases, the

spatial organization of endocytic spots at the membrane still

remains poorly characterized, while it might reflect localized

cellular processes such as cell migration and signaling [21]. Here,

we compare the spatial organization of clathrin-dependent and

-independent endocytosis. We report that both pathways are

regularly organized at small distance (for rv1 mm). At larger

distance scales, clathrin-independent pathways exhibit clusters

with a radius of about 2 mm while clathrin-dependent putative

endocytic sites are randomly distributed.

Results

Construction of the Test Statistic
We aim at constructing a statistic ~KK to test whether a points’

distribution is random or clustered by comparing its values with

critical quantiles under CSR (Figure 1). A standard statistic is the

Ripley’s K function whose standard expression at distance scale r,

and for n objects at position x in a given field of view V, is

K(r,n)~
DVD

n(n{1)

X
x=y

1fDx{yDƒrg f (x,y), ð1Þ

where f (x,y) is a boundary correction term that prevents a bias in

K(r,n) at larger values of r due to the finite size of V. Indeed, some

pairs of points closer than r can fall outside the observation

window V, leading to an underestimation of K . A widely used

boundary correction is the Ripley’s correction f (x,y)~
1
2

(k(x,y)zk(y,x)), where k(x,y) is inversely proportional to the

proportion of the circle Lb(x,Dx{yD) included in V: k(x,y)~
DLb(x,Dx{yD)D

DLb(x,Dx{yD)
T
VD
: With this boundary correction and under

CSR, ([22], page 39)

E K(r,n)f g~pr2: ð2Þ

The problem when using the standard Ripley’s K function (Eq.1)

is that its mean and variance under CSR vary with distance scale

r, which complicates its quantitative interpretation. A partial

answer has been proposed by Besag who introduced the centered

L function [23] L(r,n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K(r,n)

p

r
{r: However, L function is not

normalized and we thus propose a new statistic with zero mean

and unit variance that uses the analytical expression of K variance.

The computation of the variance var K(r,n)f g of K(r,n) under

CSR is made difficult by edge effects, but assuming that V
boundary is locally straight where it intersects b(x,Dx{yD), a

closed-form expression of var K(r,n)f g has been obtained by

Ripley [22]:

var K(r,n)f g~

2DVD2b(r)

n2
1z0:305c(r)zb(r) {1z0:0132nc(r)ð Þð Þ,

ð3Þ

where b(r)~ pr2

DVD and c(r)~
DLVDr
DVD

:

Using the closed-form expressions of the variance (Eq. 3), we

introduce the normalized and centered statistics

~KK(r,n)~
K(r,n){pr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var K(r,n)f g

p , ð4Þ

whose significant deviations from 0 are characteristic of object

clustering at length scale r when ~KK(r,n)w0 or dispersion for

Figure 1. Analyzing spatial point patterns with Ripley’s K function. The normalized and centered Ripley’s K function ~KK(r,n) is proportional to

the number of pairs of points that are closer than r in V. Deviations of ~KK(r,n) from 0 (CSR) in clustering ( ~KK(r,n)w0) or dispersion ( ~KK(r,n)v0)

conditions have to be compared with objective level of significance that are quantiles qa of ~KK(r,n) at level 0vav1:
doi:10.1371/journal.pone.0080914.g001
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~KK(r,n)v0 (Figure 1). To characterize these deviations statistically,

we compute hereafter critical quantiles of ~KK(r,n) under CSR.

Estimation of ~KK(r,n) Critical Quantiles Under CSR

A first attempt of computing the critical quantiles of ~KK
analytically was proposed by Lang and colleagues [24]. They

decompose V in independent sub-domains, and using the central

limit theorem, they prove that for n&1, ~KK can be approximated

by the standard normal law N (0,1) under CSR ( ~KK ?
n&1
N (0,1)).

This is equivalent to approximate qa, the quantile at level a of ~KK ,

with za, the quantile of the standard normal law N (0,1): qa&za.

This approximation does not hold for intermediate values of n

or for small distance scales r (see below), and we propose hereafter

a general approximation of ~KK quantiles that is valid for a large

range of r and n values. This is based on the standard Cornish-

Fisher (CF) expansion which is given by [25]

qa&zaz
1

6
z2

a{1
� �

c ~KK
� �

z
1

24
z3

a{3za

� �
k ~KK
� �

{3
� �

{
1

36
2z3

a{5za

� �
c2 ~KK
� � ð5Þ

where c ~KK
� �

~E ~KK3
� �

and k ~KK
� �

~E ~KK4
� �

are respectively the

skewness and the kurtosis of ~KK . It can be deduced from Eq.5 that

the CF expansion generalizes the central limit theorem which

states that qa&za:
At this point, we still face a problem because we do not have

expressions for the skewness and the kurtosis of ~KK , whose

expressions are made difficult because of boundary effects. After

long and mathematically involved computations which are

detailed in File S1, the expressions of the skewness and the

kurtosis of ~KK are given by

c ~KK(r,n)
� �

~
4a3b(r)

n4var K(r,n)f g
3
2

1z0:76c(r)½

znb(r) 1:173z0:414c(r)ð Þznb2(r) {2z0:012nc(r)ð Þ
�
,

ð6Þ

and

k ~KK(r,n)
� �

~
a4b(r)

n6var K(r,n)f g2
8z11:52c(r)½

znb(r) 104:3z12nð Þz 78:7z7:32nð Þc(r)ð z1:116nc2(r)
�

znb2(r) {304:3{1:92nð Þz {97:9z2:69nz0:317n2
� �

c(r)
�

z0:0966n2c2(r)
�
zn2b3(r) {36z0:0021n2c2(r)

� ��
:

ð7Þ

with b(r)~
pr2

DVD
, c(r)~

DLVDr
DVD

and var K(r,n)f g is given by Eq. 3.

At this point, we can make three comments: 1- Setting apart the

assumption that the boundary can be treated locally as a straight

line, formulas for skewness and the kurtosis (Eq. 6–7) are exact. 2-
Reintroducing the approximations of variance, skewness and

kurtosis (Eq. 3, 6 and 7) in the CF expansion (Eq. 5), we find that
~KK(r,n) is asymptotically normal: lim

n??
qa~za in agreement with

[24]. 3- In many applications, ~KK(r,n) can be evaluated on Mw1
fields of view and it is then interesting to use the mean statistics

~KKM (r)~
1

M

XM
j~1

~KKj(r,nj) ð8Þ

where ~KKj(r,nj) is evaluated on the jth field of view. The CF

expansion of ~KKM (r) quantiles then requires the computation of the

skewness and the kurtosis of ~KKM (r), which is detailed in File S1,

section V.

Assessing the Specificity of our Statistical Test on
Synthetic Data

To test the accuracy of the obtained CF approximation of
~KK(r,n) quantiles (Eq. 5), we tested it against intensive Monte-Carlo

resampling in a given field of view. In addition, we also compared

the true quantiles obtained with simulations with the standard

normal approximation.

To ensure the convergence of the Monte-Carlo method, we

performed M~106 simulations where we drew uniformly n~50
points in a 10|10 square V. We then computed the correspond-

ing Ripley’s K function Ki(r,n) (Eq. 1), for 1ƒiƒM and r varying

from r~0:3 to r~3. For each r, we computed the empirical vari-

ance cvarvarfK(r,n)g~ 1
M

XM

i~1
Ki(r,n){ �KK(r,n)ð Þ2 where �KK(r,n)~

1

M

XM

i~1
Ki(r,n) is the empirical mean tending to pr2 for M&1,

and we then obtained

~KKi(r,n)~
Ki(r,n){ �KK(r,n)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarvarfK(r,n)g
p : ð9Þ

The empirical quantile qa of ~KK(r,n), for a~0:01 or a~0:99 was

then computed by sorting the ~KKi(r,n) and choosing qa~ ~KKaM (r,n)
with the floor function of aM.

In Figure 2 A–B, we compare quantiles obtained numerically

with Monte-Carlo simulations with the CF expansion (Eq. 5) and

the quantiles za of the standard normal law N (0,1) (z0:01~{2:32
and z0:99~2:32). Interestingly, we observe that the CF expansion

of qa (Eq. 5) with the asymptotical variance (Eq. 3), skewness and

kurtosis (Eq. 6–7) is very close to Monte-Carlo simulations with a

relative error below 5% even for r~0:3, while the normal

approximation is not satisfactory with a relative error that is

around 20% for any r, and that reaches &30% for r~0:3 and

a~0:01. The convergence of the CF expansion is linked to the

mean number of pairs of points that are closer than r, which is

&
n2

2

pr2

DVD
. Thus, the number of points n(r) that is needed for the

relative error between the CF expansion and Monte-Carlo

simulations to be below 5% should be approximately given by

n(r)&c
DVD

1
2

r
: In particular, we found that for DVD

1
2~10 and r~0:3,

n(r)&45 indicating that c&1:5:
We next investigated the accuracy of CF development for an

increasing number of points and a fixed r~1. Results are given in

Figure 2 C–D. We found that the relative error of the CF

development to Monte-Carlo simulations is bounded by 5% for

n§10 when a~0:99 and n§15 when a~0:01, and fall below 2%
for n§30 in both cases. Conversely, the relative error to normal

approximation reaches 20% and 30% respectively for

n~10,a~0:99 and n~15,a~0:01, and is above 10% even for

n~100. We thus conclude that CF expansion of qa is sufficiently

accurate to be used in a large range of r and n values while the

Statistical Analysis of Molecules’ Distribution
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normal approximation does not hold even for intermediate values

of n&50{100. In addition, we highlight that for DVD
1
2~10 and

r~1, we found that n(r)&15, in agreement with c&1:5.

Characterizing Objects’ Dispersion and Clusters from
~KK(r,n) Statistic

To link the statistical deviations of ~KK(r,n) from CSR

( ~KK(r,n)vqa and ~KK(r,n)wq1{a, see Figure 1) to quantitative

properties of point features, we show here how key features such as

the minimal distance between dispersed points or the mean cluster

size are related to ~KK(r,n) extrema by using standard models of

dispersed and clustered processes. While relating the minimum of
~KK to the distance separating dispersed objects has not been

treated, the relation between the maximum of Ripley’s function to

the clusters’ size has been recently tackled numerically [12]. In

their study, Kiskowski et al. modeled clusters with disk-shape

domains with radius Rc that are regularly separated by a distance

S, and they used Monte-Carlo simulations where a part bn of

points was randomly distributed in clusters and (1{b)n points

were distributed outside the clusters. They found that the radius of

maximal aggregation rmax where the Besag L-function

L(r,n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K(r,n)

p

r
{r reaches its maximum was between Rc and

2Rc depending on S.

To extract the minimal distance between objects in a regular

pattern from the minimum of ~KK(r,n) at small distance scale r, we

model the local objects’ organization with a simple inhibition

process (chapter 5 [10]), which is a thinned Poisson process

(intensity r) where all pairs of points a distance less than arbitrary

d apart would be deleted. Then, the related parametric Ripley’s K

function reads ([10], page 72)

K(r,n)~1frwdg2p

ðr

d

er(pd2{Ud(t))dt, ð10Þ

where Ud(t) denotes the area of the union of two discs each of

radius d and with centers a distance t apart, that is [26]:

Ud(t)~2d2cos{1 t

2d

� 	
{ t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2{t2

p
: Reinjecting the parametric

expression (Eq. 10) of the dispersed K function in ~KK(r,n) (Eq. 4),

we compute the partial derivative
L ~KK(r,n)

Lr
of ~KK(r,n) with respect to

r and obtain that
L ~KK(r,n)

Lr
v0 for rvd and

L ~KK(r,n)

Lr
w0 for r§d,

which demonstrates that in an idealized inhibition process, the

minimal distance d that separates points from each other is equal

to rmin where ~KK(r,n) reaches its minimum:

d~rmin: ð11Þ

To relate the radius rmax where ~KK reaches its maximum to the

mean clusters’ radius Rc, we assume here that clusters’ centers are

randomly distributed in V (density lc), and in that case, the

analytical expression of the Ripley’s K function is then given by

[27], page 376:

K(r,n)~pr2z
2b2

plc

arcsin
r

2Rc


 �
z

r2

R2
c

arccos
r

2Rc


 �


{
r

4R3
c

2R2
czr2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

r2

4R2
c

s !
:

ð12Þ

Figure 2. Test of CF expansion against Monte-Carlo simulations. A)-Left: The CF expansion (Eq. (5), grey line) of the quantile q0:99 of ~KK(r,n) is
tested against Monte-Carlo simulations (106 simulations, solid black line) in a 10|10 square V for 0:3ƒrƒ3. The number of points is set at n~50.
The quantile z0:99~2:32 of the standard normal law N (0,1) is also represented (black dotted line). A)-Right: Relative errors of CF expansion (grey line)
and z0:99 (black dotted line) to Monte-Carlo simulations. The 5% level is represented with a black dotted line. B) Idem to A) for the first percentile q0:01

of ~KK(r,n) instead of the last one q0:99. C)-Left: The CF expansion (Eq. (5), grey line) of the quantile q0:99 of ~KK(r,n) is tested against Monte-Carlo
simulations (106 simulations, solid black line) in a 10|10 square V for an increasing number of points 10ƒnƒ100. r is set at r~1. The quantile
z0:99~2:32 of the standard normal law N (0,1) is also represented (black dotted line). C)-Right: Relative errors of CF expansion (grey line) and z0:99

(black dotted line) to Monte-Carlo simulations. The 5% level is represented with a black dotted line. D) Idem to C) for the first percentile q0:01 of ~KK(r,n)
instead of the last one q0:99.
doi:10.1371/journal.pone.0080914.g002
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Reinjecting this parametric expression (Eq.12) in ~KK(r,n), we link

the radius rmax of maximal aggregation with clusters’ radius Rc by

solving numerically
L ~KK(r,n)

Lr
(rmax)~0, and find that

Rc&
rmax

1:3
: ð13Þ

Quantitative Analysis of Endocytosis Spatial Organization
We analyzed two image data sets representative each of

clathrin-dependent (M~5 cells, n~2195 points) and clathrin-

independent (M~7 cells, n~4382 points) pathways. In each case,

after extracting the positions of putative endocytic events thanks to

a wavelet-based detection [28] (Figure 3 A–C), we computed the

modified Ripley’s K function ~KK(r,n) (Eq. (4)) and CF expansions

(Eq. (5)) of quantiles q0:01 and q0:99 in Figure 3 B–D. We first

Figure 3. Analysis of endocytosis spatial organization. (A) Clathrin-independent IL-2R putative endocytic sites. Top: IL-2R is labeled with
fluorescent antibodies and imaged using total internal reflexion fluorescence (TIRF) microscopy. Bottom: We delimited individual cells by drawing
polygonal (green) Regions of Interest (ROIs) in the software Icy [13] (http://icy.bioimageanalysis.org). Positions of putative endocytic sites (objects)
inside each cell are then extracted with a multi-scale wavelet analysis [28]. (B) The spatial organization of IL-2R putative endocytic spots is quantified
with ~KK(r,n) (solid black line). CF expansion of q0:01 and q0:99 is represented with black dotted lines. In the bottom-right corner, the mean statistic
~KKM ((r) (Eq. 8) is plotted against r (M~7 cells, 4382 objects)). (C) Clathrin putative endocytic sites. Top: Clathrin light chain is fused with green
fluorescent protein (GFP) and imaged using TIRF microscopy. Bottom: Positions of putative endocytic sites are extracted with a multi-scale wavelet

analysis [28]. (D) The spatial organization of clathrin putative endocytic spots is quantified with ~KK(r,n) (solid black line). CF expansion of q0:01 and q0:99

is represented with black dotted lines. In the bottom-right corner, the mean statistic ~KKM ((r) (Eq. 8) is plotted against r (M~5 cells, 2195 objects).
Scale bar = 5 microns.
doi:10.1371/journal.pone.0080914.g003
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checked that the characteristic features of ~KK functions were similar

whether they were computed on one cell or averaged on several

cells (see inserted box in lower corners Figure 3 B–D).

We found that for both pathways, ~KK(r,n) is far below the first

percentile q0:01 for small rv1 mm (IL-2R) and rv2 mm (clathrin),

indicating that putative endocytic spots are distributed according

to a regular pattern, characterized by a minimum distance

between points, which corresponds to the value that minimizes
~KK(r,n). In the case of clathrin-independent pathway, ~KK(r,n)

reaches its minimum at rIL{2R
min &500 nm while for clathrin-

dependent entry, rclathrin
min &800 nm. This demonstrates that endo-

cytic sites are non-overlapping and restricted to defined micro-

domains with respective radii &400 nm for clathrin-dependent

endocytosis and &250 nm for clathrin-independent pathway.

At higher distance scale r, we found that for clathrin-dependent

endocytosis, ~KK(r,n) is comprised between the quantiles q0:01 and

q0:99 indicating that clathrin spots are homogeneously distributed

on the membrane. Repeating our statistical analysis using labeled

transferrin, which is the archetypical cargo for internalization

through clathrin-mediated endocytosis [29], we got identical

profiles to those obtained with clathrin (Figure S1). By contrast,

for clathrin-independent pathway, ~KK(r,n) is above q0:99 for r

between 2 and 3 mm indicating that clathrin-independent spots are

partially organized in clusters. Considering that Rc&
rmax

1:3
(Eq.13),

we deduced that clathrin-independent spots are partially segre-

gated in clusters with radius Rc&2 mm:

Discussion

We have developed a new test statistic based on the Ripley’s K

function that facilitates the quantitative analysis of the spatial

organization of point patterns at multiple scales. This test allows us

to statistically assess the presence of specific point patterns such as

point clusters or dispersion with no need for resampling by

providing an asymptotic closed-form expression of the critical

quantiles of the Ripley’s K function under spatial randomness. In

addition, we related the extrema of our statistics to the geometrical

properties of the observed patterns by using standard models of

dispersed and clustered point patterns.

We applied our method to study the spatial organization of

molecules implicated in different endocytosis pathways, and we

found that the spatial organization of endocytosis was different

upon the mechanism (dependent or independent of clathrin),

which might reflect distinct cellular functions of each pathway. We

note that all clathrin and IL-2R spots are not necessarily entering

the cell, as some spots might disassemble or detach before being

endocytosed [30]. It would thus be interesting to couple our

statistical analysis with live cell imaging to compare the spatial

organization of real endocytic events and abortive ones.

A major difficulty in Ripley-based statistical tests is their interpre-

tation when the null hypothesis of objects’ random distribution is

rejected. In particular for IL-2R receptors, the detected aggregation

could result either from small clusters, or from a very local increase of

the receptors’ density near the cell boundary, or from a mixture of

both. We have thus repeated our analysis by eroding the cell’s contour

mask by 300 nm (isotropic ball of radius 3 pixels) and 500 nm (5 pixels)

to test boundary effects. Interestingly, we found profiles very similar to

those obtained with the whole cell (Figure S2) with a maximum of the

Ripley’s K function reached for r&3 microns as above. We thus

conclude that the local increase of IL-2R receptors at cell boundary

does not have much impact on the behavior of Ripley’s K function and

that receptors are truly organized in clusters with a radius of 2 microns.

In this study, we developed a robust and fast analytical method

to test whether an objects’ distribution deviates from CSR. A

promising extension would be to test whether the spatial

organization of points can be described with some specific

parametric models, in particular the large classes of Neyman-

Scott [27,31] or Strauss [27,32] processes. This would open the

door to analytical comparison of points’ distributions against each

other through embedding and statistical learning.

Materials and Methods

Experimental Protocol, TIRF Microscopy
For clathrin-independent endocytosis, Hep2b cells (16105)

expressing IL-2R were incubated 2 min with anti-IL-2R coupled

to Cy3 fluorochrome in a TIRF medium (25 mM Hepes, 135 mM

NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.4 mM MgCl2, 4.5 g/L

glucose, pH 7.4 and 0.5% BSA) at 37 C and washed. For clathrin-

dependent endocytosis BSC-1 cells, expressing clathrin-light chain

fused to GFP were used. Cells were incubated in an environmental

control system set to 37 C and movies of 100 s at 1Hz were

acquired. Experiments were performed using a TIRF microscope

(IX81F-3, Olympus) equipped with a 100x NA 1.45 Plan Apo

TIRFM Objective (Olympus) and fully controlled by CellM

(Olympus).

Quantitative Image Analysis
We first delimited cells’ contours by drawing polygonal Region of

Interest (ROIs) with the Icy software [13] (http://icy.bioimageanalysis.

org). We then used a wavelet-based detection method [28],

implemented as a plugin Spot detector in Icy to extract the two

dimensional positions of putative endocytic spots at the cellular

membrane. In the clathrin-independent pathway, a part of IL-2R spots

diffused at the cell membrane and we extracted the signal

corresponding to static spots entering the cell by first stacking time

sequences in a single image (mean), and by then applying our wavelet-

based detection algorithm on the stacked image.

Supporting Information

Figure S1 Analysis of the spatial organization of
transferrin endocytosis. (A) Clathrin-dependent transferrin

putative endocytic sites. Top: Transferrin is labeled with fluorescent

antibodies and imaged using total internal reflexion fluorescence

(TIRF) microscopy. Bottom: We delimited manually individual cells by

drawing polygonal (green) Regions of Interest (ROIs) in the software

Icy [13] (http://icy.bioimageanalysis.org). Positions of putative

endocytic sites (objects) inside each cell are then extracted with a

multi-scale wavelet analysis [28]. (B) The spatial organization of

Transferrin putative endocytic spots is quantified with the mean

statistic ~KKM (r) (Eq. (8) of the main manuscript, M~3 cells (1086
objects), solid black line). Cornish-Fisher expansion of q0:01 and q0:99

(Eq. (5) of the main manuscript) are represented with black dotted lines.

(EPS)

Figure S2 Analysis of the spatial organization of
clathrin-independent endocytosis with erosions of the
cell’s contour mask. We have tested the impact of the local

accumulation of IL-2R spots at the cell boundary by eroding the

cell’s contour mask by 300 nm (isotropic ball of radius 3 pixels)

and 500 nm (5 pixels) to test boundary effects. The spatial

organization of IL-2R putative endocytic spots is quantified with

the mean statistic ~KKM (r) (Eq. (8) of the main manuscript, M~7
cells (4382 objects)) for no erosion (black line), 300 nm-erosion

(blue line) and 500 nm-erosion (green line). Cornish-Fisher
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expansion of q0:95 and q0:99 (Eq. (5) of the main manuscript) are

represented with black dotted lines.

(EPS)

File S1 Supplementary Methods Detailed computations of

the skewness and the kurtosis of the Ripley’s K function.

(PDF)
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Icy: an open bioimage informatics platform for extended reproducible research.

Nat Methods 9: 690–6.

14. Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, et al. (2004)
Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell

118: 591–605.
15. Dı́az E, Sebastian R, Ayala G, Dı́az ME, Zoncu R, et al. (2008) Measuring

spatiotemporal dependencies in bivariate temporal random sets with applica-

tions to cell biology. IEEE Trans Pattern Anal Mach Intell 30: 1659–71.

16. Mettlen M, Loerke D, Yarar D, Danuser G, Schmid SL (2010) Cargo- and

adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J Cell Biol

188: 919–33.

17. Nunez D, Antonescu C, Mettlen M, Liu A, Schmid SL, et al. (2011) Hotspots

organize clathrinmediated endocytosis by efficient recruitment and retention of

nucleating resources. Traffic 12: 1868–78.

18. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, et al. (2001)

Interleukin 2 receptors and detergent-resistant membrane domains define a

clathrin-independent endocytic pathway. Mol Cell 7: 661–71.

19. Gesbert F, Sauvonnet N, Dautry-Varsat A (2004) Clathrin-lndependent

endocytosis and signalling of interleukin 2 receptors il-2r endocytosis and

signalling. Curr Top Microbiol Immunol 286: 119–48.

20. Liao W, Lin JX, Leonard WJ (2011) Il-2 family cytokines: new insights into the

complex roles of il-2 as a broad regulator of t helper cell differentiation. Curr

Opin Immunol 23: 598–604.

21. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, et al. (2012)

Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol

Rev 92: 273–366.

22. Ripley B (1988) Statistical inference for spatial processes. Cambridge University

Press.

23. Besag JE (1977) Comments on ripley’s paper. Journal of the Royal Statistical

Society B 39: 193–195.

24. Lang G, Marcon E (2013) Testing randomness of spatial point patterns with the

ripley statistic. ESAIM: Probability and Statistics (accepted).

25. Cornish E, Fisher R (1937) Moments and cumulants in the specification of

distributions. Review of the International Statistical Institute 5: 307–320.

26. mathworldwolfram website (E.W. Weisstein) Available: http://mathworld.

wolfram.com/circle-circleintersection.html. Accessed 2013 Oct 31.

27. Illian J, Penttinen A, Stoyan D, Stoyan H (2008) Statistical Analysis and

Modelling of Spatial Point Patterns. Wiley-Blackwell.

28. Olivo-Marin JC (2002) Extraction of spots in biological images using multiscale

products. Pattern Recognition 35: 1989–1996.

29. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic

regulation of cell signalling. Nat Rev Mol Cell Biol 6: 112–26.

30. Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, et al. (2009) Cargo

and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7: e57.

31. Neyman J, Scott E (1952) A theory for the spatial distribution of galaxies.

Astrophys J 116: 144–163.

32. Strauss D (1975) A model for clustering. Biometrika 62: 467–475.

Statistical Analysis of Molecules’ Distribution

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e80914


