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Abstract. Fazekas and Klesov (2000) found conditions for almost sure con-

vergence rates in the law of large numbers that effectively can be applied if

maximal inequalities are available. In the spirit of Móricz (1976), we aim

at using those conditions in a weakly dependent framework, and this trick is

proved to be quite efficient, first in the standard law of large numbers and

second in the nonparametric estimation context where rates of convergence of

the density kernel estimates are also obtained.

1. Introduction

One of the favorite topics of Ferenc Móricz is related to the notion of super-

additive random sequences and fields. Introduced by Serfling [17] in order to obtain

some maximal inequality, this notion is later generalized and extended by many

authors, Móricz [13] in the first place. One of the main features of the so-called

quasi super-additive structure [15] is the possibility to derive maximal moment

inequalities from their counterparts for the underlying sequence or field. These

maximal inequalities are applied by Móricz [14] to obtain sharp results on the

almost sure convergence of random series and various strong laws of large numbers.
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We further develop this approach by deriving weighted maximal inequalities

from their maximal counterparts for several cases arising in statistical models. In

doing so we follow the general idea described in [10] (also see [12]).

2. Basic results

A result from Fazekas and Klesov [10] states that:

Theorem 1. Let (Sn)n>0 be an arbitrary sequence of real valued random variables.

Assume that (bn) is a sequence of nondecreasing constants such that bn > 0 and

bn → ∞ as n → ∞. Let p > 0. If there exists a nondecreasing sequence (An)n>0

such that

(1) E max
1≤k≤n

|Sk|p ≤ An

and

(2)

∞∑

n=1

An −An−1

bpn
<∞,

then

(3) lim
n→∞

Sn
bn

= 0 almost surely.

We will also use another Móricz’s result of [13] (see Theorem 2 below) to

derive maximal inequalities like (1) from simple moment inequalities.

Let (ξk)k≥0 be a sequence of random variables. Put Si,0 = 0, i ≥ 0, and

(4) Si,j =

i+j∑

k=i+1

ξk, i ≥ 0, j ≥ 1.

Let a function g : {0, 1, 2, . . .} × {1, 2, . . .} → R+ be such that

(5) g(i, k) + g(i+ k, l) ≤ g(i, k + l)

for all i ≥ 0, k ≥ 1, and l ≥ 1. An example of such a function is given by

g(i, j) = ja, i ≥ 0, j ≥ 1,

if a ≥ 1.
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Theorem 2. Let γ > 0. We first assume that α > 1 and that

(6) E|Si,j |γ ≤ gα(i, j) for all i ≥ 0, j ≥ 1,

where g satisfies (4). Then

E( max
1≤k≤n

|Si,k|)γ ≤ Cγ,αgα(i, n) for all i ≥ 0, j ≥ 1,

where Cγ,α is some universal constant.

Further if (6) holds with α = 1, then

E( max
1≤k≤n

|Si,k|)γ ≤ Cγ(log 2n)γg(i, n), i ≥ 0, n ≥ 1,

where Cγ is some universal constant.

We aim at using Theorems 1 and 2 in order to derive rates of the almost sure

convergence for partial sums and for Nadaraya–Watson kernel regression nonpara-

metric estimators (see [1]).

Notation. In what follows, we put ‖Z‖q = (E|Z|q)1/q for any random variable Z

and any constant q > 0.

3. Partial sums

Let (Xi) be a centered stationary process. Consider the sequence of its cu-

mulative sums

Sn =

n∑

i=1

Xi.

In this simple case we shall give conditions such that bn = nb is suitable for each

b > 1/2 in Theorem 1. Various inequalities can be provided with An = O(np/2)

if p ≥ 2. These inequalities can be derived from Theorem 2 and they lead to the

following result by Theorem 1.

Acta Sci. Math. (Szeged),76:3−4(2010)
All rights reserved c© Bolyai Institute, University of Szeged

All rights reserved © Bolyai Institute, University of Szeged



686 P. DOUKHAN, O. KLESOV and G. LANG

Theorem 3. Let p > 2. If

(7) E|Sn|p ≤ Cnp/2

for some constant C > 0 and all n ≥ 1, then

lim
n→∞

Sn√
n · lnb(n)

= 0 a.s.

for all b > 1/p.

The case of p = 2 is not covered by Theorem 3. Since this case is of a special

interest, we consider a corresponding result separtately.

Theorem 4. Let (Xi)i≥1 be a centered stationary process.

1. If the series
∑∞
k=−∞ EX0Xk converges, then

(8) E|Sn|2 ≤ Cn, n ≥ 1,

for some constant C > 0 and the strong law of large numbers (3) holds for bn =√
n lnb(n) for all b > 1.

2. If

(9) E|Sn|2 ≤ Cna, n ≥ 1,

for some constants a > 1 and C > 0, then the strong law of large numbers (3) holds

with bn = n
a
2 lnb(n) for all b > 1/2.

Proof. For the case 1, inequality (8) follows by simple algebra. Thus Theorem 2

implies (1) with An = O(n ln(n)) and Theorem 1 completes the proof.

The proof of case 2 is the same: we start from bound (9), use Theorem 2 to

get a maximal inequality, and finally apply Theorem 1 to prove (3).

Example 1. (long range dependence). Case 2 occurs if the series of covariances

diverges, namely if EX0Xn behaves like na−2, a ≥ 1. The case of the long range

dependence is an example where (9) holds. Long range dependence is considered

in detail in the monograph [8]; note that alternative models with long range de-

pendence are considered e.g. in [5], [6], [19], or [18].
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Example 2. (independence). The case of independent random variables (Xi)i≥1

gives the limits of our results. The Marcinkiewicz–Zygmund inequality for inde-

pendent variables yields C = Cp E|X0|p for some constant Cp which only depends

on p ≥ 2 in inequality (7), see [11].

The following three subsections describe other examples of such weakly de-

pendent situations where a maximal inequality holds for the underlying sequence

of random variables and thus one can obtain the rate of convergence in the corre-

sponding strong law of large numbers.

3.1. Strong mixing case. Denote by (αi)i∈N the strong mixing coefficient sequence

of the centered and stationary sequence (Xi)i∈N.

Proposition 1. ([4]). Assume that ‖X0‖b <∞ for some b > p. If

αi = O(i−α), i ≥ 1,

with some α > p
2 · b

b−p , then inequality (7) holds for some constant C which only

depends on p ≥ 2, on ‖X0‖b, and on the mixing sequence.

Proposition 1 corresponds to Proposition 1 of [4] in the special case of Xi =

Vi, Ui ≡ 1, and q = 2. In its turn, Proposition 1 of [4] is a particular case of

Theorem 2.5 by Rio [16].

3.2. Causal weak dependence. Define the γ coefficient of dependence of a centered

sequence (Xi)i∈N with values in Rd by

γi = sup
k≥0
‖E(Xi+k|Mk)‖1

where Mk is the σ-algebra generated by {Xt, t ≤ k}.

Proposition 2. ([4]). Assume that p ≥ 2. Let ‖X0‖b <∞ for some b > p. If

γi = O(i−γ), i ≥ 1,

with γ > p
2 · b−1

b−p , then inequality (7) holds for some constant C which only depends

on p ≥ 2, on ‖X0‖b, and on the sequence (γi).

Proposition 2 is a special case of Proposition 2 in [4] for Xi = Vi, Ui ≡ 1, and

q = 2. In its turn, Proposition 2 in [4] is a particular case of Corollary 5.3 in [3].
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3.3. Non causal weak dependence. Here we consider non causal weakly dependent

stationary sequences of bounded variables and assume that p is an integer.

Let u ≥ 1 be an integer number. By Λ we denote the set of functions g :

Ru → R such that Lip g <∞ where

Lip g = sup
(x1,...,xu) 6=(y1,...,yu)

|g(y1, . . . , yu)− g(x1, . . . , xu)|
|y1 − x1|+ · · ·+ |yu − xu|

.

Further let k ∈ Z and u, v ≥ 1 be two integer numbers. Let an u-tuple

(i1, . . . , iu) and an v-tuple (j1, . . . , jv) be such that

(10) i1 ≤ · · · ≤ iu < iu + k ≤ j1 ≤ · · · ≤ jv.

Let g1: R
u → R and g2: R

v → R be two real valued functions of Λ(1) = {g1 ∈
Λ, ‖g1‖∞ ≤ 1}. Then we put

Cov (g1, g2) ≡ Cov (g1(Xi1 , . . . , Xiu), g2(Xj1 , . . . , Xjv )).

A sequence (Xi)i∈Z is said to be λ-weakly dependent (respectively, η-weakly de-

pendent or κ-weakly dependent) if there exists a sequence (λ(i))i∈Z (respectively,

(η(i))i∈Z or (κ(i))i∈Z) decreasing to zero at infinity such that inequality (11), (12)

or (13) holds respectively for all k ∈ Z, all u, v ≥ 1, and all u-tuples (i1, . . . , iu)

and v-tuples (j1, . . . , jv) satisfying (10), where

|Cov (g1, g2)| ≤ (uLip g1 + vLip g2 + uv Lip g1Lip g2)λ(k),(11)

|Cov (g1, g2)| ≤ (uLip g1 + vLip g2)η(k),(12)

|Cov (g1, g2)| ≤ (uv Lip g1Lip g2)κ(k).(13)

Inequality (11) involves an additive part uLip g1+vLip g2 and a multiplicative

part uv Lip g1Lip g2. The two other definitions of the weak dependence involve only

one of the additive parts. The monograph [3] details weak dependence concepts,

as well as extensive models and results. Following [3] (see Definition 4.1 therein)

we define

(14)
cX,p(r) = max

1≤l<p
sup

t1≤···≤tp
tl+1−tl≥r

|Cov (Xt1 · · ·Xtl , Xtl+1
· · ·Xtp)|

These coefficients are related to the previous ones, see [3]:
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Proposition 3. Assume that a stationary and vector valued sequence (Xn)n∈Z is

weakly dependent (respectively, λ- or κ-weakly dependent) and satisfies ‖X0‖b <∞
for some b > p. Then the coefficient defined by (14) is such that

cX,p(r) ≤





4p28− b−p
b−2 ‖X0‖

(p−2)b
b−2

b κ(r)
b−p
b−2 , under κ-dependence,

p24
b

b−1 ‖X0‖
(p−1)b

b−1

b λ(r)
b−p
b−1 , under λ-dependence.

Proof. We first consider the proof in the case of a κ-dependent sequence. Consider

integers 1 ≤ ℓ < p and t1 ≤ · · · ≤ tp such that tℓ+1 − tℓ ≥ r. We need to estimate

(uniformly with respect to ℓ and t1 ≤ · · · ≤ tp) the expression

(15) c =
∣∣Cov

(
Xt1 · · ·Xtℓ , Xtℓ+1

· · ·Xtp

)∣∣ = |Cov (A,B)|.

In order to estimate (15), for some M > 0 depending on r and to be defined later,

we now set Xj = Xj ∨ (−M) ∧M . Then we also have

c ≤ |Cov (A,B)|+ |Cov (A−A,B)|+ |Cov (A,B −B)|,

with A = Xt1 · · ·Xtℓ , B = Xtℓ+1
· · ·Xtp . We write

|(A−A)B| ≤
ℓ∑

i=1

Yi|Xti −Xti |,

|A(B −B)| ≤
p∑

i=ℓ+1

Yi|Xti −Xti |

where Yi is the product of p − 1 factors Zi,j = |Xtj | or |Xtj | for 1 ≤ j ≤ p and

j 6= i. It is thus clear from Hölder’s inequality that an analogous representation of

the centering terms yields

|Cov (A−A,B)|+ |Cov (A,B −B)| ≤ 2

p∑

i=1

‖X0‖p−1
b ‖X0 −X0‖p

where (p− 1)/b+ 1/p = 1. Set h(x) = x∨ (−M)∧M , then Liph = 1 and ‖h‖∞ =

M . Thus fℓ(x1, . . . , xℓ) = h(x1) · · ·h(xℓ) is such that A = fℓ(Xt1 , . . . , Xtℓ), B =

fp−ℓ(Xtℓ+1
, . . . , Xtp) with ‖fℓ‖∞ ≤ M ℓ and Lip fℓ ≤ M ℓ−1. The definition of the

κ-dependence thus implies

|Cov (A,B)| ≤ (ℓ(p− ℓ) Lip fℓ Lip fp−ℓ)κ(r) ≤
p2

4
Mp−2κ(r).
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Now

E|X0 −X0|p = E|X0 −X0|p I1|X0|≥M ≤ 2pE|X0|p I1|X0|≥M ≤ 2pE|X0|bMp−b,

‖X0 −X0‖p ≤ 2‖X0‖
b
p

b M
1− b

p .

Setting µ = ‖X0‖b, we obtain, with the previous inequalities,

|Cov (A−A,B)|+ |Cov (A,B −B)| ≤ 4pµp−1+ b
pM1− b

p ,

|Cov (A,B)| ≤ 4pµp−1+ b
pM1− b

p +
p2

4
Mp−2κ(r)

≤ p2
(
2µbMp−b +

1

4
Mp−2κ(r)

)
.

Choosing M from 8µbM2−b = κ(r):

c = |Cov (A,B)| ≤ 4p28− b−p
b−2 µ

(p−2)b
b−2 κ(r)

b−p
b−2 .

The covariance bound for λ-dependent sequences is analogous to that for η-

dependence; it is already considered in Proposition 13.1 of [3]. Indeed, comparing

this result with the result for the η-dependence, we conclude that the main term

comes from the additive part of the weak dependence inequality.

Theorem 4.1 in [3] states that the relation ‖Sn‖p ≤ C
√
n holds if cX,p(r) =

O(r−p/2). Thus Proposition 3 implies

Theorem 5. Assume that p ≥ 2 is an even integer. Assume that a centered and

stationary sequence (Xi)i∈Z is such that ‖X0‖b <∞ for some b > p and either

• a sequence (Xi)i∈Z is λ-weakly dependent and λ(i) = O(i−λ) for some λ ≥
p
2 · b−1

b−p , or

• a sequence (Xi)i∈Z is κ-weakly dependent and κ(i) = O(i−k) for some k ≥
p
2 · b−2

b−p .
Then there exists a constant C > 0 such that

‖Sn‖p ≤ C
√
n.

Remark 1. There is no gain to use η weak dependence instead of λ dependence

coefficients.
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Remark 2. Doukhan and Wintenberger (2007) consider non-integer moments p ∈
(2, 3) (see [9], Lemma 4), and the same inequality holds if E|Xi|p

′

< ∞ with

p′ = p+ δ, and λ(i) = O(i−λ) with λ > 4 + 2/p′ for p ≤ p′ small enough, namely:

p ≤ 2 +
1

2
(
√

(p′ + 4− 2λ)2 + 4(λ− 4)(p′ − 2)− 2 + p′ + 4− 2λ).

4. Functional estimation

In this section we begin with a description of the considered regression esti-

mator and then discuss examples of weakly dependent situations.

4.1. Nadaraya–Watson estimator.

As e.g. in Ango Nze & Doukhan (1996) [1], we will consider a sequence h ≡
hn → 0 which also satisfies nhdn →∞ as n→∞.

Consider a stationary Rd-valued process (Xk)k∈Z with a marginal density

f : Rd → R. Kernel density estimators (of f) are defined as

f̂(x) =
1

nhdn

n∑

i=1

K
(Xi − x

hn

)
.

Kernel regression estimators of a stationary Rd×R-valued process (Xk, Yk)k∈Z are

defined as

r̂(x) =
ĝ(x)

f̂(x)
, ĝ(x) =

1

nhdn

n∑

i=1

YiK
(Xi − x

hn

)
.

Then ĝ(x) is a kernel estimator of g(x) = r(x)f(x) where r(x) = E(Y0|X0 = x).

Now if the marginal density h of the couple (X0, Y0) (h : Rd+1 → R) ex-

ists then g(x) =
∫
y h(x, y) dy, which motivates the previous Nadaraya–Watson

estimator for the plug-in estimation.

The following assumptions will be used below.

The first assumption is a regularity condition of order ρ for the functions of

interest (here ρ > 0):

(A1) For the point x of interest: the functions f, g are k-times continuously differ-

entiable around x and (ρ − k)-Hölderian, where k < ρ is the largest possible

integer.

(A2) The function K is Lipschitz, admits a compact support, and satisfies
∫

Rd

K(u) du = 1,

∫

Rd

uℓ11 · · ·uℓdd K(u) du = 0, if 0 < ℓ1 + · · ·+ ℓd < k.
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(A3) For the point x of interest, there exist r and s, with r ≤ s such that

1. ‖Y0‖s = c <∞,

2. gr(x) =
∫
|y|rh(x, y)dy is a function bounded around the point x,

3. G(x, x) = supi fi(x, x) is bounded around the point (x, x), where

fi(x
′, x′′) denotes the joint density of (X0, Xi).

Theorem 6. Assume that

(16) E|ĝ(x)− Eĝ(x)|p ≤ C

(
√
nhd)p

for a constant C which depends neither on n nor on h. Assume further that h ≡ hn
is chosen at the optimal rate corresponding to the regularity ρ of f :

hn = n− 1
2ρ+d .

Then for any ε > 1/p

lim
n→∞

n
ρ

2ρ+d

lnε(n)
(ĝ(x)− g(x)) = 0, a.s.

Proof. Define

ξi = ξi,h =
1

hd
YiK

(Xi − x
h

)
− 1

hd
EYiK

(Xi − x
h

)
.

We apply Theorem 2 to this setting (now ξi depends on the parameter h ≡ hn).

Denote by ĝi,j the kernel estimator based on observations from i+1 to i+ j. Then

Si,j = j(ĝi,j(x)− Eĝi,j(x)) is now the analogue of the partial sums Si,j defined by

equality (4). Using (16) and the stationarity of inputs we derive from Theorem 2

E max
k≤n
|ĝ1,k(x)− Eĝ1,k(x)|p ≤ C(nhd)p/2.

But (nhd)p/2 = n
ρ

2ρ+d . In order to derive our result we thus simply apply Theorem 1

with An = Cn
pρ

2ρ+d and bn = n
ρ

2ρ+d (ln(n))
1+ε

p for some ε > 0.
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Rates of convergence in some SLLN 693

Application. First of all, if Yi ≡ 1, Theorem 6 provides a rate of convergence in

the SLLN for the kernel density estimator

(17) lim
n→∞

n
ρ

2ρ+d

lnε(n)
(f̂(x)− f(x)) = 0, a.s.

Secondly, if one uses both results, then we derive rates of convergence for the

regression estimate

(18) lim
n→∞

n
ρ

2ρ+d

lnε(n)
(r̂(x)− r(x)) = 0, a.s.

The conditions needed for this case are as follows:

(A4) For the point x of interest and for some q > p, there exists a constant c > 0

with

1. ‖f̂(x)− Ef̂(x)‖q ≤ c/
√
nhdn,

2. ‖ĝ(x)− Eĝ(x)‖p ≤ c/
√
nhdn.

4.2. Applications to explicit dependence conditions.

Using results of Doukhan and Lang [4], we get various dependence situations

where (A4) holds. Then Theorem 6 implies a.s. convergence with standard rates

for this regression estimator.

Proposition 4. ([7]). Assume that (Xi, Yi) are independent and identically dis-

tributed. Let (A2), (A3) hold with r = q. Then the moment inequalities (A4)

hold.

Proposition 5. ([7]). Assume that a sequence (Xi, Yi) is λ-weakly dependent and

(A2), (A3) hold. Assume that ‖Y0‖s <∞ for some s > 2p. If λ(i) = O(i−λ) and

λ >
r(2r(s− p) + 2p− s)
(r − p)(s− 2p)(r − 1)

(p− 1) ∨ 2(d− 1)

d
(q − 1),

then the moment inequalities (A4) hold.
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Proposition 6. ([7]). Assume that (A2), (A3) hold with r > q and a sequence

(Xi, Yi) is α-mixing with αi = O(i−α). Let either

α >
(r(q − 1)

r − q
)
∨ 4sr − 2s− 4r

(r − 2)(s− 4)

and h ∼ n−a for

ad ≤ 1− 2/p

3− 2/r
,

or the numbers p and q be even integers and

α >
r

2
· s− 2p

s− p
(
1− 1

p

)
.

Then the moment inequalities (A4) hold.

Those are the cases for which Rosenthal-type moment inequalities are known.

We did not try to get an exhaustive view of this question addressed in various

papers cited in the bibliography.

Remark 3. Alternative applications of such estimators are provided for resampling

in Ango Nze et al. [2]. Many applications are consequences of the present technique.
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