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, we aim at using those conditions in a weakly dependent framework, and this trick is proved to be quite efficient, first in the standard law of large numbers and second in the nonparametric estimation context where rates of convergence of the density kernel estimates are also obtained.

Introduction

One of the favorite topics of Ferenc Móricz is related to the notion of superadditive random sequences and fields. Introduced by Serfling [START_REF] Serfling | Moment inequalities for the maximum cumulative sum[END_REF] in order to obtain some maximal inequality, this notion is later generalized and extended by many authors, Móricz [START_REF] Móricz | Moment inequalities and the strong law of large numbers[END_REF] in the first place. One of the main features of the so-called quasi super-additive structure [START_REF] Móricz | Moment and probability bounds with quasi-superadditive structure for the maximum partial sum[END_REF] is the possibility to derive maximal moment inequalities from their counterparts for the underlying sequence or field. These maximal inequalities are applied by Móricz [START_REF] Móricz | Strong limit theorems for blockwise m-dependent and blockwise wuasiorthogonal sequences of random variables[END_REF] to obtain sharp results on the almost sure convergence of random series and various strong laws of large numbers.

We further develop this approach by deriving weighted maximal inequalities from their maximal counterparts for several cases arising in statistical models. In doing so we follow the general idea described in [START_REF] Fazekas | A general approach to the strong laws of large numbers[END_REF] (also see [START_REF] Klesov | The Hájek-Rényi inequality for random fields and the strong law of large numbers[END_REF]).

Basic results

A result from Fazekas and Klesov [START_REF] Fazekas | A general approach to the strong laws of large numbers[END_REF] states that: Theorem 1. Let (S n ) n>0 be an arbitrary sequence of real valued random variables. Assume that (b n ) is a sequence of nondecreasing constants such that b n > 0 and b n → ∞ as n → ∞. Let p > 0. If there exists a nondecreasing sequence

(A n ) n>0 such that (1) E max 1≤k≤n |S k | p ≤ A n and (2) 
∞ n=1 A n -A n-1 b p n < ∞, then (3) lim n→∞ S n b n = 0 almost surely.
We will also use another Móricz's result of [START_REF] Móricz | Moment inequalities and the strong law of large numbers[END_REF] (see Theorem 2 below) to derive maximal inequalities like (1) from simple moment inequalities.

Let (ξ k ) k≥0 be a sequence of random variables. Put S i,0 = 0, i ≥ 0, and

S i,j = i+j k=i+1 ξ k , i ≥ 0, j ≥ 1. Let a function g : {0, 1, 2, . . .} × {1, 2, . . .} → R + be such that (5) g(i, k) + g(i + k, l) ≤ g(i, k + l) (4) 
for all i ≥ 0, k ≥ 1, and l ≥ 1. An example of such a function is given by

g(i, j) = j a , i ≥ 0, j ≥ 1, if a ≥ 1.
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(6) E|S i,j | γ ≤ g α (i, j) for all i ≥ 0, j ≥ 1,
where g satisfies [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF]. Then

E( max 1≤k≤n |S i,k |) γ ≤ C γ,α g α (i, n) for all i ≥ 0, j ≥ 1,
where C γ,α is some universal constant. Further if [START_REF] Doukhan | Limit theorems for sums of non linear function of ARFIMA processes with random Hurst exponents and Gaussian innovations[END_REF] holds with α = 1, then

E( max 1≤k≤n |S i,k |) γ ≤ C γ (log 2n) γ g(i, n), i ≥ 0, n ≥ 1,
where C γ is some universal constant.

We aim at using Theorems 1 and 2 in order to derive rates of the almost sure convergence for partial sums and for Nadaraya-Watson kernel regression nonparametric estimators (see [START_REF] Nze | Non parametric minimax estimation in a weakly dependent framework I: Quadratic properties[END_REF]).

Notation.

In what follows, we put Z q = (E|Z| q ) 1/q for any random variable Z and any constant q > 0.

Partial sums

Let (X i ) be a centered stationary process. Consider the sequence of its cumulative sums

S n = n i=1 X i .
In this simple case we shall give conditions such that b n = n b is suitable for each b > 1/2 in Theorem 1. Various inequalities can be provided with A n = O(n p/2 ) if p ≥ 2. These inequalities can be derived from Theorem 2 and they lead to the following result by Theorem 1.

Theorem 3. Let p > 2. If (7) E|S n | p ≤ Cn p/2
for some constant C > 0 and all n ≥ 1, then

lim n→∞ S n √ n • ln b (n) = 0 a.s.
for all b > 1/p.

The case of p = 2 is not covered by Theorem 3. Since this case is of a special interest, we consider a corresponding result separtately. Theorem 4. Let (X i ) i≥1 be a centered stationary process.

1.

If the series ∞ k=-∞ EX 0 X k converges, then (8) E|S n | 2 ≤ Cn, n ≥ 1,
for some constant C > 0 and the strong law of large numbers (3)

holds for b n = √ n ln b (n) for all b > 1. 2. If (9) E|S n | 2 ≤ Cn a , n ≥ 1,
for some constants a > 1 and C > 0, then the strong law of large numbers

(3) holds with b n = n a 2 ln b (n) for all b > 1/2.
Proof. For the case 1, inequality (8) follows by simple algebra. Thus Theorem 2 implies (1) with A n = O(n ln(n)) and Theorem 1 completes the proof. The proof of case 2 is the same: we start from bound (9), use Theorem 2 to get a maximal inequality, and finally apply Theorem 1 to prove (3).

Example 1. (long range dependence). Case 2 occurs if the series of covariances diverges, namely if EX 0 X n behaves like n a-2 , a ≥ 1. The case of the long range dependence is an example where (9) holds. Long range dependence is considered in detail in the monograph [START_REF] Doukhan | Long-range dependence, theory and applications[END_REF]; note that alternative models with long range dependence are considered e.g. in [START_REF] Doukhan | Asymptotics of weighted empirical processes of linear fields with long-range dependence[END_REF], [START_REF] Doukhan | Limit theorems for sums of non linear function of ARFIMA processes with random Hurst exponents and Gaussian innovations[END_REF], [START_REF] Taqqu | Using renewal processes to generate long range dependence in high variability[END_REF], or [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF].

Example 2. (independence). The case of independent random variables (X i ) i≥1

gives the limits of our results. The Marcinkiewicz-Zygmund inequality for independent variables yields C = C p E|X 0 | p for some constant C p which only depends on p ≥ 2 in inequality [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF], see [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF].

The following three subsections describe other examples of such weakly dependent situations where a maximal inequality holds for the underlying sequence of random variables and thus one can obtain the rate of convergence in the corresponding strong law of large numbers.

3.1. Strong mixing case. Denote by (α i ) i∈N the strong mixing coefficient sequence of the centered and stationary sequence (X i ) i∈N .

Proposition 1. ([4]). Assume that X 0 b < ∞ for some b > p. If α i = O(i -α ), i ≥ 1,
with some α > p 2 • b b-p , then inequality (7) holds for some constant C which only depends on p ≥ 2, on X 0 b , and on the mixing sequence.

Proposition 1 corresponds to Proposition 1 of [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF] in the special case of X i = V i , U i ≡ 1, and q = 2. In its turn, Proposition 1 of [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF] is a particular case of Theorem 2.5 by Rio [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF].

3.2. Causal weak dependence. Define the γ coefficient of dependence of a centered sequence (X i ) i∈N with values in R d by

γ i = sup k≥0 E(X i+k | M k ) 1 where M k is the σ-algebra generated by {X t , t ≤ k}. Proposition 2. ([4]). Assume that p ≥ 2. Let X 0 b < ∞ for some b > p. If γ i = O(i -γ ), i ≥ 1, with γ > p 2 • b-1 b-p
, then inequality (7) holds for some constant C which only depends on p ≥ 2, on X 0 b , and on the sequence (γ i ).

Proposition 2 is a special case of Proposition 2 in [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF] for X i = V i , U i ≡ 1, and q = 2. In its turn, Proposition 2 in [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF] is a particular case of Corollary 5.3 in [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF]. |g(y 1 , . . . , y u )g(x 1 , . . . , x u )|

|y 1 -x 1 | + • • • + |y u -x u | .
Further let k ∈ Z and u, v ≥ 1 be two integer numbers. Let an u-tuple (i 1 , . . . , i u ) and an v-tuple (j 1 , . . . , j v ) be such that [START_REF] Fazekas | A general approach to the strong laws of large numbers[END_REF] i

1 ≤ • • • ≤ i u < i u + k ≤ j 1 ≤ • • • ≤ j v .
Let g 1 : R u → R and g 2 : R v → R be two real valued functions of Λ

(1) = {g 1 ∈ Λ, g 1 ∞ ≤ 1}. Then we put Cov (g 1 , g 2 ) ≡ Cov (g 1 (X i1 , . . . , X iu ), g 2 (X j1 , . . . , X jv )).
A sequence (X i ) i∈Z is said to be λ-weakly dependent (respectively, η-weakly dependent or κ-weakly dependent) if there exists a sequence (λ(i)) i∈Z (respectively, (η(i)) i∈Z or (κ(i)) i∈Z ) decreasing to zero at infinity such that inequality [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF], [START_REF] Klesov | The Hájek-Rényi inequality for random fields and the strong law of large numbers[END_REF] or [START_REF] Móricz | Moment inequalities and the strong law of large numbers[END_REF] holds respectively for all k ∈ Z, all u, v ≥ 1, and all u-tuples (i 1 , . . . , i u ) and v-tuples (j 1 , . . . , j v ) satisfying [START_REF] Fazekas | A general approach to the strong laws of large numbers[END_REF], where

|Cov (g 1 , g 2 )| ≤ (uLip g 1 + vLip g 2 + uv Lip g 1 Lip g 2 )λ(k), (11) |Cov (g 1 , g 2 )| ≤ (uLip g 1 + vLip g 2 )η(k), (12) |Cov (g 1 , g 2 )| ≤ (uv Lip g 1 Lip g 2 )κ(k). (13) 
Inequality [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] involves an additive part uLip g 1 +vLip g 2 and a multiplicative part uv Lip g 1 Lip g 2 . The two other definitions of the weak dependence involve only one of the additive parts. The monograph [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] details weak dependence concepts, as well as extensive models and results. Following [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] (see Definition 4.1 therein) we define [START_REF] Móricz | Strong limit theorems for blockwise m-dependent and blockwise wuasiorthogonal sequences of random variables[END_REF] c X,p (r) = max

1≤l<p sup t 1 ≤•••≤tp t l+1 -t l ≥r |Cov (X t1 • • • X t l , X t l+1 • • • X tp )|
These coefficients are related to the previous ones, see [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF]:

All rights reserved © Bolyai Institute, University of Szeged Proposition 3. Assume that a stationary and vector valued sequence (X n ) n∈Z is weakly dependent (respectively, λor κ-weakly dependent) and satisfies X 0 b < ∞ for some b > p. Then the coefficient defined by ( 14) is such that

c X,p (r) ≤    4p 2 8 -b-p b-2 X 0 (p-2)b b-2 b κ(r) b-p b-2 , under κ-dependence, p 2 4 b b-1 X 0 (p-1)b b-1 b λ(r) b-p b-1 , under λ -dependence.
Proof. We first consider the proof in the case of a κ-dependent sequence. Consider integers 1 ≤ ℓ < p and t 1 ≤ • • • ≤ t p such that t ℓ+1t ℓ ≥ r. We need to estimate (uniformly with respect to ℓ and

t 1 ≤ • • • ≤ t p ) the expression (15) c = Cov X t1 • • • X t ℓ , X t ℓ+1 • • • X tp = |Cov (A, B)|.
In order to estimate [START_REF] Móricz | Moment and probability bounds with quasi-superadditive structure for the maximum partial sum[END_REF], for some M > 0 depending on r and to be defined later, we now set X j = X j ∨ (-M ) ∧ M . Then we also have

c ≤ |Cov (A, B)| + |Cov (A -A, B)| + |Cov (A, B -B)|, with A = X t1 • • • X t ℓ , B = X t ℓ+1 • • • X tp . We write |(A -A)B| ≤ ℓ i=1 Y i |X ti -X ti |, |A(B -B)| ≤ p i=ℓ+1 Y i |X ti -X ti |
where Y i is the product of p -1 factors Z i,j = |X tj | or |X tj | for 1 ≤ j ≤ p and j = i. It is thus clear from Hölder's inequality that an analogous representation of the centering terms yields

|Cov (A -A, B)| + |Cov (A, B -B)| ≤ 2 p i=1 X 0 p-1 b X 0 -X 0 p where (p -1)/b + 1/p = 1. Set h(x) = x ∨ (-M ) ∧ M , then Lip h = 1 and h ∞ = M . Thus f ℓ (x 1 , . . . , x ℓ ) = h(x 1 ) • • • h(x ℓ ) is such that A = f ℓ (X t1 , . . . , X t ℓ ), B = f p-ℓ (X t ℓ+1 , . . . , X tp ) with f ℓ ∞ ≤ M ℓ and Lip f ℓ ≤ M ℓ-1 .
The definition of the κ-dependence thus implies

|Cov (A, B)| ≤ (ℓ(p -ℓ) Lip f ℓ Lip f p-ℓ )κ(r) ≤ p 2 4 M p-2 κ(r). Now E|X 0 -X 0 | p = E|X 0 -X 0 | p I 1 |X0|≥M ≤ 2 p E|X 0 | p I 1 |X0|≥M ≤ 2 p E|X 0 | b M p-b , X 0 -X 0 p ≤ 2 X 0 b p b M 1-b p .
Setting µ = X 0 b , we obtain, with the previous inequalities,

|Cov (A -A, B)| + |Cov (A, B -B)| ≤ 4pµ p-1+ b p M 1-b p , |Cov (A, B)| ≤ 4pµ p-1+ b p M 1-b p + p 2 4 M p-2 κ(r) ≤ p 2 2µ b M p-b + 1 4 M p-2 κ(r) . Choosing M from 8µ b M 2-b = κ(r): c = |Cov (A, B)| ≤ 4p 2 8 -b-p b-2 µ (p-2)b b-2 κ(r) b-p b-2 .
The covariance bound for λ-dependent sequences is analogous to that for ηdependence; it is already considered in Proposition 13.1 of [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF]. Indeed, comparing this result with the result for the η-dependence, we conclude that the main term comes from the additive part of the weak dependence inequality.

Theorem 4.1 in [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] states that the relation S n p ≤ C √ n holds if c X,p (r) = O(r -p/2 ). Thus Proposition 3 implies Theorem 5. Assume that p ≥ 2 is an even integer. Assume that a centered and stationary sequence (X i ) i∈Z is such that X 0 b < ∞ for some b > p and either • a sequence (X i ) i∈Z is λ-weakly dependent and λ(i

) = O(i -λ ) for some λ ≥ p 2 • b-1 b-p , or • a sequence (X i ) i∈Z is κ-weakly dependent and κ(i) = O(i -k ) for some k ≥ p 2 • b-2 b-p . Then there exists a constant C > 0 such that S n p ≤ C √ n.
Remark 1. There is no gain to use η weak dependence instead of λ dependence coefficients.

All rights reserved © Bolyai Institute, University of Szeged (A3) For the point x of interest, there exist r and s, with r ≤ s such that 1. Y 0 s = c < ∞, 2. g r (x) = |y| r h(x, y)dy is a function bounded around the point x, 3. G(x, x) = sup i f i (x, x) is bounded around the point (x, x), where f i (x ′ , x ′′ ) denotes the joint density of (X 0 , X i ).

Theorem 6. Assume that

(16) E| g(x) -E g(x)| p ≤ C ( √ nh d ) p
for a constant C which depends neither on n nor on h. Assume further that h ≡ h n is chosen at the optimal rate corresponding to the regularity ρ of f :

h n = n -1 2ρ+d .
Then for any ε > 1/p lim n→∞ n ρ 2ρ+d ln ε (n) ( g(x)g(x)) = 0, a.s.

Proof. Define

ξ i = ξ i,h = 1 h d Y i K X i -x h - 1 h d EY i K X i -x h .
We apply Theorem 2 to this setting (now ξ i depends on the parameter h ≡ h n ). Denote by g i,j the kernel estimator based on observations from i + 1 to i + j. Then S i,j = j( g i,j (x) -E g i,j (x)) is now the analogue of the partial sums S i,j defined by equality (4). Using ( 16) and the stationarity of inputs we derive from Theorem 2

E max k≤n | g 1,k (x) -E g 1,k (x)| p ≤ C(nh d ) p/2 . But (nh d ) p/2 = n ρ 2ρ+d
. In order to derive our result we thus simply apply Theorem 1 with A n = Cn The conditions needed for this case are as follows: (A4) For the point x of interest and for some q > p, there exists a constant c > 0 with 1. f (x) -E f (x) q ≤ c/ nh d n , 2. g(x) -E g(x) p ≤ c/ nh d n .

Applications to explicit dependence conditions.

Using results of Doukhan and Lang [START_REF] Doukhan | Evaluation for moments of a ratio with application to regression estimation[END_REF], we get various dependence situations where (A4) holds. Then Theorem 6 implies a.s. convergence with standard rates for this regression estimator. Proposition 4. ( [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]). Assume that (X i , Y i ) are independent and identically distributed. Let (A2), (A3) hold with r = q. Then the moment inequalities (A4) hold.

Proposition 5. ( [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]). Assume that a sequence (X i , Y i ) is λ-weakly dependent and (A2), (A3) hold. Assume that Y 0 s < ∞ for some s > 2p. If λ(i) = O(i -λ ) and λ > r(2r(sp) + 2ps) (rp)(s -2p)(r -1) (p -1) ∨ 2(d -1) d (q -1), then the moment inequalities (A4) hold.
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3. 3 .

 3 Non causal weak dependence. Here we consider non causal weakly dependent stationary sequences of bounded variables and assume that p is an integer.Let u ≥ 1 be an integer number. By Λ we denote the set of functions g : R u → R such that Lip g < ∞ where Lip g = sup (x1,...,xu) =(y1,...,yu)

  pρ 2ρ+d and b n = n ρ 2ρ+d (ln(n)) 1+ε pfor some ε > 0. All rights reserved © Bolyai Institute, University of Szeged Application. First of all, if Y i ≡ 1, Theorem 6 provides a rate of convergence in the SLLN for the kernel density estimator (17) lim n→∞ n ρ 2ρ+dln ε (n) ( f (x)f (x)) = 0, a.s.Secondly, if one uses both results, then we derive rates of convergence for the regression ε (n) ( r(x)r(x)) = 0, a.s.
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Remark 2. Doukhan and Wintenberger (2007) consider non-integer moments p ∈ (2, 3) (see [START_REF] Doukhan | Invariance principle for new weakly dependent stationary models under sharp moment assumptions[END_REF], Lemma 4), and the same inequality holds if E|X i | p ′ < ∞ with p ′ = p + δ, and λ(i) = O(i -λ ) with λ > 4 + 2/p ′ for p ≤ p ′ small enough, namely:

Functional estimation

In this section we begin with a description of the considered regression estimator and then discuss examples of weakly dependent situations.

Nadaraya-Watson estimator.

As e.g. in Ango [START_REF] Nze | Non parametric minimax estimation in a weakly dependent framework I: Quadratic properties[END_REF] [1], we will consider a sequence h ≡ h n → 0 which also satisfies nh d n → ∞ as n → ∞. Consider a stationary R d -valued process (X k ) k∈Z with a marginal density f : R d → R. Kernel density estimators (of f ) are defined as

Kernel regression estimators of a stationary R d × R-valued process (X k , Y k ) k∈Z are defined as

Then g(x) is a kernel estimator of g(x) = r(x)f (x) where r(x) = E(Y 0 |X 0 = x). Now if the marginal density h of the couple (X 0 , Y 0 ) (h : R d+1 → R) exists then g(x) = y h(x, y) dy, which motivates the previous Nadaraya-Watson estimator for the plug-in estimation.

The following assumptions will be used below. The first assumption is a regularity condition of order ρ for the functions of interest (here ρ > 0): (A1) For the point x of interest: the functions f, g are k-times continuously differentiable around x and (ρk)-Hölderian, where k < ρ is the largest possible integer. (A2) The function K is Lipschitz, admits a compact support, and satisfies [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]). Assume that (A2), (A3) hold with r > q and a sequence

and h ∼ n -a for ad ≤ 1 -2/p 3 -2/r , or the numbers p and q be even integers and

Then the moment inequalities (A4) hold.

Those are the cases for which Rosenthal-type moment inequalities are known. We did not try to get an exhaustive view of this question addressed in various papers cited in the bibliography. Remark 3. Alternative applications of such estimators are provided for resampling in Ango Nze et al. [START_REF] Nze | Weak Dependence beyond Mixing and Asymptotics for Nonparametric Regression[END_REF]. Many applications are consequences of the present technique.