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Hierarchical Bayesian Modelling is powerful however under-used to model and evaluate the risks associated
with the development of pathogens in food industry, to predict exotic invasions, species extinctions and
development of emerging diseases, or to assess chemical risks. Modelling population dynamics of
Saccharomyces cerevisiae considering its biodiversity and other sources of variability is crucial for selecting
strains meeting industrial needs. Using this approach, we studied the population dynamics of S. cerevisiae,
the domesticated yeast, widely encountered in food industry, notably in brewery, vinery, bakery and
distillery. We relied on a logistic equation to estimate the key variables of population growth, but we took
also into account factors able to affect them, namely environmental effects, genetic diversity and
measurement errors. Our probabilistic approach allowed us: (i) to model the dynamical behaviour of
strains in a given condition under some uncertainty, (ii) to measure environmental effects and (iii) to
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evaluate genetic variability of the growth key variables.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Biological data, whatever the field of research, are mostly
dynamical or spatial, i.e. they are function of time and/or of spatial
coordinates. The challenge of the biologist is to explain the variations
of traits by the variation of explanatory variables. Whenever the
observations are collected at different time or space points from the
same biological sample, they become dependent because they are
jointly related through time or space. Statistical analysis consists in
modelling (depicting the various sources of variation) and inference
(estimating the parameters of the model). Historically, statistical
analysis has been developed from a “frequentist” point of view: the
parameters are considered to have a fixed value, and estimates of this
value are searched via various statistical procedures of inference
(moment adjustment, maximum likelihood estimates, etc.). Most
statistical toolboxes that are available to biologists are designed
according to the frequentist approach. However, they are generally
restricted to the analysis of linear models, i.e. to the cases where the
response is linear through time and/or space. When dealing with non-
linear processes, the problem becomes much more complex, and
requires sophisticated statistical tools which are usually not mastered
by the biologists. As a result, they have to use non-optimal methods
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for properly analyzing or even simply detecting differences between
two curves, for instance population growth curves.

The Bayesian approach is another way for analyzing biological data.
Given uncertainty on parameter values, a so-called prior probability
distribution is assigned to the parameter in a modelling step, taking
possibly into account previous knowledge on the parameter. Bayesian
inference can be interpreted as formulating a probabilistic judgment
about the unknowns of the model given the observed data (updating the
prior into a posterior distribution). Because Bayesians traditionally put
more emphasis in the modelling process, the Bayesian statistical
framework provides an easy way of thinking about biological problems.
Unlike the frequentist estimation techniques, dealing with complex
models (non-linearity, dependence) does not bring much additional
difficulties to the Bayesian inferential algorithms.

Hierarchical Bayesian Modelling (HBM) is a probabilistic, adapt-
able and efficient framework for modelling dynamical processes by
taking into account multiple sources of variation. This type of model is
not restricted to specific problems and can be generically applied to a
vast extent of dynamical and spatial systems. Hierarchical statistical
modelling has the potential to match high dimension problems
through conditional decomposition into a series of probabilistically
linked simpler substructures (Clark and Gelfand, 2006). Hierarchical
statistical models are made of three “layers” (Wikle, 2003). First, an
experimental data level specifies the distribution of the observables at
hand given the parameters and the underlying processes. Second, a
latent process level depicts the various hidden biological mechanisms
that make sense of the data. For example in this article, the latent
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process level describes the population growth process with a logistic
model. Third, a parameter level identifies the fixed quantities that
would be sufficient, were they known, to mimic the behaviour of the
system and to produce new data statistically similar to the ones
already collected. Sources of variation on the parameters can be
added: some authors (Bernier et al., 2000; Nauta, 2000, 2002) make
the distinction between “variability” (i.e. uncertainty by essence that
cannot be reduced by additional information) and “uncertainty” (or
uncertainty by ignorance that should decrease as the sample size
increases). In this paper, variability will describe changes with respect
to biotic or abiotic variation, while uncertainty accounts for
measurement errors and model imperfections (Shorten et al., 2004).

In predictive microbiology, HBM has been particularly used for risk
assessment and food shelf-life estimation. It is convenient to predict
pathogenic bacterial behaviour in case of contamination, because it
makes it possible to quantify separately the effects of environmental
factors (temperature, pH and available resources), genetic variation and
measurement uncertainty. Some population dynamic model using
Bayesian inference are now available and describe for example the effect
of temperature on growth of Listeria monocytogenes, Salmonella,
Escherichia coli, Clostridium perfringens and Bacillus cereus on pork
meats, milk, seafoods or egg products (Delignette-Muller et al., 2006;
Membre et al., 2005; Pouillot et al., 2003) or the development of a
growing population of bacterial cells from an inoculum of dormant
spores (Barker et al.,, 2005).

In ecology, this probabilistic framework is increasingly used to
examine population dynamics because it can take easily into account
multiple sources of stochasticity (such as space, time and individual
heterogeneities), while in standard statistical models, only process
errors are routinely included (Calder et al., 2003; Clark, 2003). HBM
has much to offer, including more precise parameter estimation
(Calder et al., 2003), and it becomes more and more used to predict
exotic invasions, extinction risk or development of emerging
diseases. For example, HBM has been successfully implemented to
model the invasive Eurasian Collared-Dove dynamics (Hooten et al.,
2007), to estimate species richness and spatial occupancy (Kéry and
Royle, 2008), the various failures in a Dynamic Energy Budget
mechanism for ecotoxical Daphnid data (Billoir et al., 2008) or to
predict the relative abundance of House Finches over the eastern
United States (Wikle, 2003).

The yeast Saccharomyces cerevisiae, a common biological model in
genetics, genomics and physiology, has been exploited since Neolithic
period to produce fermented beverages and bread dough. Because of
the consumers' reluctance about genetically modified organisms, it
seems unrealistic to improve strains by genetic engineering. Another
strategy is to exploit present natural biodiversity of yeast, which
requires characterizing strains, searching for suitable physiological
traits for industrial purposes, and planning genetic resource manage-
ment because it is not possible to give the same maintenance effort to
all strains.

Bakers need to develop strains with hyper-osmolarity resistance,
brewers strains with high fermentation rates and short lag phases,
and oenologists strains tolerant to ethanol for completing fermenta-
tion (Boekhout and Robert, 2003). These different properties have
been shown to be related to population dynamic characteristics and to
interact with the environment. The population dynamics of S.
cerevisiae depends both on the genetic background of the strains
and on environmental factors such as temperature (Beltran et al.,
2002) or glucose content of the medium (Spor et al., 2008). The latter
study demonstrated a strong impact of the food-processing use of
strains on population dynamic key variables (Spor et al.,, 2008).
Similarly, Domizio et al., 2007 described a close relationship between
wine attributes and Saccharomyces spp population dynamics. Thus,
predicting population growth and modelling genetic and non-genetic
variation would help for yeast genetic resource management and for
selecting industrial starter strains.

We used HBM to describe S. cerevisiae population dynamics. The
experimental data consisted in population size counts over time for 12
S. cerevisiae strains grown in three culture media. The latent process
relied on a logistic equation depending on three population
parameters, which divides the population growth into two phases,
an exponential growth from an initial population of size Ny with an
intrinsic growth rate r, followed by a decrease of the population
growth which leads to a stationary phase, characterized by a
maximum population size K, also called carrying capacity in ecology.
The latent process model described differences in these key variables
with respect to both environmental effects (glucose content in the
culture medium) and genetic variation between strains. Finally, the
uncertainty related to measurement errors was described.

2. Materials and methods
2.1. Principle of the Bayesian inference

Bayesian inference, or model learning, is the process of updating
prior beliefs about unknowns by probabilistic machinery based upon
the relationships in the model and the observations recorded about
the situation.

By contrast with the ‘classical’ approach, which begins with a
hypothesis test that proposes a specific value for an unknown parameter
0, Bayesian inference proposes a prior distribution p(0) for this
parameter which represents the beliefs originally encoded in the
model. Data xy, Xy, ..., X, are collected and the likelihood f(x1, X5, ..., Xn| 6)
is calculated given the parameter values (as in the frequentist case).

Then the probabilities of all the other variables that are connected to
the variable representing the new data are updated. Bayes's theorem is
used to calculate the posterior distribution g(6] x1, X2, ..., Xn). After
inference, the updated probabilities reflect the new levels of beliefin (or
probabilities of) all possible outcomes encoded in the model.

2.2. Data

The experimental data used to develop this model have been
published in (Spor et al, 2008). Strain origin, culture medium
composition and population size measurements are detailed in the
Material and method section of Spor et al. (2008). To sum it up, 12
strains stemming from three industrial origins (vinery, brewery and
bakery) were grown in three media differing by their glucose
concentration (0.25%, 1% and 15%). Every two hours samples were
taken, diluted and plated to estimate population size. Three biological
replicates were performed for each medium-by-strain combination,
each time starting with a new inoculum. The population size was
expressed in CFU/mL (Colony Forming Units). The experimental data
are also called “observations” in the Bayesian setting.

2.3. Model

Our aim was to construct a population dynamic model capable to
correctly predict the population size N, of strain s in medium m
over time t. Fig. 1 illustrates the corresponding Directed Acyclic Graph
that points out the conditional dependence between nodes. In this
framework, parameters and observations could either be considered
as logical or stochastic nodes of the model. Logical nodes correspond
to nodes that are deterministic functions of other nodes, and
stochastic nodes correspond to nodes that are described by probabil-
ity laws. The description of the nodes is given in Table 1.

2.4. Description of the latent process
We assumed that S. cerevisiae population growth follows a logistic

equation. This equation is classically used in ecology to model
microbial as well as animal population dynamics, and is central in



A. Spor et al. / International Journal of Food Microbiology 142 (2010) 25-35 27

Fig. 1. Directed Acyclic Graph of the model (DAG). Data (Y; ) are denoted by rectangles; covariates by double rectangles (t) and latent variables by ellipses. Solid arrows correspond
to stochastic dependences between nodes while broken arrows indicate logical link. Dotted blue rectangles illustrated the embedded levels of the modelling (timepoint, strain and

medium).

the mathematical definition of the famous * and ‘K’ strategies in
ecology (MacArthur and Wilson, 1967). Two types of logistic equation
could be considered: with or without lag-phase. Because fresh
medium was inoculated after an overnight pre-culture, we used the
logistic model without lag-phase. Thus population size followed:

_ Ks.mNOS.mers'mr
B Ks.m + NDs,m(ers'mt_l)

N([K’ T, ND]SAm’ t) (1)

where N([K,r,Nols.m:t), the population size at time t, depends on the
variables K, r and Ny of strain s in the medium m. K is the carrying
capacity (maximum population size) expressed in CFU/mL, Ny is the
initial population size also expressed in CFU/mL and r is the intrinsic
growth rate (equivalent to the maximum rate of increase of the
population, in min~1).

2.5. Sources of variability on parameters

Our aim was to estimate posterior distributions of the latent key
variables K, r and N for each strain in each glucose condition. In the
literature of system analysis, there are commonly named population
dynamic parameters, which turns to be a rather inappropriate term in
a statistical modelling framework since, contrary to statistical
parameters, they vary as latent (i.e. unobserved) random variables
depending on factors of explanations or grouping of data. Modelling
the variability consists in defining how the environment, as well as
the genetic variation between strains, would affect population
dynamic key variables. In this context, variations can be described

Table 1

Description of the links between nodes.
Node Type Definition®
Ysm,e Stochastic N(Ngmt, Ensmyt)
Nt Logical Eq. (1)
[ Stochastic N(Kmean,,, Ksd,)
Tsm Stochastic N(rmean,,, rsd,,)
Nos,m Stochastic N(Nomean,,, Nosd,,)
Esmmi Stochastic N(O, X Ng,m,c)

2 N(a,b), normal distribution with expected value a and standard deviation b.

by normal distributions N(, sd) defined by two parameters, the mean
pnand the standard deviation sd. A fixed effect would be an effect that
changes the mean p of a latent variable K, r or Ny, while a random
effect would change their standard deviation sd. This introduces
additional correlations between individuals of the same group, i.e.
individuals of the same strain. The degree of resemblance will be
tuned by the standard deviation sd of the latent variable.

In our case, two sources of variation could affect population
dynamics: the glucose concentration in the medium and genetic
differences between strains. As each culture condition may affect
yeast population dynamics in a specific manner, the medium effect
was considered to be fixed and was described by a mean value for
each parameter Kmean,, rmean,, and Ngomean,, in each glucose
condition m. Note that in the case of Ngmean,,, there is no causal
relationship between the glucose content of the medium and this
parameter. However, the experiments in the 15% glucose condition
were performed by a different experimenter from those performed in
the 1% and 0.25% glucose conditions. The variation of the Nomean,,
parameter represents therefore the variation of the inoculum
conditionally to the experimenter. The mean values of the population
dynamic latent variables K, r or No were assumed to be the same for all
strains in a given glucose condition. The differences between strains
were considered as a genetic random effect, statistically described by
the standard deviations Ksd,,, rsd,,, Nosd,,, of the normal distributions.

Mathematically, for each strain s in each medium m, we chose to
draw the latent key variables (K, r and Ny) in independent normal
distributions with parameters Kmean,,, rmean, and Ngmean,, as
expected values. The other parameters, the standard deviations Ksd,y,,
rsd,, and Ngsd,,, rule the range of variation for the variables around
their mean in each glucose condition m:

K ,~N(Kmean,,, Ksd,,),
rsm~N(rmean,,, rsd,,),
Nos.m~N(Ngmean,,, Nysd,,).

In other words, there is a random effect 1ysm=Ksm—Kmean,,
corresponding to the different behaviours of two strains s and s’ in a
given glucose condition m (cov(nk , Nk )=0), while there is

s,m s'm

correlation between data stemming from the same strain (cov(7,,
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nl@m:(KSdm)z when s=s’). This covariation gives the dependence
structure of the model.

Note that we explicitly allowed for genotype-by-environment
interactions because the standard deviation of the latent variables
depended on the environment m.

2.6. Description of the uncertainty related to measurement errors

If we consider a strain s in a culture condition m at a time t, the
observation Y, writes:

Ysme = Nsme + EN, e
where gys,m¢ corresponds to the residual error around the theoretical
law of N, The three replicates for each medium-by-strain
combination were pooled, so that 1 encompasses both technical and
biological variations. This model was chosen because the variations
between the three replicates of the same strain in the same medium
were very low. In such model, the variability between the replicates is
taken into account, but we neglect the dependencies between data
points belonging to the same replicate.

As the inspection of the observations revealed that the experi-
mental error was increasing with the population size, we chose to
draw the error in a normal distribution, centered at 0, with a standard
deviation equal to ox N:

en,,,,~N(0,0 x Ny ().
where o is the residual standard deviation multiplier of the model.
2.7. Prior distributions

The prior distributions of the means Kmean,, rmean, and
Ngomean,, have been drawn in normal distributions (Table 2). The
prior distribution for Kmean has been chosen as wide and as flat as
possible because the culture media covered a wide range of glucose
conditions, and the carrying capacity Kmean should reflect the
nutrient content of the medium. From the literature, the prior
distribution for rmean has been chosen with a mean value fixed at
0.01 min~—! and a relatively large standard deviation (Wloch et al.,
2001). Finally the prior distributions for Nomean have been fixed at 1,
with a standard deviation allowing reaching 5 because from 1 to
5x 10° cells have been inoculated in a fresh culture at the beginning of
the experiments.

The prior distributions of the standard deviations of the model
(Ksd, rsd, Nosd and o) were chosen to favour large values. The
underlying assumptions were (i) there is variation between strains in
a given environment (Ksd, rsd, Nosd) and (ii) the measurement error is
large (o). WinBUGS (the software used to perform the Bayesian

inference, described in next paragraph) works with precision
parameters (Kprec, rprec, Noprec and o~ 2) which are the reciprocal
of the square of the standard deviations. Precision parameters were
drawn in G(1073,10~3), where G(a, b) is a Gamma distribution of
shape parameter a and scale parameter b (Table 2).Settinga=b =103
is a common Bayesian practice for picking non informative precision
priors.

2.8. Bayesian inference

Bayesian inferences of parameter values were performed using
WinBUGS software (© MRC Biostatistics Unit (Spiegelhalter et al.,
2003)). After an adaptation phase (also called “burn-in” phase (Gilks
et al,, 1996)) of 4000 iterations, the convergence of the Monte Carlo
Markov Chain (MCMC) algorithm was checked by visual inspection of
the good mixing of three independent chains starting at three
different initial values for each parameter. Inferences were made on
the following 15000 iterations after the “burn-in” phase.

2.9. Empirical posterior distributions

Altogether, our model comprises 19 parameters: Kmean, rmean,
Nomean, Ksd, rsd, Nosd for each of the 3 culture media and o. The
model also comprises 36 latent variables (K m, 7'sm and Nosm). Note
that the biological and technical variability due to replicated
datapoints is reflected by the posterior distribution of the latent
variables. The posterior Monte Carlo samples have been directly used
to evaluate the statistics related to the parameters and the latent
dynamic population variables (posterior means, standard deviations,
medians and 95% credibility intervals). Joint posterior distributions of
parameters and latent variables were studied using the function
“pairs” under R software. The precision parameters obtained from
WinBUGS have been transformed in standard deviations, Ksd, rsd,
Nosd and o, to have the same unit for the variability and for the mean
of the population dynamic key variables.

3. Results

A Bayesian approach was used for estimating population
dynamic key variables in yeast, relying on a modelling framework
in which the population size N depends not only on the parameters
of a logistic function (K the carrying capacity, r the intrinsic growth
rate and Ny the initial population size), but also on fixed and random
factors related to environmental variation, to genetic differences
between lines and to measurement error (see the modelling
scheme in Fig. 1).

Table 2

Prior distributions used for the parameters.
Parameter Distribution® Poas” Median Poyg75°
Kmean,, N(70x 106, 70.7 x 10°) —69.8%10° 50%10° 207.62x10°
rmean,, N(0.01,5.7x1073) —0.1x1073 0.01 0.02
Nomean,, N(1x106, 2.24%10°) —3.33x10° 1 5.284 %106
Ksdy, Kprec,,d~G(0.001, 0.001) 0 7.92x10 3% 3.04x10°8
r5dm rprec,,"~G(0.001, 0.001) 0 7.92x10 3% 3.04x108
Nosdp, Noprec,,®~G(0.001, 0.001) 0 7.92x1073% 3.04x10 8
o o~ 24~((0.001, 0.001) 0 7.92x1073% 3.04x10 8

2 N(a, b), normal distribution with expected value a and standard deviation b; G(a, b), Gamma distribution with shape parameter a and scale parameter b. Note that for Kmean,
rmean and Nomean, we draw only in the positive part of normal distributions because these parameters can only be positive in our conditions. Note that the actual means of normal
distribution truncated for positive values for Kmean, rmean and Nomean are respectively: 89.18 x 10°, 0.01 and 2.26 x 10°.

b 2 .5th percentile.
¢ 97.5th percentile.

9 WinBUGS deals with precision parameters, i.e. the reciprocal of the square of the standard deviation.
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3.1. Efficiency of HBM

This modelling scheme was efficient for studying the S. cerevisiae
population dynamics. For each strain/medium, growth modelling
allowed us to estimate the key variables K, r and Ny, and to predict the
resulting growth curves as shown in Fig. 2. As expected, the interval
Nsm+2 oxN (o is the residual standard deviation of the model)
included the majority of the experimental data points, indicating that
both the model used and the way we described experimental error
seemed to be relevant to describe the S. cerevisiae population
dynamics. Striking genotype-by-environment interactions could be
observed for the carrying capacity, since the strain with the highest K
value in 15% glucose (Fig. 2A) has the smallest value in 1% glucose
(Fig. 2C).

The comparisons between prior and posterior distributions of
Kmean, rmean, Ksd and rsd are shown in Fig. 3. The prior distribution of
Kmean was very flat and uninformative, whereas the three posterior
distributions (one for each medium) were very narrow, with distinct
means, even for Kmean,y and Kmeangasy (Fig. 3A). For the rmean
distributions, differences between prior and posterior distributions
were less, probably because the prior distribution for rmean was
chosen from relevant literature. Note that choosing a uniform
uninformative prior distribution gave the same posterior distribu-
tions. Posterior distributions were more tightened than the prior, and
were distinct between media even if they overlap in a large part.
Posterior distributions of Ksd parameters were all Gamma like
distributions despite their quite different shapes (Fig. 3C). Finally,
posterior distributions of rsd in the three different media merged and
were quite different from the prior one, which indicates a similar

Population Size x10¢ (cFu/mL) 3>

T T
600 1000
Time (min)

Population Size x10¢ (cFumL) O

T T T
600 1000 1400

Time (min)

genetic variability of the intrinsic growth rate in the three different
culture conditions.

Empirical posterior distributions are shown in Table 3, and
illustrated in Fig. 4 for the 15% glucose conditions. The distributions
of Kmean, rmean and Ngmean were roughly symmetric, except for
Nomeang »sy, Whereas posterior distributions of standard deviation
parameters (Ksd, rsd and Nosd) were slightly skewed to the right.

3.2. Environmental and genetic effects on population dynamics

The environment and the genetic differences between strains had a
strong effect on population dynamics. Descriptive statistics of empirical
posterior distributions are given in Table 3. Kmean mean values increased
when glucose increased in the medium (Kmeangsy,=35.57 x 10°,
Kmean,,=42.33x10° and Kmeans, = 96.02x 10°), and rmean mean
values decreased when the environment was richer (rmeangzsy=
1.13x 1072, rmean;,=8.65x10~> and rmean;sy=6.86x10"3). The
differences between the Nomean mean values reflect experimental
variations in the cell density at the beginning of the kinetics: in the
15% glucose medium, more cells were inoculated (Nomean;sy=
2.71x10°) than in the two other media (Ngmean,, = 0.47 x 10° and
Nomeang sz =0.34x 10°).

The standard deviations Ksd and rsd directly reflect the genetic
variability of population dynamic latent variables K and r among our
collection of strains in a given medium. Descriptive statistics for
standard deviation parameters are given in Table 3. The variability of
the carrying capacity was about 2 times higher in the 15% glucose
medium (Ksd;s,=21.46x10%) than in the 1% glucose medium
(Ksdy5=12.76x10°), and about 3 times higher than in the 0.25%

100 150
! !

50
1

0
1

Population Size x10-¢ (cFu/mt) 03

T T T
600 1000 1400

Time (min)

Population Size x10-6 (cFuimL) O

I I T

T
1000 1400

T
600
Time (min)

Fig. 2. Modelling the population dynamics of two strains grown in two culture media. Red solid diamonds represent experimental data. Black curves represent the evolution of the
modelled population size N, over time from K, r and Ny estimates. Blue dot dashed and blue dotted curves represent respectively Ny, 4= (0xN) and Ny, 4= (20xN) where o
represent the residual standard deviation of the model (or the uncertainty related to the measurement). A and C represents respectively a given strain in the 15% and 1% glucose
media, while B and D represents another strain grown respectively in the 15% and 1% glucose media.
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Fig. 3. Comparison of prior and posterior distributions of population dynamic parameters Kmean (A), rmean (B), Ksd (C) and rsd (D). Red dot dashed, black dotted and blue curves
represent respectively posterior distributions in 15%, 1% and 0.25% media. Green dashed curves represent prior distributions.

glucose medium (Ksdg,s4=7.85x10°) indicating that genetic
variability between strains depended on the medium. In other
words, we found genotype x environment interactions for K. On the
opposite, the genetic variability of the intrinsic growth rate (rsd) was
high but robust with regard to environmental changes (rsd ~1.44 x 10?
in the three media). The variability of the initial population size was
more than 10 times higher in the 15% glucose medium than in the two
other media (1.08x10° for Ngsdisy vs. 0.14x10° and 6.45x10%
respectively for Nosd;y and Nosdg25%).

Finally, the residual standard deviation multiplier of the model, o,
has been estimated to 1.398. Thus the real residual standard deviation
around the theoretical law of population dynamic N, is drawn in a

Table 3

Descriptive statistics of empirical posterior distributions of parameters.
Parameter Mean S.D. Po.025" Median Poo7s’
Kmean;s,  96.02x10° 6.76x10° 8235x10° 96.01x10° 109.5x10°
Kmeany; — 42.33x10° 4.06x10° 3429x10° 4228x10°  50.56x10°
Kmeang s, 35.57x10° 3.06x10° 29.71x10° 3548x10°  41.93x10°
rmean; sy 6.86x1073 3.36x107> 455x10"% 681x10~> 1.37x10°?
rmean;s 8.65x107 > 334x1073 221x1073 863x10°> 1.52x1072
rmeangosy  1.13x1072 3.39%1073 459%x107° 1.13x10°2 1.79x10~?
Nomean;s;,  2.71x10° 035x10°  2.02x10°  2.70x10° 3.41x10°
Nomean 047x10° 0.10x10° 0.37x10° 0.45x10° 0.75x 10°
Nomeang,sy  0.34x10°  0.09x10° 0.19x10° 033x10°  0.56x10°
Ksd sy 2146x10° 531x10° 13.79x10° 20.57x10°  34.07x10°
Ksdys 12.76x10° 323x10°  8.09x10° 1221x10° 20.42x10°
Ksdo2s% 7.85x10% 3.37x10° 053x10° 7.79x10°  14.84x10°
rsdysy 144%1072 333x107> 953x107> 137x1072 224x10 2
rsdyy 143%x1072 326x107> 95x107> 137x1072 222x10~2
rsdg.25% 1.44x1072 328x1073 953x10> 138x10°2 222x10°2
Nosd sy 1.08x10° 0.32x10° 0.60x10° 1.03x10° 1.85%10°
Nosd 0.14x10° 0.18x10° 298x10* 875x10*  0.78x10°
Nosdo 5% 645x10* 3.94x10* 2.05x10* 541x10*  0.17x10°
o 1.39 263x1072 134 1.39 1.44

@ 2.5th percentile.
b 97.5th percentile.

normal distribution centered on 0 with a standard deviation equal to
1.39% Ny ..

3.3. Joint distributions and prediction

Over all strains in a given medium, no correlation was observed
when studying the joint posterior distributions of the parameters of
the model as illustrated by the correlation coefficients and the smooth
lines in Fig. 4. Parameter joint distributions are given for illustration in
the 15% glucose medium, but the lack of correlation is also valid in the
two other media. On the other hand, for a given strain s in a given
condition m, key latent variables K and r were negatively correlated as
illustrated in Fig. 5. The variance of the joint posterior distribution of
the latent variables K, and rg, stems from microenvironmental
variations and reflects the variability between two replicates of the
same strain in the same environment. In a prediction point of view,
these results lead to different ways of drawing latent variables. When
correlations are detected, it becomes necessary to draw jointly a K
value and an r value in their empirical joint posterior distribution.
With our data set, taking into account joint distributions becomes
particularly important to model different replicates of a given strain s
in a given condition m.

A major interest of Bayesian modelling is its predictive capacity.
From our modelling achievement, it becomes possible to predict the
typical behaviour of any strain grown in our different glucose
conditions, as illustrated in Fig. 6. We first simulated population
dynamics in 15% and 1% glucose media by drawing 30 values of Kand r
in the Kmean and rmean empirical joint posterior distributions
illustrated in Fig. 4. The 30 growth curves obtained represent the
mean typical behaviour in each medium under the assumption that all
strains behave like a hypothetical average one (Fig. 6A and B) and
reflect the effect of the culture medium. Then, to demonstrate the
effect of genetic variability on population dynamics, we drew 30 K and
r values respectively in N(Kmean, Ksd) and in N(rmean, rsd) with
respect to the joint posterior distributions of these parameters. As
illustrated in Fig. 6, taking into account the genetic variability between
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Fig. 4. Empirical joint posterior distributions of parameters Kmean;sy, rmeans, Ksdysy, rsdysy and o, corresponding adjusted distributions and correlation coefficients. Empirical
joint posterior distributions are shown on the lower panel of the figure (under the diagonal). The diagonal contains adjusted posterior densities of parameters Kmean,sg, rmean;sg,
Ksdqsy, 1sdys4 and o. Correlation coefficients between parameters are given in the upper panel of the figure (over the diagonal).

strains led to more variable behaviours than predicted by the sole
effect of the culture medium on population dynamic key variables.

4. Discussion

We developed a probabilistic model to describe population
dynamics of 12 different strains grown in three culture media
differing by their glucose content. To our knowledge, none of the
previous studies relied on a Bayesian framework to model S. cerevisiae
population dynamics.

4.1. Differences between “frequentist” and Bayesian approaches

Data presented here had previously been analyzed by fitting a
population dynamic model using a frequentist approach. Population
key variables were then recovered and an explicative secondary
model (ANOVA) had been used to determine if the forcing factors (in
our case, medium variation and strain variability) did have a
significant effect on the estimated parameter values. With this
method, uncertainty caused by the lack of fit of the population
dynamic model to the biological data was not taken into account. Yet
we had just estimates, and less confidence should be granted to values
obtained with fewer points. In addition, non-linear relationships may
prevent from a rapid and unbiased convergence of such estimates (the

speed of convergence depends on the number of data points
necessary to reach a given estimate, and the bias corresponds to the
differences between estimates obtained from different experiments).
This strategy can lead to rough approximations, and even to wrong
conclusions in some extreme cases. However, for this particular study,
the two approaches produced similar estimates.

Within the frequentist context, a better strategy could have been
to reconstruct an all-inclusive analysis of variance based on a global
non-linear procedure (Mc Culloch et al.,, 2008; Molenberghs and
Verbeke, 2006; Muller and Stewart, 2006). There are now powerful
EM algorithms (McLachlan and Krishnan, 1996) for the inference of a
broad range of non-linear models (e.g. multi level models, mean-
dispersion models, longitudinal models with individual evolutions
ruled by differential equations, etc). However, in this kind of models,
tests for significant effects of controlling factors need to be adapted
and developed specifically for each type of non-linear model. These
methods may be powerful in terms of precision of parameter
estimators, but are reserved to high skilled statisticians since very
few user-friendly software's are available. For instance, SAS ‘NImix
procedures’, Monolix and R ‘NIme’ routines cannot presently deal
with a statistical model like the one we have used. Moreover, from a
practical point of view, classical frequentist framework encounters
obstacles for the treatment of missing data, which either should be
deleted or replaced by approximated values. In Bayesian settings,
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Fig. 5. Empirical joint posterior distributions of latent key variables K and r, corresponding adjusted distributions and correlation coefficients for one strain in the three
environmental conditions. Empirical joint posterior distributions are shown on the lower panel of each sub-figure (under the diagonal). The diagonal contains adjusted posterior
densities of variables K and r. Correlations coefficient are given in the upper panel of each sub-figure (over the diagonal).

missing data are just considered as latent variables estimated after
consideration of the data. No particular treatment of missing values is
then needed for the inference.

A fundamental advantage of the Bayesian approach is the
possibility to combine various sources of information to formulate
hypotheses on parameters of interest, and thus to define their prior
distributions. In classical frequentist framework, hypotheses on

Population Size x10% (CFu/mL) 2>

T T T \ T T T
0 500 1000 1500 2000 2500 3000

Time (min)

parameter distributions are not related to expert knowledge or to
previous experiments, while in Bayesian framework, posterior
distributions of a first study could be recycled as prior distributions
for a second one. The Bayesian approach can be viewed as statistical
learning machinery that progressively updates the state of knowl-
edge about a specific phenomenon by processing data from a
particular field of research.

Population Size x10% (cFu/mL) @

\ T
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T T T T T
1000 1500 2000 2500 3000
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Fig. 6. Modelling the typical population dynamics of S. cerevisiae strains in two different environments. Population dynamics was modelled according to probability laws obtained
from empirical posterior distribution adjustments. A. 30 growth curves (red lines) were simulated in 15% glucose medium, with the same initial density (No = Nomean = 10° cell/
mL), and Kmean, s and rmean;sy drawn in the empirical joint posterior distributions. The 30 grey lines represent the additional information brought after incorporating genetic
variability (genetic differences among strains) on population dynamic key variables. For each grey line, K and r are respectively drawn in N(Kmean s, Ksdsy) and in N(rmeansg,
rsdysy) taking into account correlations related to empirical joint posterior distributions. B. Same simulation conditions as in A, except that the glucose concentration was 1%.
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4.2. Bayesian modelling, a thinking framework for biologists

In statistical terms, we developed a hierarchical non-linear mixed-
effects model with heteroscedastic variance. The conception of this
model was quite simple and followed the natural way of thinking of
biologists. The first step was to imagine the phenomenological process
into action. Microbial populations are known to grow in 3 phases: lag,
exponential and stationary. The classical mathematical description of
this dynamics is a logistic equation summarized by 3 population
dynamic variables: K, r and No. This is the deterministic part of the
model. Then, variability could be added to the process by drawing
these latent variables in probabilistic distributions. The way these
variables are drawn reflects directly how biologists understand the
process and its behavioural similarities. We could have considered the
effect of glucose concentration on population dynamic key variables
as a random effect, but we chose to model it as a fixed effect because
we had only three culture media not homogenously distributed (15%,
1% and 0.25%) and not representative of a typical environmental
effect. Statistically, this means there is an average value for each
parameter in each glucose condition (Kmean, rmean and Nomean) and
that these three experimental situations are considered as indepen-
dent. Then we introduced a random effect due to genetic variability,
described by the standard deviation of the law from which the
population latent variables are drawn (Ksd, rsd and Nosd). The last step
was to incorporate uncertainty in measurements. Since measurement
errors increased with population size, which was due to the higher
number of dilutions required to plate the same number of cells, we
simply chose to draw the residual variance in N(0, 0% Ns ), i.e. the
standard deviation of the error was proportional to the population
size.

Our approach borrowed many concepts from the seminal Delign-
ette-Muller et al. (2006)'s paper regarding Bayesian modelling of
growth curves for risk assessment. Specifically, we employed: i) the
well-known logistic equation used as a primary growth model, ii)
using their words to separate uncertainty and variability of a model,
we tried to account for the main sources of variability (random effects
stemming from genetic differences between strains) and uncertainty
(essentially measurement errors and only partial knowledge about
parameters) and iii) the same powerful MCMC techniques were used
to perform posterior distribution of the unknowns. However, major
differences in the modelling assumptions were made in our article,
since main sources of variability and uncertainty were different. In
Delignette-Muller et al. 2006, the researchers had to consider growth
parameters as a function of changing conditions over a large range,
since in addition to their own 61 curves, 35 others were taken from 10
publications. As all our data have been obtained specifically for this
study under controlled conditions, we didn't need such a secondary
growth model. Similarly, due to the specific features of our strains
data, we didn't need to introduce a lag time in the model. In that
sense, our model is simpler. Nevertheless, we had to relax the
assumption of a homogeneous measurement error variance described
in Delignette-Muller et al. (2006) over each growth curve. Thus, we
proposed here a more general way to deal with measurement
uncertainties. Because we had the same strains replicated in different
conditions, our model allowed us to take explicitly genotype x envir-
onment interactions into account, which was not the case in the
Delignette-Muller et al. (2006). Concerning the applications, Delign-
ette-Muller et al. (2006) used parameter estimations that were
performed separately on one bacterial species and on the total
microbial flora to predict the results of the competition between the
bacterial species of interest and the total flora. Because we were
interested in predicting the environmental conditions that favour
yeast growth, we used our model to predict the range of variation for
growth in different environments.

Thus the construction of the model was quite intuitive. Moreover,
we would like to emphasize that Bayesian approaches are very

powerful and accessible to model any dynamical or spatial processes,
such as the impact of any environmental abiotic (temperature,
oxidative stress, poisoning) or biotic factors, the competition between
two or more micro-organism species or strains, etc. A free dedicated
software, WinBUGS (© MRC Biostatistics Unit, (Spiegelhalter et al.,
2003)), is available and a library has been developed under R (library
“BRugs” http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/
2.9/BRugs_0.5-3.zip, the R Development Core Team) giving to the
scientist the opportunity to develop his own models.

4.3. Additional improvements

Another possible approach could have been functional data
analysis (Ramsay and Silverman, 2005) which aims at explaining
the variations of a “response” function of time by the information of
other “explanatory” variables, such as, in our case, the culture media
or the strains. The analysis consists in converting the data into a
system of basic functions which are combined linearly to define the
actual functions. Then, a collection of statistical techniques is applied
to the parameters of the basic functions. Statistical packages are
available for R and Matlab. This approach is really efficient for
answering questions like “How do the curves vary from one condition
to another?” or “Are the differences between the curves significant?”.
However, because parameter estimation is performed on basic
mathematical functions, and not on the actual response curves, they
may lack of biological meaning. In the case of population dynamic
analysis, the key variables of the latent process, K, r and Np, have a
direct biological meaning.

Various types of equations could have been used to model S.
cerevisiae population dynamics. We chose to use a logistic equation,
because it is parsimonious (three variables having a biological
meaning are sufficient) and possesses an analytical solution which
properly describes S. cerevisiae population dynamics. A more
sophisticated population dynamic model based on ordinary differen-
tial equations, as described in (Billoir et al., 2008), could have been
used. In this type of modelling, the specific add-on module PKBUGS
developed by Lunn can be used, as in pharmacokinetics, whenever the
ordinary differential equation models with unknown coefficients
cannot be analytically solved (Lunn et al., 1999).

Competing models could have been designed and compared via their
posterior probabilities (e.g. with Bayes factors; (Kass and Raftery, 1995))
or according to their predictive ability on a test sample (predictive
posterior checks; (Gelman et al., 2003)). The hypothesis of conditional
independence between media could be relaxed. For instance a continual
covariation of the parameters with the environments could be added.
A random strain origin effect independent from glucose concentration
could have been declared, and variance estimates could have been
compared to the estimates of the present model. In addition, a more
complex model would assume prior correlations between population
dynamic features with a 3-dimensional random effect instead of three
independent random effects for each of these. This would help taking
into account biological adjustments in the life-history strategy of strains
such as an increased value of r to compensate for a below average K.
Other refinements may affect the measurement error structure: at very
low additional computation costs, a two-parameter proportional error
en,,,, N (0,0xNy,) could be studied in the model (y is the second
parameter).

It is also relatively straightforward to develop the same type of
model for more than two factors providing that enough data are
collected to convey sufficient information to update the additional
parameter priors to be involved into the analysis. However when
many factors interplay, we can no longer trust the common
microbiological good sense to focus on a single model and many
competing models can be designed. When the number of possible
models gets large (and this number grows very rapidly with the
number of factors), the Bayesian model selection problem may
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become tricky and refined MCMC strategies (clearly out of the scope
of this paper) should be used to select the appropriate model
(reversible MCMC jump as in Green, 1994 or stochastic search as in
chapter 4 of Marin and Robert, 2007).

4.4. A measure of G*E interactions

Genotype-by-environment interactions reflect the way a genotype
behaves across different environments. In classical quantitative
genetics, an ANOVA is performed on the trait considered, and the
G *E effect is inferred when (i) the ranking of the genotypes changes
according to the medium or (ii) the inter-individual variance varies in
the different environmental conditions (Lynch and Walsh, 1997).

Bayesian inference provides us with both the empirical posterior
distributions of growth key variables (K, s m, Nosm) 0f each strain in
each glucose condition, and the standard deviation (Ksd,, rsd,
Nosd,,) of those variables in each glucose condition, which reflects
strain variability in each condition. Then comparisons of the ranking
of the average growth key variables of the strains could be performed
(for example rank correlation of parameter values in two different
environments), as well as comparisons of posterior distributions of
standard deviations of parameters among culture conditions (using
for example Kolmogorov-Smirnov tests).

In our case, the means of the empirical posterior distributions of
Ksd are very different in the three culture media while the means of
rsd stay constant. The between-strain genetic differences for carrying
capacity are increased in rich media compared to poor ones, while
genetic variation of the intrinsic growth rate stays robust towards
environmental changes. This is a good example of standing genetic
variation expressed only under certain environmental conditions
(Ksd) and canalization (rsd) (Waddington, 1942). HBM would be
powerful for providing better predictions of the genetic diversity of
population dynamic key variables in relation to environmental
variation.

Last but not least, another fundamental aspect of the Bayesian
approach is the possibility to study the joint posterior distributions of
latent variables and parameters of interest. Studying the joint
posterior distributions of Kimean and rmean in each glucose condition
should inform us about the possible existence of a genetic trade-off
between carrying capacity and intrinsic growth rate in S. cerevisiae
populations. We did not detect it in our data. However we showed
that modelling the population growth of a given strain s in a given
condition m requires to take into account the conditional dependence
between key latent variables K and r. In other words, the different
possible ways a given strain can grow in a given condition (because of
the microenvironmental variations, within population variations and
stochasticity between technical replicates) are constrained by a trade-
off between K and r (Novak et al., 2006).

4.5. Further prospects

The next step would be to extend this model and to classify strains
according to their population dynamic behaviour. By defining a fixed
effect of the industrial origin of strains (as we did for the glucose
effect), and modelling population growth in typical conditions that
maximize the differences between strains coming from different
industrial origins, we could determine the adjusted distributions of
population dynamic key variables. Then, when testing a novel natural
strain in this environment, it would be possible to assign a measure of
“goodness” of this strain in a specific industrial condition by
classifying it according to its population dynamics. Another possible
application could be the choice of typical growing conditions in order
to maximize the differences between industrial origins. A medium
that seems appropriate to maximize differences between strains
coming from different industrial origins would be a medium in which
all strains are able to grow (not too stressful) but in which strains

could exhibit quantitative variation for population dynamic para-
meters. For example, in our experiment, the 15% glucose medium
typically maximizes the variance for K between strains (Fig. 6).
However, from a statistical perspective, it is rather a challenge to plan
in practice an optimal design, which would maximize beforehand the
expected differences between strains coming from different industrial
origins. In the Bayesian setting (Miiller, 1999), a utility function has to
be elicited from the end-users and burdensome high dimensional
maximization and integration have to be performed (Amzal et al,
2006).
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