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Ratios of random variables often appear in probability and statistical applications. We aim to approximate the moments of such ratios under several dependence assumptions. Extending the ideas in Collomb [C. R. Acad. Sci. Paris 285 (1977) 289-292], we propose sharper bounds for the moments of randomly weighted sums and for the L p -deviations from the asymptotic normal law when the central limit theorem holds. We indicate suitable applications in finance and censored data analysis and focus on the applications in the field of functional estimation.

Introduction

We consider statistics with the form of a ratio. This situation arises naturally in the following simple and generic example. Let (V i , W i ) i≥0 be a stationary sequence with values in a finite space V × W, with V ⊂ R. A conditional expectation can be expressed as ({v, w}) v∈V P({v, w})

E(V 0 |W 0 = w) = v∈V vP
.

Two examples of statistical ratios can be derived from this expression:

• For discrete random variables, it is empirically estimated from a sample (V i , W i ) 1≤i≤n by the random quantity

E(V 0 |W 0 = w) = 1/n n i=1 V i • ½{W i = w} 1/n n i=1 ½{W i = w} . U i,n = K((X i -x)/h n )/h d n , V i,n = Y i ,
then R n = r(x) is an estimator for r(x) = E(Y i |X i = x) and h n → 0, nh d n → ∞ as n → ∞; see Tsybakov [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF] for a general setting and Ango Nze and Doukhan [START_REF] Ango Nze | Weak dependence: Models and applications to econometrics[END_REF] for dependent data cases.

• Computation of empirical means for censored data: let the censoring U i = C i ∈ {0, 1} be independent of a process (V i ) and assume that V i is observed if and only if C i = 1.

R n = 1 #{i ∈ {1, n}|C i = 1} 1≤i≤n,Ci=1 V i .
A example of this situation is the estimation of covariances of a process X under censoring where V i = X i X i+ℓ . Under stationarity, the covariance function is γ X (ℓ) = γ Y (ℓ)/(γ C (ℓ) + EC 2 0 ), where Y i = C i X i is observed. Furthermore, moments of the empirical covariances are used to build the periodogram from the censored data.

• General weighted sums

R n = 1≤i≤n U i V i 1≤i≤n U i
may be used to model various quantities like prices, with prices per unit V i and volumes U i , as in [START_REF] Jaber | Optimal lot sizing under learning considerations: Shortages allowed and backordered[END_REF].

Various alternative questions also involve a division:

• Functional estimation of point processes. A compound Poisson processes (CPP) can be expressed as ξ = N j=1 α j δ Xj for some Poisson variable N and some random process (α j , X j ) j≥1 , α j > 0, X j ∈ R d . For a sequence of mixing couples of CPP (ξ i , η i ) i≥1 with µ = Eη 1 ≪ ν = Eξ 1 , Bensaïd and Fabre [START_REF] Bensaïd | Optimal asymptotic quadratic errors of kernel estimators of Radon-Nikodym derivative for strong mixing data[END_REF] estimate the Radon-Nikodym density ϕ = dµ/dν with kernel estimates ϕ n = g n /f n , with f n (x) = n i=1 η i ⋆ K n (x), g n (x) = n i=1 ξ i ⋆ K n (x), where, for example, ξ ⋆ K n (x) = N j=1 α j K n (X j -x) with Ratio moments 1261 K n (x) = K(x/h)/h d . The procedure is thus analogous to the Nadaraya-Watson estimator. Quadratic errors of this ratio are bounded under the assumption |ϕ n (x)| ≤ C that can be easily relaxed using our result. • Self-normalized sums, for example, in [START_REF] De La Peña | Pseudo-maximization and selfnormalized processes[END_REF].

• Simulation of Markov chains and the Monte Carlo MC technique widely developed in the monograph of Robert and Casella [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]; a more precise reference is Li and Rabitz [START_REF] Li | Ratio control variate method for efficiently determining highdimensional model representations[END_REF]; see relations (45)-( 47), which explicitly involve ratios for reducing the dimensionality in a nonparametric problem. • Particle filtering, considered from the theoretical viewpoint in [START_REF] Del Moral | Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering[END_REF], and for applications to change point problems in [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF].

Deducing the convergence in probability of the ratio from the convergence of the denominator and numerator is straightforward, but in some statistical problems, L p -convergence has to be checked. Evaluating the moments of R n is much more difficult, even if one knows sharp bounds of moments for both the numerator and the denominator. Curiously, we did not find many references on this subject. One method is to compute the exact distribution of the ratio, as Spiegelmann and Sachs [START_REF] Spiegelmann | Consistent window estimation in nonparametric regression[END_REF] did for the moments of a Nadaraya-Watson regression estimator with {0, 1}-valued kernels. In this case, independence allows the use of binomial-based distributions. However, such computations are generally difficult to handle. An alternative is the expansion in [START_REF] Collomb | Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé[END_REF]. We addressed this problem for a dependent data frame in the paper [START_REF] Collomb | Estimation nonparamétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF], published after Gérard Collomb's death. In [START_REF] Collomb | Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé[END_REF] and [START_REF] Collomb | Estimation nonparamétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF],

Collomb assumed that convergence rates in L q for q > 2p are known for the denominator. This limitation is avoided here by using an interpolation technique and we shall only assume such rates for some q > p. With the notation (1), we set

N n = E N n , D n = E D n and R n = N n D n . (2) 
We aim to provide L p -rates of convergence to 0 of the expression

∆ n = R n -R n . (3) 
In some of our applications, the expectations N n and D n are constant. In other cases, they converge to some constants N and D as n → ∞, and the moments of the ratio may be proven to converge with the bound

R n - N D p ≤ ∆ n p + N D -R n .
Convergence in probability or a.s. is immediate, but to obtain moment bounds, one has to divide by a non-zero expression; for simplicity, from now on, we will assume that U i,n ≥ 0. The previous expression is then also a weighted sum

R n = n i=1 w i,n V i,N , w i,n = U i,n n j=1 U j,n ≥ 0, n i=1 w i,n = 1 so that R n belongs to the convex hull of (V i,n ) 1≤i≤n .
The paper is organized as follows. Section 2 is devoted to the main lemma and comments. The two following sections are dedicated to its applications: to simple weighted sums in Section 3 and to the Nadaraya-Watson kernel regression estimation r n (x) of a regression function r(x) = E(Y |X = x) in Section 4. The latter is divided into two subsections: the first subsection directly applies the lemma to provide the minimax bound r n (x) -r(x) p = O(n -ρ/(2ρ+d) ) in an estimation problem with dimension d and regularity ρ less than 3; the second subsection makes use of the same ideas with a slight modification to derive the (also minimax) bound [START_REF] Stone | Optimal rates of convergence for nonparametric estimators[END_REF] and [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF]). We prove our result under various dependence assumptions: independent, strongly mixing, absolutely regular or weakly dependent (either causal or non-causal) sequences. The last section includes the proofs; it consists of four subsections, devoted to the main lemma, weighted sums, moments of Nadaraya-Watson estimation and sup bounds of this estimator, respectively.

sup x∈B | r n (x) -r(x)| p = O((n/ log n) -ρ/(2ρ+d) ) over a suitable compact subset B ⊂ R d (see Stone

Main lemmas

Lemma 1 means that for q slightly larger than p, the rate of the qth order moment of the denominator and of the pth order moment of the numerator allow us to derive a bound of the rate for the pth order moment of the ratio.

Lemma 1. Assume that N n -N n p ≤ v n and D n -D n q ≤ v n for some q > p. If, moreover, U i,n V i,n r ≤ C n and V i,n s ≤ c n , where q/p -q/r ≥ 1, 1/p > 1/q + 1/s, then

D n ∆ n p ≤ 1 + |N n | D n + |N n | β v 1-β n D n + C β n v 1-β n D n + v α n c n n 1/s D α n v n ,
where α, β are chosen from the parameters p, q, r, s by setting

α = q 1 p - 1 s - 1 q ≤ 1 ≤ β -1 = q 1 p - 1 r .
Remarks.

• In all of our examples, c n ≡ c will be a constant.

• If C n ≡ C is also a constant, then we assume that r = pq q-p so that β = 1. In this case, large values of q give r close to (and larger than) p; if now q > p is very close to p, then r needs to be very large and s even larger. This is the situation for weighted sums or censored data questions.

Here, V i,n = V i and 0 ≤ U i,n = U i , and the sequence (U i , V i ) is stationary. Moreover, v n = c/ √ n and thus ∆ n = O(n -1/2 ) if α = 2/s. This condition can be expressed as s = p(q + 2)/(q -p), as proved in the forthcoming Theorem 1.

• When the sequence C n is not bounded, in order to control the corresponding term, we shall use an exponent β < 1 and assume that 1/p > 1/q + 1/r. The order q of the moment of the denominator should be larger, as well as the order of the moments of the variables V i,n (in the case of functional estimation, for example).

Here,

v n = c/ nh d n ≫ 1/ √ n as h n → n→∞ 0 and nh d n → n→∞ ∞.
• Orlicz spaces. Instead of L q -norms, we may consider Orlicz norms and ask only for

x p log q x-order moments of the denominator. Exponential moments of the variables V i,n would be used because of the relations (4), ( 14) and of the Pisier inequalities (15). • Suprema. The same equations ( 4), ( 14) and ( 15) are adapted to derive bounds of suprema for moments for expressions involving an additional parameter; an emblematic example of this situation is the regression estimation given in Section 4.2.

We consider two distinct classes of applications in Sections 3 and 4, devoted respectively to weighted sums and nonparametric regression. The following inequality is essential to bound the uniform rates of convergence of a Nadaraya-Watson regression estimator and it is thus presented as a specific lemma.

Lemma 2. Letting 0 < α < 1, we have

D n |∆ n | ≤ | N n -N n | + | N n | D n | D n -D n | + max 1≤i≤n |V i,n | | D n -D n | 1+α |D n | α . (4) 
Inequality (4) also implies tail bounds for ∆ n 's distribution. L p ′ -convergence may also be addressed as follows, as suggested by an anonymous referee.

Corollary 1. Assume that v -1 n ∆ n → n→∞ Z converges in distribution to some Z such that Z p ′ < ∞ for some p ′ < p. If the conditions in Lemma 1 hold and the bound is such that ∆ n p ≤ cv n for some c > 0, then

v -1 n ∆ n p ′ -→ n→∞ Z p ′ .

Remarks.

• For weighted sums, a central limit theorem is obtained in all the cases considered below so that the result applies. • For the Nadaraya-Watson estimator, Ango Nze and Doukhan [START_REF] Ango Nze | Nonparametric minimax estimation in a weakly dependent framework I: Quadratic properties[END_REF] prove that nh d n ( r(x) -r(x)) → N (a(x), b(x)) for functions a(x), b(x). For the case of bounded regressors, the result also holds for weakly dependent cases (see Doukhan and Louhichi [14]).

Weighted sums

We consider here the simplest application of Lemma 1. Let (U i , V i ) i∈Z be a stationary sequence and set

D n = n i=1 U i /n, N n = n i=1 U i V i /n. Then N n = N = EU 1 V 1 , D n = D = EU 1 and R n = N n / D n , R n = R = N/D.
Theorem 1. Let (U i , V i ) i∈Z be a stationary sequence with U i ≥ 0 (a.s.). Let 0 < p < q and assume that U i V i r ≤ c for r = pq/(q -p) and V i s ≤ c for s = p(q + 2)/(q -p). If the dependence of the sequence (U i , V i ) i∈Z is such that

D n -D q ≤ Cn -1/2 , N n -N p ≤ Cn -1/2 , ( 5 
) then R n -R p = O(n -1/2 ).
From now on, we assume that V i s ≤ c and U i V i r ≤ c, and prove that (5) holds.

Independent case

Assume that (U i , V i ) is i.i.d. Assume that U 0 q ≤ c and U 0 V 0 p ≤ c. From the Marcinkiewikz-Zygmund inequality for independent variables,

E| D n -D| q ≤ C q E|U 1 | q n -q/2 ≤ Cn -q/2 , E| N n -N | p ≤ C p E|U 1 V 1 | p n -p/2 ≤ Cn -p/2 .
The Hölder inequality implies that the assumptions hold if U 0 q , and V 0 qp/(q-p) are bounded.

Strong mixing case

Denote by (α i ) i∈N the strong mixing coefficients of the stationary sequence (U i , V i ) i∈N .

Proposition 1. Assume that for s ≥ r ′ > q, U 0 r ′ ≤ c. Relation (5) holds if

α i = O(i -α ) with α > p 2 • r r -p ∨ q 2 • r ′ r ′ -q .

Causal weak dependence

Let (W i ) i∈N be a centered sequence with values in R d ; for k ≥ 0, we set M k = σ(W j ; 0 ≤ j ≤ k). For each i ∈ N, we define the γ coefficients by

γ i = sup k≥0 E(W i+k |M k ) 1 .
Proposition 2. Assume that U i and V i are two stationary γ-dependent sequences with common γ i = O(i -γ ). Assume that U and V are independent and that U 0 ∞ ≤ c. Relation (5) holds if

γ > p 2 • s -1 s -p ∨ q 2 .

Non-causal weak dependence

Here, we consider non-causal weakly dependent stationary sequences and assume that q and p are integers. A sequence (W i ) i∈N is λ-weakly dependent if there exists a sequence (λ(i)) i∈N decreasing to zero such that

| Cov(g 1 (W i1 , . . . , W iu ), g 2 (W j1 , . . . , W jv ))| (6) ≤ (u Lip g 1 + v Lip g 2 + uv Lip g 1 Lip g 2 )λ(k) for any u-tuple (i 1 , . . . , i u ) and any v-tuple (j 1 , . . . , j v ) with i 1 ≤ • • • ≤ i u < i u + k ≤ j 1 ≤ • • • ≤ j v , where g 1 , g 2 are real functions of Λ (1) = {g 1 ∈ Λ| g 1 ∞ ≤ 1} defined respectively on R Du and R Dv (u, v ∈ N * ).
Recall, here, that Λ is the set of functions with Lip g 1 < ∞ for some u ≥ 1, with Lip g 1 = sup (x1,...,xu) =(y1,...,yu)

|g 1 (y 1 , . . . , y u ) -g 1 (x 1 , . . . , x u )| |y 1 -x 1 | + • • • + |y u -x u | .
The monograph Dedecker et al. [START_REF] Dedecker | Weak Dependence: Models, Theory and Applications[END_REF] details weak dependence concepts, models and results.

Proposition 3. Assume that the stationary sequence

(U i , V i ) i∈N is λ-weakly dependent for λ i = O(i -λ ).
Assume that p and q ≥ 2 are even integers. Relation (5) holds under each of the following sets of conditions:

• the processes U and V are independent, U 0 ∞ ≤ c and λ > q 2 ; • for r ′ ≤ s, U 0 r ′ ≤ c and λ > r ′ r ′ -2 q 2 .
Remark.

• Non-integer moments q ∈ (2, 3) are considered in [START_REF] Doukhan | Invariance principle for new weakly dependent stationary models under sharp moment assumptions[END_REF], Lemma 4, and the same inequality holds if E|Z i | q ′ < ∞ with q ′ = q + δ, and

λ(i) = O(i -λ ) with λ > 4 + 2/q ′ for q ≤ 2 + 1 2 ( (q ′ + 4 -2λ) 2 + 4(λ -4)(q ′ -2) -2 + q ′ + 4 -2λ) (≤ q ′ ).

Regression estimation

We now use a measurable bounded function K : R d → R. Consider a stationary process

(X i , Y i ) ∈ R d × R. We now set, for some h = h n , U i,n = U i,n (x) = 1 h d K X i -x h and V i,n = Y i ,
where h tends to zero as n tends to infinity. Then

R n = r(x) is the Nadaraya-Watson estimator of r(x) = E(Y i |X i = x).
Independently from the dependence structure of the process (X i , Y i ), we first introduce the following regularity conditions:

(A1) for the point of interest x, the functions f, g are k-times continuously differentiable around x and (ρ -k)-Hölderian, where k < ρ is the largest possible integer;

(A2) the function K is Lipschitz, admits a compact support, and satisfies

K(u) ≥ 0 (∀u ∈ R d ) and R d K(u) du = 1, R d u ℓ1 1 • • • u ℓ d d K(u) du = 0 if 0 < ℓ 1 + • • • + ℓ d < k.
Moment and conditional moment conditions are also needed:

(A3) for the point x of interest, there exist r and s, with r ≤ s such that:

1. Y 0 s = c < ∞; 2. g r (x) = |y| r f (x, y) dy is a function bounded around the point x; 3. G(x, x) = sup i f i (x, x) is bounded around the point (x, x)
, where f i (x ′ , x ′′ ) denotes the joint density of (X 0 , X i ).

Remarks.

• First, notice that the last condition holds immediately for independent sequences (X i ) with a locally bounded marginal density. • An alternative condition involving local uniform bounds of

(x ′ , x ′′ ) → H(x ′ , x ′′ ) = sup i |yy ′ |f i (x ′ , y ′ ; x ′′ , y ′′ ) dy ′ dy ′′ ,
where f i (x ′ , y ′ ; x ′′ , y ′′ ) denotes the joint density of (X 0 , Y 0 ; X i , Y i ), yields sharper results, but such conditions are generally difficult to check. They hold for independent sequences if g 1 is locally bounded.

We note here that the assumption K ≥ 0 in (A2) implies that k = 1 or 2. We are not able to control biases by h ρ n in Proposition 4 if ρ ≥ 3. Without this non-negativity condition, the moments of numerator and denominator are still controlled, but we definitely cannot handle the moments of our ratio.

Moment estimation

We now consider the quantity δ n (x) = r(x) -r(x) p for x ∈ R d .

Proposition 4 (Bias). Assuming that f is bounded below around the point x and that (A1) and (A2) hold, we have

r(x) - E g(x) E f (x) = O(h ρ n ) ∀x ∈ R d .
We now assume that the numerator and denominator satisfy the usual rate:

(A4) For the point of interest x and for some q > p, for h = h n → 0 and nh d n → ∞ as n → ∞, there exists a constant c > 0 such that:

1. f (x) -E f (x) q ≤ c/ nh d n ; 2. g(x) -E g(x) p ≤ c/ nh d n .
Proposition 5. Assuming that f is bounded below around the point x and that assumptions (A2), (A3) and (A4) hold, we have

r(x) - E g(x) E f (x) p ≤ C(1 + h dβ(1/r-1) (nh d ) (β-1)/2 + (nh d ) -α/2 n 1/s )v n with α = q( 1 p -1 s -1 q
) and β = pr q(r-p) .

Those two propositions imply that the optimal window width h ∼ n -1/(2ρ+d) equilibrates both expressions to get the minimax rate δ n (x) = O(n -ρ/(2ρ+d) ):

Theorem 2. Choose the window width h n = Cn -1/(2ρ+d) for a constant C > 0. Assume that f is bounded below around the point x and that assumptions (A1), (A3) and (A4) hold for

pd(r -1) qr -pq -pr ∨ pd qs -pq -ps -2p ≤ ρ. (7) 
There then exists a constant C > 0 such that r(x) -r(x) p ≤ Cn -ρ/(2ρ+d) .

We now consider specific dependence structures to get the moment inequalities of (A4) for f and g. From now on, fix x and write

g(x) -E g(x) = 1 nh d i Z i , Z i = K i Y i -EK i Y i , K i = K X i -x h .
4.1.1. Independence Proposition 6. Assuming that (X i , Y i ) is i.i.d. and that (A2), (A3) with r = q hold, then the (A4) moment inequalities hold.

Non-causal weak dependence

We now work as in [START_REF] Doukhan | Functional density estimation under a new weak dependence condition[END_REF], except for the necessary truncation used in [START_REF] Ango Nze | Nonparametric minimax estimation in a weakly dependent framework II: Uniform properties[END_REF].

Proposition 7. Assume that (X i , Y i ) is λ-weakly dependent and that (A2) and (A3) hold. Assume that Y 0 s < ∞ for some s > 2p. If λ(i) = O(i -λ ) with λ > r(2r(s-p)+2p-s) (r-p)(s-2p)(r-1) (p -1) ∨ 2(d-1)
d (q -1), then the (A4) moment inequalities hold.

Strong mixing

Proposition 8. Assume that (A2) and (A3) with r > q hold, and that

(X i , Y i ) is α- mixing with α i = O(i -α
). If we also suppose that either:

• α > ((q -1) r r-q ) ∨ 4sr-2s-4r (r-2)(s-4) and h ∼ n -a with ad ≤ 1-2/p 3-2/r , or • p, q are even integers and α > r 2 s-2p s-p (1 -1 p ), then the (A4) moment inequalities hold.

Remarks.

• In the first item, the previous limitation on h can be expressed as p ≥ d/ρ + 2 if one makes use of the window width h ∼ n -1/(2ρ+d) , optimal with respect to power loss functions; this loss does not appear for integral order moments of the second item. • In the case of absolute regularity, Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: Application to density estimation[END_REF] provides sharp bounds for some integrals of the second order moments of such expressions. We do not derive them here, even if integrated square errors have specific interpretations: we need higher order moments in our case.

Uniform mean estimates

We now investigate uniform bounds:

δ n (B) = sup x∈B | r(x) -r(x)| p . (8) 
In this setting, Ango Nze and Doukhan [START_REF] Ango Nze | Nonparametric minimax estimation in a weakly dependent framework I: Quadratic properties[END_REF] prove the needed results under mixing assumptions; Ango Nze et al. [START_REF] Ango Nze | Weak dependence beyond mixing and asymptotics for nonparametric regression[END_REF] and Ango Nze and Doukhan [START_REF] Ango Nze | Weak dependence: Models and applications to econometrics[END_REF] provide bounds under weak dependence conditions. For this, assumptions and lemmas need to be rephrased by replacing (A7) For some q > p and

w n = √ log n √ nh d = v n √ log n, there exists c > 0 such that: 1. sup x∈B | f (x) -E f (x)| q ≤ cw n ; Ratio moments 1269 2. sup x∈B | g(x) -E g(x)| p ≤ cw n .
We begin with two preliminary propositions before stating our main result.

Proposition 9 (Uniform bias). Assuming that f is bounded below over an open neighborhood of B and that (A2) and (A5) hold, we have

sup x∈B r(x) - E g(x) E f (x) = O(h ρ n ).
Proposition 10. Assuming that f is bounded below over an open neighborhood of B and that assumptions (A2), (A6) and (A7) hold, we have

sup x∈B r(x) - E g(x) E f (x) p ≤ C(1 + h dβ(1/r-1) (nh d ) (β-1)/2 + (nh d ) -α/2 n 1/s )w n with α = q( 1 p -1 s -1 q ) and β = pr q(r-p) .
The following theorem derives from the two previous propositions.

Theorem 3. Let (X t , Y t ) be a stationary sequence. Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p. The optimal rate for h is

h = C log n n 1/(2ρ+d) (9) 
and

sup x∈B | r(x) -r(x)| p ≤ C log n n ρ/(2ρ+d) . ( 10 
)
The end of the section is devoted to different dependence conditions that are sufficient for (A7) to hold.

Independence

First, we evaluate the uniform bound for the moments under independence. Proposition 11. Let (X t , Y t ) t∈N be an i.i.d. sequence. If we assume that conditions (A2), (A5) and (A6) hold for some s > 2p, ρ > dp/(s -2p), then (A7) holds, hence (9) yields the bounds

sup x∈B | f (x) -f (x)| p ≤ C(log n/n) ρ/(2ρ+d) , (11) 
sup x∈B | g(x) -g(x)| p ≤ C(log n/n) ρ/(2ρ+d) . (12) 
P. Doukhan and G. Lang 4.2.2. Absolute regularity Proposition 12. Let (X i , Y i ) i∈N be an absolute regular (also called β-mixing) sequence. Assume that conditions (A2), (A5) and (A6) hold for some s > 2p, ρ > dp/(s -2p). If we assume that the mixing coefficients satisfy

β i = O(i -β ) with β > sρ+(2s-p)d ρ(s-2p)-pd ∨ (1 + 2d ρ )
, then assumption (A7) holds, hence the choice (9) yields the bounds ( 11)-( 12).

Strong mixing

Using the Fuk-Nagaev inequality in [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF] also yields an analogous result.

Proposition 13. Assume that the process (X i , Y i ) i∈N is stationary and strongly mixing with

α i = O(i -α ) for α > 3ρs+2ds+dρs-4ρp-3dp-dρp dp-ρ(s-2p) ∨ 2 s-1 s-2 .
If we further assume that conditions (A2), (A5) and (A6) hold for some s > 2p, ρ > dp/(s -2p), then assumption (A7) holds, hence (9) yields the bounds ( 11)-( 12).

Non-causal weak dependence

Proposition 14. Assume that the process (X i , Y i ) i∈Z is stationary and λ-weakly dependent with λ(i) = O(e -λi b ), b > 0. If we further assume that conditions (A2), (A5) and (A6) hold for some s > 2p, ρ > dp/(s -2p), then assumption (A7) holds, hence (9) yields the bounds (11)- [START_REF] Del Moral | Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering[END_REF].

Remark. Other dependence settings may also be addressed. For example, the φ-mixing case considered in [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF] and the use of coupling in weakly dependent sequences by Dedecker and Prieur [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] both yield suitable exponential inequalities to complete analogous results.

Proofs

In the proofs, C > 0 is a constant which may change from one line to another.

Proof of the main lemmas

Proof of Lemma 2. Setting z = (D n -D n )/D n , we rewrite ∆ n = N n D n • 1 1 -z - N n D n = N n -N n D n + N n D n 1 1 -z -1 . ( 13 
) But 1 1-z -1 = z 1-z = z + z 2 1-z , hence for α ∈ [0, 1], 1 1 -z -1 ≤ |z| + |z| ∧ |z| 2 |1 -z| ≤ |z| + |z| 1+α |1 -z| ,
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1271 which implies that

D n |∆ n | ≤ | N n -N n | + | N n | | D n -D n | D n + | N n | D n D n | D n -D n | 1+α |D n | 1+α ≤ | N n -N n | + | N n | D n | D n -D n | + N n D n | D n -D n | 1+α |D n | α ≤ | N n -N n | + | N n | D n | D n -D n | + max 1≤i≤n |V i,n | | D n -D n | 1+α |D n | α .
Proof of Lemma 1. From the preceding relation, we have

D n ∆ n p ≤ v n + 1 D n N n ( D n -D n ) p + max 1≤i≤n |V i,n | | D n -D n | 1+α |D n | α p . ( 14 
)
From the Hölder inequality with exponents 1/a + 1/b = 1, we have

| N n | D n | D n -D n | p ≤ 1 D n N n pa D n -D n pb .
Now, the assumption U i,n V i,n r ≤ C n implies that N n r ≤ C n . The second term in the right-hand side of inequality ( 14) is bounded using the property N n pa ≤ |N n | + N n -N n pa . Consider now some β ∈ [0, 1] and u, v ≥ 0 such that 1/u + 1/v = 1, to be determined later.

Then | N n -N n | = | N n -N n | β | N n -N n | 1-β ;
the Hölder inequality implies that if we choose upa(1 -β) = p and vpaβ = r, then

N n -N n pa ≤ N n -N n 1-β upa(1-β) N n -N n β vpaβ ≤ N n -N n 1-β p N n -N n β r ≤ v 1-β n (|N n | β + C β n ), thus N n pa ≤ |N n | + v 1-β n (|N n | β + C β n )
. Setting b = q/p, we derive a = (q -p)/q, hence 1 u = q q-p (1-β) and 1 v = pq r(q-p) β. With the relation 1/u+1/v = 1, we find β = pr/q(r -p). Then

N n pa D n D n -D n pb ≤ 1 D n (|N n | + v 1-β n (|N n | β + C β n ))v n .
The last term in relation ( 14) is more difficult to handle; it may be bounded using the Hölder inequality with exponents 1/a + 1/b = 1 and

max 1≤i≤n |V i,n | | D n -D n | 1+α |D n | α p ≤ 1 |D n | α max 1≤i≤n |V i,n | pa | D n -D n | 1+α pb 1272 P. Doukhan and G. Lang ≤ 1 |D n | α E max 1≤i≤n |V i,n | pa 1/(pa) v 1+α n ,
if q ≥ pb(1 + α) or, equivalently, if q -p(1 + α) ≥ q/a. We use an argument of Pisier [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF]: if ϕ : R + → R + is convex and non-decreasing, then

ϕ E max i |V i,n | pa ≤ Eϕ max i |V i,n | pa (15) ≤ E i ϕ(|V i,n | pa ) ≤ i Eϕ(|V i,n | pa ).
Hence E max i |V i,n | pa ≤ (nc) pa/s with ϕ(x) = x s/pa . Now, the bound in the right-hand side of ( 14) can be expressed as v 1+α n (nc) 1/s /|D n | α if s ≥ pa; for this, we use 1

-p q (1 + α) ≥ 1 a ≥ p s if α > 0 is small enough with 1 p ≥ 1+α q + 1 s .
Proof of Corollary 1. The proof of this result is standard. Namely, p ′ < p implies from the Markov inequality that for

Z n = v -1 n |∆ n |, the sequence (Z n ) p ′ uniformly integrable. Set f k (z) = |z| p ′ ½ {|z|≤k} . From convergence in distribution, Ef k (Z n ) → n→∞ Ef k (Z)
and this occurs uniformly with respect to k from uniform integrability.

Proofs for Section 3

Proof of Theorem 1. Set ∆ n = R n -R and refer to Lemma 1: here r and s are such that β = 1, and α = 2/s. Because v n = Cn -1/2 , we get

D ∆ n p ≤ 1 + 2 N D + c D + cC α n -α/2+1/s D α v n ,
where the last term in the parenthesis is bounded with respect to n, implying that

R n -R p = O(1/ √ n). Proof of Proposition 1. Set Z i = U i V i -EU i V i . Let α -1 (u) = i≥0 ½{u < α i }, and
denote by Q Z the generalized inverse of the tail function x → P(|Z 0 | > x). From heredity, the mixing coefficient α Zi of the sequence Z is bounded by α i . Theorem 2.5 in [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF] shows that 

n i=1 Z i p ≤ 2pn 1 0 (α -1 (u) ∧ n) p/2 Q p Z (u) du
Z i p ≤ 2pn 1 0 (α -1 (u) ∧ n) pb/2 du 1/(bp) 1 0 Q r Z (u) du 1/(ap)
.

From α > pb/2, the first integral is finite and

N n -N p ≤ C/ √ n. For Y n = U n -EU n and b ′ = r ′ /(r ′ -q), we similarly get that D n -D q ≤ C/ √ n.
Proof of Proposition 2. If U and V are independent sequences, then

(Y i ) = (U i - EU i ) is γ-dependent with the same coefficients, as is (Z i ) = (U i -EU i )(V i -EV i ), since E(Z i |M 0 ) 1 ≤ E(U i |M 0 ) -EU i 1 E(V i |M 0 ) -EV i 1 ≤ 2cγ i . Denote by G Z the inverse of x → x 0 Q Z (u) du. Corollary 5.3, page 124 in [9] states that n i=1 Z i p ≤ 2pn Z 1 0 (γ -1 (u) ∧ n) p/2 Q p-1 Z • G Z (u) du 1/p . As U is bounded by c, E|Z| s = ∞ 0 Q s-1 Z • G Z (u) du ≤ c s . Define a = (s -1)/(p -1
) and b = (s -1)/(s -p). Then, by the Hölder inequality,

n i=1 Z i p ≤ 2pn ∞ 0 (γ -1 (u) ∧ n) pb/2 du 1/(bp) ∞ 0 Q r-1 Z • G Z (u) du 1/(ap)
.

Because γ > pb 2 , the first integral is finite and

N n -N p ≤ C √ n . Similarly, n i=1 Y i q ≤ 2qn Y 1 0 (γ -1 (u) ∧ n) q/2 Q q-1 Y • G Y (u) du 1/q ≤ 2qn(2c) q-1 2c 0 (γ -1 (u) ∧ n) q/2 du 1/q .
Because γ > q 2 , the first integral is finite and

D n -D q ≤ C √ n .
Proof of Proposition 3.

Let Z i = U i V i -EU i V i . • Define Z I = (Z i1 , . . . , Z iu ). If U and V are independent, then Cov(g 1 (Z I ), g 2 (Z J )) = Cov(E(g 1 (Z I )|U ), E(g 2 (Z J )|U )) + E Cov(g 1 (Z I ), g 2 (Z J )|U ).
If we define g1 (u

I ) = E(g 1 (Z I )|U I = u I ), then |g 1 (u I ) -g1 (u ′ I )| ≤ Lip g 1 E|V 0 | i∈I |u i -u ′ i | so that g 1 (U I ) is Lipschitz with respect to (U I , V I ). We have Cov(g 1 (Z I ), g 2 (Z J )|U I∪J = u I∪J ) = Cov(ǧ 1 (V I ), ǧ2 (V J )).
Here, ǧ1 is a Lipschitz function with coefficient max i∈I u i Lip g 1 . From ( 6), we conclude that (Z i ) is also λ-weakly dependent with λ Z (k) ≤ (c ∧ EV 0 )k -λ . From Theorem 4.1, page 77, and Proposition 13.1, page 293 in [START_REF] Dedecker | Weak Dependence: Models, Theory and Applications[END_REF] extended to λ-dependence,

n i=1 Z i q q ≤ C(2q -2)! (q -1)! n n-1 k=0 λ Z (k) q/2 ∨ M q-2 n n-1 k=0 (k + 1) q-2 λ Z (k) .
The second term is negligible as n tends to infinity and the first sum over k is bounded so that

n i=1 Z i q ≤ Cn 1/2 and thus N n -N q ≤ C √ n . • In the second case, U 0 r ′ + V 0 r ′ ≤ ∞ and Proposition 2.1, page 12 in [9] implies that λ Z (k) ≤ Ck -((r ′ -2)λ)/r ′ .

Proofs for Section 4.1

Proof of Lemma 4. The previous convergences E f (x) → f (x) and E g(x) → r(x)f (x) are controlled by O(h ρ n ) under ρ-regularity conditions (A1) (see Ango Nze and Doukhan [START_REF] Ango Nze | Weak dependence: Models and applications to econometrics[END_REF]). Write

r(x) - E g(x) E f (x) ≤ |g(x) -E g(x)| f (x) + |E g(x)| |E f (x) -f (x)| f (x)E f (x) .
Since f is bounded below by 0 around x, E f (x) is also bounded below by 0 and we get the result.

Proof of Proposition 5. Condition ((A3)-1) gives V i,n s < ∞ and U i,n V i,n r = O(h d(1/r-1) ) for r < s whenever ((A3)-3) holds. Indeed,

V i,n s = Y 0 s = c < ∞, so, for r ≤ s, E|U i,n V i,n | r ≤ h -rd K r ((X i -x)/h)|y| r f (x, y) dx dy ≤ h -rd K r ((X i -x)/h)g r (x) dx ≤ g r ∞ h -rd K r ((X i -x)/h) dx ≤ Ch (1-r)d . Set K hn (•) = h -d n K(•/h n )
and denote by ⋆ the convolution. Here,

D n = E f (x) = EU i,n = f ⋆ K hn (x) → f (x)
, the marginal density of X 0 , and

N n = E g(x) = EU i,n V i,n = (rf ) ⋆ Ratio moments 1275 K hn (t) → r(x)f (x). From Lemma 1, we get D n r(x) - E g(x) E f (x) p ≤ 1 + |N n | D n + |N n | β v 1-β n D n + C β n v 1-β n D n + v α n c n n 1/s D α n v n ,
where D n , N n and c n are equivalent to constants,

C n ≡ Ch d(1/r-1) and v n ≡ C(nh d ) -1/2 .
Substituting the orders in the different terms, we obtain the result.

Proof of Theorem 2. From the preceding propositions, we get

r(x) -r(x) p ≤ Ch ρ n + C(1 + h dβ(1/r-1) (nh d ) (β-1)/2 + (nh d ) -α/2 n 1/s )v n . ( 16 
)
Note that h ρ n = Cv n . The expression in parentheses is bounded if

0 ≤ βd(1 -r) r + (1 -β)ρ, 0 ≤ αρ d + 2ρ - 1 s .
These conditions correspond to [START_REF] Collomb | Estimation nonparamétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF].

A bound of interest which does not use dependence conditions

The proofs of the propositions under different kinds of dependence make use of a common bound that holds in all cases. For a positive integer k, we define the coefficients of weak dependence as non-decreasing sequences (C k,q ) q≥2 such that

C k,q = sup |Cov(Z i1 • • • Z im , Z im+1 • • • Z iq )|, (17) 
where the supremum is taken over all {i 1 , . . . , i q } such that 1 ≤ i 1 ≤ • • • ≤ i q and where m, k satisfy i m+1 -i m = k. Independently of the dependence structure, we get a bound for C k,q .

Lemma 3. If we assume (A3) and (A4), then C k,p ≤ Ch 2d(s-p)/s .

Proof. Define {i 1 , . . . , i p } as a sequence that attains the sup defining C k,p .

C k,p = |EZ i1 • • • Z ip | ≤ 2 p E|Y i1 K i1 • • • Y ip K ip | ≤ 2 p (E|Y i1 • • • Y ip | s/p ) p/s max i1,i2 E(K i1 K i2 ) s/(s-p) 1-p/s ≤ 2 p Y 0 p s K s/(s-p) x -u h K s/(s-p) x -t h G(u, t) du dt 1-p/s ≤ 2 p Y 0 p s h 2d(1-p/s) .
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The claim in the remark following (A3) is based on the fact that there is no need to use the Hölder inequality if H is bounded around (x, x) and thus C k,p ≤ Ch 2d . Now C k,q ≤ Ch 2d also holds for the denominator (we may also set Y i ≡ 1).

Proof of Proposition 6. From the Rosenthal inequality for independent variables, there exist constants C q ≥ 0 depending only on q (see, for example, Figiel et al. [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] for more details concerning the constants) such that

E n i=1 Z i q ≤ C q n i=1 EZ 2 i q/2 + n i=1 E|Z i | q .
Here, EZ q i ≤ 2 q E|K i Y i | q . In the beginning of the proof of Proposition 5, we get E|K i Y i | q ≤ g q ∞ K q q h d , and we deduce E| Z i | q ≤ C((nh d ) q/2 + nh d ), and

g(x) -E g(x) q ≤ C √ nh d .
The case of the denominator is obtained by setting Y i ≡ 1.

Proof of Proposition 7. We first establish a Rosenthal inequality for weakly dependent variables. For any integer p ≥ 2, E(

n i=0 Z i ) p ≤ p!A p ,
where

A p = 1≤i1≤•••≤ip≤n |E(Z i1 • • • Z ip )|. (18) 
Then

A p ≤ n n k=0 (k + 1) p-2 C k,p + p-2 l=2 A l A p-l . (19) 
To bound the sum with coefficients C k,p , we shall use the following lemma.

Lemma 4 (Doukhan and Neumann [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF], Lemma 10-( 11)). If we assume that the stationary sequence (Z n ) n∈Z is λ-weakly dependent and satisfies µ = Z 0 r ≤ 1 for some r > p, then

C k,p ≤ 2 p+3 p 4 µ r(p-1)/(r-1) λ(k) (r-p)/(r-2) .
Recall that if (X i , Y i ) is λ-weakly dependent with λ(k) ≤ Ck -λ , then Z i is λ-weakly dependent with λ(k) ≤ Ck -λ(r-2)/r (see Proposition 2.1, page 12 in our monograph [START_REF] Dedecker | Weak Dependence: Models, Theory and Applications[END_REF]). From Lemma 4, we get C k,p ≤ Ch d(p-1)/(r-1) k -λ(1(p)/r) .

We define conditions on the dependence coefficients that ensure that the sum to control is of the same order of magnitude as its first term, that is, O(h d ). From Lemma 3, for any 0 < b < 1,

C k,p ≤ Ch d (h -d(r-p)/(r-1) k -λ(r-p)/r ∧ h d(1-2p/s) ) ≤ Ch d × k -λb(r-p)/r h d(-b(r-p)/(r-1)+(1-b)(1-2p/s)) . Choosing b < (s-2p)(r-1)
2r(s-p)+2p-s , the exponent of h in the parentheses is positive. Because λ > 1 b • r(p-1) r-p , the sum over k (in inequality ( 19)) converges and is less than a constant, say a p . We get A p ≤ a p nh d + p-2 l=2 A l A p-l and from A 2 ≤ a 2 nh d , we deduce by induction on p that A p ≤ c p (nh d ) p/2 for a sequence c p which may also depend on x. Hence, g(x) -

E g(x) p ≤ c p (x)(nh d ) -p/2 .
The case of the denominator is obtained by setting Y i ≡ 1. In this case, we also note that the bound in Lemma 3 can be expressed as C k,q ≤ Ch 2d , since a Hölder inequality is no longer needed.

C k,q ≤ Ch d (h -2+d k -λ ∧ h d ) ≤ Ch d × k -λb h (-b(d-2)+(1-b)d) .
Choosing b < d/(2d -2), the exponent of h in the parentheses is positive. Because λ > q -1/b, the sum over k in inequality [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] converges.

Proof of Proposition 8. • Under the first set of conditions, Rio [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF], Theorem 6.3 states the following Rosenthal inequality:

E Z i p ≤ a p i j | Cov(Z i , Z j )| p/2 + nb p 1 0 (α -1 (u) ∧ n) p-1 Q p Z (u) du.
We use Lemma 3 to prove that the first term is O((nh d ) p/2 ). From the Davydov inequality, we get a second bound for the covariance:

| Cov(Z 0 , Z i )| ≤ 6α (r-2)/r i Y 0 K 0 2 r ≤ Cα (r-2)/r i h 2d(1/r-1) , Var(Z 0 ) ∼ h d g 2 (x) K 2 (u) du.
Hence,

i j Cov(Z i , Z j ) - i Var(Z i ) ≤ nh d i α (r-2)/r i h d(2/r-3) ∧ h d(1-4/s) .
Thus, considering some 0 < b < 1,

i α 1-2/r i h d(2/r-3) ∧ h d(1-4/s) ≤ h d(2b(1/r+2/s-2)+1-4/s) i α b(1-2/r) i
.

This last term tends to 0 if b > sr-4r 4sr-2s-4r and α > r b(r-2) . This is possible if α > r(4sr-2s-4r) (r-2)(sr-4r) .

Consider the second term and apply the Hölder inequality with exponents r/(r -p) and r/p:

n 1 0 (α -1 (u) ∧ n) p-1 Q p Z (u) du ≤ n 1 0 (α -1 (u)) r(p-1)/(r-p) du (r-p)/r Z p r .
The first integral is convergent as soon as α > r(p-1) r-p and, from assumption (A3)-3, Z r r ≤ Ch d(1-r) so that this second term is negligible if nh dp(1-r)/r ≤ C(nh d ) p/2 . Hence, if the sequence n r(2-p) h dp (2-3r) is bounded, we obtain the desired bound. Now, consider the denominator,

i j Cov(K i , K j ) - i Var(K i ) ≤ nh d i α i h -d ∧ h d . Thus, i α i h -d ∧ h d ≤ h d(1-2b) i α b i for 0 < b < 1. This last term tends to 0 if b > 1/2, which implies that α > 2.
Consider the second term,

n 1 0 (α -1 (u) ∧ n) q-1 Q q K0 (u) du ≤ n 1 0 (α -1 (u)) r(q-1)/(r-q) du (r-q)/r K 0 q r .
The first integral is finite if α > r(q-1) r-q . Analogously, the second term is negligible as soon as n r(2-q) h dq(2-r) is a bounded sequence.

Hence, if h ∼ n -a , a monotonicity argument shows that the previous bounds require ad ≤ 1-2/p 3-2/r . • Under the second set of conditions, we use the idea from the proof of Proposition 7 (this idea was initiated in [START_REF] Doukhan | Moments de variables aléatoires mélangeantes[END_REF]). We again use relations [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF], and expression ( 18) is bounded by using the alternative bound of C k,p , which can be expressed as

|EZ i1 • • • Z ip | for a suitable sequence i 1 ≤ • • • ≤ i p with i u+1 -i u = k.
The Davydov inequality (see Theorem 3(i) in [START_REF] Doukhan | Mixing: Properties and Examples[END_REF]) and the Hölder inequality then together imply that

C k,p ≤ 6α p/r k Z i1 • • • Z iu r/u Z iu+1 • • • Z ip r/(p-u) ≤ 6α p/r k Z 0 p r and C k,p ≤ Ch d (α p/r k h -d ) ∧ h d(1-2p/s) ≤ Ch d α bp/r k h d(1-2p/s-2b(1-p/(2s))) from Lemma 3 if 0 ≤ b ≤ 1. Then, setting b = (s -2p)/(2(s -p)), n n k=0 (k + 1) p-2 C k,p = O(nh d ) if α > r 2 s -2p s -p 1 - 1 p .
The case of the denominator is exactly analogous and here we replace = p by q, s by ∞ and, in order to let the previous condition unchanged, we replace r by r ′ with r ′ 2 (1

-1 q ) = r 2 s-2p s-p (1 -1 p ).

Proofs for Section 4.2

Proof of Proposition 9. The previous convergences E f (x) → f (x) and E g(x) → r(x)f (x) are uniformly controlled by O(h ρ n ) under ρ-regularity conditions (A5) from the continuity of derivatives over the considered sets and a standard compactness argument. The proofs do not use the positivity of K so that arbitrary values for ρ are possible; see Ango Nze and Doukhan [START_REF] Ango Nze | Weak dependence: Models and applications to econometrics[END_REF]. Note that if V ∋ x denotes an open set over which the previous assumptions (A1) hold and such that inf B f > 0, then for each open set W with W ⊂ V , the previous relation holds uniformly over W . Hence, under (A5), if V denotes an open set with B ⊂ V such that the assumptions (A1) still hold, the bounds for biases hold uniformly over B. We thus proceed as in Proposition 4 to complete the proof.

Proof of Proposition 10. From Lemma 2,

inf x∈B D n (x) sup x∈B r(x) - E g(x) E f (x) ≤ sup B | N n -N n | + sup B | N n | D n sup B | D n -D n | + max 1≤i≤n |Y i | sup B | D n -D n | 1+α |D n | α .
As in the proof of Lemma 1, substituting the supremum to the variables, we get

inf x∈B D n (x) sup x∈B r(x) - E g(x) E f (x) p ≤ C 1 + sup B |N n | inf B D n + sup B |N n | β w 1-β n inf B D n + C β n w 1-β n inf B D n + w α n c n n 1/s inf B D α n w n ,
where D n , N n and c n are equivalent to constants and C n ≡ Ch d(1/r-1) . Substituting the orders to the expressions gives the result.

Truncation and variance estimation

This paragraph introduces some common elements of proofs of Propositions 11-14.

Let M > 0 and consider the truncated modification of

Y i , Y i = Y i ½{|Y i | ≤ M } - M ½{Y i < -M } + M ½{Y i > M }. Define g(x) = 1 nh d n i=1 Y i K i . Then, from the Markov inequality, sup x∈R d | g(x) -g(x)| p p ≤ 1 h dp E|Y | p ½{|Y | > M } ≤ M p-s h dp E|Y | s .
With the choice [START_REF] Dedecker | Weak Dependence: Models, Theory and Applications[END_REF], in order to conveniently bound this term, we assume that

M ≥ Ch -p/(s-p)(ρ+d) . ( 20 
) Let Z(x) = √ nh d | g(x) -E g(x)|. Below, we will need (uniform) bounds of Var Z(x) = 1 nh d |i|<n (n -|i|) Cov( Y 0 K 0 , Y i K i ) ≤ 2 h d n-1 i=0 | Cov( Y 0 K 0 , Y i K i )|. Set Γ i (x) = | Cov( Y 0 K 0 , Y i K i )|. A first bound of Γ i (x) for i = 0 comes from Lemma 3: there exists a constant C i such that Γ i (x) ≤ C i h 2d(1-2/s) .
For independent random sequences, Γ 0 (x) is the only non-zero term.

Γ 0 (x) = Ch d g 2 (x) K 2 (u) du around the point x. (21) 
Proof of Proposition 11. In order to check assumption (A7), from the Bernstein inequality for independent bounded variables, we get

P(Z(x) > u) ≤ 2 exp - u 2 2(Var(Z(x)) + 2M u K ∞ /(3 √ nh d )) . (22) 
From [START_REF] Li | Ratio control variate method for efficiently determining highdimensional model representations[END_REF], Var(Z(x)) is bounded by a constant. Because K is a Lipschitz kernel, x → Z(x) is a Lipschitz function and

|Z(x) -Z(y)| ≤ 2 √ nh d M h -(d+1) Lip K x -y 1 .
Let M K be the size of the support of K and for δ < M K h, let (B j ) j=1,...,ν be a regular partition of diameter δ over B; denoting by x j the center of B j , we get

sup x∈Bj |K i (x) -K i (x j )| ≤ cδ h ½{|x j -X i | ≤ 2hR}. Write g(x) -E g(x) = g(x) -g(x j ) + E( g(x j ) -g(x)) + g(x j ) -E g(x j ). For x ∈ B j , | g(x) -g(x j )| ≤ (cδ/h)ḡ(x j ), where ḡ(x) = 1 nh d | Y i |½{|x -X i | ≤ 2hR)} so that | g(x) -E g(x)| ≤ (cδ/h)(ḡ(x j ) + Eḡ(x j )) + | g(x j ) -E g(x j )|. Letting Z(x) = √ nh d |ḡ(x) -Eḡ(x)| and Z j = sup x∈Bj Z(x), we have |Z j | ≤ cδ h | Z(x j )| + 2cδ √ nh d h Eḡ(x j ) + |Z(x j )|.
Note that since Eḡ(x) tends to ḡ1 (x) = |y|≤M |y|f (x, y) dy ≤ g 1 (x) as h tends to 0,

2cδEḡ(x)/h ≤ t/(3 √ nh d ) holds if δ ≤ c ′ th/ √ nh d
for a suitable constant c ′ > 0. This condition holds for the following choice (considered only for large values of t > 0):

δ = Ch √ nh d and 0 < t 0 ≤ t. (23) 
Let Z = sup x∈B Z(x). For t > t 0 ,

P(Z > t) = P max 1≤j≤ν Z j > t ≤ ν max 1≤j≤ν P(Z j > t) ≤ ν max 1≤j≤ν P | Z(x j )| > t 3 + P | Z(x j )| > th 3cδ ≤ ν max 1≤j≤ν P | Z(x j )| > t 3 + P | Z(x j )| > t 3 (24) 
≤ 4ν exp -

at 2 1 + tM (nh d ) -1/2 (25) 
for some a > 0 (from the relation h/δ → ∞, we assume that h/cδ ≥ 1 in order to derive relation [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF]). Now,

EZ p ≤ T p + p ∞ T P(Z > t)t p-1 dt. Choose T = √ A log n, note that the function u → exp(-at 2 1+tu ) is non-increasing and as- sume that M (nh d ) -1/2 ≤ T -1 . That is, with the choice for h M ≤ A -1/2 h -ρ , (26) 
we derive With ν ∼ δ -d and relation [START_REF] Robert | Monte Carlo Statistical Methods[END_REF], the second term is negligible with respect to the first one if A is chosen large enough. Then EZ p = O((log n) p/2 ) and Z p = √ nh d sup x∈B | g(x) -E g(x)| p = O((log n) 1/2 ). We check that conditions [START_REF] Jaber | Optimal lot sizing under learning considerations: Shortages allowed and backordered[END_REF] and [START_REF] Stone | Optimal rates of convergence for nonparametric estimators[END_REF] on M are compatible. This holds if ρ > dp/(s -2p).

EZ p ≤ T p + 4pν ∞ T t p-1 exp - at 2 1 + t/T dt ≤ T p + 4pν ∞ T t p-1 exp - atT 2 
Proof of Proposition 12. First, we define a truncation level M satisfying (20) and consider the truncated variable g(x). A strong coupling argument by Berbee (1979) yields a Bernstein-type inequality. With Theorem 4 of Doukhan [START_REF] Doukhan | Mixing: Properties and Examples[END_REF], we recall, analogously to [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF], that there exist some θ, λ, µ > 0 and an event A n (which does not depend on either x or u) with

P((Z(x) > u) ∩ A n ) ≤ 4 exp - λu 2 2(Var(Z(x)) + 2M qu K ∞ /(3 √ nh d )) , (27) 
with P(A c n ) ≤ µβ qθ . We first check that Var(Z(x)) is bounded by a constant independent of x.

| Var(Z(x))

-h -d Γ 0 (x)| ≤ 2 h d n-1 i=1 Γ i (x). ( 28 
)
As β-mixing conditions do not improve the bound of the variance, we use a strong mixing condition and the relation α i ≤ β i , and refer to the section dedicated to strong mixing. Now, inequality [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF] is exactly [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF] with qM substituted for M . Following along the lines of the proof for the independent case, we get

P((Z > t) ∩ A n ) ≤ 4ν exp - at 2 1 + tqM (nh d ) -1/2 .
The condition [START_REF] Jaber | Optimal lot sizing under learning considerations: Shortages allowed and backordered[END_REF] on M can now be expressed as qM ≤ h -ρ A -1/2 and the end of the proof remains unchanged. We get

√ nh d sup x∈B | g(x) -E g(x)| p ≤ C log n nh d + EZ p ½ A c n .
Then, using the trivial bound

EZ p ½ A c n ≤ Z p ∞ P(A c n ), √ nh d sup x∈B | g(x) -E g(x)| p ≤ C log n nh d + 2M K ∞ √ n h d/2 µβ qθ . (29) 
Defining q = n γ , with 0 < γ < 1, compatibility of the inequalities concerning M requires that n -γ h -ρ > h -p(ρ+d)/(s-p) . This holds if γ = ρ(s-2p)-pd (2ρ+d)(s-p) . Choosing M = Proof of Proposition 14. Choose M = (n/log n) (ρ+d)p/((2ρ+d)(s-p)) and define Z(x) as in the preceding paragraphs. Proposition 8 and Theorem 1 in [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF] imply that

P(Z(x) > u) ≤ c 0 exp - c 1 u 2 Var(Z(x)) + (M u K ∞ / √ nh d ) b/(b+2)
for suitable constants c 0 and c 1 . We first check that Var(Z(x)) is bounded by a constant independent of x. The generic term in ( 28) is bounded by using weak dependence and the fact that the function u → K((x -u)/h) is C/h-Lipschitz:

Γ i (x) ≤ C M h + 1 h 2 λ(i) ≤ C(h -1-(ρ+d)p/(s-p) + h -2 )λ(i).
Considering some 0 < α < 1, up to a constant, the right-hand side of (28) is bounded above by T (b 2 +4b+8)p/((b+4)(b+2))-1 n -aA/2 .

With ν ∼ δ -d and relation [START_REF] Robert | Monte Carlo Statistical Methods[END_REF], the second term of (30) is negligible with respect to T p if A is chosen large enough. The remainder of the proof is the same as in the independent case.

  N n -N n and D n -D n by suprema of those expressions over x ∈ B for some compact subset B ⊂ R d : (A5) The condition (A1) holds for each x ∈ B. (A6) The condition (A3) holds for each x ∈ B.

  Z 0 r ≤ c, we have E|Z 0 | r = ∞ 0 Q r Z (u) du ≤ cr . Define a = r/p and b = r/(r -p). Then, by the Hölder inequality, n i=1

aT p ∞ aT 2 / 2 u

 22 dt and using the incomplete gamma function expansion for x > 2p∞ x u p-1 e -u du ≤ 2x p-1 e -xand setting u = atT /2 in the previous inequality, we obtain EZ p ≤ T p + 4pν 2 p-1 e -u du ≤ T p + 8p a νT p-1 n -aA/2 .

i 2 t

 2 h d ∧ (h -(d+b) λ(i)) ≤ h d(1-2α)-bα i λ α (i), where, in the previous relation, b = 2 or b = 1 + (ρ + d)p/(s -p), respectively, if s ≥ (ρ + d + 1)p or s < (ρ + d + 1)p. Taking α < d/(2d + b) and noting that i λ α (i) < ∞, the corresponding sum is negligible; thus, Var Z(x) ∼ g 2 (x) K 2 (u) du.Following along the same lines as in the independent case, we then getP(Z > t) ≤ 2c 0 ν exp -at 2 1 + (tM (nh d ) -1/2 ) b/(b+2)for some a > 0. Choosing T = √ A log n, M T / √ nh d < 1, we haveEZ p ≤ T p + 4pν ∞ T t p-1 exp -at 2 1 + (t/T ) b/(b+2) dt (30) ≤ T p + 4pν ∞ T t p-1 exp -aT b/(b+2) 2 t (b+4)/(b+2) dtand then setting u = aT b/(b+2) (b+4)/(b+2) , the second term of (30) is less
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Ch -(p/(s-p)) (ρ+d) , the second term of (29) can be expressed as

This is negligible with respect to the second term as soon as β > sρ+(2s-p)d ρ(s-2p)-pd .

Proof of Proposition 13. As in the independent case, we choose a truncation level M = ( n log n ) (ρ+d)p/((2ρ+d)(s-p)) satisfying relation [START_REF] Jaber | Optimal lot sizing under learning considerations: Shortages allowed and backordered[END_REF] and define Z(x) with respect to the truncated process g. The Fuk-Nagaev inequality leads to

We bound Var(Z(x)) above by a constant independent of x, using the bound of Lemma 3 and

and by adapting the proof of Proposition 8. Then, following the proof for the independent case, we get

for suitable constants c 0 , c 1 and c 2 . We choose T = √ A log n and r = bT 2 . Then,

.

Changing the variable u = t/T , the second term equals

Setting b = 1/(ec 1 ), (c 1 b) bT 2 /2 ≤ n -bA/2 , it is negligible for a suitable choice of A. The third term is less than A (1+α)/2 α-p+1 νnT p-2 (n/log n) (1+α)(dp-ρ(s-2p))/((2ρ+d)(s-p)) with νn = n(n/log n) d(ρ+1)/(2ρ+d) (log n) d/2 . Thus, if dp > ρ(s-2p) and 1+α > (2ρ+2d+dρ)(s-p) dp-ρ(s-2p) , then the third term is negligible. The end of the proof follows along the lines of the independent case.