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Les algorithmes particulaires sont des techniques de Monte-Carlo qui associent des étapes d'échantillonnage pondéré, de rééchantillonnage bootstrap, de régénérescence markovienne et de recuit simulé. Grâce à trois exemples de complexité croissante, nous décrivons leurs implémentations pour l'estimation du maximum de vraisemblance, l'évaluation de la distribution a posteriori pour un modèle à variables latentes et la recherche du plan d'expérience optimal. Les solutions de ces exemples pédagogiques illustrent les performances et les limites de ces algorithmes, promis à une place de choix dans la trousse à outils du statisticien.

Introduction

Dans le paradigme bayésien [START_REF] Robert | Le Choix Bayésien : Principes et Pratique[END_REF], la formule de Bayes donne la clé de l'apprentissage statistique quant aux valeurs possibles du vecteur inconnu des paramètres θ d'un modèle paramétrique lorsqu'on dispose de données y. Le savoir a posteriori sur l'inconnue s'exprime sous la forme d'un pari probabiliste : la distribution a posteriori [θ |y ] est le produit normalisé de la vraisemblance [y |θ ] par la distribution a priori [θ]. Hormis les cas de miracles mathématiques que constitue la conjugaison (il faut alors se restreindre aux seuls modèles de la famille exponentielle et choisir des lois a priori ad hoc), le calcul de la constante de normalisation [y |θ ] [θ] dθ décourage les numériciens (et nombre de praticiens) dès que la dimension du modèle excède trois paramètres. Les algorithmes de simulation de Monte-Carlo (échantillonnage pondéré, algorithmes de Monte-Carlo par chaînes de Markov) n'ont pas besoin du calcul de cette constante [START_REF] Robert | Monte-Carlo Statistical Methods[END_REF] : ils remplacent astucieusement le calcul d'une densité de probabilité par la mise à disposition d'un échantillon ayant les mêmes propriétés vis-àvis de la loi des grands nombres qu'un échantillon tiré selon la distribution [θ |y ] . Connus dès le milieu du 20ème siècle [START_REF] Metropolis | Equations of State Calculations by Fast Computing Machines[END_REF], mais d'emploi généralisé seulement à partir des années 1990 avec l'avènement de micro-ordinateurs puissants, l'arrivée de la première vague de ces algorithmes [START_REF] Gilks | Markov Chain Monte Carlo in Practice[END_REF] a donné lieu à une véritable révolution (Brooks, 2003) : libérés de bon nombre de difficultés de la phase d'inférence [START_REF] Smith | Bayesian Statistics without Tears : a Sampling-Resampling Perspective[END_REF], les statisticiens bayésiens ont pu beaucoup investir de leur créativité dans l'étape de modélisation [START_REF] Parent | Le Raisonnement Bayésien : Modélisation et Inférence[END_REF]. On peut objecter que cette exaltation révolutionnaire n'est pas allée sans déboire : un cadre formel séduisant peut inciter à ne pas prendre garde au risque de sur-modéliser et de confondre modèle et réalité, le prix à payer pour l'emploi des méthodes de simulation de Monte-Carlo est de vérifier précautionneusement les conditions de convergence des algorithmes [START_REF] Mengersen | MCMC Convergence Diagnostics : A Reviewww (with Discussion)[END_REF], etc. Mais l'apparition de ces algorithmes a également bénéficié aux approches de l' École Classique. Dans les modèles à effets aléatoires, ces mêmes algorithmes interviennent dans la phase espérance des méthodes EM qui nécessitent aussi de simuler des distributions de probabilité dont la constante de normalisation n'est généralement pas connue (Douc et al. ; [START_REF] Kuhn | Coupling a Stochastic Approximation Version of EM with an MCMC Procedure[END_REF]. Depuis une dizaine d'années se développe une seconde vague de méthodes de simulation de Monte-Carlo : les algorithmes particulaires [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF]. Le principe général de ces algorithmes particulaires repose sur le fait de ne plus considérer rétrospectivement une chaîne simulée pour en extraire un échantillon, mais de construire l'échantillon globalement (Cappé et al., 2004) et au fur et à mesure. A l'origine, ces algorithmes furent développés pour améliorer le filtrage séquentiel dans les domaines de l'automatique et du traitement du signal [START_REF] Liu | Sequential Monte Carlo Methods for Dynamic Systems[END_REF][START_REF] Pitt | Filtering Via Simulation : Auxiliary Particle Filters[END_REF]Arulampalam et al., 2002). Un cas d'application typique est le suivi radar où l'on désire suivre une cible pour laquelle des données bruitées de position, de vitesse et d'accélération sont disponibles à chaque instant. Le filtrage séquentiel permet de retrouver la position de la cible avec la précision maximale. Le filtrage particulaire fut alors posé en généralisation efficace du filtrage de Kalman aux cas non linéaires non gaussiens, profitant de la flexibilité des modèles bayésiens et des performances des algorithmes de simulation associés. Ils permettent ainsi d'intégrer en temps réel l'information disponible pour mettre à jour les prédictions. Très vite, ces algorithmes de Monte-Carlo particulaires
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furent utilisés dans des cadres plus variés et plus généraux que le filtrage (Künsch, 2001 ;[START_REF] Doucet | Sequential Monte Carlo Samplers[END_REF]. En effet, d'une manière plus générale, si l'on se donne une suite de densités de probabilité p 1 (θ 1 ), p 2 (θ 2 ), ... quelconques, les méthodes de Monte-Carlo séquentielles permettent de faire évoluer un échantillon initial de manière à ce qu'il puisse être considéré comme tiré successivement de chacune des lois p 1 (θ 1 ), p 2 (θ 2 ), .... Ainsi, ces algorithmes particulaires ont pu être utilisés pour toute estimation bayésienne, séquentielle ou non, de modèles statistiques (Chopin, 2002), de simulation de lois complexes difficiles à simuler que l'on approche par une suite de lois plus simples [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], ou encore pour des optimisations basées sur recuit simulé (Amzal et al., 2006). En parallèle aux applications, le cadre d'étude théorique s'est développé [START_REF] Doucet | Sequential Monte Carlo Samplers[END_REF][START_REF] Del | Natural Computing Series : Theoretical Aspects of Evolutionary Computing[END_REF][START_REF] Oujdane | Stability and Uniform Particle Approximation of Nonlinear Filters in case of non Ergodic Signals[END_REF] et les théorèmes de convergence du type « limite centrale » démontrés (Künsch, 2005, Chopin, 2004, Del Moral et Guionnet, 1999). Quel sera le devenir de ce type d'algorithme pour la communauté statistique ? Cet article présente une initiation à ces techniques et une réflexion prospective des utilisations, bayésiennes ou non, que pourront en faire les statisticiens. Dans la partie 2, nous décrivons d'abord comment construire un algorithme particulaire et illustrons sa performance sur l'inférence bayésienne du modèle Normal. La partie 3 complète cet algorithme par une étape de recuit simulé, ce qui donne un moyen numérique d'atteindre le maximum de vraisemblance. Dans la partie 4, nous montrons comment mettre en oeuvre cet algorithme sur un modèle plus complexe, de type binomial à variables latentes. Enfin la partie 5 décrit comment cet algorithme fournit une nouvelle piste de recherche des plans d'expériences optimaux (au sens de la théorie de l'utilité espérée). La conclusion discute des avantages et des limites de ces algorithmes.

Associer les méthodes de simulation de Monte-Carlo pour faire évoluer un essaim de particules

Un exemple de base dont la solution est connue

Considérons à titre d'exemple le modèle Normal. Le vecteur des paramètres dont on veut réaliser l'inférence sera ici formé de la moyenne et de la précision (inverse de la variance) : θ = (µ, σ -2 ). La vraisemblance issue de l'observation d'un n-échantillon y = (y 1 , y 2 , ...y n ) s'écrit :

[y |θ ] = n i=1 1 √ 2πσ exp - 1 2 y i -µ σ 2 = (2π) -n 2 σ exp - 1 2 n σ 2 (ȳ -µ) 2 1 σ 2 n+1 2 -1 exp - 1 2 S 2 σ 2 . (1)
On prendra par la suite les statistiques exhaustives ȳ = n -1 n i=1 y i et S 2 = n i=1 (y iȳ) 2 . Pour traiter cet exemple élémentaire, on va ici choisir la loi a priori particulière impropre [θ] ∝ 1 de telle sorte que le max de vraisemblance soit le mode de la loi a posteriori. Cette forme plate pour [θ] peut être obtenue comme limite d'une distribution a priori conjuguée. Pour ce cas d'école décrit dans tous les manuels, la constante de normalisation pour passer de [y |θ ] [θ] à [θ |y ] se calcule aisément, en effet :

[θ |y ] =         S 2 2 n + 1 2 √ n Γ( n + 1 2 ) √ 2π (2π) n 2         × (2π) - n 2 σ exp - 1 2 n σ 2 (ȳ -µ) 2 1 σ 2 n + 1 2 -1 exp - 1 2 S 2 σ 2 . (2)
Et obtenir des tirages selon la loi jointe a posteriori n'est pas difficile :

1. On tire σ -2 selon la loi Gamma( n + 1 2 , S 2 2 ) , 2. On tire µ sachant σ -2 selon une loi Normale N(ȳ, σ 2 n ).

Algorithme particulaire de simulation

Dans cette partie, nous mettons en oeuvre un algorithme dit particulaire pour construire un échantillon de la distribution a posteriori de θ = (µ, σ -2 ). À des fins d'illustration, nous avons pris n = 10 avec les observations suivantes : 

y = (0.
(g) = f (θ (g) ) f 0 (θ (g) ) G g=1
f (θ (g) ) f 0 (θ (g) ) de telle sorte que θ (g) , w (g) g=1,...,G puisse être considéré comme un échantillon pondéré de f (θ). 2. Bootstrap multinomial : quoique toutes les caractéristiques statistiques de la distribution f puissent être obtenues avec l'échantillon pondéré θ (g) , w (g) g=1,...,G , un échantillon ordinaire (équipondéré) de f est obtenu par un tirage de type bootstrap : on rééchantillonne toutes les particules précédemment obtenues selon leur poids (avec remise). On effectue donc un tirage multinomial dans G classes offrant chacune la valeur θ (g) avec la probabilité w (g) . On génère ainsi G particules θ (g) g=1,...,G ayant (asymptotiquement) les propriétés d'un échantillon de f (θ) [START_REF] Rubin | Using the SIR Algorithm to Simulate Posterior Distributions[END_REF]. On a pris ici G = G comme il est d'usage. La figure 2 montre le résultat de ce bootstrap multinomial à la même échelle que la figure 1 ; les caractéristiques statistiques de f sont bien reconstruites, les particules couvrent plus raisonnablement le champ de variation de f . Sur les marges de la figure 2 sont représentées les lois marginales vraies de f et une densité estimée par méthode de lissage à noyau qui semble suggérer une possible bimodalité pour la marginale de σ -2 . Sur l'histogramme de cette marginale, on voit également apparaître de grandes fluctuations de l'effectif des classes. Ces instabilités témoignent du problème des doublons : lors du tirage bootstrap, les valeurs associées aux poids forts ont tendance à être répliquées tandis que celles associées à des faibles poids s'éteignent. Notons qu'en pratique, des variantes au bootstrap multinomial sont souvent préférables (comme les ré-échantillonnages systématique, stratifié ou résiduel) car ils réduisent la complexité des calculs informatiques et peuvent dans certains cas améliorer l'approximation des lois (Douc et Cappé, 2005). 

Apprentissage séquentiel

Un processeur d'information

Remarquons qu'itérer les blocs de trois étapes de l'algorithme décrit précédemment permet l'apprentissage séquentiel. Oublions les statistiques exhaustives du modèle Normal et supposons que nous scindions les données en m blocs indépendants (sachant θ), y = (y 1 , y 2 , ..y m ). Appelons

f 1 (θ) = [θ |y 1 ], f 2 (θ) = [θ |y 1 , y 2 ] ∝ f 1 (θ) × [y 2 |θ ] , ...f m (θ) = [θ |y 1 , y 2 , ..y m ] ∝ f m-1 (θ) × [y m |θ ].
On peut itérer m fois les 3 phases de l'algorithme. En effet, les particules issues de l'étape 3 de l'itération 1 forment un échantillon approximativement distribué selon la loi f 1 . Si on les réutilise en entrée de la première étape de l'itération 2, il faut simplement leur associer un poids w(θ

) proportionnel à f 2 (θ) f 1 (θ)
= [y 2 |θ ] pour les considérer comme un échantillon pondéré de f 2 , puis enchaîner les deux étapes suivantes pour sortir un ensemble équidistribué de particules approximativement distribuées selon loi f 2 . En itérant, on passe successivement de f 1 à f 2 , puis de f 2 à f 3 , etc. jusqu'à f m . Typiquement, on rencontre cette situation lorsque les données arrivent par paquets, et que leur analyse est requise entre chaque paquet. Cette possibilité d'apprentissage séquentiel procure un avantage notable sur les méthodes MCMC qui ne permettent pas de réutiliser les simulations déjà effectuées pour réajuster la distribution a posteriori quand s'accumulent les données. On comprend l'intérêt de tels algorithmes pour les modèles sans résumés exhaustifs, les applications « temps réel » comme le suivi radar ou la digestion de fichiers de données trop volumineux qu'il faut saucissonner (Chopin, 2002) ! De plus, la récursivité de ces 3 phases peut permettre d'adapter les lois d'importance au fil des itérations de manière efficace, sous certaines conditions (voir Douc et al., 2007).

Recuit simulé pour la maximisation de vraisemblance

Tout enseignant a déjà dissuadé des étudiants trop enthousiastes de réutiliser comme loi a priori de la formule de Bayes la distribution a posteriori qu'ils venaient de calculer sur le même jeu de données. Que se passe-t-il si on effectue néanmoins cette opération illicite T fois ? Formellement, c'est comme si l'on analysait un jeu de données abusivement iid :

Y T = (y, y, ...y T fois
).

Pour ce jeu répété, la densité a posteriori est f

T (θ) = [θ |y ] T [θ] [θ |y ] T [θ]dθ ∝ [y |θ ]
T (car on a pris [θ] = 1). Pour l'exemple Normal, on trouve :

f T (θ) ∝ 1 σ 2 nT 2 exp - 1 2 T n σ 2 (ȳ -µ) 2 exp - 1 2 T S 2 σ 2 . ( 3 
)
On constate que, quand T → ∞, la loi f T (θ) tend vers une distribution de Dirac au point de maximum de vraisemblance ( μ = ȳ et σ-2 = n S 2 ) : la vraisemblance subit un effet dit de recuit simulé [START_REF] Van Laarhoven | Simulated Annealing : Theory and Applications[END_REF]. Ce comportement général n'est pas lié à l'exemple normal choisi associé à une loi a priori plate en µ : d'après le théorème central limite, la convergence en loi a lieu à la vitesse √ T pour toute vraisemblance (sous réserve qu'elle soit associée à une loi a priori n'excluant aucune valeur possible du paramètre) quand on considère, abusivement comme les étudiants ci-dessus, que les T pseudo-réplications identiques de l'échantillon forment nT observations indépendantes. La figure 4 montre ce comportement de regroupement vers le maximum de vraisemblance ( μ = ȳ et σ2 = S 2 n ) avec les données de la section précédente.

On a pris 1000 particules et T = 36, car si l'objectif est trouver le mode, on peut se satisfaire de moins de particules que pour reconstruire toute la distribution a posteriori. Enfin, 100 particules itérées 10000 fois à travers l'algorithme précédent permettent d'évaluer très précisément μ et σ2 . À titre de comparaison pour le tableau 1, les valeurs exactes sont 2 et 1.113338. On peut écrire la vraisemblance [y 1 , y 2 , y 3 |θ 1 , θ 2 ] sous la forme :

3 i=1 ji n i,1 j i n i,2 y j-j i (θ 1 ) ji (1 -θ 1 ) ni,1-ji (θ 2 ) yi-ji (1 -θ 2 ) ni,2-yi+ji (4)
avec max(0, y in i,2 ) j i min(n i,1 , y i ). Cette surface est représentée à la figure 5. 

[θ 1 , θ 2 |y, H ] ∝ [y, θ 1 , θ 2 |H ] ∝ [θ 1 , θ 2 |H ] × x1,x2 [y, x 1 , x 2 |θ 1 , θ 2 , H ] ∝ [θ 1 , θ 2 |H ] × x1,x2 1 x1+x2=y n 1 x 1 θ x1 1 (1 -θ 1 ) n 1 -x1 n 2 x 2 θ x2 2 (1 -θ 2 ) n2-x2 .
Dans la suite, nous supposerons de plus que [θ 1 , θ 2 |H 0 ] = 1, afin de rendre proportionnelles vraisemblance et distribution a posteriori. Ce choix correspond à une loi a priori vague obtenue en pariant de façon indépendante a priori sur des valeurs de θ 1 et θ 2 selon une loi beta(1,1), dite aussi loi uniforme sur (0, 1). Ainsi, formellement le problème de recherche du mode de la loi a posteriori devient ici identique à celui de la maximisation de vraisemblance. Pour cet exemple, on pourrait certes mettre en place un algorithme EM [START_REF] Tanner | Tools for Statistical Inference : Observed Data and Data Augmentation Methods[END_REF]) afin d'exécuter ce travail (avec moins d'effort), à la présence possible d'extrema locaux près. Cependant, compte-tenu de l'objectif de cet article essentiellement pédagogique d'illustrer l'emploi des méthodes particulaires, nous empruntons la piste bayésienne.

Apprentissage particulaire séquentiel

Nous proposons de traiter le problème d'inférence introduit en utilisant un algorithme de type particulaire. Cette section décrit l'algorithme d'exploration de la loi a posteriori en utilisant des simulations d'ensembles de particules, dans un premier temps sans le recuit simulé.

On appelle particule de la séquence i, un (2

+ i) -uplet Ψ = (θ 1 , θ 2 , z 1 , ..z i ).
Chaque séquence de trois étapes de l'algorithme particulaire assimilera un y i , et les particules grossiront d'un vecteur latent

z i = x i,1 . On note : 1. f 0 (θ 1 , θ 2 ) = [θ 1 , θ 2 ] , 2. f 1 (θ 1 , θ 2 , z 1 ) = [θ 1 , θ 2 , X 1,1 = z 1 , X 1,2 = y 1 -z 1 |y 1 ] 3. f 2 (θ 1 , θ 2 , z 1 , z 2 ) = [θ 1 , θ 2 , X 1,1 = z 1 , X 1,2 = y 1 -z 1 , X 2,1 = z 2 , X 2,2 = y 2 -z 2 |y 1 , y 2 ] 4. f 3 ((θ 1 , θ 2 , z 1 , z 2 , z 3 ) = [θ 1 , θ 2 , X 1,1 = z 1 , X 1,2 = y 1 -z 1 , X 2,1 = z 2 , X 2,2 = y 2 -z 2 , X 3,1 = z 3 , X 3,2 = y 3 -z 3 |y 1 , y 2 , y 3 ].
Une séquence de l'algorithme se déroule de la façon suivante, pour i = 1, 2, ou 3 :

1. Échantillonnage pondéré. Au départ, on suppose disposer d'un échantillon de G particules de la distribution f i-1 . En particulier, les couples θ

(g) 1 , θ (g) 2 sont approximativement distribués selon une loi [θ 1 , θ 2 |H i-1 ].
On tire Z i = z i selon une loi binomiale Bin(n 1 , θ 1 ) tronquée entre max(0, y in 2 ) et min(n 1 , y i ), que l'on juxtapose à la particule correspondante issue de f i-1 . Le poids associé à la particule Ψ (g) = θ

(g) 1 , θ (g) 2 , ..z (g) i est : w(Ψ (g) ) = n 2 z (g) i θ (g) 2 y-z (g) i 1 -θ (g) 2 n2-y+z (g) i .
2. Rééchantillonnage. On effectue un rééchantillonnage de type bootstrap binomial avec les poids précédents. On se retrouve alors avec un jeu de particules approximativement distribuées selon la loi f i (θ 1 , θ 2 , z 1 , ..z i ) mais comprenant de possibles doublons dus à d'éventuels déséquilibres entre les pondérations lors du rééchantillonnage. 3. Dispersion markovienne. Pour la dispersion markovienne, on va profiter de la conjugaison conditionnelle pour construire un noyau de Gibbs. À z 1 , ..z i fixés, les lois conditionnelles complètes de θ 1 et θ 2 sont respectivement des lois beta indépendantes de paramètres (

i j=1 z j , i j=1 (n j1 -z j ) ) et ( i j=1 y j -z j , i j=1
(n j1 + z jy j ) ). À θ 1 et θ 2 fixés, les lois conditionnelles complètes des z 1 , ..z i sont indépendantes : il s'agit de distributions très facilement simulables, car discrètes entre max(0, y in i,2 ) et min(n i,1 , y i ) avec pour loi de probabilité

[Z j = z |θ 1 , θ 2 , Y j = y ] = n 1 z n 2 y -z θ 1 1 -θ 1 z 1 -θ 2 θ 2 z min(n1,y) max(0,y-n2) n 1 z n 2 y -z θ 1 1 -θ 1 z 1 -θ 2 θ 2 z .
Notons qu'il est ici préférable d'échantillonner d'abord les z j , puis les (θ 1 , θ 2 ) pour améliorer la dispersion sur l'espace des (θ 1 , θ 2 ) qui nous intéresse. Par ailleurs, il n'est plus nécessaire de garder les z j en mémoire à la fin de cette étape.

La figure 6 montre le nuage en (θ 1 , θ 2 ) après trois passages par les trois étapes de cet algorithme, afin d'assimiler le jeu de données de On retrouve les traits caractéristiques de l'inférence de taux de succès de binomiales observées par leur somme, notamment la forte dispersion des marginales (seulement trois données rendent la situation peu informative), une corrélation négative entre θ 1 et θ 2 qui va de pair avec une légère bimodalité (une compensation possible entre les rôles respectifs des paramètres). Le tableau 3 montre pour les premières statistiques caractéristiques de la loi conjointe a posteriori [θ 1 , θ 2 |H 3 ], l'excellente correspondance entre les résultats de l'algorithme et le calcul direct sur l'équation 4 (par discrétisation du carré unitaire en un million de tuiles). Comme dans la première partie, et à la manière de Doucet et al., 2002, on peut itérer l'algorithme pour rechercher le mode de la loi a posteriori (c'est-àdire, avec une distribution a priori plate, le maximum de vraisemblance), au prix de l'accroissement linéaire de la taille des particules à chaque itération. Les résultats du recuit simulé particulaire ainsi effectué sont reportés dans le tableau 4. 

Particules à la recherche du plan d'expérience optimal

Nous proposons maintenant d'appliquer l'approche particulaire à l'optimisation de plans d'expériences, en restant dans un cadre très général. En effet, aucune hypothèse forte ne sera faite ni sur la structure du modèle (non nécessairement Gaussien ou linéaire par exemple), ni sur les lois a priori, ni même sur le critère de l'optimisation (non nécessairement quadratique par exemple).

Maximisation particulaire de l'utilité espérée

La théorie de l'utilité espérée s'appuie sur la statistique bayésienne pour recommander une décision ∆ en situation d'incertitudes sur un état de la nature φ. Avec un état de connaissances H(∆) conditionnant le pari [φ |H(∆) ] sur les valeurs possibles du vecteur inconnu φ, on introduit une fonction d'utilité w(∆, φ) 0 mesurant les conséquences d'adopter la décision ∆ si l'inconnue prend la valeur φ. La notion d'utilité est assez commune en économétrie [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF] ou en théorie de la décision (Barnett, 1973 ;[START_REF] Kass R | Markov Chain Monte Carlo in Practice : A Roundtable Discussion[END_REF][START_REF] Tagaras | Economic Design of Acceptance Sampling and Process Control Procedures for Quality Assurance in Complex Production Systems[END_REF]. Elle mesure la préférence des décideurs et en cela reste spécifique au problème de décision ou de planification étudié. À ce titre, il est avantageux de proposer une méthode d'optimisation ne nécessitant pas de forme particulière d'utilité. Ici, les seules hypothèses seront que w soit bornée et positive (quitte à la transformer un peu). En situation risquée, un décideur rationnel au sens des axiomes de la théorie de l'utilité espérée [START_REF] Munier | Le Développement Récent des Sciences de la Décision : Un Regard Critique sur la Statistique Décisionnelle Bayésienne[END_REF]Bernier et al., 2000) prendra la décision ∆ * qui maximise l'utilité espérée W (∆).

∆ * = arg max ∆ (W (∆))
(5)

W (∆) = w(∆, φ) [φ |H(∆) ] dφ (6)
Müller, 1999, a proposé d'interpréter la quantité w(∆, φ) [φ |H ] comme une fonction proportionnelle à la densité de probabilité f 1 en (∆, φ). On voit alors que le problème (5) est équivalent à trouver le mode de la marginale de f 1 en ∆ (cette marginale est proportionnelle à W (∆)). D'une manière formellement similaire aux cas décrits précédemment, nous sommes ramenés à un problème de recherche du mode d'une densité, et l'approche par simulation de particules peut de nouveau être utilisée à cette fin. L'approche par simulation permet donc de traiter des problèmes d'optimisation très généraux du type (5) qui ne peuvent en général pas être résolus analytiquement. De nouveau, on obtient un effet de recuit simulé en introduisant T réplicats de φ tirés de façon iid selon [φ |H ] et en remarquant que :

(W (∆)) T = ... w(∆, φ 1 ) [φ 1 |H(∆) ] dφ 1 ...w(∆, φ T ) [φ T |H(∆) ] dφ T .
On cherche cette fois le mode de la distribution (T + 1)-variée f T en (∆, φ 1 , ..

φ T ) proportionnelle à T j=1 w(∆, φ j ) [φ j |H(∆) ].
Comme dans l'exemple précédent, les particules de la séquence j de l'algorithme seront du type (∆ (g) , φ

(g) 1 , ..φ (g) j ) et réaliseront un échantillonnage de f j .

Planification expérimentale du contrôle de la qualité

Prenons pour exemple un cas de contrôle de la qualité par attribut comme dans [START_REF] Parent | Sur l'Apport des Statistiques Bayésiennes au Contrôle de la Qualité par Attribut, partie 1 : Contrôle Simple[END_REF] n). Appelons θ la proportion inconnue d'objets défectueux dans tout le lot. En contexte bayésien, on choisit de prendre ici une distribution a priori conjuguée beta d'hyperparamètres a and b pour décrire la connaissance a priori sur θ. Pour ce problème φ = (θ, y) et, par abus de notations, on écrira H = (a, b, n). Les préférences du fabricant sont traduites par une fonction d'utilité u(∆, θ, Y ) qui décrit les bénéfices associés à la décision ∆ et à l'obtention de Y défectueux quand le paramètre du modèle vaut θ. Pour le cas traité, on peut défendre le réalisme du choix de la fonction d'utilité suivante :

-u((n, s) , (y, θ)) = (kN )n + (CθN ) × 1 y<s + N × 1 y s .

où k est le coût d'échantillonnage ramené à l'unité fabriquée. Si on décide de rejeter, on met au rebut tout le lot et la perte subie est le coût de fabrication (ce coût de fabrication sera pris comme unité monétaire). Si on accepte tout le lot, on laisse partir sur le marché θN objets de qualité non conforme. On imagine que cela engendrera des coûts liés à l'insatisfaction des clients ou à la perte d'image (supposés linéaires) C × (θN ). Bien sûr, C et k sont tels que :

C > 1 > k .
La décision est ici formée du couple ∆ = (n, s) et l'utilité espérée maximale est à rechercher après intégration de u((n, s) , (y, θ)) contre les termes aléatoires (y, θ) . La loi jointe de (y, θ) est une loi dite de Polya (classiquement associée au modèle bayésien avec loi a priori beta et vraisemblance binomiale, cf. [START_REF] Parent | Sur l'Apport des Statistiques Bayésiennes au Contrôle de la Qualité par Attribut, partie 2 : Contrôle Séquentiel Tronqué[END_REF] [(y, θ) |H(∆) ] = Γ(n + 1)

Γ(y + 1)Γ (n -y + 1) Γ(a + b) Γ(a)Γ(b) θ a+y-1 (1 -θ) b+n-y-1 . (7)

Mise en place de l'algorithme et résultats

Il existe une méthode quasi explicite d'optimisation pour ce problème particulier dont le principe est donné dans [START_REF] Parent | Sur l'Apport des Statistiques Bayésiennes au Contrôle de la Qualité par Attribut, partie 1 : Contrôle Simple[END_REF][START_REF] Parent | Sur l'Apport des Statistiques Bayésiennes au Contrôle de la Qualité par Attribut, partie 2 : Contrôle Séquentiel Tronqué[END_REF] Décrivons l'algorithme particulaire pour passer de f i-1 à f i :

1. Exploration : pour g = 1, ..., G, générer φ (g) j selon φ H(∆ (g) ) (c'està-dire selon le modèle beta binomial) et l'accoler à la particule correspondante issue de la séquence précédente. Pour que le nouvel ensemble particulaire soit un échantillon de f i il faut corriger par la pondération w(∆ (g) , φ (g) j ). 2. On effectue un bootstrap multinomial de ces particules avec leurs poids respectifs. 

Dispersion avec un pas de

w(∆ • , φ • l ) [φ • l |H(∆ • ) ] w(∆, φ l ) [φ l |H(∆) ]
est plus grand qu'un tirage annexe uniforme). 

Conclusion

Le développement des méthodes de Monte-Carlo a pris un nouvel essor avec les algorithmes particulaires. Tant pour l'implémentation de méthodes bayésiennes que de maximisation de vraisemblance, le statisticien a intérêt à s'approprier ces nouveaux outils. Leur portée dépasse les exemples élémentaires utilisés dans cet article où nous avons montré qu'ils sont efficaces dans des cadres très généraux. Ils sont utiles en inférence bayésienne pour simuler la distribution a posteriori et en inférence classique pour rechercher le maximum de vraisemblance dans les modèles à variables latentes. La difficulté d'implémentation informatique n'augmente guère avec la complexité du modèle utilisé. Dans le domaine de la théorie de la décision statistique, ils fournissent un moyen d'atteindre l'optimum d'une intégrale non explicite. Avoir les moyens de surmonter cette partie technique de l'aide à la décision sous incertitudes, offre l'espoir de valoriser les efforts d'explicitation des coûts associés à une décision et de quantification des connaissances issues d'expertise. L'interprétation intuitive du fonctionnement de ces nouveaux outils se rapproche de celle des algorithmes génétiques [START_REF] Reeves | Genetic Algorithms and the Design of Experiments[END_REF]) : une population s'adapte (phase d'échantillonage pondéré), les individus-particules les mieux adaptés ont le plus de chance de survie (bootstrap multinomial) puis surviennent des mutations (phase de régénérescence markovienne). Éventuellement les conditions extérieures deviennent plus dures (phase de recuit simulé) et le cycle recommence. Mais alors que les algorithmes génétiques comportaient une grosse part d'heuristique, le bon comportement quasi systématique des algorithmes particulaires [START_REF] Del | Natural Computing Series : Theoretical Aspects of Evolutionary Computing[END_REF] repose sur des propriétés établies de convergence (voir par exemple Amzal et al., 2006). De plus, les algorithmes génétiques n'offrent pas le niveau de généralité que permet de traiter l'approche particulaire, notamment parce que cette dernière ne nécessite pas une forme particulière du critère d'optimisation et autorise la prise en compte des incertitudes sur les paramètres sans calcul d'intégrales. Leur comportement algorithmique combine la plupart des avantages (et défauts) des méthodes MCMC et de l'échantillonnage pondéré : héritières des méthodes MCMC, les particules sont autoportées vers les modes cibles, mais générées en grand nombre lors de la phase d'échantillonnage pondéré, elles explorent mieux l'espace ( à condition que la loi auxiliaire d'importance ne soit pas trop éloignée de la loi que l'on recherche). Enfin un échantillon de la loi cible est disponible à tout moment, sans avoir à attendre la convergence d'une chaîne MCMC et peut être réutilisé pour nourrir une phase de filtrage en séquence. Néanmoins, le réglage de nombreuses manettes peut rendre la pratique des algorithmes particulaires délicate : choix du nombre de particules, paramètrage du modèle (le paramètrage en n et s/n du dernier exemple fonctionne mieux que le paramètrage en n et s), température de recuit simulé et vitesse de progression de cet effet, construction des noyaux de transition markovienne qui conservent la loi cible, etc. Il y a clairement un champ considérable de problèmes statistiques à explorer grâce à ces nouveaux outils de simulation de Monte-Carlo (Andrieu et al., 2004 ;Cappé et al., 2005). Pouvoir simuler les distributions cibles (et les visualiser au fur et à mesure que les données précisent l'état de la nature) rend l'inférence formelle plus accessible aux praticiens de la statistique. L'essentiel n'est plus une affaire de technique. Seules la pratique et la créativité des lecteurs séparent les exemples pédagogiques traités dans cet article d'applications plus complexes dans des champs très variés : optimisation de prix d'options en finance, réseau de capteurs optimal en hydrologie, plans d'expériences multi-niveaux en pharmacologie, etc.

Annexes

Annexe A : Échantillonnage pondéré Le chapitre 3 de Robert et Casella, 2004, présente en détail l'échantillonnage pondéré (ou importance sampling). C'est une technique de Monte-Carlo pour obtenir un échantillon d'une loi de probabilité cible p(ψ) à partir d'une loi de probabilité (dite loi d'importance) g(ψ) qu'il est facile de simuler.

Algorithme d'échantillonnage pondéré

L'algorithme procède en deux étapes : 1. Pour les itérations i = 1, ..., G, générer un échantillon ψ i ∼ g(•) selon la loi d'importance.

2. On définit le poids brut associé au tirage i par p(ψ i ) g(ψ i ) . On notera qu'après renormalisation, les poids d'importance

w i = p(ψ i ) g(ψ i ) G i=1 p(ψ i ) g(ψ i )
ne font plus intervenir la constante de normalisation de p(ψ) (ni celle de g(ψ)).

Propriétés

Il faut bien sûr que g(ψ) = 0 =⇒ p(ψ) = 0, c'est-à-dire que le support de g englobe celui de p. On exige aussi que la variance des poids d'importance soit finie :

h 2 (ψ) + 1 p 2 (ψ) g(ψ) dψ < ∞ .
La séquence {ψ i , w i , i = 1, ..., G} représente un G-échantillon pondéré de p(ψ) et les w i peuvent être interprétés comme la probabilité de tirer ψ i . Asymptotiquement, on obtient pour toute fonction h un estimateur sans biais de h(ψ)p(ψ)dψ par

E(h(ψ i )w i ) ≈ h(ψ)p(ψ)dψ ≈ G i=1 h(ψ i )w i .
Sous des conditions techniques de régularité, on peut en plus obtenir un théorème central limite de convergence de

h(ψ)p(ψ)dψ - G i=1 h(ψ i )w i vers une N (0, σ 2 G ).

Annexe B : Méthodes de Monte-Carlo par chaînes de Markov

Les méthodes MCMC sont une famille générique de méthodes pour échantillonner selon une loi cible p(ψ) connue à une constante près, ce qui est notablement le cas rencontré en inférence bayésienne. Ces méthodes ont donné lieu à un important courant de recherche. On trouve dans [START_REF] Kass R | Markov Chain Monte Carlo in Practice : A Roundtable Discussion[END_REF], et dans Brooks, 1998, un état de l'art et une discussion sur les perpectives d'emploi de ces méthodes. [START_REF] Gilks | Markov Chain Monte Carlo in Practice[END_REF], en présentent de nombreuses applications.

Algorithme de Metropolis-Hasting

La plupart du temps c'est l'algorithme de Metropolis [START_REF] Metropolis | Equations of State Calculations by Fast Computing Machines[END_REF] qui est mis en oeuvre. Il est remarquablement simple et de portée générale :

1. À la i ème itération, on tire un candidat ψ * selon une loi d'exploration (typiquement multinormale) centrée sur la valeur précédente. Pour cette marche aléatoire ψ * ∼ g(• ψ i-1 ), ψ i-1 est la valeur du paramètre obtenu à l'itération précédente. On prend couramment une fonction d'exploration symétrique g(ψ * ψ i-1 ) = g(ψ [START_REF] Parent | Le Raisonnement Bayésien : Modélisation et Inférence[END_REF].

Algorithme de Gibbs

L'échantillonneur de Gibbs [START_REF] Geman | Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images[END_REF] h(ψ i )w i vers une loi N (0, σ 2 ).

Implémentation

Deux problèmes d'implémentation se posent quant à la convergence de la chaîne vers p(ψ). (a) Combien de temps faut-il laisser tourner l'algorithme pour réaliser une approximation correcte de la distribution stationnaire ? On peut lancer en parallèle K séquences à partir de différents points. À la convergence, toutes les séquences doivent provenir de la même loi limite p(ψ) ce qui peut être testé par divers tests paramétriques et non paramétriques. Gelman et Rubin, 1992, proposent 

FIG 1 .

 1 FIG 1. -Dispersion initiale de 10000 particules sur le modèle Normal, selon la densité produit N (2, 2 2 ) pour µ et Gamma(1.375, 1.12275) pour σ -2 .

FIG 2 .

 2 FIG 2. -Échantillonnage pondéré suivi d'un rééchantillonnage bootstrap binomial (10000 particules sur le modèle Normal).

3.

  FIG 3. -Dispersion markovienne grâce à une étape de l'échantillonneur de Gibbs (10000 particules sur le modèle Normal).

FIG 4 .

 4 FIG 4. -Recuit simulé sur le modèle Normal (1000 particules avec 36 itérations).

  FIG 5. -Surface de la vraisemblance pour le modèle de sommes binomiales avec les données de Mc Cullagh et Nelder.

  Mc Cullagh et Nelder (c'est-à-dire la densité a posteriori [θ 1 , θ 2 |H 3 ], ici proportionnelle à la vraisemblance).

FIG 6 .

 6 FIG 6. -Simulation particulaire selon la loi a posteriori du modèle de somme de deux binomiales avec les données de Mc Cullagh et Nelder.

  TABLEAU 3. -Comparaison entre valeurs théoriques et valeurs estimées des moments de la loi a posteriori avec G = 10000 particules.

TABLEAU 4 .

 4 -Comparaison entre valeurs théoriques et valeurs estimées du mode bivarié de la loi a posteriori avec G = 100 particules et T = 50, avec son intervalle de confiance Remarquons que, dans les données du tableau 2, si on attribue à y 3 la valeur 5 (au lieu de 6 dans les données originelles), on symétrise le problème, et donc sa solution. Un algorithme d'optimisation brutal pour la recherche du maximum de vraisemblance ferait fi de cette situation particulière. Au contraire, le résultat quasi symétrique de la figure 7 donnant [θ 1 , θ 2 |H 3 ]T avec T = 6 détecte bien ce comportement typique symétrique.

  FIG 7. -Recherche particulaire avec recuit simulé (T = 6) du maximum de vraisemblance avec une version symétrisée des données de Mc Cullagh et Nelder.

  FIG 8. -La fonction d'utilité U (n, s(n)) comporte de nombreux modes locaux.

La figure 9

 9 FIG 9.-Deux pics principaux proches de l'optimum théorique de l'utilité espérée sont localisés après une simulation particulaire.

  

Prise en compte de variables latentes 4.1 Un exemple classique

  Utiliser un algorithme particulaire pour conduire l'inférence d'un modèle Normal, c'est comme prendre un marteau pour écraser une mouche. Cet outil est bien sûr promis à de meilleures utilisations. Dans la suite, nous prenons comme second exemple le cas plus difficile décrit à la section 9.3.3de Mc Cullagh et Nelder, 1989. Deux variables aléatoires binomiales X 1 ∼ Bin(n 1 , θ 1 ) et X 2 ∼ Bin(n 2 , θ 2 ) ne sont observées qu'au travers de leur somme Y = X 1 + X 2 . Mc Cullagh et Nelder considèrent trois répétitions de cette expérience, mesurées dans le tableau 2.

	TABLEAU 2. -Observations et variables latentes pour l'exemple de Mc Cullagh et
	Nelder.			
	Répétitions i = 1 i = 2 i = 3
	n i,1	5	6	4
	n i,2	5	4	6
	y i	7	5	6
	quantile	25%	50%	75%
	µ	1.9980	2.00001	2.0020
	σ -2	1.10996 1.11329 1.11673
	Cela illustre que, au moins formellement, ces méthodes peuvent être employées
	pour évaluer le maximum de vraisemblance pour un modèle plus général que
	le modèle Normal (voir par exemple Brooks et Morgan, 1995 ou Andrieu et
	Doucet, 2000) : posant une loi a priori uniforme [θ] = 1, le mode de la loi a

TABLEAU 1. -Répartition des 100 particules après 10000 itérations. posteriori [θ |y ] est alors évalué à partir d'un échantillon de cette loi. Berger utilise d'ailleurs cette analogie pour établir une approximation asymptotique Normale de la loi a posteriori, centrée sur l'estimateur du maximum de vraisemblance dans le cas de modèles avec observations iid

(Berger, 1985)

.
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  Dans l'approche bayésienne, on peut écrire la loi a posteriori des paramètres. Pour cela, il est plus commode et plus naturel de faire apparaître les variables cachées X 1 et X 2 et d'introduire séquentiellement les données. Appelons H l'historique de l'information cumulée sur le système à un instant donné, on notera par exemple H 0 = ∅ pour la distribution a priori, puis successivement H 1 = {y 1 }, H 2 = {y 1 , y 2 }, H 3 = {y 1 , y 2 , y 3 } etc. Supposons que l'on soit dans un état de connaissance H et qu'arrive une nouvelle donnée Y = y, alors :

  . Un lot de taille N est soumis au contrôle, et il faut prendre la décision d'accepter ou de rejeter tout le lot fabriqué. On tire un échantillon de taille n aléatoirement dans ce lot, Y objets ne satisfont pas le contrôle et la règle de décision choisie est : « Si le nombre d'objets défectueux y est inférieur à un seuil s, accepter le lot, sinon le rejeter ». L'objectif est de déterminer la taille de l'échantillon n et le niveau de sévérité s. Le vecteur des grandeurs de décision de ce problème est donc ∆ = (n, s). On considère généralement que la probabilité de Y est binomiale (N

  Metropolis-Hasting : la fonction d'exploration auxiliaire est telle qu'elle propose des candidats ∆ • décalant n et s symétriquement de ±1, (les candidats φ • l , l = 1, ..., j sont tirés selon le modèle [φ |H(∆ • ) ] et le candidat est accepté si le rapport de Metropolis-Hastings

	j
	l=1

  , λΣ) où Σ est la matrice de variance covariance de ψ ou une approximation et λ est un facteur d'échelle à adapter pour obtenir un taux d'acceptation convenable (voir étape 3). 'état courant que l'on enregistre à nouveau, ψ i ← ψ i-1 . Ce pas d'acceptation/rejet est la clé de l'algorithme. Si l'algorithme ne bougeait que lorsqu'apparaissent des candidats de crédibilité relative plus forte que celles déjà enregistrées, on ne visiterait jamais les régions peu plausibles de p(ψ).4. Incrémenter i et aller à l'étape 1 jusqu'au nombre G d'itérations souhaitées. De fait cet algorithme simule une chaîne de Markov qui réalise la séquence d'états (ψ 1 , ψ 2 , ...ψ G ). Grâce à ses propriétés d'ergodicité, on peut montrer qu'il converge vers une distribution stationnaire qui est justement la loi cible p(ψ)

	2. Évaluer le ratio	p(ψ * ) p(ψ)	(à noter que la contrainte de normalisation de p(ψ)
	n'intervient pas dans ce calcul).
	3. On effectue un tirage uniforme annexe, Z ∼ U (0, 1). Si Z < candidat ψ * est accepté et on pose ψ i ← ψ * . Sinon, si Z	p(ψ * ) p(ψ) p(ψ * ) p(ψ) , on , le
	reste dans l		

i-1 |ψ * ). Dans la plupart des études cette loi d'exploration est la multinormale N (ψ i-1

  est une méthode MCMC très prisée des praticiens car elle évite le choix d'une fonction d'exploration comme dans l'algorithme de Metropolis. Supposons que le paramètre d'intérêt se décompose par blocs ψ = (ψ 1 , ψ 2 ...ψ j , ...) et que l'on sache simuler le tirage d'une composante ψ j dans la distribution conditionnelle complète p(ψ j |ψ 1 , ψ 2 , ...ψ j-1 , ψ j+1 , ...). En itérant ces tirages dans les distributions conditionnelles complètes, on crée une chaîne ergodique de distribution stationnaire p(ψ). Bien sûr, pour les modèles complexes, il est rare que l'on dispose de toutes ces conditionnelles. En pratique on combinera des étapes de Gibbs et de Métropolis.PropriétésSous des conditions techniques de comportement en décroissance géométrique de la mémoire de la chaîne markovienne, on peut en plus obtenir un théorème central limite de convergence, quand le nombre d'itérations G tend vers l'infini,

	de	√	G	h(ψ)p(ψ)dψ -

G i=1

  une statistique R qui compare les dispersions inter et intra des paramètres générés lors des K séquences. (b) Les résultats théoriques de l'algorithme sont prouvés pour une chaîne homogène, mais en pratique on règle progressivement les caractéristiques de la chaîne (en particulier la variance d'exploration) pour augmenter la vitesse de convergence. Il est en effet tentant d'évaluer la dispersion des valeurs générées et d'ajuster progressivement la variance de la fonction d'exploration. Ce réglage gouverne le taux d'acceptation de l'algorithme pour explorer de façon adéquate le voisinage des ψ's successifs et des règles empiriques de réglage sont proposées dans[START_REF] Gelman | Bayesian Data Analysis[END_REF]. Tous ces algorithmes supposent bien sûr que la distribution p(ψ) existe ! En particulier si p(ψ) est une distribution a posteriori impropre résultant d'une combinaison non intégrable d'une distribution a priori et d'une vraisemblance, les algorithmes MCMC peuvent fort bien générer des échantillons de belle allure d'un objet mathématiquement inexistant !
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