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Abstract. For snow avalanches, passive defense structures
are generally designed by considering high return period
events. In this paper, taking inspiration from other natural
hazards, an alternative method based on the maximization of
the economic benefit of the defense structure is proposed. A
general Bayesian framework is described first. Special atten-
tion is given to the problem of taking the poor local informa-
tion into account in the decision-making process. Therefore,
simplifying assumptions are made. The avalanche hazard is
represented by a Peak Over Threshold (POT) model. The in-
fluence of the dam is quantified in terms of runout distance
reduction with a simple relation derived from small-scale ex-
periments using granular media. The costs corresponding
to dam construction and the damage to the element at risk
are roughly evaluated for each dam height-hazard value pair,
with damage evaluation corresponding to the maximal ex-
pected loss. Both the classical and the Bayesian risk func-
tions can then be computed analytically. The results are illus-
trated with a case study from the French avalanche database.
A sensitivity analysis is performed and modelling assump-
tions are discussed in addition to possible further develop-
ments.

Correspondence to:N. Eckert
(nicolas.eckert@cemagref.fr)

1 Introduction

Mitigation against natural hazards traditionally involves
computing high return period events for the design of defense
structures (Ancey et al., 2004; Eckert et al., 2007). Nowa-
days such methods are strongly contested in fields such as
hydrology (Krzysztofowicz, 1983; Bernier, 2003) and engi-
neering (Jordaan, 2005) by economic approaches that aim
at optimizing the use of public funds. Their principle is to
choose the design value that minimizes the expected loss.
The model describing the stochasticity of the phenomenon
is therefore combined with a utility function and then the
expected loss associated with each value of the decisional
variable is computed. Technical difficulties are overcome as
a result of important methodological developments concern-
ing simulation-based algorithms (M̈uller, 1999; Amzal et al.,
2006).

In the avalanche field, however, return period-based meth-
ods remain particularly pregnant (Ancey et al., 2004; Eckert
et al., 2007) and we are not aware of applications of decision
theory to the design of defense structures. Nevertheless, cost-
benefit analyses have been proposed to test the economic effi-
ciency of different projected defense structures a priori (Wil-
helm, 1997; Wilhelm, 1999) or to evaluate their efficiency a
posteriori (Fuchs and McAlpin, 2005). In such approaches,
the optimization of the defense structure is performed with
regards to the considered scenarii only, without taking into
account the full variability of the avalanche phenomenon.
This can lead to seriously question the optimality of the struc-
ture retained if a large range of avalanche magnitude is likely
to occur on the considered site and if the expected loss is
highly sensitive to the hazard magnitude. The latter point is
emphasized by Fuchs et al. (2005), who show that the total
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loss in case of an extreme avalanche can greatly increase if a
slight increase in the runout area is considered. On the other
hand, when the optimization of a defense structure is car-
ried out with respect to a given scenario, the retained defense
structure is obviously more efficient if this scenario occurs
than if the optimum computed by averaging all over the haz-
ard distribution is retained.

Risk computations have also been performed in the
avalanche field, but mainly for hazard mapping purposes
(Keylock et al., 1999; Chernouss and Fedorenko, 2001; Bar-
bolini et al., 2004a; Gr̂et-Regamey and Straub, 2006); most
authors use the annual probability of being killed by an
avalanche as a definition of risk. This type of method is in-
cluded in the current legislation in Iceland (Jonasson et al.,
1999, Arnalds et al., 2004).

This paper illustrates the potential of a decision theoreti-
cal framework for the design of a passive avalanche defense
structure, i.e. a defense structure that does not decrease the
avalanche release probability but reduces the damage to the
elements at risk. More precisely, we focus on the case of
a vertical dam protecting one or several buildings situated
at a known position on the avalanche path. Critical points by
comparison with hydraulics are as follows: (i) the local infor-
mation available for avalanche studies is generally poor. In
addition, because of the complex nature of the flowing fluid
(Dent and Lang, 1980; Bouchet et al., 2004), (ii) the evalu-
ation of the influence of the dam on the flow in the runout
zone where the elements at risk are situated is not easy,
and (iii) complex hazard models are generally used (Har-
bitz et al., 1998), making stochastic approaches too time-
consuming for operational purposes. Problem (i) is treated
within a Bayesian framework (Krzysztofowicz, 2001; Girard
and Parent, 2004; Clark, 2005) that allows uncertainty due
to the lack of local information being processed up to the
decision. Problem (ii) is addressed by incorporating a semi-
empirical formulation of the dam’s influence into the stochas-
tic avalanche model. Problem (iii) is overcome by consider-
ing simplifying assumptions for the quantification of both the
hazard and the cost evaluation, so that the risk computations
can be performed analytically.

Section 2 briefly presents the elementary bricks that are
needed for the Bayesian optimal design of an avalanche dam.
Section 3 proposes strong assumptions and puts the bricks
together, so as to obtain the analytical expression of the risk
functions. Section 4 applies the model obtained to a real case
study from the French avalanche database. Section 5 dis-
cusses the results with special attention devoted to modelling
assumptions and possible further developments. Section 6
offers a general conclusion highlighting the relevance of the
decisional model for real case applications.

2 Materials and methods

2.1 Hazard model and associated uncertainty

For convenience, the avalanche is assumed to move along
a curvilinear two-dimensional profile whose equation in a
Cartesian frame isz=f (x), wherez is the altitude andx the
distance measured along a horizontal axis starting at the top
of the path and following the avalanche thalweg. A distinc-
tion is made between avalanche magnitudey and avalanche
frequencya. Avalanche magnitude includes all the quan-
titative characteristics that vary from one event to another:
runout distance, velocity and pressure profiles, snow vol-
ume, etc. Avalanche frequency is the number of avalanches
recorded during a given winter. The stochastic hazard model
is notedl (y, a |θM , θF ), indicating that the joint distribu-
tion l of the random numbersy and a is indexed by the
parametersθM , θF . Finally, the hypothesis of magnitude-
frequency independence is made, considering that the num-
ber of avalanches per winter does not affect their quantitative
characteristics (Eq. 1). This classical hypothesis in avalanche
modelling is fulfilled if the number of avalanches affecting
the studied path each winter is not too high (Eckert et al.,
2008a).

l (y, a |θM , θF ) = l (y |θM ) × l (a |θF ) (1)

The typical inference challenge is to obtain point estimates
∧

θM ,
∧

θF for the parametersθM , θF knowing the data available
on the studied site in order to use them in a predictive phase
for quantifying reference hazards and/or designing defense
structures. However, obtaining point estimates such as maxi-
mum likelihood point estimates can be very tricky depending
on the model considered. Moreover, if data quantity is small,
which is usually the case in avalanche studies, such point es-
timates are highly uncertain. They therefore cannot be used
for prediction with a good level of confidence, and rigorous
engineering practices should take into account this lack of
information on the model’s parameters. Bayesian inference
(Bayes, 1763) is appropriate, offering a fair quantification of
the state of knowledge given the data through the posterior
distributionp (θM , θF |data). Its computation is carried out
by processing the model using Bayes theorem (Eq. 2) at the
cost of the specification of a prior distributionπ (θM , θF ).

p (θM , θF |data) ∝ l (y, a |θM , θF ) × π (θM , θF ) (2)

2.2 Cost quantification and risk computation

Let us assume that one building is situated at the abscissaxb

of the runout zone. The construction of a vertical protective
dam at the abscissaxd is envisaged and the problem is to
choose the dam heighthd that minimizes economic losses.

The cost functionC (hd , y, a) is the basic tool for a cost-
benefit analysis. It quantifies the cost of each decision, (i.e.,
each dam heighthd) for each hazard value (i.e., each pair
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y, a). A general additive form for the cost function is given
by Eq. 3. The first termCo (hd) quantifies the cost of con-
structing a dam of heighthd . C1 (hd , ytk) is the cost of the
damage inflicted by the avalanchek ∈ [1, at ] of the year
t ∈ [1, +∞[ given that the dam height ishd and thatat

avalanches have been observed during the wintert . This cost
has to be actualized, assuming a known annual interest rate
it for the yeart . The second term of Eq. 3 therefore quantifies
the total damage inflicted on the building by the successive
snow avalanches that occur starting at the time of the dam
construction. Note that the damage caused to the dam by the
successive avalanches is not explicitly taken into account in
this formula (see Sect. 5.3 for discussion).

Under the strong hypothesis of stationarity, all theytk ’s
are identically distributed. In addition, under the magnitude-
frequency independence hypothesis, the total cost depends
on the expected number of avalanchesE [a] only. The cost
function can therefore be considerably simplified (Eq. 4),
with a total actualization rateA depending on the annual in-
terest rates only (Eq. 5).

C (hd , y, a) =Co (hd) +

+∞∑
t=1

at∑
k=1

1

(1+it )
t ×C1 (hd , ytk) (3)

C (hd , y, a) = Co (hd) + A × E [a] × C1 (hd , y) (4)

A = A(i) =

+∞∑
t=1

1

(1 + it )
t (5)

For an easy quantification of the pertinence of the decision,
a reference state has to be introduced. We define the utility
function u (hd , y, a) as the cost difference for a given haz-
ard value between the construction of a dam of heighthd and
no dam (Eq. 6). Note that in the general decision theoretical
framework, the utility function generally has a more specific
definition including the behavior of the decision maker man-
aging risk. We assume here that the decision maker behaves
neutrally toward risk, which should be the case if substantial
public funds are involved.

u (hd , y, a) =Co (hd) +A×E [a] × (C1 (hd , y) −C1 (0, y)) (6)

The expected utility is known as the classical risk
RC (hd , θM , θF ). It is a function of the decisional variable
hd and the parametersθM , θF describing the hazard model
(Eq. 7). It quantifies the mean economic loss that must be
expected if an obstaclehd is constructed instead of maintain-
ing the existing situation. More simply, it is the opposite of
the expected economic benefit of the dam construction. With
the utility model proposed, only the integration over the mag-
nitude variability is necessary (Eq. 8). According to the clas-
sical risk setting, the optimal dam heighth∗

C minimizes the
expected utility and is obtained by solving Eq. 9. Note that,
in all computations performed in this paper, thish∗

C is the ef-
fective height seen by the incoming avalanche. For practical

purposes, the mean depth of the snow cover has therefore to
be added.

RC (hd , θM , θF ) = Ey,a [u (hd , y, a)] (7)

RC (hd , θM , θF ) = Co (hd) +

AE [a |θF ]
∫

(C1 (hd , y) − C1 (0, y)) l (y |θM )dy (8)

∂RC

(
hd ,

∧

θM ,
∧

θF

)
∂hd

= 0 (9)

Obviously, the solution of Eq. 9 is a function of the pa-
rametersθM , θF . Current engineering practice is to plug

point estimates
∧

θM ,
∧

θF into RC (hd , θM , θF ) and to recom-

mendh∗

C=h∗

C

(
∧

θM ,
∧

θF

)
. The classical optimal design pro-

cedure therefore assumes perfect knowledge of the avalanche
model’s parameters. However, disconnecting the statistical
problem from the decisional problem may have undesirable
consequences. Indeed, the decisional problem is then treated
as if the hazard parameters were perfectly known, which
is unrealistic with poor local information. Moreover, the
classical risk setting does not account for a discrepancy be-
tween the statisticians’s and decision maker’s points of view
when inferring model parameters. The statistician generally
searches for point estimates minimizing a variance criterion,
which is a symmetrical quadratic function. On the contrary,
decision makers may consider nonsymmetrical cost func-
tions since overestimating the design value is obviously more
acceptable than underestimating it.

The Bayesian riskRB (hd) takes into account the addi-
tional uncertainty affecting the hazard by averaging through-
out the posterior distribution of the parameters (Eq. 10),
clearly incorporating the estimation error into the decisional
process. The Bayesian risk can therefore be seen as a
function of hd only, which makes it easy to determine the
Bayesian optimal heighth∗

B (Eq. 11). Obviously, it is also
a function of the prior knowledge and of the data used for
inference.

RB (hd) = EθM ,θF [RC (hd , θM , θF )] =∫
RC (hd , θM , θF ) p (θM , θF |data) dθMdθF (10)

h∗

B = Arg min
hd

(RB (hd)) (11)

2.3 Linear model for obstacle effects

The influence of obstacles on avalanche flows is still im-
perfectly known. Nevertheless, significant progress in their
comprehension has been made over the last few years based
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Fig. 1. Influence of the dam: model versus experimental data.
α=0.1376±0.006. Raw data measured in Davos, Bristol and Reyk-
javik are available in Hakonardottir et al. (2001). Raw data mea-
sured in Grenoble and Bologna are available in Faug et al. (2003).

on important research using full-scale experiments (Lied et
al., 2001) and small-scale experiments (Faug, 2004) as well
as numerical modeling (Naaim et al., 2004). The extensive
literature on this topic is reviewed by Faug et al. (2008). For
instance, converging results have been obtained while study-
ing the influence of a vertical dam on a so-called reference
hazard, a given avalanche defined by its flow depth, runout
distance, longitudinal velocity profile, etc.

More precisely, a first-order development of the energy
dissipation induced by a dam assuming a punctual “black
box” effect on the flow gives a linear relationship between
the runout distance reduction and the ratio between the dam
height hd and the depth of the reference flow without the
damho (Faug et al., 2008). The reference runout distance
xstopo is therefore reduced toxstop(hd), with a proportional-
ity coefficientα quantifying the dissipation power of the dam
(Eq. 12). The theoretical relationship is largely supported by
several small-scale experiments on rapid granular avalanches
with typical Froude numbers higher than 2–3 (Hákonard́ottir
et al., 2001; Faug et al., 2003). Figure 1, for instance, shows
good agreement between the model and experimental data,
with nearly all the observations falling into the 95% confi-
dence interval. Moreover, these results are compatible with
recent analysis of full-scale snow avalanches overflowing a
dam that shows a linear scaling betweenxstop(hd) and hd

(Gauer and Kristensen, 2005; Faug et al., 2008). The pro-
portionality coefficientα is known to be around 0.14 for
dry granular materials modelling dry dense avalanches (see
Sect. 5.2 for discussion and Sect. 4.4.4 for a sensitivity anal-
ysis).

xstop(hd) − xd

xstopo − xd

= 1 − α ×
hd

ho

(12)

Obviously, the semi-analytical relation of Eq. 12 has
a number of limitations. The most obvious ones are
xstop(hd)−xd>0 andhd<ho×

1
α

, since for higher dams the
avalanche flow is fully stopped andxstop(hobs)−xd drops to
zero. Other limitations related to the flow regime will be dis-
cussed in Sect. 5.2.

Finally, it is important to mention that the reference runout
xstopo and the reference flow depthho were unknown for
the full-scale observations of avalanches overtopping dams,
which did not allow verifying Eq. 12 and consequently esti-
mating the value ofα on real avalanches. The value chosen
for α is thereby the value obtained from the rapid laboratory
granular avalanches. Sufficient knowledge is assumed forα

by settingα=
∧
α =0.1376 for all the computations. This latter

hypothesis is discussed in Sect. 4.4.4.

3 A simple analytical risk model

3.1 A conjugate POT model for monovariate avalanche
hazard

Quantifying avalanche hazard generally involves multivari-
ate modelling of avalanche magnitude to account for at least
runout distance, flow depth and pressure variations in the
runout zone. Nevertheless, avalanche magnitude is limited in
this paper to runout distance, i.e., the most critical value for
avalanche hazard mapping. Moreover, the runout distances
exceeding the dam abscissa without a dam are assumed to be
exponentially distributed (Eq. 13), so thaty=xstopo , θM=ρ.
More classically, the number of exceedences occurring dur-
ing a given winter is assumed to be Poisson-distributed
(Eq. 14), so thatθF =λ. The mathematical expectation of the
frequency model used in the cost function is then simply the
parameterλ. The runout abscissaxstopT corresponding to any
return periodT can be easily computed (Eq. 15). This very
simple hazard model with two parameters only(ρ, λ) is well
known in hydrology (Parent and Bernier, 2003) as a Peak
Over Threshold (POT) model (Coles, 2001). Its relevance in
the field of snow avalanches is discussed in Sect. 5.1.

l
(
xstopo

∣∣ρ, xstopo>xd

)
=ρ× exp

(
−ρ×

(
xstopo−xd

))
(13)

l (a |λ) =
λa

a!
× exp(−λ) (14)

xstopT =
1

ρ
× ln (λT ) + xd (15)

The analytical computation of the posterior distribution of
the parametersρ, λ is possible with hypotheses for math-
ematical convenience. Conjugate Gamma priors are cho-
sen for both parameters of the hazard model with two pairs(
aρ, bρ

)
and(aλ, bλ) to be specified (e.g., Eq. 16). Marginal

posterior distributions forλ andρ are then still Gamma dis-
tributed, with the parameter pairs

(
a′
ρ, b′

ρ

)
and

(
a′
λ, b

′
λ

)
com-

bining the prior knowledge and the information conveyed by
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the data. More precisely, with a data set ofn avalanches
exceeding the thresholdxd in m years andS(n) the sum of
these exceedences,a′

λ=aλ+m, b′
λ=bλ+n, a′

ρ=aρ+S(n) and
b′
ρ=bρ+n. Whenn andm are large enough, the prior knowl-

edge does not play much of a role. This is especially true
if poorly informative priors (Bernardo and Smith, 1994) are
chosen. This will be the case in this paper, so that classi-
cal and Bayesian inferences asymptotically lead to the same
estimators (Berger, 1985).

π
(
ρ
∣∣aρ, bρ

)
=

a
bρ
ρ

0
(
bρ

) × ρbρ−1
× exp

(
−aρ × ρ

)
(16)

3.2 Simplified cost and utility functions

Starting from Eq. 4, two additional assumptions are made.
First, the construction cost is assumed to increase linearly
with dam height. Second, the damage caused to the build-
ing by a snow avalanche is assumed to depend only on
runout distance, with the damage term simply modeled by
the product of an indicator function with the economic value
of the buildings. The indicator functionI{xstop(hd )≥xb}

=1
if xstop(hd)≥xb and I{xstop(hd )≥xb}

=0 if xstop(hd)<xb. The
damage is therefore maximal as soon as the building is at-
tained, whereas the building remains obviously undamaged
if the avalanche does not reach its abscissa (Eq. 17). This
is obviously a very rough approximation, but consistent with
the simplifications also made for the modelling of hazard and
dam influence. Though, more elaborate formulations have
been recently proposed (e.g. Barbolini et al., 2004b), but the
related uncertainty is still very high. See Sect. 5.3.2 for dis-
cussion.

C
(
hd , xstop(hd) , a

)
=Cohd+AλC1I{xstop(hd )≥xb}

(17)

Combining Eq. 17 and the influence of the dam on runout
distances (Eq. 6), the cost corresponding to the runout dis-
tancexstop(hd) can be expressed using only the reference
flow ho and the reference runout distancexstopo (Eq. 18).
The corresponding utility function is then easily obtained us-
ing the properties of indicator functions (Eq. 19). Equation
19 establishes that the dam is useful only for avalanches that
flow beyond the building without the dam but are stopped
before the building with the dam.

C
(
hd , xstopo , a

)
=Cohd+AλC1I

{
(xstopo−xd)

(
1−α

hd
ho

)
≥xb−xd

} (18)

u
(
hd , xstopo , a

)
=Cohd+AλC1I

 xb−xd(
1−α

hd
ho

)+xd≤xstopo<xb


(19)

3.3 Analytical risk computations

The analytical integration of the utility function throughout
the hazard model is possible (Eq. 20), with a change of vari-
ables in the integral easily leading the result (Eq. 21). The
risk function obtained depends on the dam height and the
two parameters of the hazard model.

RC (hd , ρ, λ) =Cohd+

AλC1

xb∫
xb−xd

1−α
hd
ho

+xd

ρ exp
(
−ρ

(
xstopo−xd

))
dxstopo (20)

RC (hd , ρ, λ) =Cohd+

AλC1

(
exp

(
−ρ (xb−xd)

1−α
hd

ho

)
− exp(−ρ (xb−xd))

)
(21)

The Bayesian risk is the mathematical expectation of the
classical risk over the joint posterior distribution of the pair
(ρ, λ) (Eq. 22). Given the model’s properties, the joint pos-
terior distribution of the pair(ρ, λ) is simply the product
of their marginal posterior distributions. The integral over
λ is the mathematical expectation of a Gamma distribution.
Moreover, the properties of summation to 1 of a probabil-
ity distribution can be used to compute the integral overρ

(Eq. 23).

RB (hd) =Cohd+AC1

∫
∞

λ=0
λ×

∞∫
ρ=0

(
exp

(
−ρ (xb−xd)

1 − α
hd

ho

)
− exp(−ρ (xb−xd))

)
p (λ, ρ |data) dρdλ

(22)

RB (hd) =Cohd+

AC1
b′
λ

a′
λ


 a′

ρ

a′
ρ+

xb−xd

1−α
hd
ho


b′
ρ

−

(
a′
ρ

a′
ρ+xb−xd

)b′
ρ

 (23)

Unfortunately, the analytical optimization of Eqs. 21 and
23 cannot be performed, but the numerical determination of
the dam heights that minimize both risk functions is easy.

4 Application to a case study

4.1 Case study presentation

The case study selected is a real path from the French
avalanche database (Mougin, 1922; Bélanger and Cassayre,

www.nat-hazards-earth-syst-sci.net/8/1067/2008/ Nat. Hazards Earth Syst. Sci., 8, 1067–1081, 2008
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Fig. 2. Case study: topography and available historical data. Town-
ship of Bessans, Savoie, France.

Table 1. Main characteristics of the case study.

Real case study

Max altitude (m) 2850
Min altitude (m) 1675
Total drop (m) 1175
Total length (m) 1763
Mean slope (deg) 38.2
dam abscissa (m) 1550
dam altitude (m) 1704
Number of years of survey 31
Number of exceedances 28

2004). It is situated in the township of Bessans, in the Savoie
department. It is 1763 m long from its top to the Arc River,
with a vertical drop of 1175 m (Fig. 2). It is only very
slightly channeled and the average slope is steep (Table 1).
Several concavity changes that would make numerical mod-
elling (Naaim et al., 2004) of the flow difficult occur along
the slope’s profile. However, the runout zone that consists
in the gentle slope preceding the Arc River (x=1763 m) is
rather regular, making the use of a simple stochastic model
for runout distances possible.

An exposed building is assumed to be situated in the
runout zone. It seems unrealistic to consider a building at
an abscissa corresponding to a return period of less than 10
years. In addition, an upper limit for zoning restrictions less
than 1000 years is always adopted. Consequently, only build-
ings implanted at abscissasxb corresponding to return peri-
ods ranging from 10 to 1000 years are investigated, with spe-
cial attention paid to the well-known return periods of 30,
100 and 300 years (Ancey and Richard 2000; Bardou, 2006).

The position of the dam to be designed is fixed at an ab-
scissa theoretically corresponding to the beginning of the
runout zone. In the avalanche field, the engineering practice

Fig. 3. Frequency model. Data versus model givenλ=
∧

λ (left) and
posterior distribution of the parameter (right).

initiated by Salm et al. (1990) considers that the runout zone
begins where the local slope decreases under 10◦. When
applied to this path, this empirical rule impliesxd=1550 m.
Note that in reality some avalanches have on this path
stopped on steeper slopes (Fig. 2), but they are of no rele-
vance for risk assessment as their runout distances are very
short.

During the 1973–2003 time period, 28 avalanches exceed-
ing xd were recorded by the local forestry service. The most
extreme runout distance recorded corresponds to the Arc
River, but beyond it, the terrain remains rather flat, making it
possible for extreme avalanches to reach higher abscissas.

4.2 Bayesian inference of the POT model

Poorly informative priors are used,aλ=aρ=0.001 and
bλ=bρ=0.01, respectively, so thata′

λ=31.001, b′
λ=28.01,

a′
ρ=1208.7 andb′

ρ=28.01. Figures 3 and 4 illustrate the
posterior Gamma distributions of model parameters as well
as a comparison between the data and the model. The pos-
terior distributions of both parameters are nicely shaped,
with a variance much lower than for the prior distribu-
tions, which reflects the amount of information conveyed
by the data. Bayesian estimators of the model’s parame-
ters equal the posterior means under the assumption of a

quadratic loss function, i.e.,Ea′
λ,b′

λ
[λ] =

∧

λ =
b′
λ

a′
λ

=0.9035 and

Ea′
ρ ,b′

ρ
[ρ] =

∧
ρ =

b′
ρ

a′
ρ
=0.0232. The frequency parameter cor-

responds to the mean exceedence rate, whereas the magni-
tude parameter is the inverse of the mean of the exceedences.
The River abscissa corresponds to a return period greater
than 100 years, whereas the 1000-year return period abscissa
is situated 80 m beyond the Arc River (Table 2).
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Fig. 4. Magnitude model. Data versus model givenρ=
∧
ρ (left) and

posterior distribution of the parameter (right).

The frequency model givenλ=
∧

λ is very close to the ob-
served avalanche activity, which indicates that a Poisson
model describes the randomness of the number of excee-
dences well (Fig. 3). The adequacy between the data and

the magnitude model givenρ=
∧
ρ is less satisfactory, with

the empirical distribution being strongly discrete. A part of
this discrepancy can be attributed to the strong dependency
of runout distance distribution on local topography, which
makes many avalanches stop at abscissas corresponding to a
significant decrease in the local slope. Nevertheless, a large
part of this discrepancy is also caused by observation errors:
only runout altitudes are recorded in the French avalanche
database, so that runout abscissas are not actually observed
and have to be recomputed using the topographic relation-
ship z=f (x). For avalanches that stop on the valley floor,
this topographic relationship is obviously poorly defined, so
that the true distribution of runout distances is probably less
discrete than suggested by the raw observations.

4.3 Optimal design

4.3.1 Parameterization

For both cost and utility functions, the depth of the refer-
ence flow is necessary. However, it is not modelled with
a monovariate POT model and therefore has to be consid-
ered as constant from one avalanche to another (see Sect. 5.1
for discussion). For simplicity and to cope for the available
information, a mean reference flowho=1 m was assumed.
This implieshd< 1

α
=7.15 m for the relationship describing

the influence of the dam to be valid. Another solution would
have been to compute the flow depth corresponding to each
past event from the deposit volumes (e.g. Meunier et al.,

Fig. 5. Classical and Bayesian risk functions for a building situated
at a 100-year return period abscissa.λ=0.9035 andρ=0.0232 for the
classical risk.a′

λ=31.001, b′
λ=28.01, a′

ρ=1208.7 andb′
ρ=28.01

for the Bayesian risk.Co=5530C .m−1, C1=300 000C,α=0.1376,
ho=1 m andA=25.

Table 2. Classical and Bayesian optimal heights for buildings situ-
ated at abscissas corresponding to different return periods.

T10 T30 T100 T300 T1000

xstopT 1645.7 1693.1 1745.1 1792.5 1844.4
h∗
C

(m) 5.42 4.32 3.02 1.77 0.34
h∗
B

(m) 5.69 4.73 3.58 2.47 1.19
δh∗=h∗

B
−h∗

C
(m) 0.27 0.41 0.56 0.7 0.85

δh∗ (%) 5 9.5 18.5 39.6 250

2004). Other numerical values used areCo=5530C m−1,
C1=C 300 000 and a constant annual interest rate of 4%.
Construction and damage costs correspond to a small dam

and to a nice single house, whereasA=

+∞∑
t=1

1
(1+0.04)t

is

equivalent to 25 years.

4.3.2 Classical risk for a building situated at a 100-year
runout abscissa

Figure 5 shows the risk function obtained for a building ab-
scissa corresponding to a return period of 100 years. It is
always negative, which indicates that the construction of a
dam always decreases the mean expected loss and therefore
contributes an economic benefit. Besides, it is nicely shaped,
with a clear optimal dam height of 3.02 m. More precisely,
for a dam height of 0 m, the expected benefit of the dam
construction is obviously 0, as it corresponds to the refer-
ence state. The expected benefit then increases up to around

www.nat-hazards-earth-syst-sci.net/8/1067/2008/ Nat. Hazards Earth Syst. Sci., 8, 1067–1081, 2008



1074 N. Eckert et al.: Bayesian optimal design of an avalanche dam

Table 3. Expected benefit of the optimal dam construction for build-
ings situated at abscissas corresponding to different return periods,
classical and Bayesian computations.

T10 T30 T100 T300 T1000

b∗
C

(C ) 718 851 224 126 55 249 11 095 250
b∗
B

(C ) 781 613 271 277 81 219 23 275 3382
δb∗=b∗

C
−b∗

B
(C ) 62 762 47 151 25 970 12 180 3132

δb∗ (%) 8.7 21.0 47.0 109.8 1254.4

C 55 000 at the optimal height. For higher dams, the eco-
nomic benefit decreases again, indicating that the additional
protective effect no longer compensates the additional con-
struction cost. For high dams, the risk function tends to
increase linearly with the dam height according to the cost
function chosen. Note that the obtained optimal height may
appear very small with regards to the size of the avalanche
path. But this height is a direct consequence of the chosen
building value and building position. Indeed, a single house
with no inhabitants attained by a centennial avalanche only
is considered, so that it cannot be economically justified to
build a higher dam.

4.3.3 Bayesian risk for a building situated at a 100-year
runout abscissa

Figure 5 also shows the corresponding Bayesian risk func-
tion. The Bayesian risk function is relatively close to the
classical risk function in terms of shape and value. Neverthe-
less the Bayesian optimal height (3.58 m) is slightly higher
than the classical optimal height (3.02 m), with a relative dif-
ference of 18.5%. Moreover, the benefit expected from the
construction of the optimal dam is higher when the Bayesian
computation is used (C 81 219) than when the classical com-
putation is used (C 55 249).

These effects should be attributed to the explicit incorpo-
ration of hazard uncertainty into the decisional process. Us-
ing the posterior distribution of hazard parameters instead of
point estimates adds estimation error to the variability of the
natural process. This is especially critical for the extreme
events that attain high return period abscissas such as the
100-year return period abscissa and justify the dam construc-
tion. It is therefore understandable that an additional protec-
tion effort appears as economically advantageous when pa-
rameter uncertainty is taken into account for the decision.

It can also be noted that the risk function around the op-
timum is flatter for the Bayesian risk than for the classical
risk, indicating that a large range of dam heights corresponds
to very close risk values. This is due to the smoothing effect
of averaging over the posterior distribution of the model’s
parameters. It reflects the poor lever of local information
fairly well and should therefore not be seen as a drawback
of choosing the Bayesian framework instead of the classical

one. Moreover, from a more practical point of view, it can
also be argued that different choices with different trade-offs
between investment and protection corresponding roughly to
a similar economic efficiency are then possible, giving more
latitude for a political decision.

Note that poorly informative priors were used for the com-
putation of the Bayesian risk function, so that both risk func-
tions contain the same information and can be compared.
For instance, the difference between the two optima is at-
tributable to the lack of local knowledge only, and not to the
influence of the priors. For an engineering project, informa-
tive priors can be used if available, but then, an additional
sensitivity analysis is required.

4.4 Sensitivity analysis

As the analytical expressions of both classical and Bayesian
risk functions are available, a full sensitivity analysis to the
choice of the different numerical values can easily be con-
ducted. In addition to parameter uncertainty, different factors
can be investigated: hazard magnitude, hazard frequency, po-
sition of the building and costs. Illustrations are provided in
this section using mainly Bayesian risks, but the same con-
clusions hold for classical risks, with alwaysh∗

B≥h∗

C .

4.4.1 Hazard magnitude and position of the buildings

The risk function depends on the combination of hazard mag-
nitude with the distance between the buildings and the dam,
i.e., the productρ× (xb−xd) for the classical risk function
and the suma′

ρ+xb−xd for the Bayesian risk function. Any
change in hazard magnitude can therefore be compensated
by modifying the position of the building in order to ob-
tain the same function. Depending on the distancexb−xd

rather than on the abscissas themselves confirms that the lo-
cal topography is not taken into account in the hazard model.
For a given distancexb−xd , the optimal height obviously in-
creases with the hazard magnitude. And for a given hazard
magnitude, the optimal dam height decreases and drops to
zero when the distance between the building and the dam in-
creases, which indicates that for a building situated very far
away from the dam, the defense structure is not efficient at all
from a strictly economic point of view. For instance, Fig. 6
shows that the optimal dam height decreases from 5.69 m to
1.19 m when the return period of the considered abscissa in-
creases from 10 to 1000 years (Table 2). The corresponding
expected benefit is very high for abscissa corresponding to
“small” return periods, e.g.,C 782 000 for a building situ-
ated at a 10-year return period abscissa, because in this case
numerous avalanches that would have destroyed the building
without the dam are stopped by the dam before the building
(Table 3). But the optimal height is then very poorly defined
with a rather constant benefit for 5 m≤hd<7.14 m. On the
other hand, for a 1000-year return period abscissa, even if
the risk function is negative around the optimal height, the
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Fig. 6. Sensitivity of the Bayesian risk function to the position
of the exposed building.a′

λ=31.001, b′
λ=28.01, a′

ρ=1208.7 and

b′
ρ=28.01. Co=5530C .m−1, C1=300 000C, α=0.1376,ho=1 m

andA=25.

expected benefit is so small (aroundC 3000 at the optimal
dam height) that the principle of a dam construction must be
questioned.

Finally, it should be noted that a significant difference be-
tween the classical and Bayesian optima exists for all build-
ing positions, with alwaysh∗

B≥h∗

C andb∗

B≥b∗

C . Moreover,
these differences increase with the return period of the build-
ing abscissa, for example from 5% to 250% for the optimal
height (Table 2) and from 8.7% to more than 1250% for the
expected benefit (Table 3) for building abscissas correspond-
ing to return periods ranging from 10 to 1000 years. Tak-
ing estimation error into account therefore affects especially
the optimal design of a defense structure protecting buildings
threatened only by the most extreme events. This result is
quite intuitive given that estimation error particularly affects
the evaluation of the highest quantiles of the hazard distribu-
tion, making extreme runout distances more probable than if
perfect knowledge of the hazard is assumed.

4.4.2 Hazard frequency

The damage term of the risk function is directly proportional
to the mean avalanche frequency. This explains that the
higher the mean avalanche frequency, the higher the optimal
dam height. Moreover, the expected benefit is nearly propor-
tional to the avalanche frequency for small dam heights. For
example, the Bayesian optimal height drops to 2.98 m and the
corresponding expected benefit is nearly halved if the excee-
dence rate drops from 0.9 to 0.45 avalanches.year−1, whereas
the optimal dam height increases to 4.03 m and the corre-
sponding expected benefit is nearly doubled if the avalanche
rate increases from 0.9 to 1.8 avalanches.year−1 (Fig. 7).

Fig. 7. Sensitivity of the Bayesian risk function to the an-
nual avalanche rate. a′

λ=31.001, a′
ρ=1208.7 and b′

ρ=28.01.

xb=xstop100, Co=5530C .m−1, C1=300 000C, α=0.1376,
ho=1 m andA=25.

4.4.3 Cost ratio

The effect of costs on the risk function can be studied by
considering the ratio between the construction price and the
actualized damage costA×C1

Co
. As one would expect, there is

a minimal value of the ratio for the optimal height to exist.
Figure 8, for instance, indicates that when the ratio is divided
by ten by setting the building value toC 30 000 instead of
C 300 000, this minimal ratio is nearly attained, so a dam
construction is not advisable. Conversely, for very high val-
ues of the ratio, the optimal dam height increases only slowly
with the ratio because the dam is already high enough to stop
nearly all avalanches before the exposed building. For ex-
ample, Fig. 8 shows that if the ratio is multiplied by ten, the
optimal height is only 0.72 m higher than if the ratio is multi-
plied by two. Moreover, for such high values of the ratio, the
optimal height becomes poorly defined, with the risk func-
tion having a shape very close to what is observed in Fig. 6
for small building abscissas. Between the extreme cases of
a very small or a very high cost ratio, the optimal height is
well defined.

4.4.4 Parameterα

Until now, the α parameter was assumed to be perfectly
known. A first option for studying the sensitivity of the
Bayesian risk function to the value ofα is to replace the point
estimate used before by the values corresponding to the up-
per and lower limits of the confidence interval derived from
the analysis of the experimental data. Figure 9 (left) shows
that the risk functions obtained are only slightly different.
But a slight sensitivity exists, especially around the optimal
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Fig. 8. Sensitivity of the Bayesian risk function to the destruc-
tion cost. a′

λ=31.001, b′
λ=28.01, a′

ρ=1208.7 and b′
ρ=28.01.

xb=xstop100, Co=5530C .m−1, α=0.1376,ho=1 m andA=25.

height, with an optimal design of 3.71 m instead of 3.46 m if
the more pessimistic value ofα is retained.

Alternatively, it can also be considered thatα is a param-
eter of the model and that the true Bayesian risk function
has to be obtained by integrating over its posterior distribu-
tion. Hypothesizing independence betweenα and the pa-
rameters of the hazard model, the true Bayesian risk func-
tion R′

B (hd) is then given by Eq. 24 wherep (α |data) is
the posterior distribution ofα derived from the analysis of
the small-scale experiments. The latter one is Gaussian if
a conjugate normal-inverse Gamma model is considered for
the linear regression (e.g., Gelman et al., 1995). However,
it must be integrated numerically. Figure 9 (right) compares
RB (hd), andR′

B (hd), showing no sensitivity to the uncer-
tainty concerningα for the case study.

R′

B (hd) =Eα [RB (hd)] =

∫
RB (hd) ×p (α |data) ×dα (24)

5 Discussion

5.1 Hazard variability: POT model versus reality

5.1.1 Topographic dependence

For physical variables such as river discharges, POT mod-
els rely on mathematical justifications, with Pickands (1975)
proving an asymptotic convergence of any tail of distribution
to a POT model where the magnitude follows a generalized
Pareto distribution as soon as the threshold is high enough.
For snow avalanche runout distances, this theoretical justi-
fication does not, however, hold because the distribution of
runout distances depends substantially on the slope profile

(Meunier and Ancey, 2004; Eckert et al., 2008a). Neverthe-
less, a type of POT model known as the runout ratio model
is well known in the avalanche field and it has been used for
more than 20 years by avalanche practitioners. In this model,
the exceedences of the so-called Beta point corresponding to
the beginning of the runout zone are normalized using to-
pographic characteristics of the path (to compare data from
different paths) and then fitted using extreme value distribu-
tions (McClung and Lied 1987; McClung, 2000; McClung,
2001; Keylock 2005). The choice of the threshold is not
based on theoretical considerations (Coles, 2001). The key
point is that the statistical model is then considered an empir-
ical model rather than a true limit distribution. It is applied
to very regular paths only, so as to make assumable the as-
sumption that the exceedence probability of a given abscissa
depends on the normalized distance with the beta point only.
This pragmatic point of view is also adopted in this paper.
We use a POT model with a threshold fixed by topographic
considerations and an imposed exponential tail, which is as-
sumed to give a realistic representation of the variability of
avalanche runout distances on a regular path. The hypothesis
of the independence between runout distances and local con-
cavity changes appears in the risk functions obtained, which
depend only on the distance between the dam and the build-
ing.

5.1.2 Monovariate versus multivariate

Beyond the problem of the topographical dependence, the
choice of a POT model for avalanche runout distances can
also be severely questioned because it offers only a mono-
variate vision of avalanche hazard. For instance, the flow
depth that is necessary for the computation of the influence
of the dam has to be assumed constant from one avalanche to
another, which is not very realistic because a significant cor-
relation between runout distances and flow depths may exist
for some paths.

A very similar monovariate framework can be constructed
by considering snow volumes instead of runout distances and
using a POT model for the volumes exceeding a threshold to
be specified. The influence of the dam can then be expressed
in terms of volume storage for slow avalanches with typi-
cal Froude numbers around 1 (Faug, 2004), and the damage
to the building can be quantified as a function of the vol-
ume of snow exceeding the dam. However, this type of risk
model, often used for floods (Parent and Bernier, 2007), does
not take into account the distance between the dam and the
building, which is obviously not more suitable for a fluid with
a complex rheology such as snow. Research is therefore in
progress to keep a similar general Bayesian risk framework,
but to consider a multivariate statistical-numerical model
for avalanche propagation and numerical risk computations
rather than simple analytical expressions.
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Fig. 9. Sensitivity of the Bayesian risk function to theα parameter.α. a′
λ = 31.001,b′

λ=28.01, a′
ρ=1208.7 andb′

ρ=28.01. xb=xstop100,

Co=5530C .m−1, C1=300 000C, ho=1 m andA=25.

5.2 Influence of the dam: linear relation for granular media
versus reality

Beyond the problem of sensitivity to the value of the param-
eterα, the model of the influence of the dam on runout dis-
tances used in this paper should also be questioned. It was
obtained by an approximated theoretical computation and
verified by analyzing small-scale experiments with noncohe-
sive rapid granular flows impacting a vertical dam. Its exten-
sion to full-scale avalanches overtopping a dam remains an
open question even if a partial validation has been recently
suggested (Faug et al., 2008). The relevance of the compu-
tations proposed to engineering practices is therefore limited
to the case of a vertical avalanche dam impacted by rapid
noncohesive flows.

In reality, however, different kinds of avalanches are ob-
served because of the changing nature of the fluid involved
(Ancey, 2006) and only dry dense snow avalanches – which
are characterized by densities around 300 kg.m−3, flow paths
following the topography, and a low level of cohesion – cor-
respond to the experimental case. Moreover, the engineering
practice generally considers different geometries of passive
defense structures. This preliminary approach therefore de-
serves to be further detailed by incorporating the influence of
other types of hazards (wet snow avalanches, powder snow
avalanches, etc.) on different defense structures (deflective
dams, protective mounds, etc.), so as to propose different
tools for the various situations that can be encountered in an
operational context. Working with a numerical multivariate
avalanche model would then be helpful, so as to describe the
variability of the relevant quantities.

5.3 Cost quantification

5.3.1 Global economic value versus reality

For a risk computation on a real case study, the elements at
risk are not limited to a single building at a fixed position and
the number and nature of the exposed buildings, their furni-
ture, the number of inhabitants and the fraction of time they
live inside, etc., have to be counted and evaluated. This task
can be achieved using an interdisciplinary approach (Fuchs
et al., 2004; Fuchs and Bründl, 2005; Keiler, 2004). A crit-
ical point is how to take into account human lives. Mathe-
matical convenience is to follow insurance techniques and to
give an economic value to a human life. Alternatively, all the
computations can be carried out by considering only human
lives and expressing the cost function in terms of probabil-
ity of being killed, as in the Icelandic legislation for hazard
mapping (Arnalds et al., 2004). Since this is not the focus of
the paper, this problem was overlooked by considering only a
global economic value for a single building situated at a fixed
position of the runout zone. Obviously, if several buildings
with furniture, cars, etc., are approximatively situated at the
same abscissa, the formalism remains identical. This is also
true if the choice is made to give an economic value to a
human life. If not, however, the cost formulation has to be
reconsidered.

5.3.2 Hypothesis for cost modelling

Of even greater concern are the limitations of the proposed
cost function that assumes a cost construction that is linear
with the dam height, a supposedly unbreakable dam and a
damage term represented by a step function. For the con-
struction cost, the model could easily be improved by a care-
ful economic study of different engineering projects, so as
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to obtain a more realistic representation of the cost increase
with the dam height increase.

The hypothesis of an unbreakable dam could also be re-
laxed with an additional term quantifying the mean annual
repair cost. However, with a well-designed dam (a very long
structural return period such as 300 years), the mean annual
reconstruction cost is small with respect to the mean annual
damage to the exposed building, so that it can be neglected
in a preliminary approximation. Moreover, the repair cost
can be simply included in the construction costCo with the
definition of an amortizing period and a computation of its
total actualization, as is done in Sect. 2.2 for the damage to
the building.

For the damage cost, modelling improvements are much
less straightforward. The damage inflected by a snow
avalanche to a building is known to depend on impact pres-
sure, flow depth, variation of the pressure with time, etc. But
the relation between hazard magnitude and damage inten-
sity is still unclear (Keylock and Barbolini, 2002; Berthet-
Rambaud, 2004). In addition, the impact pressure itself re-
mains hard to quantify (Sovilla et al., 2008), so that empirical
velocity-dependant damage formulations are generally con-
sidered (Jonasson et al., 1999; Barbolini et al., 2004a). Our
step function, obviously a very rough approximation, can
therefore be justified by the current lack of knowledge. How-
ever, this preliminary approach has a direct interpretation in
terms of maximal loss (total destruction of the building), and
is therefore well suited for the quantification of the maximal
expected benefit of the dam construction. Moreover, it can
be amended using the more complex damage formulations
proposed in the literature and involving other variables such
as velocity or pressure. This will be done in association with
the multivariate hazard model and the numerical computa-
tions of the risk functions mentioned earlier.

6 Conclusion and relevance for practical applications

In this paper, a general Bayesian framework for optimal
design of an avalanche dam was proposed, with particular
attention given to the problem of handling the uncertainty
stemming from the lack of local information from inference
to decision. The other major difference with previous risk
computations in the avalanche field is the explicit incorpo-
ration of a passive defense structure in the modeling frame-
work and its optimization with regards to the full variability
of the damageable phenomenon. Such an approach can be
contested if a specific protection against very frequent or ex-
tremely rare events is searched. However, this is a general
question in decision theory (Berger, 1985). Moreover, it can
be argued that the choice of a defense structure that mini-
mizes the mean expected loss instead of the loss associated
with a given scenario (e.g. centennial) corresponds to a ratio-
nal behaviour for a decision maker facing risk.

Strong simplifying assumptions discussed in details in
Section 5 have been introduced. They concern the hazard
model, the model for dam influence and the cost quantifica-
tion. As a consequence, a rough evaluation of the optimal
height and of the expected benefit of the dam construction is
obtained. On the other hand, theses assumptions allow ob-
taining a simple decisional model that proposes an analytical
expression of the Bayesian risk function.

As it is shown with the case study, this decisional model
highlights the main effects in this type of engineering exam-
ple, for instance the more cautious design value that should
be recommended when parameter uncertainty is taken into
account and the maximal benefit that can then be expected
from the dam construction. Moreover, a sensitivity analy-
sis for different factors, e.g. avalanche magnitude, avalanche
frequency, cost ratios and dissipation power of the dam, can
be performed at very low computational costs. It for example
shows the increase of the optimal dam height with the value
of the elements at risk. The low effective optimal dam height
obtained for a building situated at a centennial abscissa has
to be attributed to the chosen economic value of the exposed
building.

For a real case study, this decisional model can therefore
be used as a first approximation to compute an optimal dam
height and to perform a sensitivity analysis at no computa-
tional cost. However, it has evident limitations. For instance,
it can be used only for very regular paths because runout dis-
tance distribution depends upon the slope’s profile. More-
over, given that avalanche magnitude is limited to runout
distance of dense snow avalanches, it is difficult to propose
easy analytical improvements of both dam influence and cost
quantification.

This implies that our decisional model is rather relevant for
the theoretical background it offers than for its operational
potential. For a similar optimal design procedure giving a
more realistic representation of the avalanche flow and its
interaction with defense structures and elements at risk, the
most limitative assumptions have to be relaxed in order to
find a better compromise between physical realism and com-
putation times. A multivariate numerical model of avalanche
hazard needs therefore to be incorporated into the stochas-
tic framework, which will be done in a shortcoming paper
(Eckert et al., 2008b).
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Appendix A

List of symbols

A total actualization
a generic notation for avalanche

frequency
aρ, bρ/a′

ρ
, b′

ρ
a priori/a posteriori parameters of the
Gamma distribution ofρ

aλ, bλ/a
′

λ
, b′

λ
a priori/a posteriori parameters of the
Gamma distribution ofλ

b∗

C
, b∗

B
expected classical and Bayesian benefits
for the optimal dam height

Co( ) total construction cost
C1( ) total damage cost
data local or experimental data
E mathematical expectation
ho reference flow height (height of the

avalanche impacting the dam)
hd dam height
h∗

C classical optimal dam height
h∗

B Bayesian optimal dam height
it annual interest rate of the yeart

I{ } indicator function
l( ) stochastic avalanche model
n number of exceedences
m number of years of avalanche survey
p( ) posterior distribution
RB( ) Bayesian risk
R′

B( ) Bayesian risk integrated over the distri-
bution of theα parameter

RC( ) classical risk
T return period
u( ) linear utility
x abscissa
xb building abscissa
xd dam abscissa
xstopT runout distance corresponding to the

return periodT
xstopo reference runout distance without dam
xstop(hd) modified runout distance with dam

heighthd

y generic notation for avalanche
magnitude

z altitude
α parameter quantifying the influence of

the dam
δh∗ , δb∗ difference between the classical and

Bayesian optimal heights, difference be-
tween the classical and Bayesian opti-
mal benefits

λ parameter of the Poisson distribution of
avalancheoccurrences

π( ) prior distribution

ρ parameter of the exponential
distribution of runout distances

∧

θ point estimate for the parameterθ

θM generic notation for the parameters of
the magnitude model

θF generic notation for the parameters of
the frequency model

Edited by: F. Guzzetti
Reviewed by: two anonymous referees

References

Amzal, B., Bois, F.,Y., Parent, and E., Robert, C. P.: Bayesian-
Optimal Design via Interacting Particle Systems, Journal of the
American Statistical Association, 101(474), 773–785, 2006.

Arnalds, P., Jonasson, K., and Sigurdson, S. T.: Avalanche haz-
ard zoning in Iceland based on individual risk, Ann. glaciol., 38,
285–290, 2004.

Ancey, C.: Dynamique des avalanches. Presses Polytechniques et
Universitaires Romandes, 334 p., 2006.

Ancey, C., Gervasoni, C., and Meunier, M.: Computing extreme
avalanches, Cold Reg. Sci. Technol., 39, 161–184, 2004.

Ancey, C. and Richard, D.: D́etermination de l’aĺea de ŕeférence.
Rapport Cemagref /Ḿet́eo Francèa la Direction de la Prévention
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et caract́erisation de l’interaction ph́enom̀ene-ouvrage. Doctorat
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Faug, T.: Simulation sur modèle ŕeduit de l’influence d’un obsta-
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