Communication Dans Un Congrès Année : 2010

Properties of variational estimates of a mixture model for random graphs

Résumé

Mixture models for random graphs have a complex depen- dency structure and a likelihood which is not computable even for mod- erate size networks. Variational and variational Bayes techniques are useful approaches for statistical inference of such complex models but their theoretical properties are not well known. We give a result about the consistency of variational estimates of the parameters of the model and we propose variational Bayes estimates. We compare the accuracy of the two variational methods through simulation studies and show an application to a large Protein-Protein interaction network.
Fichier principal
Vignette du fichier
51657_20120206120148426_1.pdf (7.2 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01197575 , version 1 (03-06-2020)

Identifiants

  • HAL Id : hal-01197575 , version 1
  • PRODINRA : 51657

Citer

Jean-Jacques Daudin, Alain Célisse, Steven Gazal, Stephane Robin. Properties of variational estimates of a mixture model for random graphs. ECCS10 European Conference on Complex Systems, Sep 2010, Lisbonne, France. ⟨hal-01197575⟩
127 Consultations
192 Téléchargements

Partager

More