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Basics on Cancer mechanisms

We consider microarray data from cancer experiments.

For normal tissues :
? Two copies of each gene,
? Correlations between expression profiles of neighbor genes is low.

For tumorous tissues :
? Amplification/Deletion may occur (CGH microarray)

⇒ k copies of a gene, with k = 0, ...,13, ...,
? Small regions of genes with highly correlated expression

⇒ Chromosomal domains of interest.
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Example of chromosomal domains

Gene1 Gene2 ...
Sample1 x1

1 x2
1 ...

Sample2 x1
2 x2

2 ...
Sample3 x1

3 x2
3 ...

... ... ... ...

Chromosomal domains may be due to amplification, deletion,
epigenetic...
Objective : identify the up-correlated regions.
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Variable clustering

Model :
Let X 1, ...,X p be an ordered sequence of variables, that breakdowns
into K clusters of variables C1, ...,CK , such that

∀j ∈Ck , X j =Ak +E j

Ak : cluster variable, V (Ak)=σ2
k In

E j : residual variable, V (E j)=σ2In
cov(Ak , E j)= 0, cov(Ak , Ak ′

)= 0, cov(E j , E j ′)= 0

? In the following, we assume that variables are standardized.

? We note ρk the correlation between 2 variables in cluster Ck .

? We assume that for most of the clusters ρk = ρ0, and for a small
number of clusters ρk > ρ0.
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Optimal clustering

Two step strategy
? Identify the clusters (K and C1, ...,CK ),
? Test for each cluster whether ρk = ρ0 or ρk > ρ0.

Loss for clusters
? If variables X `+1, ...,X `+pk belong to the same cluster Ck , they are

noisy copies of variable Ak .

? Âk = 1

pk

`+pk∑
j=`+1

X j =X
(k)

(BLUP)

⇒ L(X (k))= pk −
`+pk∑

j=`+1
cov

(
X j ,X

(k)
)

Optimal clustering
We look for clustering C ∗ that satisfies

C ∗ = Argmin
C

L
(
X 1, ...,X p)

= Argmin
C

K∑
k=1

L(X (k)) .
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Clustering Algorithm

Exhaustive search
? Variables are ordered ⇒ clusters of adjacent variables only
? The loss to optimize is additive on clusters

⇒ Optimal solution can be found using Dynamic Programming

Complexity : O(p2)

Heuristic search
We look for applicability to large sequences of variables (p ∼ 104)

⇒ Use of a constrained version of Hierarchical Clustering
Algorithm

Complexity : O(p)

Distance between clusters :

D(X (k),X (`)) = L(X (k),X (`))−L(X (k))−L(X (`))
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Estimation of the number of clusters

Objective :
Find the break in the slope of the
clustering curve.

Same objective as for adaptive pe-
nalty in model selection context
Lavielle (2003)

Choice of K

βK = (LK −LK+1)− (LK+1 −LK+2)

K̂ = Argmin
K

{βK >S}
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Testing the clusters

Test : H0 : {ρk = ρ0} vs H1 : {ρk > ρ0} (conditionally to the clustering)

Assuming Ak and E j to be gaussian, for observation i we have :

X
(k)
i = 1

pk

∑
j∈Ck

X j ∼N

(
0,

1

pk
(1+ (pk −1)ρk)

)

⇒ V̂
(
X

(k)
)

= 1

n

n∑
i

(
X

(k)
i −X

(k)
)2

∼ (1+ (pk −1)ρk)

npk
χ2
(n−1)

⇒ n
(
pk −L(X (k))

)
∼
H0

(1+ (pk −1)ρ0)χ
2
(n−1)

Reject H0 if n
(
pk −L(X (k))

)
> (1+ (pk −1)ρ̂0)χ

2
n−1,1−α
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Estimation of ρ0

A 3-phase clustering curve :

? Clusterings in correlated regions
? Clusterings in H0 regions
? Clustering between regions

Theoretical distance for an H0 clustering step :

D(X (k),X (`)) = L(X (k),X (`))−L(X (k))−L(X (`))

= 1−ρ0

⇒ ρ0 may be estimated with the slope estimate of regression
between blow and bup .
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First example : Simulated data

50 observations, 1400 variables
Background correlation : ρ0 = 0

14 chromosomal domains :
? 4 amplified regions (3/5/10/50)
? 4 deleted regions (3/5/10/50)
? 2 epigenetic regions (3/5)
? 4 correlated regions (3/5/3/5)
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Clustering step

Left :
Red : Clustering curve, from no clustering (right) to one cluster (left).
Black : estimation of ρ0 by regression, ρ̂0 = 0.

Right :
Green : average correlation with the aggregated variable
Blue : correlation between a gene and its aggregated variable
Number of clusters = 17, correlated : 8
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Identified regions

Type Truth Clustering Sliding Windows
Amplifications 51-53

151-155
251-260 253-259 257,...,259
351-400 353-398 365,...,398

Deletions 451-453
551-555
651-660 652-654
751-800 752-796 756,...,796

Epigenetics 851-853 851-853
951-955 951-955 951-955

Correlated 1051-1053
1151-1155 1151-1155 1155
1251-1253 1251-1253
1351-1355

Red : poorly recovered regions
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Second example : Bladder Cancer (Stransky et al.)

Chromosome 3
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Some conclusions

Improvements

? Break point detection for the number of clusters
? Efficient control of Type I error
? Study of the bias of the ρ0 estimator

Toward complete model-based clustering

? Maximum likelihood method
? Adapted to more complex situations (long range correlations)
? Computational cost may be prohibitive...
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