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When predicting population dynamics, the value of the prediction is not enough and should be accom-

panied by a confidence interval that integrates the whole chain of errors, from observations to predictions

via the estimates of the parameters of the model. Matrix models are often used to predict the dynamics of

age- or size-structured populations. Their parameters are vital rates. This study aims (1) at assessing the

impact of the variability of observations on vital rates, and then on model’s predictions, and (2) at com-

paring three methods for computing confidence intervals for values predicted from the models. The first

method is the bootstrap. The second method is analytic and approximates the standard error of predic-

tions by their asymptotic variance as the sample size tends to infinity. The third method combines use of

the bootstrap to estimate the standard errors of vital rates with the analytical method to then estimate

the errors of predictions from the model. Computations are done for an Usher matrix models that predicts

the asymptotic (as time goes to infinity) stock recovery rate for three timber species in French Guiana.

Little difference is found between the hybrid and the analytic method. Their estimates of bias and stan-

dard error converge towards the bootstrap estimates when the error on vital rates becomes small enough,

which corresponds in the present case to a number of observations greater than 5000 trees.

1. Introduction

Matrix models are population dynamics models for structured

populations [1]. They have been widely used to address the conser-

vation and management of animal or plant species [2–6]. Struc-

tured populations are described by the number of individuals in

each category of the structuring variable (denoted by vector

NðtÞ). Transition rates between categories are gathered into a tran-

sition matrix A. Time is discrete, and the state of the population at

time t is related to that at time t þ 1 by the recurrence relationship:

Nðt þ 1Þ ¼ ANðtÞ. Given an initial composition of the population,

Nð0Þ, the composition any time later can be predicted as:

NðtÞ ¼ AtNð0Þ ð1Þ

As t tends to infinity, the proportions of individuals in the different

categories will grow at an exponential rate, k, which is the domi-

nant eigenvalue of A [1]. The population growth rate k is a model’s

prediction that is often use to assess if the population is decaying

ðk < 1Þ or increasing ðk > 1Þ.

Two types of matrix models are most often distinguished by

biologists depending on whether the structuring variable is age

or ontogenetic stage [7]. The former corresponds to Leslie models

whereas the latter corresponds to Lefkovitch models [8,9]. The Lef-

kovitch matrix is the most general. The Leslie matrix has non null

elements on its first row and on its sub-diagonal. A third type of

matrix model that is familiar to foresters is the Usher model, for

size-structured populations [10,11]. The Usher model has non null

elements on its first row, its main diagonal and its sub-diagonal.

The parameters of the transition matrix A are composed of indi-

vidual growth, survival or fecundity rates, and are thus known as

vital rates. As vital rates are estimated from experimental or census

data, their estimates are subject to uncertainties. Then any predic-

tion of the matrix model is also subject to uncertainty. This sam-

pling uncertainty has often been disregarded [12] in preference

to other sources of uncertainty such as environmental or demo-

graphic variability [3,5,13]. Yet assessing sampling uncertainty is

essential to the statistical reasoning, including statistical tests

and confidence intervals.

From a statistical point of view, the estimates of the vital rates

are realized values of random variables whose distribution de-

pends on the distribution of experimental or census data. The pre-

diction of the matrix model is a function of the vital rates, and its

estimator is obtained by plugging the estimator of the vital rates

into this function (Fig. 1). Difficulties arise because the function
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is often non-linear, thus leading to complicated relationships be-

tween the distribution of the vital rates and the distribution of

the predicted quantity.

Alvarez and Slatkin [14] have reviewed three methods for com-

puting sampling uncertainty on matrix models predictions: the

analytic method, the Monte Carlo method, and resampling meth-

ods (including bootstrap, jackknife and related methods). The ana-

lytic method relies on a second order Taylor expansion of the

predicted quantity with respect to the vital rates, and is approxi-

mate. Furthermore it requires that the moments of the vital rates

are known. Monte Carlo and resampling methods substitute inten-

sive computer simulations to approximation. The Monte Carlo

method is based on the assumption that the distribution of vital

rates is known, whereas it is supposed for resampling methods

that a reference dataset is available.

Comparisons between the Monte Carlo method and the analytic

method have been performed [15–17] and it was concluded that

the analytic method is reliable if errors on vital rates remain small.

These studies focused on the last arrow of the diagram shown in

Fig. 1: they supposed that the uncertainty on the vital rates was

known and assessed how this uncertainty contributed to the mod-

el’s prediction. No link was made with the sampling variability of

observations (the first two arrows of the diagram in Fig. 1). Com-

parisons between the bootstrap and the jackknife have also been

performed (see references in [1,14]) and it was concluded that

bootstrap should be preferred. However, as far as we know, no

comparison has been made between the bootstrap method and

the analytic method, integrating the whole chain of uncertainty

from observations to predictions as shown in Fig. 1.

This study aims at comparing the analytic method and boot-

strap to infer the bias, standard error and confidence interval of

the population growth rate predicted by a matrix model for a

size-structured population. A hybrid method, using the bootstrap

to infer the uncertainty on vital rates from observations, and then

the analytical method to incorporate this uncertainty into the

model’s prediction, will also be compared. These methods will be

used to assess the sustainability of logging scenarios for the three

major timber species in French Guiana.

2. Material and methods

2.1. Study site and focus species

Data for this study comes from the Paracou experimental site

(5�180N, 52�230W) in French Guyana. Paracou is an experimental

site dedicated to studying the effects of logging damage on stock

recovery. The site lies in a terra firme rain forest on the coastal plain

with equatorial climate. A dry season occurs from August to mid-

November. From March to April, a short drier period interrupts

the rainy season. The physiography of the site shows smooth

slopes incised by minor streams. Part of the site is covered by per-

manently waterlogged areas. The experimental design of the site

consists of three blocks of four 300 � 300 m permanent sample

plots with a 25 m inner buffer zone. In each central 250 � 250 m

square, all trees over 10 cm dbh (diameter at breast height) were

identified and georeferenced. Since 1984, girth at breast height,

standing deaths, treefalls and newly recruited trees over 10 cm

dbh have been monitored annually [18].

Three species were selected: angelique (Dicorynia guianensis

Amshoff, Caesalpiniace�), pink gonfolo (Qualea rosea Aublet,

Vochysiace�) and grey gonfolo (Ruizterania albiflora (Warming)

Marcano-Berti, Vochysiace�). These three species are the most

important timber species in French Guiana. Angelique alone repre-

sents 34% of the total wood production whereas the two gonfolos

represent 32% of it [19]. Angelique is a large canopy tree species

endemic to the Guiana shield. Its ecological characteristics are de-

scribed in [20]. Angelique trees are usually felled above a diameter

at breast height (dbh) of 60 cm and natural populations are

exploited with a 40-year felling cycle. Pink and grey gonfolos are

also large canopy trees that are found on the Atlantic coast of South

America. Their ecological characteristics are described in [21,22].

Data from 1992 to 1994 were used for this study. The time

interval for subsequent computations thus is 2 years, and the

length of the felling cycle corresponds to 20 time intervals. The

number of observations was 467 for angelique, 484 for pink gonf-

olo, and 53 for grey gonfolo. Trees were distributed in diameter

classes with equal width and highest bound 60 cm (which is the

felling threshold). The number of classes was computed using Stur-

ges’ [23] formula. Hence angelique and pink gonfolo trees were

distributed in m ¼ 8 diameter classes with breakpoints 10–17.1,

17.1–24.3, 24.3–31.4, 31.4–38.6, 38.6–45.7, 45.7–52.9, 52.9–

60 cm and P60 cm, whereas grey gonfolo trees were distributed

in m ¼ 5 diameter classes with breakpoints 10–22.5, 22.5–35.0,

35.0–47.5, 47.5–60 and P60 cm.

2.2. From observations to population growth rate

In this section, all the elements that compose the diagram

shown in Fig. 1 are specified, starting from the matrix model up

to the distribution of observations.

2.2.1. Usher model

The Usher model is a matrix model for size-structured popula-

tions [10,11]. Size is divided into m size classes. The special feature

of Usher models is Usher’s hypothesis, that states that the dynam-

ics of an individual between times t and t þ 1 comprises three, and

only three, options: it stays alive in the same class, it stays alive

and moves up to the next class, or its dies; moving up by more than

one class or moving backwards is not allowed. The Usher hypoth-

esis is appropriate when individual growth is slow and linear on

short time intervals, which is the case for trees. It implies that

the m�m transition matrix, U, has non-null elements only on its

first row, its main diagonal and its sub-diagonal.

It is convenient to break down U into: U ¼ GSþ R, where G (the

growth matrix) is a stochastic m�m matrix with non null ele-

ments on its diagonal and its sub-diagonal, S (the survival matrix)

is a diagonal m�m matrix, and R (the recruitment matrix) is a

m�m matrix with non-null elements on its first row. The ith ele-

ment of the diagonal of G is 1� pi and the ith element of its sub-

diagonal is pi, where pi is the conditional probability that an indi-

vidual moves from class i to iþ 1 knowing that it stays alive. As no

transition can occur beyond the last class, pm ¼ 0. The ith element

of the diagonal of S is 1� di, where di is the death probability for an

individual in class i. The ith element of the first row of R is fi, where

fi is the fecundity rate of the individuals in class i. Estimating fi
requires to know which individual is the mother of any newly

Fig. 1. Schematic diagram of the uncertainty chain showing how any prediction of

the matrix model is a random variable whose distribution depends on the

distribution of observations.
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recruited individual. In many situations, and in particular in for-

estry, this is not possible. Then, only an average fecundity rate f

is used, that is to say: f1 ¼ . . . ¼ fm ¼ f . It represents the ratio of

the number of recruited individuals over the number of individuals

in the population. Notice that if pi ¼ 1 for all i ¼ 1; . . . ;m� 1, the

Usher matrix simplifies to a Leslie matrix. Hence the Leslie model

is a special case of the Usher model. In summary, the Usher matrix

has 2m vital rates ðf ; d1; . . . ; dm; p1; . . . pm�1Þ, that will be denoted in

short h 2 ðRþÞ2m.

2.2.2. Model’s prediction: stock recovery rate

The model’s prediction that motivated this study is the stock

recovery rate, that is a forestry concept used to assess the sustain-

ability of forest logging. The management of tropical natural forest

is based on a periodic selective harvest of all trees with a diameter

greater than a threshold called the ‘‘minimum harvest diameter”

(MHD). The time interval between two successive logging opera-

tions, denoted T, is the length of the felling cycle. During this time,

the forest is left so that the wood stock naturally regenerates. The

exploitable wood stock is defined as the number of stems with a

diameter greater than a threshold called the ‘‘minimum diameter

for exploitation” (MDE). The MDE is legally fixed by national forest

services whereas the MHD (which is necessarily greater than the

MDE) and the felling cycle T are chosen by forest managers to en-

sure sustainability.

We assume that logging is instantaneous with respect to forest

dynamics. Harvest is defined by a m�m diagonal matrix, L, such

that the ith element of the diagonal of L equals zero if the corre-

sponding diameter class is harvested and one otherwise. Under a

periodic felling regime with a felling every T time steps starting

from 0, the composition of the population at the end of the kth fell-

ing cycle is given by:

NðkTÞ ¼ AkNð0Þ ð2Þ

where A ¼ UTL. A is a transition matrix that relates the composition

of the population at the end of a felling cycle to its composition at

the end of the previous felling cycle. Eq. (2) is similar to (1) up to

a change of time scale. Then, as k tends to infinity, NðkTÞ will grow

at an exponential rate, k, that is the dominant eigenvalue of A.

By definition, the stock recovery rate at the end of the kth felling

cycle, Xk, is the ratio of the exploitable stock at time kT over the

exploitable stock at time ðk� 1ÞT . Given the asymptotic behaviour

of (2), the asymptotic stock recovery rate, that is the limit of Xk as k

goes to infinity, identifies with the dominant eigenvalue of A:

lim
k!1

Xk ¼ k ¼ max
g

fg : detðA� gIÞ ¼ 0g

In summary, the asymptotic stock recovery rate of the Usher model

with transition matrix U identifies with the population growth rate

of the matrix model with transition matrix A ¼ UTL. The population

growth rate k depends on the parameters of A but is independent of

the initial composition Nð0Þ. The asymptotic stock recovery rate

thus depends on the 2m vital rates h of U. To highlight this depen-

dency, we shall write kðhÞ, where k here denotes a function from

ðRþÞ2m onto Rþ.

The stock recovery rate is used by forest managers to assess

the sustainability of logging scenarios. A logging scenario is de-

fined by the felling cycle T and the MHD (that is L). The asymp-

totic stock recovery rate corresponds to a long-term assessment

of sustainability: k ¼ 1 indicates that logging is sustainable;

k < 1 indicates that the population is over-logged (then T or

MHD should be increased); k > 1 indicates that logging does not

remove the natural ingrowth. However, the estimate of k is not

an end in itself: it is necessary to see if one belongs to the confi-

dence interval of k.

2.2.3. Distribution of observations

In the context of size-structured populations, an observation

consists of a pair ðS1; S2Þ giving the size S1 of an individual at initial

measurement time t0, and the size S2 of the same individual at

remeasurement time t0 þ 1. By convention, S1 ¼ 0 when the indi-

vidual is newly recruited at t0 þ 1, and S2 ¼ 0 when the individual

dies between t0 and t0 þ 1 (but ð0;0Þ is not a valid observation). A

dataset of size n, denoted sn, consists of n observations

fðS1k; S2kÞgk¼1;...;n.

Size classes are defined by their breakpoints ui. The ith size class

is the interval ½ui;uiþ1½, where umþ1 ¼ 1. An individual is recruited

when its size reaches the minimum size for inventory that is u1. So

S1 ¼ 0 implies S2 ¼ u1.

The unknown distribution of observations is denoted F. It can be

broken down into:

F ¼ p0dð0;u1Þ þ p1F1 þ p2F2 ð3Þ

where p0 ¼ PrðS1 ¼ 0; S2 ¼ u1Þ is the probability for an observation

to be a newly recruited individual, p1 ¼ PrðS2 ¼ 0Þ is the probability

for an observation to be a dead remeasured individual, p2 ¼ 1�
p0 � p1 ¼ PrðS1–0; S2–0Þ is the probability for an observation to

be a live individual at both measurement times, do is the Dirac mass

at observation o, F1ðxÞ ¼ PrðS1 < xjS2 ¼ 0Þ is the univariate condi-

tional size distribution at t0 knowing that the individuals are dead

at t0 þ 1, and F2ðx; yÞ ¼ PrðS1 < x; S2 < yjS1–0; S2–0Þ is the bivariate

conditional distribution of sizes at t0 and size increments between

t0 and t0 þ 1 knowing that individuals are alive at t0 and t0 þ 1.

2.2.4. Vital rates estimators

The parameters h of the Usher model are estimated from a data-

set sn. The estimate of h is the realized value of its estimator ĥ,

which is a random variable whose distribution follows from F.

Many estimators of vital rates exist, with contrasted performances

in terms of statistical efficiency [24,25]. We selected a biased esti-

mator with a low standard error [26]. The average fecundity rate

was estimated using the classical proportion estimator [27]:

f̂ ¼ #fS1 ¼ 0g
n�#fS1 ¼ 0g ð4Þ

where #fS1 ¼ 0g ¼
Pn

k¼11ðS1k ¼ 0Þ is the number of newly

recruited individuals at remeasurement time. Mortality rates were

taken equal in all classes, which introduces a small bias but consid-

erably reduces the standard error. The common mortality rate was

estimated by the ratio-of-means estimator [27]:

d̂1 ¼ . . . ¼ d̂m ¼ d̂ ¼ #fS2 ¼ 0g
n�#fS1 ¼ 0g ð5Þ

Finally, the conditional upgrowth rate from class i to iþ 1 was esti-

mated using a revised version of the bias-corrected increment esti-

mator [24–26]:

p̂i ¼ 1� G2iðuiþ1 � âi; ĵiÞ ð6Þ

where âi is an estimator of the average size increment in class i, and

G2ið:;jÞ is a parametric expression depending on parameter j for

the conditional diameter distribution at t0 knowing that individuals

are neither dead nor recruits and that they belong to size class i at

t0. The truncated exponential distribution on ½ui;uiþ1½ was used for

G2i [28]. Its cumulative distribution function is:

G2iðx;jÞ ¼
1�exp½�jðx�uiÞ=ðuiþ1�uiÞ�

1�expð�jÞ ðj–0Þ
ðx� uiÞ=ðuiþ1 � uiÞ ðj ¼ 0Þ

(

The average size increment was simply estimated using the empir-

ical mean of size increments in class i:
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âi ¼
Pn

k¼1ðS2k � S1kÞ1ðui 6 S1k < uiþ1Þ1ðS2k–0Þ
#fui 6 S1 < uiþ1; S2–0g

whereas the maximum likelihood estimator of the j parameter was

used. Its expression is: ĵi ¼ h
�1½ðSi � uiþ1Þ=ðuiþ1 � uiÞ�, where

Si ¼
Pn

k¼1S1k1ðui 6 S1k < uiþ1Þ1ðS2k–0Þ
#fui 6 S1 < uiþ1; S2–0g

is the empirical mean of sizes at t0 in class i excluding dead trees,

and h is a continuous monotone decreasing function (and thus

invertible) from R onto � � 1;0½, defined as: hðxÞ ¼ x�1 � ½1�
expð�xÞ��1 if x–0 and hð0Þ ¼ �0:5. Estimator (6) for growth rates

makes use of the continuous information on size rather than simply

counting the number of individuals that grow up from class i to

iþ 1 [29–31]. It is a biased estimator but is still more efficient than

the classical proportion estimator in terms of quadratic error [25].

Finally, the estimator of the asymptotic stock recovery rate was ob-

tained by plugging the estimator ĥ ¼ ðf̂ ; d̂1; . . . ; d̂m; p̂1; . . . ; p̂m�1Þ of

vital rates into k, that is: k̂ � kðĥÞ.

2.3. Computing sampling uncertainty

The estimator ĥ of vital rates h is a random vector whose

distribution depends on the distribution F of observations. Then

any prediction of the Usher model, and in particular the asymptotic

stock recovery rate kðĥÞ, is also a random variable whose distribu-

tion depends on F. Now that all components of the diagram in Fig. 1

have been specified, we clarify the methods for computing the

uncertainty on model’s predictions from the uncertainty on

observations.

2.3.1. Bootstrap method

Bootstrap methods basically consist in replacing in the diagram

of Fig. 1 the unknown distribution F of observations by the

empirical distribution of observations in dataset sn: bF n ¼ ð1=nÞ�Pn
k¼1dðS1k ;S2kÞ (where do, for any observation o, is the Dirac mass at

o). Drawing a sample of n independent and identically distributed

observations according to bF n is then equivalent with drawing ran-

domly n observations with replacement from sn. Bootstrap algo-

rithms for matrix models have been described in [1] and are a

direct application of the algorithms presented by Efron and Tibsh-

irani [32]. The only point to clarify to comply with Efron and Tib-

shirani’s [32] notations is to prove that there exists a functional

H such that h ¼ HðFÞ. The plug-in estimator of h then can be de-

fined as: ĥplug�in ¼ HðbFnÞ.
Given a set of B bootstrap replications kðĥ�1Þ, . . ., kðĥ�BÞ, the bias of

kðĥÞ was estimated by [32, p. 125]:

dbiasboot ¼ k̂�� � kðĥplug�inÞ ð7Þ

where k̂�� is the empirical mean of the B replications: k̂�� ¼PB
b¼1kðĥ�bÞ

n o
=B. The standard error of kðĥÞ was estimated using

the usual bootstrap estimator of standard error (see [1, Eq.

(12.15), p. 306] or [32, algorithm 6.1 p.47]). The confidence interval

of kðĥÞ was estimated using the percentile method [32, § 13.3,

p.170]. All computations were done using B ¼ 50;000 replications.

Bootstrap algorithms were implemented in C language interfaced

with R software [33]. The code is available at http://agents.cir-

ad.fr/index.php/Nicolas+Picard.

2.3.2. Analytic method

Analytic methods approximate the variance of an estimator by

r2=n, where n is sample size and r2 is the asymptotic variance of

the estimator (obtained as a limit when n tends to infinity). Assum-

ing that there exists a functional G with suitable properties for dif-

ferentiability, such that ĥ ¼ GðbFnÞ where bF n is the empirical

distribution of the observations, the asymptotic covariance matrix

R of the estimator ĥ is the 2m� 2m matrix:

R ¼
Z

ICG;FðxÞ ICG;FðxÞ> dFðxÞ ð8Þ

where ICG;FðxÞ is the influence curve of G at observation x relative to

distribution F [34,35], and X> for any matrix or vector denotes the

transpose of X. Given an observation x, the influence curve is the

vector of length 2m given by:

ICG;FðxÞ ¼ lim
e!0

G½ð1� eÞF þ edx� � GðFÞ
e

ð9Þ

where dx is a Dirac mass at x. Assuming that G exists, then func-

tional k � G relates the estimator of the asymptotic stock recovery

rate to the empirical distribution of the observations: kðĥÞ ¼
ðk � GÞðbFnÞ. The asymptotic variance of kðĥÞ can then be computed

in the same way, using the influence curve.

The computation of asymptotic variances using the influence

curve provides a rigorous mathematical justification of the sec-

ond-order Taylor expansions (sometimes also referred as the d-

method) previously used to compute the variances in an analytic

way [14–17]. In particular it can be used to prove that the asymp-

totic variance of kðĥÞ, denoted r2
k , is related to the asymptotic

covariance matrix of ĥ by:

r2
k ¼ ðDGðFÞkÞRðDGðFÞkÞ> ð10Þ

where Dhk is the Jacobian matrix of k at h, that is a 1� 2m matrix

whose ith element is equal to the partial derivative of kwith respect

to the ith element of h. The influence curve can also be used to state

that kðĥÞ has an asymptotic normal distribution with mean k½GðFÞ�.
Then the bias of kðĥÞ in the analytic approach is k½GðFÞ� � k½HðFÞ�,
whereas its confidence interval are computed using the percentiles

of the normal distribution.

The estimates of the asymptotic moments of kðĥÞ were obtained

by replacing the unknown distribution F by the empirical distribu-

tion bF n. Hence the bias was estimated as:

dbias1 ¼ kðĥÞ � kðĥplug�inÞ

and the estimate of rk was: r̂2
k ¼ ðDĥkÞbRðDĥkÞ

>, where bR is obtained

by replacing F by bF n in the expression of R.

2.3.3. Hybrid method

The hybrid method makes a compromise between the accuracy

of the bootstrap approach (whereas the analytic method is approx-

imate) and the speed of computation of the analytic method

(whereas the bootstrap method requires potentially long simula-

tions). It is based on the fact that, once the covariance matrix of

the vital rates estimator is known, the variance of any prediction

of the matrix model can be computed from them (see last arrow

of the diagram in Fig. 1). Hence the hybrid method uses the boot-

strap approach to compute the moments of the vital rates estima-

tor with good accuracy, and then uses the analytic method to

compute the moments of kðĥÞ. Notice that with this approach,

bootstrap simulations are needed once for all, whatever the predic-

tion of the model to be subsequently studied is. The bias was esti-

mated as:

dbiashyb ¼ kðĥ��Þ � kðĥplug�inÞ

where ĥ�� is the empirical mean of the B bootstrap replications:

ĥ�� ¼
PB

b¼1ĥ
�
b

� �
=B. The variance of kðĥÞ was computed using the

same formula as (10) but replacing GðFÞ by ĥ��, and replacing the

asymptotic covariance matrix R of ĥ by its bootstrap estimate.

The confidence interval was again computed using the percentiles

of the normal distribution.
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3. Results

3.1. Plug-in estimator of vital rates

The relationship between the distribution of observations F and

the vital rates h of the Usher model is given by the following

Proposition.

Proposition 1. There exists a functional H such that h ¼ HðFÞ,
where h are the parameters of the Usher model and F is the

distribution of observations given by (3). The functional H is defined

by:

� The first element of HðFÞ, that corresponds to the mean fecundity

rate, is:

½HðFÞ�1 � f ¼ p0

1� p0

ð11Þ

� The ðiþ 1Þth element of HðFÞ for i ¼ 1; . . . ;m, that corresponds to

the mortality rate in class i, is:

½HðFÞ�iþ1 � di ¼ p1

F1ðuiþ1Þ � F1ðuiÞ
G1ðuiþ1Þ � G1ðuiÞ

ði ¼ 1; . . . ;mÞ ð12Þ

where

G1ðxÞ ¼ p0d0 þ p1F1ðxÞ þ p2F2ðx;1Þ

is the size distribution at measurement time t0 (including a Dirac

mass at 0 for individuals that will be recruited).

� The ðmþ 1þ iÞth element of HðFÞ for i ¼ 1; . . . ;m� 1, that corre-

sponds to the conditional upgrowth rate from class i to iþ 1 is:

½HðFÞ�mþ1þi

� pi ¼
F2ðuiþ1; uiþ2Þ � F2ðui; uiþ2Þ � F2ðuiþ1;uiþ1Þ þ F2ðui;uiþ1Þ

F2ðuiþ1;1Þ � F2ðui;1Þ
ði ¼ 1; . . . ;m� 1Þ ð13Þ

The proof is given in Appendix A. This Proposition then yields:

Proposition 2. The plug-in estimator of h is given by:

� The plug-in estimator of the mean fecundity rate is:

f̂ plug�in ¼ #fS1 ¼ 0g
n�#fS1 ¼ 0g

� The plug-in estimator of the mortality rate in class i is:

d̂iplug�in ¼ #fui 6 S1 < uiþ1; S2 ¼ 0g
#fui 6 S1 < uiþ1g

� The plug-in estimator of the conditional upgrowth rate from class i

to iþ 1 is:

p̂iplug�in ¼ #fui 6 S1 < uiþ1; uiþ1 6 S2 < uiþ2g
#fui 6 S1 < uiþ1; S2–0g

Hence the plug-in estimator of h is the classical proportion esti-

mator of the transition rates [24,27]. The estimator of f that we

used is identical to its plug-in estimator. The estimator of di that

we used is a weighted mean of the plug-in estimators of the dis.

However the estimator of pi that we used is completely different

from its plug-in estimator. This means that d̂i and p̂i are biased.

One may also notice that formula (7) for the bootstrap estimate

of the bias differs from that given by Caswell [1, Eq.(12.23), p.

318]. The formula given by Caswell is valid only if the estimators

of the vital rates are unbiased, and is thus inexact in the present

case where d̂i and p̂i are biased.

3.2. Asymptotic covariance matrix of vital rates

Let M be the functional that maps any distribution F on its

expectation:

MðFÞ ¼
Z

xdFðxÞ

The relationship between the empirical distribution of observations
bFn and the vital rates estimator ĥ is given by the following

Proposition.

Proposition 3. There exists a functional G such that ĥ ¼ GðbFnÞ,
where ĥ is the estimator of vital rates that was previously defined and
bFn is the empirical distribution of observations. Given a distribution F

that can be written as (3), the functional G is defined by:

� The first element of GðFÞ, that corresponds to the mean fecundity

rate, is:

½GðFÞ�1 ¼ p0

1� p0

� The ðiþ 1Þth element of GðFÞ for i ¼ 1; . . . ;m, that corresponds to

the mortality rate in class i, is:

½GðFÞ�iþ1 ¼ p1

1� p0

ði ¼ 1; . . . ;mÞ

� The ðmþ 1þ iÞth element of GðFÞ for i ¼ 1; . . . ;m� 1, that corre-

sponds to the conditional upgrowth rate from class i to iþ 1 is:

½GðFÞ�mþ1þi ¼ 1� G2i uiþ1 �MðF22iÞ;h�1 MðF21iÞ � uiþ1

uiþ1 � ui

� �� �

ði ¼ 1; . . . ;m� 1Þ

where

F21iðxÞ ¼
F2ðx;1Þ

F2ðuiþ1;1Þ� F2ðui;1Þ1ðui 6 x < uiþ1Þ

is the conditional size distribution at t0 knowing that the individuals

are alive at both measurement times and belong to class i at t0, 1ðpÞ
is the indicator function of proposition p, and

F22iðxÞ ¼
R uiþ1

ui

R aþx

�1
@2F2
@x@y

ða; bÞ db
n o

da

F2ðuiþ1;1Þ � F2ðui;1Þ

is the conditional distribution of size increments between t0 and

t0 þ 1 knowing that the individuals are alive at both measurement

times and belong to class i at t0.

The proof is similar to that of Propostion 1 and is not given here

to save space. Carrying forward this expression of G in (9) gives the

influence curve ICG;FðxÞ for any observation x. Carrying forward this

expression of the influence curve in (8) gives the asymptotic

covariance matrix of ĥ. Computations are long and are not shown

here to save space. They give the following expression for the

asymptotic covariance matrix R of the vital rates estimator ĥ

(where Rij is the element on the ith row and jth column of R):

� The asymptotic variance of the estimator of the mean fecundity

rate is:

R
11

¼ p0

ð1� p0Þ3

� The asymptotic covariance matrix of the estimators of mortality

rates is:

R
ðiþ1Þðjþ1Þ

¼ p1p2

ð1� p0Þ3
ði; j ¼ 1; . . . ;mÞ
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� The asymptotic variance of the estimator of the conditional

upgrowth rate from class i to iþ 1 is:

R
ðmþ1þiÞðmþ1þiÞ

� ¼ 1

p2½F2ðuiþ1;1Þ� F2ðui;1Þ�

� @G2i

@x
ðuiþ1 � l2i;aiÞ

� �2
r2

2i

(

þ bi

@G2i

@j
ðuiþ1 � l2i;aiÞ

� �2
r2

1i

�2bi

@G2i

@x
ðuiþ1 � l2i;aiÞ

@G2i

@j
ðuiþ1 � l2i;aiÞci

�

where

ai ¼ h
�1 l1i � uiþ1

uiþ1 � ui

� �

bi ¼
1

uiþ1 � ui

ðh�1Þ0 l1i � uiþ1

uiþ1 � ui

� �

l1i ¼ MðF21iÞ is the conditional expectation of size in class i,

l2i ¼ MðF22iÞ is the conditional expectation of size increment in

class i, r2
2i is the conditional variance of size increments in class

i, r2
1i is the conditional variance of sizes in class i, and ci is the

conditional covariance between size and size increment in class i.

� All other elements of R are null.

To complement the latter expression, we give the expressions

for the derivatives of h
�1

and G2i : ðh�1Þ0ðxÞ ¼ ½h0ðh�1ðxÞÞ��1,

h
0ðxÞ ¼

� 1
x2
þ expð�xÞ

ð1�expð�xÞÞ2 ðx–0Þ
�1=12 ðx ¼ 0Þ

(

@G2i

@x
ðx;jÞ ¼

j exp½�jðx�uiÞ=ðuiþ1�uiÞ�
ðuiþ1�uiÞð1�expð�jÞÞ ðj–0Þ

1=ðuiþ1 � uiÞ ðj ¼ 0Þ

(

and:

@G2i

@j
ðx;jÞ ¼

ðx�uiÞðuiþ1�xÞ
2ðuiþ1�uiÞ2

ðj¼ 0Þ
1

ð1�expð�jÞÞ2
x�ui

uiþ1�ui

� �
exp �j x�ui

uiþ1�ui

� �h in

þexpð�jÞ uiþ1�x

uiþ1�ui

� �
exp �j x�ui

uiþ1�ui

� �h i
�1

h io ðj–0Þ

8
>>>><
>>>>:

3.3. Asymptotic variance of the stock recovery rate

Given the expression of the asymptotic covariance matrix of vi-

tal rates given in the previous Section and Eq. (10), the expression

of the Jacobian matrix Dhk will give the asymptotic variance of the

stock recovery rate. Function k that maps the vital rates h onto the

asymptotic stock recovery rate can be broken down into:

kðhÞ ¼ ðA �B � C �DÞðhÞ

whereD is the function that maps the vector of vital rates h onto the

Usher matrix, C is the function that maps anym�m matrix onto its

Tth power, B is the function that maps any m�m matrix onto its

right product with L, and A is the function that maps any m�m

matrix onto its dominant eigenvalue. Using chain rule for Jacobian

[36, p.91],

Dhk ¼ ðDB�C�DðhÞAÞðDC�DðhÞBÞðDDðhÞCÞðDhDÞ

Let Z be the vector of lengthm whose elements are all equal to zero.

Let Ui be the vector of lengthmwhose elements are all equal to zero

except the ith that is equal to one. Let

Di ¼ �ð1� piÞUi � piUiþ1 ði ¼ 1; . . . ;mÞ
Ei ¼ �ð1� diÞUi þ ð1� diÞUiþ1 ði ¼ 1; . . . ;m� 1Þ

where, by convention, pm ¼ 0 and Umþ1 � Z. Then the Jacobian of D

is the m2 � 2m matrix:

DhD ¼

U1 D1 Z Z Z E1 Z Z

..

.
Z D2

..

. ..
.

Z E2
..
.

..

. ..
.

Z . .
.

Z ..
. ..

.
Z . .

.
Z

..

. ..
. ..

.
Dm�1 Z ..

. ..
.

Em�1

U1 Z Z Z Dm Z Z Z

2
666666664

3
777777775

The Jacobian of C is the m2 �m2 matrix:

DUC ¼
XT

i¼1

ðU>ÞT�i 	 Ui�1

where 	 denotes the Kronecker product [36]. Let c be the last size

class that is not harvested, that is to say: L is the diagonal matrix

whose ith element on the diagonal equals one if i 6 c and zero if

i > c. Then the Jacobian of B is the m2 �m2 diagonal matrix whose

ith element on the diagonal equals one if i 6 mc and zero if i > mc.

Finally, the Jacobian of A is given in [1, Eq. (9.14), p. 210].

3.4. Comparison between the three methods

Table 1 shows the estimate of the asymptotic (as time tends to

infinity) stock recovery rate using the bootstrap, the analytic or the

hybrid method, for the three species at Paracou. For all three spe-

cies, one is included in the 95% confidence interval. However the

confidence interval is centred on a value higher than one for ange-

lique and grey gonfolo, whereas it is centred on one for pink gonf-

olo. Moreover this estimate is an overestimation for angelique and

pink gonfolo whereas it is an underestimation for grey gonfolo.

Estimates for angelique and pink gonfolo rely on a similar number

of observations (n ¼ 467 for angelique and n ¼ 484 for pink gonf-

olo), whereas sample size ðn ¼ 53Þ is lower for grey gonfolo. The

standard error is correspondingly higher for grey gonfolo than for

angelique or pink gonfolo.

Reference values in Table 1 are those given by the bootstrap

method since this method does not make any approximation. On

the contrary the analytic and the hybrid methods approximate

the true values by their asymptotic values as the sample size tends

to infinity. The analytic method underestimates the asymptotic

stock recovery rate and its standard error. It either underestimates

(for angelique and pink gonfolo) or overestimates (for grey gonfol-

o) the bias. The hybrid method slightly outperforms the analytic

method (angelique, grey gonfolo) or does as well (pink gonfolo)

in estimating the standard error. However the hybrid method does

as well (angelique) or worse (pink and grey gonfolo) than the ana-

lytic method in estimating the bias.

Table 1 is complemented by Figs. 2 and 3 that show the speed of

convergence of the bootstrap and hybrid estimates of the bias and

Table 1

Estimate of the asymptotic stock recovery rate, and of the bias, standard error and

95% confidence interval of its estimator using the bootstrap, analytic or hybrid

method, for the three species angelique (Dicorynia guianensis), pink gonfolo (Qualea

rosea) and grey gonfolo (Ruizterania albiflora) at Paracou.

Species Method Estimate Bias Standard

error

Lower

bound

Upper

bound

Angelique Bootstrap 1.450 0.199 0.291 0.975 2.090

Angelique Analytic 1.422 0.170 0.281 0.882 1.973

Angelique Hybrid 1.422 0.170 0.285 0.875 1.980

Pink gonfolo Bootstrap 1.003 0.125 0.236 0.618 1.534

Pink gonfolo Analytic 0.979 0.101 0.228 0.542 1.425

Pink gonfolo Hybrid 0.979 0.098 0.228 0.539 1.423

Grey gonfolo Bootstrap 1.390 �0.073 0.864 0.466 3.187

Grey gonfolo Analytic 1.249 �0.215 0.629 0.042 2.481

Grey gonfolo Hybrid 1.224 �0.239 0.644 �0.011 2.486
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standard error of the stock recovery rate estimator as sample size

tends to infinity. For all three species, convergence is reached for

sample sizes greater than 5000 observations. Again, the reference

values are those given by the bootstrap method. Both the analytic

and the hybrid method underestimate the bias and the standard

error of the stock recovery rate estimator. The hybrid method does

slightly better than the analytic method in estimating the standard

error, whereas the analytic method does better than the hybrid

method in estimating the bias.

4. Discussion

With the bootstrap method we can estimate the bias, standard

error and confidence interval of the stock recovery rate estimator

without any approximation. This method requires potentially long

computing time. The analytic method, which relies on the asymp-

totic values of these quantities as the sample size tends to infinity,

is comparatively very fast but is approximate if the sample size is

small. The convergence between the bootstrap and the analytic

method was obtained for sample size greater than 5000 for the

three species at Paracou. Although the hybrid method makes a

compromise between the bootstrap and the analytic method by

using the former for the second arrow of Fig. 1 and the latter for

the last arrow of Fig. 1, its estimates are very close to those of

the analytic method, with slightly better results for standard error

and slightly worse results for bias. This means that most of the dis-

crepancy between the bootstrap and the analytic method for small

samples is due to the last arrow of Fig. 1. As a first conclusion, the

hybrid method has little interest as compared to the analytic meth-

od. As a second conclusion, the analytic method in unreliable un-

less sample size is large enough. Bootstrap then should be

preferred. The threshold for the analytic method to be reliable

(about 5000 observations on the basis of the three species at Para-

cou) is beyond most sample sizes commonly found in tropical rain-

forests. The value of this threshold depends on the type of

estimator used for vital rates and on the prediction of interest.

For instance, Zetlaoui et al. [37] and Chagneau [38] found a thresh-

old of about 10000 observations to predict the stock recovery rate

at the end of the first felling cycle or the population growth rate,

using the proportion estimator. Due to the high species richness

of tropical rainforests and the corresponding low densities of their

species, capturing 5000 trees (a fortiori 10000) most often require

several hundreds (if not thousands) of hectares.

Applications of these methods to assess sampling variability are

numerous [39–45]. In the present case they allow us to test

whether the asymptotic stock recovery rate differs from one.

Although the three species at Paracou have contrasted expected

values for k, none of them is significantly different from one at level

5%. More observations would be required to estimate k with great-

er accuracy, and to be able to decide whether it is significantly dif-

ferent from one or not. The accuracy (sensu [46]) of the estimate of

k presently is 38% for angelique, 46% for pink gonfolo, and 98% for

grey gonfolo at confidence level 95%. Taking bF n for the theoretical

distribution F of observations (see first arrow of Fig. 1), it would re-

quire 6870 observations for angelique (to compare to 467 pres-

ently available), 9860 observations for pink gonfolo (to compare

to 484), and 5060 observations for grey gonfolo (to compare to

53) to get an accuracy of 10% at confidence level 95%, which is gen-

erally considered as an acceptable accuracy. For these sample sizes,

and assuming again that the theoretical distribution of observa-

tions is bF n, k is significantly greater than one at level 5% for ange-

lique (p-value < 10�4) and grey gonfolo (p-value = 10�4), and is not

significantly different from one at level 5% for pink gonfolo (p-

value = 0.67).

Another application would consist in comparing sampling vari-

ability with other sources of variability, in particular environmen-

tal variability. For instance we used data from 1992 to 1994, but it

would be interesting to assess how the variability generated by the

use of another time step compares to sampling variability. Depend-

ing on this comparison, it will be possible or not to detect signifi-

cant differences in vital rates between years. This is left for

future work.

The approximate expression for bias corresponds to a Taylor

expansion to order zero with respect to 1=
ffiffiffi
n

p
 �
(where n is sample

size), whereas the approximate expression (10) for standard error

corresponds to a Taylor expansion up to order one with respect

to 1=
ffiffiffi
n

p
 �
. The threshold at which the bootstrap method converges

toward the analytic expression could be lowered by making Taylor

expansion to higher order. For instance bias could be approximated

by:
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Fig. 2. Convergence speed of the bootstrap and hybrid estimates of bias toward its

asymptotic (as sample size tends to infinity) value, for the three species at Paracou:

solid symbols represent the bootstrap estimate; open symbols represent the hybrid

estimate; lines represent the asymptotic value; squares or solid line are for

angelique (Dicorynia guianensis); circles or dashed line are for pink gonfolo (Qualea

rosea); triangles or dotted line are for grey gonfolo (Ruizterania albiflora).
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Fig. 3. Convergence speed of the bootstrap and hybrid estimates of standard error

toward its asymptotic (as sample size tends to infinity) value, for the three species

at Paracou: solid symbols represent the bootstrap estimate; open symbols

represent the hybrid estimate; lines represent the asymptotic value; squares or

solid line are for angelique (Dicorynia guianensis); circles or dashed line are for pink

gonfolo (Qualea rosea); triangles or dotted line are for grey gonfolo (Ruizterania

albiflora).
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k½GðFÞ� þ 1

2
ðvecRÞ>vecðHGðFÞkÞ

� �
� k½HðFÞ�

where Hhk is the Hessian matrix of k at h, that is a 2m� 2m matrix

whose term on the ith row and jth column is the second derivative

of k with respect to the ith and jth elements of h, and vec is the vec

operator, that is the operator that vectorizes a matrix by stacking its

columns. In this equation, the term between braces corresponds to

a Taylor expansion up to order ð1=
ffiffiffi
n

p
Þ2. Similarly, the approximate

expression for standard error could be expanded up to higher order

with respect to 1=
ffiffiffi
n

p
 �
, which would entail computing the succes-

sive derivatives of k with respect to h. These computations are not

complicated in the principle, but are tedious in practice. Motivation

for computation speed is then needed to prefer the analytic method

to bootstrap.

The results of the present study are consistent with those of

previous studies [15–17] in the sense that the analytic method is

reliable only if errors on vital rates remain small. However these

previous studies focused on the last arrow of Fig. 1 and ignored

sampling variability. The present study relates sample size to the

acceptable errors on vital rates. As sample size increases, the errors

on vital rates vanished and the conclusions of the previous studies

are found.

The present study also extends previous results that were ob-

tained for other estimators of vital rates and other predicted quan-

tities. Zetlaoui et al. [37,47] and Chagneau [38] used for the

statistical model for observations (i.e. the first arrow of Fig. 1) a

multinomial distribution with the vital rates as parameters. The

corresponding maximum likelihood estimator of vital rates was

the proportion estimator of Michie and Buongiorno [27], which

also corresponds to the plug-in estimator of the present study.

The asymptotic distribution for the maximum likelihood estimator

can be computed using the d-method. The expression for the

asymptotic variance is basically the same as the one given by Eq.

(10), but R then designates the Fisher information matrix. Compu-

tations are noticeably more complicated with any estimator as the

one used in the present study than with the maximum likelihood

estimator. Zetlaoui et al. [37,47] focused on the population growth

rate (i.e. the dominant eigenvalue of the Usher matrix) and the cor-

responding stable diameter distribution, while Chagneau [38] fo-

cused on the stock recovery rate at the end of the first felling

cycle. The present study shows that these results can easily be ex-

tended to other quantities predicted by the matrix model, as long

as these quantities are differentiable functions of the vital rates.

This simply entails replacing Dk in Eq. (10) by the appropriate Jaco-

bian matrix. Notice that the expression of the Jacobian Dk can often

be found as part of a sensitivity analysis [1, Chapter 9]. Neverthe-

less, the bootstrap method is comparatively easier to extend to

other vital rate estimators and other predictions of the matrix

model than the analytic method. It can also deal with an explicit

distribution for the observations (first arrow of Fig. 1), by perform-

ing parametric bootstrap [32,48].

Appendix A. Plug-in estimator of vital rates

We here give the proof of Propositions 1 and 2. By definition of

the mean fecundity rate,

f ¼ Eð#fS1 ¼ 0gÞ
Eð#fS1–0gÞ ¼ nPrðS1 ¼ 0Þ

n� nPrðS1 ¼ 0Þ ¼
p0

1� p0

By definition of the mortality rate in class i,

di ¼ PrðS2 ¼ 0jui 6 S1 < uiþ1Þ

Using Bayes formula, this becomes:

di ¼
PrðS2 ¼ 0ÞPrðui 6 S1 < uiþ1jS2 ¼ 0Þ

Prðui 6 S1 < uiþ1Þ
¼ p1

F1ðuiþ1Þ � F1ðuiÞ
G1ðuiþ1Þ � G1ðuiÞ

By definition of the conditional upgrowth rate from class i to iþ 1,

pi ¼ Prðuiþ1 6 S2 < uiþ2jui 6 S1 < uiþ1; S2–0Þ

This can be written as:

pi ¼
Prðui 6 S1 < uiþ1;uiþ1 6 S2 < uiþ2Þ

Prðui 6 S1 < uiþ1; S2–0Þ

The numerator can be written as:

Prðui 6 S1 < uiþ1;uiþ1 6 S2 < uiþ2jS1–0; S2–0Þ � PrðS1–0; S2–0Þ
¼ p2fF2ðuiþ1;uiþ2Þ � F2ðui;uiþ2Þ � F2ðuiþ1;uiþ1Þ þ F2ðui;uiþ1Þg

whereas the denominator can be written as:

Prðui 6 S1 < uiþ1jS1–0; S2–0Þ � PrðS1–0; S2–0Þ
¼ p2fF2ðuiþ1;1Þ� F2ðui;1Þg

which gives the expression (13) of pi.

By replacing F by the empirical distribution bFn of the observa-

tions, plug-in estimators are obtained. Thus, the plug-in estimators

of p0, p1, F1, G1 and F2 are:

p̂0plug�in ¼ #fS1 ¼ 0g=n
p̂1plug�in ¼ #fS2 ¼ 0g=n
bF1plug�inðxÞ ¼ #fS1 < x; S2 ¼ 0g=#fS2 ¼ 0g
bG1plug�inðxÞ ¼ #fS1 < xg=n
bF2plug�inðx; yÞ ¼ #f0 < S1 < x; 0 < S2 < yg=#fS1–0; S2–0g

Carrying forward these expressions in (11)–(13), the plug-in esti-

mator of h is obtained.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.mbs.2009.02.002.
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