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As more and more network-structured data sets are available, the statisti-
cal analysis of valued graphs has become common place. Looking for a latent
structure is one of the many strategies used to better understand the behavior
of a network. Several methods already exist for the binary case.

We present a model-based strategy to uncover groups of nodes in valued
graphs. This framework can be used for a wide span of parametric random
graphs models and allows to include covariates. Variational tools allow us
to achieve approximate maximum likelihood estimation of the parameters of
these models. We provide a simulation study showing that our estimation
method performs well over a broad range of situations. We apply this method
to analyze host–parasite interaction networks in forest ecosystems.

1. Introduction. Data sets presenting a network structure are increasingly
studied in many different domains such as sociology, energy, communication, ecol-
ogy or biology [Albert and Barabási (2002)]. Statistical tools are therefore needed
to analyze the structure of these networks, in order to understand their properties
or behavior. A strong attention has been paid to the study of various topologi-
cal characteristics such as degree distribution, clustering coefficient and diameter
[see, e.g., Barabási and Albert (1999), Newman, Watts and Strogatz (2002)]. These
characteristics are useful to describe networks but not sufficient to understand its
whole structure.

A natural and intuitive way to capture an underlying structure is to look for
groups of edges having similar connection profiles [Getoor and Diehl (2004),
Newman, Watts and Strogatz (2002)], which is refereed to as community detection
[Girvan and Newman (2002), Newman (2004)]. This usually turns into an unsu-
pervised classification (or clustering) problem which requires efficient estimation
algorithms since the data set at hand is ever increasing.

Several attempts at community detection have been proposed in the litera-
ture: greedy algorithms for community detection [Girvan and Newman (2002) and
Newman (2004)] and clustering based on spectral analysis of the adjacency ma-
trix of a graph [von Luxburg, Belkin and Bousquet (2008)]. Greedy algorithms
and spectral clustering both assume that communities are determined by a strong
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within connectivity opposed to a low between connectivity. This might be true for
so-called communities but need not be true for other groups of nodes. For example,
a group of nodes loosely connected to each other but highly connected to a specific
group of hubs have the same connection profile and form a homogeneous group
but do not form a community. In addition, they do not offer an explicit generative
model nor a criterion to select the correct number of communities.

Model-based methods are appealing by contrast: explicit modeling of the het-
erogeneity between nodes gives different groups an intuitive and easy to under-
stand interpretation. Several probabilistic models exists for random graphs [see
Pattison and Robins (2007) for a complete review], ranging from the seminal
Erdös–Rényi (ER) model [Erdös and Rényi (1959)] to the sophisticated Stochas-
tic Block Model (SBM) [Nowicki and Snijders (2001)]. The ER model assumes
independent and identically distributed edges which entails that all nodes are struc-
turally equivalent and, thus, there is only one community, although a big one. The
p1 model from Holland and Leinhardt (1981) extended the ER model by assuming
independent dyads instead of edges, allowing the breakthrough from undirected to
directed graphs. But again, all nodes are structurally equivalent in the p1 model.
Fienberg and Wasserman (1981) and Fienberg, Meyer and Wasserman (1985)
lifted these constraints by assuming the nodes are distributed among Q classes
with different connectivity profiles. In this model, groups are easily interpreted as
nodes belonging to the same class. Unfortunately, Fienberg, Meyer and Wasserman
(1985) assumes class assignments are perfectly well known, which rarely happens.
The state of the art in terms of graph modeling is the SBM, inspired by Lorrain and
White (1971) and introduced by Nowicki and Snijders (2001), which takes advan-
tage of mixture models and unknown latent variables to allow an easy modeling of
groups without requiring them to be known in advance.

In the SBM framework, community detection boils down to three crucial steps:
assignment of nodes to groups, estimation of the model parameter and selection of
the correct number of groups. Several authors offered their method to solve these
issues using Bayesian methods. Nowicki and Snijders (2001) work with the origi-
nal SBM model. Hofman and Wiggins (2008) work in a highly constrained version
of SBM in which heterogeneity is strictly limited to intra- and inter-community
connection and thus characterized by only two parameters, against Q2 in the un-
constrained SBM. Airoldi et al. (2008) extend the SBM framework by allowing
nodes to exhibit multiple communities. By contrast, Daudin, Picard and Robin
(2008) use a frequentist approach to estimate the parameters of the SBM. The
frequentist approach is less computation intensive than its Bayesian counterpart,
whereas the Bayesian approach is supposed to better account for the uncertainty.
With the notable exception of Nowicki and Snijders (2001), who use MCMC
to estimate the model parameter, both lines of work make heavy use of varia-
tional techniques: either Variational EM [Jaakkola (2000)] or Variational Bayes
[Attias (2000); Beal and Ghahramani (2003); Xing, Jordan and Russell (2003);
Winn, Bishop and Jaakkola (2005)]. MCMC computational cost is prohibitive,
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effectively leading to severe size limitations (around 200 nodes). Furthermore,
because of the complex likelihood landscape in the SBM, good mixing of the
Markov Chain is hard to achieve and monitor. Variational approximations, by
contrast, replace the likelihood by a simple surrogate, chosen so that the error
is minimal in some sense. Frequentist and Bayesian approach then differ only
in the use of this surrogate likelihood: Bayesians combine it to a prior distribu-
tion of the parameter (chosen from some suitable distribution), whereas frequen-
tists use it directly. In all these methods, the number of groups is fixed during
the estimation procedure and must be selected using some criterion. By contrast,
Kemp, Griffiths and Tenenbaum (2004) propose an original approach where the
number of groups changes and is selected during the estimation process. Both
Bayesian and frequentist estimations approaches give the same kind of results:
an optimal number of groups and a probabilistic assignment of nodes to groups,
depending on their connection profile. However, the Bayesian estimation strategy
leads to severe constraints on the choice of prior and hyperprior distributions. The
Daudin, Picard and Robin (2008) maximum likelihood approach does not require
any prior specification and is more efficient than MCMC estimation [Picard et al.
(2007)].

Previous models are all models for binary networks, for which the only informa-
tion is the presence or absence of an edge. Binary information certainly describes
the topology of a network but is a rather poor description. It accounts neither for
the intensity of the interaction between two nodes nor for the specific features of
an edge. The intensity of an edge may typically indicate the amount of energy
transported from one node to another, the number of passengers or the number
of common features between two nodes, whereas the specific feature of an edge
may be the phylogenetic distance between its two ending nodes. Many networks,
such as power, communication, social, ecological or biological networks, are nat-
urally valued and are somehow arbitrarily transformed to a binary graph. This
transformation sometimes conceals important results [Tykiakanis, Tscharntke and
Lewis (2007)]. Extending binary models and the associated estimation procedures
to valued graphs with specific features allows more complexity, and more relevant
information with it, to be processed while estimating the structure of the network.

We are motivated by the search of a structure in valued graphs describing the
similarity between species within an assemblage according to their biotic inter-
actions. In ecology, an assemblage is defined as a taxonomically related group
of species that occurs in the same geographic area [Ricklefs and Miller (2000)].
The species composing an assemblage usually interact with many species belong-
ing to other assemblages and the nature of these interactions is often very di-
verse (predator–prey interactions, host–parasite interactions, mutualistic interac-
tions, competitive interactions). One of the questions facing ecologists is to under-
stand what determines with whom a species interact. Conventional wisdom is that
within an assemblage, two closely related species should share more interactions
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than two evolutionary distant species because the range of interactions of a species
is constrained by its physiological, morphological and behavioral attributes. In sev-
eral cases, this conventional wisdom is revealed to be true. Phylogenetically related
plant species have been shown to bear similar pathogens and herbivores [Brandle
and Brandl (2006); Gilbert and Webb (2007)] and the diet’s range of predators has
been shown to be phylogenetically constrained [Cattin et al. (2004)]. This tendency
for phylogenetically related species to resemble each other is called phylogenetic
signal [Blomberg and Garland (2002)]. In other cases, no phylogenetic signal was
detected [Rezende et al. (2007); Vacher, Piou and Desprez-Loustau (2008)]. Selec-
tion pressures exerted by the environment might account for this absence: species
have to adapt to varying environments to survive, diverging from close relatives in
their physiology, morphology and behavior, and possibly developing novel inter-
actions [Bersier and Kehrli (2008); Cattin et al. (2004)]. The valued graphs under
study have species as nodes and the number of shared interactions as edges. We use
a mixture model with phylogenetic distance between species as covariate to mea-
sure the strength of the phylogenetic signal. This latter is defined as the decrease in
the number of selected groups due to the inclusion of the covariate. Two different
assemblages are considered. The first assemblage is composed of 51 tree species
occurring in the French forests and the second is composed of 153 parasitic fun-
gal species also occurring in the French forests. The interactions considered are
host–parasite interactions. We expect to find a lower phylogenetic signal in the
host range of parasitic fungal species [Bersier and Kehrli (2008); Rossberg et al.
(2006); Vacher, Piou and Desprez-Loustau (2008)] than in the vulnerability of tree
species to parasites [Brandle and Brandl (2006); Gilbert and Webb (2007); Vacher,
Piou and Desprez-Loustau (2008)].

In this paper we propose an extension to the stochastic block model, introduced
in Fienberg and Wasserman (1981); Fienberg, Meyer and Wasserman (1985);
Nowicki and Snijders (2001), and the methods of Airoldi and Carley (2005) and
Daudin, Picard and Robin (2008), that deals with valued graphs and accounts for
possible covariates. We use a general mixture model describing the connection
intensities between nodes spread among a certain number of classes (Section 2).
A variational EM approach to get an optimal, in a sense to be defined, approxima-
tion of the likelihood is then presented in Section 3. In Section 4 we give a general
estimation algorithm and derive some explicit formulas for the most popular dis-
tributions. The quality of the estimates is studied on synthetic data in Section 5.
Finally, the model is used to elucidate the structure of host–parasite interactions in
forest ecosystems and results are discussed in Section 6.

2. Mixture model. We now present the general extension of SBM to valued
graphs and discuss the two particular modelings used for the tree species and fun-
gal species interaction networks.
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2.1. Model and notation.

Nodes. Consider a graph with n nodes, labeled in {1, . . . , n}. In our model the
nodes are distributed among Q groups so that each node i is associated to a ran-
dom vector Zi = (Zi1, . . . ,ZiQ), with Ziq being 1 if node i belongs to group q

and 0 otherwise. The {Zi} are supposed to be independent identically distributed
observations from a multinomial distribution:

{Zi}i i.i.d. ∼ M(1;α),(2.1)

where α = (α1, . . . , αQ) and
∑

q αq = 1.
Edges. Each edge from a node i to a node j is associated to a random variable

Xij , coding for the strength of the edge. Conditionally to the group of each
node, or equivalently knowing the {Zi}, the edges are supposed to be indepen-
dent. Knowing group q of node i and group � of node j , Xij is distributed as
f (·, θq�) := fq�(·), where fθq�

is a probability distribution known up to a finite-
dimensional parameter θq�:

Xij |i ∈ q, j ∈ � ∼ f (·, θq�) := fq�(·).(2.2)

Up to a relabeling of the classes, the model is identifiable and completely specified
by both the mixture proportions α and the connectivity matrix θ = (θq�)q,�=1,...,Q.
We denote γ = (α, θ) the parameter of the model.

Directed and undirected graphs. This modeling can be applied to both directed
and undirected graphs. In the directed version, the variables Xij and Xji are sup-
posed to be independent conditionally to the groups to which nodes i and j belong.
This hypothesis is not always realistic since, for example, the traffic from i to j

is likely to be correlated to the traffic from j to i. A way to account for such a
dependency is to consider a undirected graph with edges labeled with the bivariate
variables {(Xij ,Xji)}1≤i<j≤n. All the results presented in this paper are valid for
directed graphs. The results for undirected graphs can easily be derived and are
only briefly mentioned.

2.2. Modeling the number of shared hosts/parasites. In our tree interaction
network, each edge is valued with the number of common fungal species two tree
species can host. Our purpose is to understand the structure of this network and
it is natural to model the counts Xij as Poisson distributed. The mixture models
aims at explaining the heterogeneity of the Xij . However, we would also like to
account for some factors that are known to be influential. In our network, we expect
two phylogenetically related tree species i and j to share a high number Xij of
parasitic species. As such, their average number of shared parasitic species E[Xij ]
is expected to decrease with their phylogenetic distance yij . We consider three
alternatives, and compare two of them.
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Poisson mixture (PM): In this mixture, we do not account for the covariates and
Xij only depends on the classes of i and j :

Xij |i ∈ q, j ∈ � ∼ P(λq�).

λq� is then the mean number of common fungal species (or mean interaction)
between a tree species from group q and one from group � and θq� = λq�.

Poisson regression mixture with inhomogeneous effects (PRMI): In this mix-
ture, we account for the covariates via a regression model that is specific to the
classes of i and j :

Xij |i ∈ q, j ∈ � ∼ P(λq�e
β

ᵀ
q�yij ),

where yij is a vector of covariates and θq� = (λq�, βq�).
Poisson regression mixture with homogeneous effects (PRMH): In this mix-

ture, the effect of the covariates does not depend on the classes of i and j :

Xij |i ∈ q, j ∈ � ∼ P(λq�e
βᵀyij ),

θq� = (λq�, β).

We point out that models PRMI and PRMH have different purposes. In PRMI,
the link between the covariates and the edges is locally refined within each class
(q, �), whereas in PRMH, the covariates compete globally with the group structure
found by PM. In PRMH, the mixture looks for remaining structure among the
residuals of the regression model. If the structure was completely explained by
the covariates, the possibly many components found using PM would reduce to a
single component when using PRMH. To a lesser extent, we expect the number of
components to be smaller with PRMH than with PM if the phylogenetic distance
explains part of the structure. As we look for structure beyond the one already
explained by the covariates, we consider only models PM and PRMH.

The same models are used for the fungal species interaction network. In our ex-
amples, data consist in counts, but other types of data can be handled with similar
mixture and/or regression models (see Appendix A.1 for details).

3. Likelihood and variational EM. We now address the estimation of the
parameter γ = (α, θ). We show that the standard maximum likelihood approach
cannot be applied to our model and propose an alternative strategy relying on vari-
ational tools, namely, variational EM.

3.1. Likelihoods. Let X denote the set of all edges, X = {Xij }i,j=1,...,n, and Z
the set of all indicator variables for nodes, Z = {Zi}i=1,...,n. In the mixture model
literature [McLahan and Peel (2000)] (X,Z) is referred to as the complete data
set, while X is referred to as the incomplete data set. The conditional indepen-
dence of the edges knowing Z entails the decomposition log P(Z,X) = log P(Z)+
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log P(X|Z). It then follows from (2.1) and (2.2) that the log-likelihood of the com-
plete data set is

log P(Z,X) = ∑
i

∑
q

Ziq logαq + ∑
i �=j

∑
q,�

ZiqZj� logfq�(Xij ).(3.1)

The likelihood of the incomplete data set can be obtained by summing P(Z,X)

over all possible Z’s: P(X) = ∑
Z P(Z,X). This summation involves Qn terms and

quickly becomes intractable. The popular E–M algorithm [Dempster, Laird and
Rubin (1977)], widely used in mixture problems, allows to maximize log P(X)

without explicitly calculating it. The E-step relies on the calculation of the con-
ditional distribution of Z given X: P(Z|X). Unfortunately, in the case of network
data, the strong dependency between edges makes this calculation untractable.

Undirected graphs. The closed formula (3.1) still holds undirected graphs, re-
placing the sum over i �= j by a sum over i < j . This is also true for equations (3.6)
and (4.3) given below.

3.2. Variational EM. We propose to use an approximate maximum likelihood
strategy based on a variational approach [see Jordan et al. (1999) or the tutorial
by Jaakkola (2000)]. This strategy is also used in Govaert and Nadif (2005) for
a biclustering problem. We consider a lower bound of the log-likelihood of the
incomplete data set

J (RX,γ ) = log P(X;γ ) − KL(RX(·),P(·|X;γ )),(3.2)

where KL denotes the Kullback–Leibler divergence and RX stands for some distri-
bution on Z. Classical properties of the Kullback–Leibler divergence ensure that J
has a unique maximum log P(X;γ ), which is reached for RX(Z) = P(Z|X). In
other words, if P(Z|X;γ ) was tractable, the maximization of J (RX,γ ) with re-
spect to γ would be equivalent to the maximization of log P(X;γ ). In our case,
P(Z|X;γ ) is untractable and we maximize J (RX,γ ) with respect to both RX
and γ . Jaakkola (2000) shows that J (RX,γ ) can be rewritten as

J (RX,γ ) = H(RX) + ∑
Z

RX(Z) log P(X,Z;γ ),(3.3)

where H(·) denotes the entropy of a distribution. The last term of (3.3) can be
deduced from (3.1):∑

Z

RX(Z) log P(X,Z;γ )

(3.4)
= ∑

i

∑
q

ERX(Ziq) logαq + ∑
i �=j

∑
q,�

ERX(ZiqZj�) logfq�(Xij ),

where ERX denotes the expectation with respect to distribution RX. Equation (3.4)
requires only the knowledge of ERX(Ziq) and ERX(ZiqZj�) for all i, j, q, �. By
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contrast, H(RX) requires all order moments of RX and is untractable in general.
Maximization of J (RX,γ ) in RX can not be achieved without some restrictions
on RX. We therefore limit the search to the class of completely factorized distrib-
utions:

RX(Z) = ∏
i

h(Zi ,τ i ),(3.5)

where h denotes the multinomial distribution and τ i stands for a vector of prob-
abilities, τ i = (τi1, . . . , τiQ) (with

∑
q τiq = 1). In particular, ERX(Ziq) = τiq and

ERX(ZiqZj�) = τiqτj�. In addition, the entropy is additive over the coordinates for
factorized distributions, so that H(RX) = ∑

i H(h(·,τ i)) = −∑
i

∑
q τiq log τiq .

Wrapping everything together,

J (RX,γ ) = −∑
i

∑
q

τiq log τiq + ∑
i

∑
q

τiq logαq

(3.6)
+ ∑

i �=j

∑
q,�

τiqτj� logfq�(Xij ).

It is immediate from (3.6) that J (RX,γ ) is tractable for distributions RX of the
form (3.5). The τ i’s must be thought of as variational parameters to be optimized
so that RX(Z) fits P(Z|X;γ ) as well as possible; they depend on the observed data
X. Since RX is restricted to be of the form (3.5), J (RX,γ ) is a lower bound of
log P(X).

Discussion about tighter bounds. A fully factorized RX is only one class of
distributions we can consider. Broader distribution classes should yield tighter
bound of J (RX,γ ). Unfortunately, for more general distributions, the entropy
H(RX) may not have a simple expression anymore rendering the exact calculation
of J (RX,γ ) untractable: better accuracy is achieved at the expense of tractability.
A solution to this issue is Bethe free energy [Yedidia, Freeman and Weiss (2005)].
We did not consider it because it relies on an approximation of H(RX) which dis-
rupts the well-behaved properties of J (RX,γ ).

Another approach comes from Leisink and Kappen (2001) and Mariadassou
(2006). Starting from an exponential inequality, they emphasize the strong con-
nection between fully factorized RX and first order linear approximation of the
exponential function. Using a higher approximation of the exponential and some
distribution SX in addition to RX, it is possible to derive an even tighter bound
of J (RX,γ ). However, the estimation algorithm is then of complexity O(n6Q6)

instead of O(n2Q2) for a gain which has the same order of magnitude as the com-
puter numerical precision.

4. Parameter estimation. We present here the two-steps algorithm used for
the parameter estimation.
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4.1. Estimation algorithm. As explained in Section 3.2, the maximum likeli-
hood estimator of γ is

γ̂ ML = arg max
γ

log P(X;γ ) = arg max
γ

max
RX

J (RX,γ ).

In the variational framework, we restrict the last optimization problem to factorized
distributions. The estimate we propose is hence

γ̂ = arg max
γ

max
RX factorized

J (RX,γ ).

The simultaneous optimization with respect to both RX and γ is still too diffi-
cult, so we adopt the following iterative strategy. Denoting by R

(n)
X and γ (n) the

estimates after n steps, we compute⎧⎪⎪⎨
⎪⎪⎩

R
(n+1)
X = arg max

RX factorized
J

(
RX,γ (n)

)
,

γ (n+1) = arg max
γ

J
(
R

(n+1)
X ,γ

)
.

(4.1)

The next two sections are dedicated to each of these steps.

Initialization step. The optimization procedure (4.1) only ensures the conver-
gence toward a local optimum, so the choice of the starting point for γ or RX
is crucial to avoid local optima. This choice is difficult, but, to our experience,
hierarchical clustering seems to be a good strategy to get an initial value for RX.

4.2. Optimal approximate conditional distribution RX. We consider here the
optimization of J with respect to RX. For a given value of γ , we denote τ̂ the
variational parameter defining the distribution R̂X = arg maxRX factorized J (RX,γ ).
This amounts to maximimizing J (RX,γ ), given in (3.6), under the condition that,
for all i, the τiq ’s must sum to 1. The derivative of J (RX,γ ) with respect to τiq is

− log τiq − 1 + logαq + ∑
j �=i

∑
�

τj�[logfq�(Xij ) + logf�q(Xji)] + Li,

where Li denotes the ith Lagrange multiplier. It results from the previous equation
that the optimal variational parameter τ̂ satisfies the fixed point relation

τ̂iq ∝ αq

∏
j �=i

∏
�

[fq�(Xij )f�q(Xji)]τ̂j� .(4.2)

The fixed point relation (4.2) can be related to a mean field approximation [see
Jaakkola (2000)]. We get τ̂ simply by iterating this relation until convergence.

Undirected graphs. For a undirected graph, τ̂ satisfies

τ̂iq ∝ αq

∏
j �=i

∏
�

[fq�(Xij )]τ̂j� .
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4.3. Parameter estimates. We now have to maximize J with respect to γ =
(α, θ) for a given distribution RX. Again, this amounts to maximizing J (RX,γ ),
given in (3.6), under the condition that

∑
q αq = 1. Straightforward calculations

show that the optimal α and θ are given by

α̂q = 1

n

∑
i

τiq, θ̂q� = arg max
θ

∑
i �=j

τiqτj� logf (Xij ; θ).(4.3)

Poisson models. Poisson models are of particular interest for our interaction
networks. The optimal λq� for model PM presented in Section 2.2 is straightfor-
ward:

λ̂q� = ∑
i �=j

τiqτj�Xij

/∑
i �=j

τiqτj�.

For models PRMH and PRMI presented in the same section, there is no closed for-
mula for λq�, βq� or β . However, since the Poisson regression model belongs to the
exponential family, J is only a weighted version of the log-likelihoods of the cor-
responding generalized linear model. As such, standard optimization procedures
can be used.

Exponential family. The optimal θ is not explicit in the general case, but has a
simpler form if the distribution f belongs to the exponential family. Namely, if f

belongs to an exponential family with natural parameter θ ,

f (x; θ) = exp [�(x)′θ − A(θ)].
According to (4.3), we look for θ̂ = arg maxθ

∑
i �=j τiqτj��(Xij )

′θ − A(θ). Max-
imizing this quantity in θ yields∑

i �=j

τiqτj��(Xij ) − ∇A(θ) = 0.

If ∇A is invertible, the optimal θ is

θ̂ = (∇A)−1
[∑
i �=j

τiqτj��(Xij )

]
.(4.4)

4.4. Choice of the number of groups. In practice, the number of groups is un-
known and should be estimated. Many criterion have been proposed to select the
dimensionality Q of the latent space, ranging from AIC to ICL. AIC, BIC and
their variants [Burnham and Anderson (1998)] are based on computing the like-
lihood of the observed data P(X|mQ) and penalizing it with some function of Q.
But the use of variational EM is precisely to avoid computation of P(X|mQ),
which is untractable. Given a prior distribution P(mQ) over models, and a prior
distribution P(γ |mQ) for each model, variational Bayes [Beal and Ghahramani
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(2003)] works by selecting the model with maximum posterior P(mQ|X). Esti-
mation of P(X|mQ) is then performed using variational EM and no penalization
is required, as complex models are already penalized by diffuse prior P(γ |mQ).
Extension of Deviance Information Criterion (DIC) to finite mixture distributions
via variational approximations [McGrory and Titterington (2007)] is even more
straightforward: choosing Q∗ larger than the expected number of components and
running the algorithm, extraneous classes become void as the algorithm converges
and the selected number of groups is just the number of nonempty classes. In the
context of unknown assignments, Biernacki, Celeux and Govaert (2000) proposed
the Integrated Classification Likelihood (ICL), which is an approximation to the
complete data likelihood P(X,Z|mQ). Variational Bayes, BIC and ICL can all be
seen as approximations to Bayes factors. Whereas Variational Bayes integrates
out the uncertainty about the parameter and the assignment of nodes to groups,
ICL replaces them by a point estimate, computed thanks to variational EM. Tra-
ditional model selection essentially involves a trade-off between goodness of fit
and model complexity, whereas ICL values both goodness of fit and classification
sharpness.

Nowicki and Snijders (2001) do not propose any criterion to select the num-
ber of groups. Hofman and Wiggins (2008) use McGrory’s method but in a very
specific case of the Stochastic Block Model. They also give no clue as to how to
decide that the algorithm has converged enough. Airoldi et al. (2008) use either
a modification to BIC (for small size networks) or cross-validation (for large size
networks) to select the number of groups. Daudin, Picard and Robin (2008) use
a modification to ICL criterion. Following along the same line as Daudin, Picard
and Robin (2008), we use a modification of ICL adapted to valued graphs to select
the number of classes.

ICL criterion: For a model mQ with Q classes where θ involves PQ independent
parameters, the ICL criterion is

ICL(mQ) = max
γ

log P(X, Z̃|γ ,mQ)

− 1

2
{PQ log[n(n − 1)] − (Q − 1) log(n)},

where the missing data Z are replaced by their prediction Z̃.

Note that the penalty term −1
2{PQ log[n(n − 1)] − (Q − 1) log(n)} is similar to

the one of BIC, where the log term refers to number of data. In the case of graphs,
the number of data is n (i.e., the number of nodes) for the vector of proportions
α (Q − 1 independent parameters), whereas it is n(n − 1) (i.e., the number of
edges) for parameter θ (PQ independent parameters). For the models PM, PRMI
and PRMH (detailed in Section 2.2), PQ is respectively Q(Q + 1)/2, Q(Q + 1)

and 1 + Q(Q + 1)/2.
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5. Simulation study.

5.1. Quality of the estimates.

Simulation parameters. We considered undirected networks of size n = 100
and 500 with Q = 3 classes. To study balanced and unbalanced proportions, we
set αq ∝ aq , with a = 1,0.5,0.2. a = 1 gives uniform proportions, while a = 0.2
gives very unbalanced proportions: α = (80.6%,16.1%,3.3%). We finally con-
sidered symmetric connection intensities λpq , setting λpp = λ′ for all p and
λpq = λ′γ for p �= q . Parameter γ controls the difference between within class
and between class connection intensities (γ = 0.1, 0.5, 0.9, 1.5), while λ′ is set so
that the mean connection intensity λ (λ = 2,5) depends neither on γ nor a. γ close
to one makes the distinction between the classes difficult. γ larger than one makes
the within class connectivities less intense than the between ones. We expect the
fitting to be rather easy for the combination {n = 500, a = 1, λ = 5, γ = 0.1} and
rather difficult for {n = 100, a = 0.2, λ = 2, γ = 0.9}.

Simulations and computations. For each combination of the parameters, we
simulated S = 100 random graphs according to the corresponding mixture model.
We fitted the parameters using the algorithm described in Section 4. To solve the
identifiability problem of the classes, we systematically ordered them in descend-
ing estimated proportion order: α̂1 ≥ α̂2 ≥ α̂3. For each parameter, we calculated
the estimated Root Mean Squared Error (RMSE):

RMSE(α̂p) =
√√√√ 1

S

S∑
s=1

(
α̂p

(s) − αp

)2
,

RMSE(̂λpq) =
√√√√ 1

S

S∑
s=1

(
λ̂pq

(s) − λpq

)2
,

where the superscript (s) labels the estimates obtained in simulation s. We also
calculated the mean posterior entropy

H = 1

S

∑
s

(
−∑

i

∑
q

τ
(s)
iq ln τ

(s)
iq

)
,

which gives us the degree of uncertainty of the classification.

Results. Figure 1 (resp. 2) gives the RMSE for the proportion αq (resp. con-
nection intensities λpq ). As expected, the RMSE is lower when n is larger. The
parameters affecting the RMSE are mainly a and γ , whereas λ has nearly no ef-
fect. The departures observed for α1 and α3 in the balanced case (a = 1.0) are due
to the systematic reordering of the proportions.
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FIG. 1. RMSE of the estimates α̂q . The x-axis refers to α1, α2, α3. Top: n = 100, bottom: n = 500,
from left to right: a = 1,0.5,0.2. Solid line: λ = 5, dashed line: λ = 2. Symbols depend on γ : ◦ = 0.1,
� = 0.5, �= 0.9, ∗ = 1.5.

Since the graph is undirected, λpq = λqp , so only nonredundant parameters are
considered in Figure 2. The overall quality of the estimates is satisfying, especially
for the diagonal terms λqq . The within intensity parameter of the smallest class
λ33 is the most difficult to estimate. The worst case corresponds to a small graph
(n = 100) with very unbalanced classes (a = 0.2) for parameter λ12. In this case,
the algorithm is unable to distinguish the two larger classes (1 and 2), so that
the estimates extra-diagonal term λ̂12 is close to the diagonal ones λ̂11 and λ̂22,
whereas its true value is up to ten times smaller.

Figure 3 gives the mean entropy. Not surprisingly, the most influential parame-
ter is γ : when γ is close to 1, the classes are almost indistinguishable. For small
graphs (n = 100), the mean intensity λ has almost no effect. Because of the iden-
tifiability problem already mentioned, we did not consider the classification error
rate.

5.2. Model selection. We considered a undirected graph of size n = 50,100,

500 and 1000 with Q	 = 3 classes. We considered the combination {a = 0.5,

λ = 2, γ = 0.5} which turned out to be a medium case (see Section 5.1) and com-



728 M. MARIADASSOU, S. ROBIN AND C. VACHER

FIG. 2. RMSE of the estimates λ̂pq . The x-axis refers to λ11, λ22, λ33, λ12, λ13, λ23. Same legend
as Figure 1.

puted ICL for Q ranging from 1 to 10 (from 1 to 5 for n = 1000) before selecting
the Q maximizing ICL. We repeated this for S = 100 simulations.

Figure 4 gives ICL as a function of Q, while Table 1 returns the frequency
with which each Q is selected. As soon as n is larger than 100, ICL almost al-
ways selects the correct number of classes; for smaller graphs (n = 50), it tends to
underestimate it. The proposed criterion is thus highly efficient.

6. Uncovering the structure of host–parasite interactions in forest ecosys-
tems. Here we use mixture models to highlight the factors governing with whom
a species interact in an ecosystem. The factors which may account for species inter-
actions are introduced as covariates in the mixture models. The explanatory power
of each factor is measured as the decrease in the number of groups selected. Our
study focuses on host–parasite interactions in forest ecosystems. We address the
two following questions: (1) Is similarity in the parasite assemblages of two tree
species explained by their phylogenetic relatedness rather than by the degree of
overlap of their distributional range? (2) Is similarity in the host range of two par-
asitic fungal species explained by their phylogenetic relatedness rather than their
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FIG. 3. Mean (normalized) entropy H/n as a function of γ . Top: n = 100, bottom: n = 500, from
left to right: a = 1,0.5,0.2. Solid line: λ = 5, dashed line: λ = 2.

common nutritional strategy? The explanatory power of phylogenetic relatedness
is subsequently called phylogenetic signal, as in the ecological literature [Rezende
et al. (2007); Vacher, Piou and Desprez-Loustau (2008)].

6.1. Data.

Host–parasite interaction records. We considered two undirected, valued net-
works having parasitic fungal species (n = 154) and tree species (n = 51) as nodes,
respectively. Edges strength was defined as the number of shared host species
and the number of shared parasitic species, respectively [Mariadassou, Robin and
Vacher (2010)].

The methods used for collecting data on tree–fungus interactions are fully de-
scribed in Vacher, Piou and Desprez-Loustau (2008). Fungal species names were
checked since then in the Index Fungorum database (www.indexfungorum.org):
17 names were updated, yielding to 3 new species synonymies. The fusion of syn-
onym species accounts for the lower number of fungal species in the present study
than in the original publication.

http://www.indexfungorum.org
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(a) (b)

(c) (d)

FIG. 4. Mean ICL and 90% confidence interval as a function of Q. (a) n = 50, (b) n = 100,
(c) n = 500, (d) n = 1000.

Phylogenetic relatedness between species. In order to verify the existence of
a phylogenetic signal in the parasite assemblages of tree species, we estimated
genetic distances between all pairs of tree species. The maximally resolved seed
plant tree of the software Phylomatic2 [Webb and Donoghue (2005)] was used
to produce a phylogenetic tree for the 51 tree species included in our study.
Then, pairwise genetic distances (in million years) were extracted by using the
cophenetic.phylo function of the R ape package [Paradis, Claude and Strimmer

TABLE 1
Frequency (in %) at which Q is selected for various sizes n

n

Q 50 100 500 1000

2 82 7 0 0
3 17 90 100 100
4 1 3 0 0
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(2004)]. Because the phylogenetic tree was loosely resolved for gymnosperms, we
also used taxonomic distances to estimate phylogenetic relatedness between tree
species. Since all tree species included in the study belong to the phylum Strep-
tophyta, we used the finer taxonomic ranks of class, order, family and genus to
calculate pairwise taxonomic distances. Based on the NCBI Taxonomy Browser
(www.ncbi.nlm.nih.gov/Taxonomy/), we found that the species are evenly distrib-
uted into two taxonomic classes (Magnoliophyta and Conipherophyta) and further
subdivided in 8 orders, 13 families and 26 genera. Following Poulin (2005), we
considered that the taxonomic distance is equal to 0 if species are the same, 1 if
they belong to the same genus, 2 to the same family, 3 to the same order, 4 to the
same taxonomic class and 5 if their only common point lies in belonging to the
phylum Streptophyta.

In order to investigate the existence of a phylogenetic signal in the host range
of parasitic fungal species, we estimated taxonomic distances between all pairs
of fungal species. Pairwise genetic distances could not be calculated because ge-
netic data were not available for all the species. Since the 153 fungal species at
hand span a wider portion of the tree of life than the tree species, we had to use
the higher order rank of kingdom. The taxonomic distance for fungal species thus
ranges from 0 to 6 (kingdom level) when compared to 0 to 5 for trees. The tax-
onomy was retrieved from Index Fungorum (www.indexfungorum.org). All fungal
species included in the study belong to the Fungi kingdom, are divided in two phyla
(Ascomycota and Basidiomycota) and further subdivided in 9 taxonomic classes,
21 orders, 48 families and 107 genera. When pairs included a species whose tax-
onomic is uncertain for a given taxonomic rank, this rank was skipped and upper
ranks were used to estimate distance.

Other explanatory factors. Other factors than phylogenetic relatedness may
account for pairwise similarities in parasite assemblages between tree species.
In particular, two tree species having overlapping distributional range are ex-
posed to similar pools of parasitic species and may therefore share more para-
sitic species than two tree species with nonoverlapping distributions [Brandle and
Brandl (2006)]. We tested this hypothesis by calculating the geographical distance
between all pairs of tree species. The geographical distance is the Jaccard distance
[Jaccard (1901)] computed on the profiles of presence/absence in 309 geographical
units covering the entire French territory.

In the case of fungal species, other factors may also account for similarity in
host range. Here we investigated whether fungal species having similar nutritional
strategies also have similar host ranges. Fungal species were classified into ten nu-
tritional strategies based on their parasitic lifestyle (biotroph or necrotroph) and
on the plant organs and tissues attacked. Five strategies (strict foliar necrotroph
parasites, canker agents, stem decay fungi, obligate biotroph parasites and root
decay fungi) accounted for 87% of the fungal species. We considered that nutri-
tional distance between two species equals one if the strategies are the same and 0
otherwise.

http://www.ncbi.nlm.nih.gov/Taxonomy/
http://www.indexfungorum.org


732 M. MARIADASSOU, S. ROBIN AND C. VACHER

6.2. Identification of groups of species sharing similar interactions.

Model. For both networks, we used the mixture model to define groups of
tree species and fungal species having similar interactions We assumed that, in
each network, the edge intensities were Poisson distributed. For both networks, we
considered the PM and PRMH models (see Section 2.2) using pairwise distance
between species (genetic, taxonomic, geographic or nutritional) as a covariate.

PM model: No covariate. In the absence of covariates, the ICL criterion se-
lected 7 groups of tree species. Two groups of tree species (T2 and T5) were exclu-
sively composed of species belonging to the Magnoliophyta, whereas three other
groups (T1, T3 and T4) were exclusively composed of species belonging to the
Conipherophyta. The two last groups (T6 and T7) were mixed (Table 2). Accord-
ing to the mean number of interactions per species and the parameters estimates
of the model (Table 2), they were composed of tree species having few parasitic
species and sharing few of them with other tree species.

TABLE 2
Top: Size, mean number of interactions and Magnoliophyta content for each

group found with PM. Bottom: Parameter estimates for the tree network:
λq� = mean number of shared parasitic species, αq = group proportion (%)

with PM (no covariate)

̂λq� T1 T2 T3 T4 T5 T6 T7

T1 14.46 4.19 5.99 7.67 2.44 0.13 1.43
T2 4.19 14.13 0.68 2.79 4.84 0.53 1.54
T3 5.99 0.68 3.19 4.10 0.66 0.02 0.69
T4 7.67 2.79 4.10 7.42 2.57 0.04 1.05
T5 2.44 4.84 0.66 2.57 3.64 0.23 0.83
T6 0.13 0.53 0.02 0.04 0.23 0.04 0.06
T7 1.43 1.54 0.69 1.05 0.83 0.06 0.27

α̂q 7.8 7.8 13.7 13.7 15.7 19.6 21.6
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It is noteworthy that group T2 was composed of four species belonging to the
same order (Fagales) and also to the same family (Fagaceae). Groups T1, T3 and
T4 were also composed of species belonging to the same family (Pinaceae) since
the only three coniferous species belonging to another family were classified in
groups T6 and T7. These results confirm that two plant species with a similar
evolutionary history are likely to share the same set of parasitic species [Brandle
and Brandl (2006), Gilbert and Webb (2007), Vacher, Piou and Desprez-Loustau
(2008)].

PRMH model: Accounting for phylogenetic relatedness. When accounting for
taxonomy, ICL selected only 4 groups of tree species. The estimated regression
coefficient was β̂ = −0.317, which means that, for the mean taxonomic distance
y = 3.82, the mean connexion intensity is reduced of 70% (eβ̂y = 0.298). The
cross classification table (Table 3) shows that the taxonomic distance reduces the
number of class by merging groups T1 and T2 with most of the trees of T4 and
T5. T’3 essentially consists of T6, T’1 of T7 and T’2 is made of trees from T3
completed with leftovers from other classes. Interestingly and unlike the groups
obtained with no covariates, no group has species belonging exclusively to one or
the other of the taxonomic classes (Magnoliophyta or Conipherophyta): the asso-
ciation between group of trees and taxonomy was cropped out by the covariate
(Table 4). The same results hold when using the genetic distance as a covariate
instead of the taxonomic distance (results not shown).

Therefore, the inclusion of taxonomic (or genetic) distance as a covariate shows
that the phylogenetic relatedness between tree species accounts for a large part of
the structure of tree–parasitic fungus interactions in forest ecosystems, but not for
all the structure. Indeed, even after controlling for the evolutionary history through
the taxonomic (or genetic) distance, ICL still finds 4 groups of trees, whereas we
would expect only one group if the phylogeny was the sole source of structure.
Below we investigate whether the distributional overlap between tree species is
another source of structure.

TABLE 3
Cross classification of the groups of tree selected found by PM and

PRMH (with taxonomic variate as a covariate)

T’1 T’2 T’3 T’4

T1 0 0 0 4
T2 0 0 0 4
T3 2 5 0 0
T4 0 2 0 5
T5 0 2 0 6
T6 0 0 10 0
T7 7 2 2 0
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TABLE 4
Top: Size, mean number of interactions (scaled by ×3) and Magnoliophyta
content for each group found with PRMH. Bottom: Parameter estimates for

the tree network: λq� = mean number of shared parasitic species, αq = group
proportion (%) with PRMH (with covariate), β̂ = covariate regression

coefficient

̂λq� T’1 T’2 T’3 T’4

T’1 0.75 2.46 0.40 3.77
T’2 2.46 4.30 0.52 8.77
T’3 0.40 0.52 0.080 1.05
T’4 3.77 8.77 1.05 14.22

α̂q 17.7 21.5 23.5 37.3

β̂ −0.317

PRMH model: Accounting for distributional overlap. In contrast with the tax-
onomic and genetic distance, the geographical distance between species does not
reduce the number of groups (not shown). This result suggests that the current dis-
tributional overlap between tree species does not account for the similarity in their
parasite assemblages. This result is opposite to the conventional wisdom in the
field of community ecology, which favors ecological processes, taking place over
short time scale, over evolutionary processes, taking place over longer time scales,
as the main source of biotic interaction diversity. Our findings point out that the
relative importance of these processes might be the other way round.

6.3. Factors accounting for the host ranges of parasitic fungal species.

PM model: No covariate. The ICL criterion selected 9 groups of parasitic fun-
gal species. The estimates intensities λ̂q� range from almost zero (1.4 × 10−3) to
12.1, while the group proportions α̂q range from 1.3% to 40.2% (Table 7).
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PRMH model: Accounting for phylogenetic relatedness. Accounting for tax-
onomic distance does not reduce the number of groups (not shown), indicating a
lack of phylogenetic signal in the host range of fungal species. These results paral-
lel those obtained with another clustering approach [Newman (2004)] for the same
tree–fungus network [Vacher, Piou and Desprez-Loustau (2008)]. They are con-
gruent with the results obtained for other bipartite networks since asymmetries in
the phylogenetic signal have been found in numerous plant–animal mutualistic net-
works [Rezende et al. (2007)] and in a host–parasite network between leaf-miner
moths and parasitoid insects [Ives and Godfray (2006)]. In the latter case, the au-
thors also observed a lack of signal through the parasite phylogeny. In the case of
the tree–fungus network, we proposed that the very early divergence of the major
fungal phyla may account for the asymmetric influence of past evolutionary history
[Vacher, Piou and Desprez-Loustau (2008)]: the lack of signal through the fungal
phylogeny may be the result of parasitic fungal species splitting into two groups
when the Conipherophyta and the Magnoliophyta diverged (both groups contain-
ing Ascomycota and Basidiomycota species) and the subsequent coevolution of
each set of fungal species with its plant phylum. Stronger selection pressures on
parasitic species than on host species might also account for the asymmetry of the
signal [Bersier and Kehrli (2008); Rossberg et al. (2006)].

PRMH model: Accounting for nutritional strategies. Fungal Correlation
analysis showed an association between the 9 groups selected with the PM model
and the nutritional type. In particular, two groups of fungal species (F2 and F3, see
Appendix A.3) contained a high proportion of root decay fungi (100% and 75%,
respectively). However, taking the nutritional strategy as a covariate does not re-
duce the number of groups, indicating the lack of ‘nutritional signal’ in the host
range of parasitic fungal species.

6.4. Goodness of fit. Since no covariate decreases the number of mixture com-
ponents in the fungus interaction network, we assessed goodness of fit only for the
tree interaction network. The goodness is assessed in two ways: in terms of like-
lihood with the ICL criterion and in terms of predictive power for the strength of
an interaction. The ICL criterion is −2876.6 for the base model with no class. It
jumps to −1565.6 (
ICL = 1212.8) when allowing a mixture structure (with 7
classes). It jumps again to −1449.6 (
ICL = 116) when adding the taxonomic
distance as a covariate in the model (with 4 classes). Interestingly, adding a co-
variate to the 4 class mixture model provides a gain in goodness of fit twice as big
as the gain of adding three additional classes (
ICL = 214.2 against 98.2). But
adding a covariate only requires one additional parameter (β), against 21 for the
three additional classes.

We also assessed goodness of fit in terms of predictive power. For the PRMH
model with 4 classes and taxonomic distance as a covariate, we can predict both the
weighted degree Ki = ∑

j �=i Xij of node i as K̂i = ∑
j

∑
q,� τiqτjlλqle

βᵀyij and
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FIG. 5. Left: Observed versus predicted graph of the weighted degree Ki of node i (R2 = 0.94).
Right: Observed versus predicted graph of single edge values Xij (R2 = 0.56). Black: regression
line; red: Poisson 95% confidence interval.

the value Xij of a single edge fungal as X̂ij = ∑
q,� τiqτj�λqle

βᵀyij . The prediction
of Ki using K̂i is pretty accurate (Figure 5 left, R2 = 0.94). The prediction of Xij

using X̂ij is less accurate, but the confidence region is still pretty good (Figure 5
right, R2 = 0.56).

6.5. Conclusion. The structure of host–parasite interactions in forest ecosys-
tems is a complex one. Some tree species share more parasites than others and
this variability is well captured by a mixture model. However and as shown in Ta-
ble 5, the naive mixture model deceptively captures part of the variability readily
explained by other factors, such as the phylogenetic relatedness (measured either
by taxonomic or genetic distance) and artificially increases the number of groups
in the mixture. Accounting for relevant factors decreases the number of groups se-
lected. Using group reduction as a yardstick (Table 5), we conclude that similarity
in the parasite assemblages of tree species is explained by their phylogenetic relat-
edness rather than their distributional overlap, indicating the importance of evolu-
tionary processes for explaining the current patterns of inter-specific interactions.

TABLE 5
Tree interaction network. Effect of different factors on the similarity in parasite assemblages

between tree species. 
ICL is the gain (in log-likelihood units) obtained when switching from the
best PM model to the best PRMH model for a given covariate

Factor Covariate Nb. groups (PM) Nb. groups (PRMH) 	ICL

Phylogenetic Taxon. dist. 7 4 116.0
relatedness Genetic dist. 7 4 94.8

Distributional Jaccard dist. 7 7 −8.6
overlap
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Our study is however inconclusive on the relative contribution of phylogenetic re-
latedness and nutritional strategy to the similarity in the host ranges of parasitic
fungal species parasites of two parasitic fungus (Table 8 in Appendix A.3). In ei-
ther case, since the PRMH model still finds 4 (resp. 9) classes for the tree species
(resp. fungal species) interaction network, a significant fraction of the variability
remains unexplained by our predictors.

APPENDIX

A.1. Other mixture models. We examine here some other classical distribu-
tions which can be used in our framework.

Bernoulli. In some situations such as co-authorship or social networks, the only
available information is the presence or absence of the edge. Xij is then sup-
posed to be Bernoulli distributed:

Xij |i ∈ q, j ∈ � ∼ B(πq�).

It is equivalent to the stochastic block model of Nowicki and Snijders (2001) or
Daudin, Picard and Robin (2008).

Multinomial. In a social network, Xij may specify the nature of the relationship:
colleague, family, friend, etc. The Xij ’s can then be modeled by multinomial
variables:

Xij |i ∈ q, j ∈ � ∼ M(1;pq�).

The parameter θq� to estimate is the vector of probability pq� = (p1
q�, . . . , p

m
q�),

m being the number of possible labels.
In directed random graphs, this setting allows to account for some dependency
between symmetric edges Xij and Xji . We only need to consider the equivalent
undirected graphs where edge (i, j) is labeled with the couple (Xij ,Xji). m = 4
different labels can the be observed: (0,0) if no edge exists, (1,0) for i → j ,
(1,1) for i ← j and (1,1) for i ↔ j .

Gaussian. Traffic networks describe the intensity of the traffic between nodes.
The airport network is a typical example where the edges are valued according
to the number of passengers traveling from airport i to airport j . The intensity
Xij of the traffic can be assumed to be Gaussian:

Xij |i ∈ q, j ∈ � ∼ N (μq�, σ
2
q�), θq� = (μq�, σ

2
q�).

Bivariate Gaussian. The correlation between symmetric edges Xij and Xji can
be accounted for, considering the undirected valued graph where edge (i, j)

is valued by (Xij ,Xji), which is assumed to be Gaussian. Denoting Xij =
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[XijXji]′,
Xij |i ∈ q, j ∈ � ∼ N (μq�,
q�), θq� = (μq�,
q�).

Linear regression. When covariates are available, the linear model, either Gauss-
ian for real valued edges or generalized for integer valued (e.g., Poisson or
Bernoulli) allows to include them. For example, for Gaussian valued edges,
denoting yij the p × 1 vector of covariates describing edge (i, j), we set

Xij |i ∈ q, j ∈ � ∼ N (β
ᵀ
q�.yij , σ

2
q�).

Simple linear regression. A case of specific interest for plant ecology is the sim-
ple linear homoskedastic regression with group specific intercept aq� but con-
stant regression coefficient b. It is particularly useful when controlling for the
effect of geography, which is assumed to be the same for all groups of plants.
We then set

Xij |i ∈ q, j ∈ � ∼ N (aq� + byij , σ
2).

The model can again be extended to Poisson or Bernoulli valued edges using
adequate link function.

A.2. Parameter estimates for other distributions. Table 6 gives the para-
meter estimates for the model listed in Section A.1. The estimates of the mean
parameter for Gaussian (μq�) distributions are the same as the estimate of the
probability πq� in the Bernoulli case. The results displayed in this table are all
straightforward. Note that all estimates are weighted versions of the intuitive
ones.

TABLE 6
Estimates of θq� for some classical distributions. Notation is defined in Section A.1. κq� stands for
1/

∑
i �=j τiqτj�. Wq� is the diagonal matrix with diagonal term τiqτj�. # param. is the number of

independent parameters in the case on directed graph, except for the bivariate Gaussian only
defined for a nonoriented graph

Distribution Estimate # param.

Bernoulli π̂q� = κq�
∑

i �=j τiqτj�Xij Q2

Multinomial p̂k
q� = κq�

∑
i �=j τiqτj�I(Xij = k) (m − 1)Q2

Gaussian σ̂ 2
q� = κq�

∑
i �=j τiqτj�(Xij − μ̂q�)

2 Q2

Bivariate Gaussian μ̂q� = κq�
∑

i �=j τiqτj�Xij Q(Q + 1)


̂q� = κq�
∑

i �=j τiqτj�(Xij − μ̂q�)(Xij − μ̂q�)
′ 3

2Q(Q + 1)

Linear regression β̂q� = (Y′W−1
q� Y)−1Y′W−1

q� X pQ2

σ̂ 2
q� = κq�

∑
i �=j τiqτj�(Xij − y′

ij β̂q�)
2 Q2

Simple regression b̂ =
∑

i �=j

∑
q,� τiq τj�(Xij −Xql)(yij −ȳql )∑

i �=j

∑
q,� τiq τj�(yij −yql )

2 1

α̂ql = Xq� − b̂yql Q2

σ̂ 2 = 1
n

∑
i �=j

∑
q,� τiqτj�(Xij − α̂q�yij )2 1
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A.3. Parameter estimates for the fungus interaction network.

TABLE 7
Top: Size, mean number of interactions (λ̄) for each group found with PM. Bottom: Parameter

estimates for the fungus network: λq� = mean number of shared host species, αq = group
proportion (%) with PM (no covariate). * stand for λq� = lower than 5e–3

F1 F2 F3 F4 F5 F6 F7 F8 F9

Size 2 3 5 6 7 19 24 26 62
λ̄ 1.68 1.95 1.65 0.59 0.85 0.57 0.50 0.20 0.12

λ̂q�

F1 5.87 7.43 7.64 2.24 3.26 2.88 1.70 0.96 0.47
F2 7.43 9.88 7.29 3.59 4.45 1.54 2.77 1.03 0.71
F3 7.64 7.29 12.1 4.18 1.54 3.59 0.31 1.47 0.09
F4 2.24 3.59 4.18 2.92 0.50 0.47 0.05 0.81 0.03
F5 3.26 4.45 1.54 0.50 2.66 0.41 1.91 0.17 0.38
F6 2.88 1.54 3.59 0.47 0.41 2.35 ∗ 0.32 ∗
F7 1.70 2.77 0.31 0.05 1.91 ∗ 1.61 0.01 0.18
F8 0.96 1.03 1.47 0.81 0.17 0.38 0.01 0.25 ∗
F9 0.47 0.71 0.09 0.03 0.38 ∗ 0.18 ∗ 0.13

α̂q 1.3 2.0 3.3 3.9 4.6 12 16 17 40

TABLE 8
Fungus interaction network. Effect of different factors on the similarity of host ranges between

fungal species. 
ICL is the gain (in log-likelihood units) obtained when switching from the best PM
model to the best PRMH model for a given covariate

Factor Covariate Nb. of groups (PM) Nb. of groups (PRMH) 	ICL

Phylogenetic Taxonomic distance 9 9 NA
relatedness

Nutritional Trivial distance 9 9 NA
strategy
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SUPPLEMENTARY MATERIAL

Interaction network between tree and fungal species (DOI: 10.1214/07-
AOAS361SUPP; .csv). This file contains:

http://dx.doi.org/10.1214/07-AOAS361SUPP
http://dx.doi.org/10.1214/07-AOAS361SUPP


740 M. MARIADASSOU, S. ROBIN AND C. VACHER

• The adjacency matrix of interactions between tree and fungal species.
• The list of the tree species.
• The list of the fungal species.
• The matrix of genetic distances between tree species.
• The matrix of geographical distances between tree species.
• The matrix of taxonomic distances between fungal species.
• The matrix of nutritional type of the fungal species.
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