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Abstract
Background: In individually dye-balanced microarray designs, each biological sample is hybridized
on two different slides, once with Cy3 and once with Cy5. While this strategy ensures an automatic
correction of the gene-specific labelling bias, it also induces dependencies between log-ratio
measurements that must be taken into account in the statistical analysis.

Results: We present two original statistical procedures for the statistical analysis of individually
balanced designs. These procedures are compared with the usual ML and REML mixed model
procedures proposed in most statistical toolboxes, on both simulated and real data.

Conclusion: The UP procedure we propose as an alternative to usual mixed model procedures
is more efficient and significantly faster to compute. This result provides some useful guidelines for
the analysis of complex designs.

Background
DNA microarray technology is a high throughput tech-
nique by which the expression of the whole genome is
studied in a single experiment. Experiments must be well
organized and design issues are crucial, see [1,2]. In dual
label experiments Cy3 and Cy5 are used as fluorescent
dyes allowing to compare two RNA samples on the same
slide. It is now well known that there exists a differential
effect of the two dyes [3,4], that can be gene-specific. An
efficient way to remove this technical artifact is to use bal-
anced reverse dye designs [5]. Balanced reverse dye
designs can be divided into three classes along a line of
strengthening balancing constraints:

1. Balanced reverse dyes for which each biological sample
is hybridized only one time and therefore present with
only one dye, on only one array (Table 1.1). These designs
are globally balanced but not individually balanced.

2. Individually-balanced design for which each biological
sample is divided into two parts, one hybridized with Cy3
on one array and the other with Cy5 on another array.
Each biological sample is hybridized exactly two times
(Table 1.2).

3. Dye-swaps for which each couple of biological samples
from two conditions are hybridized on two arrays with
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reverse dyes. Dye-swaps are constrained to be couple-bal-
anced (Table 1.3).

Dye-swap design is mostly used when the technical error
is higher than the biological variability, either to reduce
the technical variance, or when gene-specific dye-bias is of
concern [6,7]. When the biological variability is greater
than the technical error, globally balanced designs are statis-
tically more efficient [5]. However the number of biolog-
ical samples is sometimes limited, therefore this design is
not always possible in practice.

The term Dye-switch is used for the first and sometimes
also for the second classes. Dye-switch designs of the sec-
ond class are sometimes described and proposed in
papers dealing with microarrays experiments. For exam-
ple loop designs are often members of this class [8,9],
although the distinction between the first and the second
class is not always clearly made.

A major point to notice is that the statistical analysis may
be very different for the three classes of design. The analy-
sis of the first and third classes is straightforward and well
described in articles (see for example [4,10,11]): the
experimental units are mutually independent (we con-
sider as usual that the two conjugate arrays of the dye-
swaps are summed up to only one experimental unit), and
simple statistical procedures such as Student T-tests (or
regularized T-tests) can be performed. On the contrary, if
we consider the second class of designs, the experimental
units are not independent, a feature that must (or must
not) be accounted for. The literature about the statistical
study of such designs is limited: some papers proposed

some theoretical contributions for their analysis [12,13],
but simple guidelines for experimenters and practical con-
siderations (computational burden, choice of a strategy
for parameter estimation) are not available.

We consider here the simplest individually-balanced dye-
switch design: two conditions A and B are compared in a
two-color cDNA microarray experiment, with n biological
samples for each condition. The design is the following:
each RNA sample (A1 to An for condition A, and B1 to Bn
for condition B) is divided into two parts, one labelled
with Cy5 and the second labelled with Cy3. Then 2n
microarrays are hybridized with respectively A1Cy5 and
B1Cy3, B1Cy5 and A2Cy3, A2Cy5 and B2Cy3, and so on till
BnCy5 and A1Cy3, (see Table 1.2). There are 2n samples,
4n labelled samples, 2n microarrays, and each sample is
hybridized two times (one with Cy5 and one with Cy3) on
two different arrays. We propose a simple, efficient and
robust method for the statistical analysis of this experi-
ment.

Model on the measure of the expression of genes
After the normalization step, Xi is the expression measure
on the log-scale, for a given gene, corresponding to condi-
tion A on array i. Let j(i) denote the sample number corre-
sponding to condition A and array i.

Similarly, Yi is the expression measure for the condition B
sample on the same array, and j'(i) the sample number
corresponding to condition B and array i. In the following
the gene index is not present in order to simplify the
mathematical expressions, but it is important to note that
all the terms in the following models are gene-specific.
Here we use an analysis of variance (ANOVA) model for
the expression measure as introduced by [10].

The model for Xi and Yi is the following:

where

• µA and µB are the population mean expression measures
for condition A and B.

• δl(i) is a two-level fixed effect corresponding to the dye
effect. δl(i) = δ1 (resp. δ2) for all the samples labelled with
Cy5 (resp. Cy3). This term accounts for the gene-specific
dye bias.

• Bj(i) represents an independent gaussian random term
with mean 0 and standard deviation σB, corresponding to
the random effect of sample j(i). This variable is specific to
the biological sample and is called biological error, related
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Table 1: Three different balanced reverse dye designs for the 
comparison of 2 treatments

1 array 1 2 3 4 5 6 7 8 9 10

Cy5 A1 B5 A3 B9 A5 B6 A7 B10 A9 B9
Cy3 B3 A2 B8 A4 B2 A6 B1 A8 B4 A10

2 array 1 2 3 4 5 6 7 8 9 10

Cy5 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5
Cy3 B1 A2 B2 A3 B3 A4 B4 A5 B5 A1

3 array 1 2 3 4 5 6 7 8 9 10

Cy5 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5
Cy3 B1 A1 B2 A2 B3 A3 B4 A4 B5 A5

Three different balanced reverse dye designs for the comparison of 2 
treatments (A and B), with an equal number of slides. Ai stands for the 
ith biological sample in condition A. (1) Globally balanced design, with 
10 biological samples per condition. (2) Individually-balanced design 
with 5 biological samples per condition. (3) Dye-swap design with 5 
biological samples per condition.
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to the variability of the biological material inside each
population A and B.

• Mi represents an independent gaussian random term
with mean 0 and standard deviation σM. Mi is the effect of
the spot associated to the gene under concern in microar-
ray i and has the same value for the two samples which are
hybridized on array i. This error term takes into account
the spatial heterogeneity in each array that affects both
Cy3 and Cy5 measurements.

• Ti represents an independent gaussian random term

with mean 0 and standard deviation σT, corresponding to

the technical variability, including the steps of labelling,
hybridization and measure of intensity of fluorescence.
This variable has a specific value for each combination
gene×dye×sample, even if the samples are hybridized on

the same array and at the same spot, so that Ti and  are

independent random variables. Ti and Mi are the two com-

ponents of the so-called technical error.

Model on the difference of expression on one array
Let Di = Xi - Yi, i = 1,...,2n. Using equation (1) we obtain:

which may be written

Di = µ + BDi + (-1)i+1 δ + TDi

where

• µ = µA - µB is the true differential expression between
conditions A and B for the gene under concern,

• BDi = Bj(i) -Bj'(i) is a random variable with mean 0 and

standard deviation σB,

• TDi = Ti -  is an independent random variable with

mean 0 and standard deviation σT,

• δ = δ1 - δ2 is the difference between the Cy3 and Cy5 dye
effects. This term accounts for the gene-specific dye bias.

Each variable Di follows a Gaussian distribution with

mean E(Di) = µ + (-1)i+1δ and variance

. All the covariances cov(Di, Dj) are

equal to zero except the following ones:

with the convention that 2n + 1 = 1.

In this study, we present and compare different strategies
for the statistical analysis of individually-balanced
designs. The article is organized as follows. In the Results
section, five statistical procedures to analyze individually
balanced designs (Table 1.2) are compared on both simu-
lated and real data. The Conclusion section draws the
main conclusions and gives some useful guidelines for the
analysis of individually-balanced designs. The details of
the computation are given in the Methods section.

Results
Statistical procedure comparison
In this section, we investigate the efficiency of five test pro-
cedures for the differential analysis of datasets corre-
sponding to the design of Table 1.2. The procedures are
the following (see the Methods section for more details):

• Naive Method NM: for each gene, the naive test statistic

is computed.

• Unbiased Paired Method (UP): for each gene, the unbi-
ased paired statistic

is computed. Notice that from the Methods section, the
theoretical value of C must be positive. In practice, the
estimated value may be negative. In such a case, C is trun-
cated at 0.

• Unbiased Unpaired Method (UU): for each gene, the
unbiased unpaired statistic

is computed. As for the previous method, the value of CXY

must be positive. If not, CXY is truncated at 0. Furthermore,

the unbiased variance estimator is . Since

CXY is non-negative, the variance estimator may have a

negative value. In such a case, the variance can be fixed at
a given threshold (0.001 in the following).
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• Mixed Model with ML estimation (ML): for each gene,
model (1) is adjusted with the Maximum Likelihood algo-
rithm.

• Mixed Model with REML estimation (REML): for each
gene, model (1) is adjusted with the Restricted Maximum
Likelihood algorithm.

It is important to consider both the ML and REML algo-
rithms for the mixed model since each algorithm has its
own advantages. While ML is known to provide biased
estimates of the variance components, computations are
faster and the algorithm does converge. REML gives unbi-
ased estimates of the parameters, but may not converge if
the number of observations is small. Both ML and REML
computations were performed using the R package
Maanova [10].

Simulations

To study the behavior of the 5 procedures, we performed
a simulation study using model (1). We considered 3 dif-

ferent values for  (0.5, 1, 2) and  (1, 2, 5), 4 values

for the number of samples in one condition (5, 10, 20,

30) and 5 possible values for the differential expression µ
= µA - µB (0, 1, 2, 3, 4). The parameter σT was fixed at 1. For

each combination of the parameters, 10,000 genes were
simulated.

Control of the Type I error rate

We first consider the case µ = 0. Table 2 shows the actual
Type I error rate level of the 5 test procedures, when the
requested nominal level is 5%. Different behaviors can be
observed: NM and ML result in a type I error rate higher
than the nominal level, and procedure UU is conservative.
UP results in an actual level that is close to the expected
one, whatever the conditions. In most cases, REML ena-
bles an efficient control of the type I error. Yet, when the
biological variability is high and the number of samples is

low, REML yields a high type I error because of inconsist-
ent estimations of the variance (see the next section).

When  = 2 and n = 5, the discrepancy between the the-

oretical and the actual level is even worse for REML than
for the other methods.

From these first observations we conclude that we can dis-
card procedures NM and ML, since in differential analysis
an effective control of the Type I error rate is necessary.

Performance analysis
We now compare the performance of the 3 remaining pro-
cedures to detect differentially expressed genes. Table 3
shows the proportion of detected differentially expressed
genes, for different values of the parameter set. It clearly
appears that the power of procedure UU is low compared
with procedures UP and REML. This may be the conse-
quence of the Student approximation (each test statistic is
compared with the quantile of a Student distribution with
2n - 2 degrees of freedom), that could be more erroneous
in the case of the UU statistic.

An interesting point is that UP results are more stable than
the REML results. If we consider sample sizes n larger than
20, we observe that the absolute values of the approxi-
mate REML T-test range from 0 to 32, except for some
genes where the absolute value is larger than 400. These
outliers come from an erroneous estimation of the vari-
ance of the mean difference, that is evaluated to be
(almost) 0. This does not happen with (UP) since the esti-
mated variance is max(S2, S2 + 2C), i.e. the variance is
overestimated to avoid outliers. Notice that despite this
overestimation in many cases the power of UP is larger
than the power of REML.

Computational burden and convergence
We now consider the important question of computa-
tional time for the 2 competitive procedures UP and
REML. Since microarray experiments can involve hun-

s B
2 s M

2

s B
2

Table 2: Actual level of the 5 test procedures in one simulation of 10 000 genes

 = 0.5  = 2

Method 5 10 20 30 5 10 20 30

Naive 6.9 (0.2) 7.3 (0.2) 7.3 (0.2) 7.5 (0.2) 13.2 (0.3) 13.9 (0.3) 14.0 (0.3) 14.2 (0.3)
Unbiased Paired 5.2 (0.2) 5.2 (0.2) 5.2 (0.2) 5.3 (0.2) 8.2 (0.3) 6.9 (0.2) 6 (0.2) 5.8 (0.2)

Unbiased Unpaired 2.1 (0.1) 1.3 (0.1) 1.0 (0.1) 1 (0.1) 4.6 (0.2) 3.4 (0.2) 2.7 (0.1) 2.9 (0.2)
ML 8.5 (0.3) 8.6 (0.3) 8.3 (0.3) 8.3 (0.3) 12.5 (0.4) 11.1 (0.3) 9.9 (0.3) 9.8 (0.3)

REML 4.7 (0.2) 4.2 (0.2) 4.5 (0.2) 4.9 (0.2) 14.7 (0.4) 8.5 (0.3) 5.9 (0.2) 5.5 (0.2)

Actual mean level (standard error) of the 5 test procedures, for low (  = 0.5, left) and high (  = 2, right) values of biological variance, and 

different number of samples n in each condition (in column). The requested nominal threshold is 5%.
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dreds of thousands of genes, it becomes critical to use effi-
cient algorithms for the statistical analysis of the data.
Table 4 gives the user CPU time associated to each proce-
dure for the complete analysis of 10,000 genes. While the
computational time is constant whatever the condition
for the (UP) procedure, (REML) is 8 to 330 times longer
than (UP), depending on the number of samples.

Furthermore, REML can result in inconsistent estimates of
the variance, as shown in the previous sections, or may
not converge. Table 4 provides the number of genes for
which the REML algorithm did not converge.

Embriogenomic data
The impact of pregnancy on the cattle endometrium tran-
scriptom is investigated in [14]. In Mammals, the implan-
tation of the embryo is a key event in the establishment of
a pregnancy. A microarray experiment has been made to
analyze the gene expression of the bovine pregnant
endometrium and determine key pathways that control
the endometrium physiology during the implantation
process. The expression of 13300 genes in the
endometrium of cows (n = 5) has been investigated. Only
5 animals were available for each condition so that the
dye-switch design of Table 1.2 was used. Gene profiling
has been established to analyze the impact of pregnancy

by comparing the endometrium of cyclic (day 20 of cycle)
versus pregnant animals (day 20 of pregnancy). In the fol-
lowing, the results of the five statistical procedures
defined above are compared using this dataset.

The Venn diagram of Figure 1 shows the number of genes
declared differentially expressed (DE) by 4 methods using
the Bonferroni method with a 5% level. The UU method
gives the least number of DE genes (4) and is not pre-
sented in the diagram. REML (which did not converge for
3 genes) gives the greater number of DE genes (93),
among which 23 are also found by the other methods,
and 70 are specifically found by REML (70 REML specific
genes). 70 genes are found DE by ML (22 ML specific
genes), and 58 by the naive method (9 Naive specific).
Finally 33 genes are declared DE by UP, and all of them
are also found by one, two or all of its competitors. There-
fore UP provides the less discordant results. The higher
number of DE genes obtained with the naive and the ML
methods was expected, since it is known from the theory
and the simulation study that these methods yield more
false positives than the nominal risk. Figure 2 (right)
shows that the ML and UP estimates of the standard error
are coherent but that the ML estimate are lower than the
ones obtained by the UP method. This point is in keeping
with the statistical theory which assesses that the UP esti-
mate of the variance is unbiased while the ML estimate
has a negative bias.

The high number of DE genes specifically found with
REML is odd. Figures 2 and 3 show that this comes from
very low estimates of variance for some genes, so that
these genes are declared DE not because the mean differ-
ence of expression between the two conditions is high,

Venn diagram for the embriogenomics experimentFigure 1
Venn diagram for the embriogenomics experiment. 
Comparison of the DE genes obtained by four methods. Ver-
tical right rectangle: REML, horizontal low rectangle: UP, 
bone: N and circle: ML.

Table 3: Power of the UU, UP and REML test procedures

µ = 1 µ = 3

Nb Samples UU UP REML UU UP REML

5 0.5 5.6 13.6 10.6 55.5 92.1 86.75
5 2 2.8 5.0 12.95 17.9 29.4 34.75
10 0.5 13.2 39.3 33.97 77.8 100.0 99.64
10 2 3.5 7.8 9.06 45.0 63.5 63.06
20 0.5 35.0 80.1 78.13 98.8 100.0 100.0
20 2 7.3 14.5 13.93 82.6 94.8 94.53
30 0.5 51.9 95.5 95.05 100.0 100.0 100.0
30 2 12.1 22.5 21.74 96.2 99.6 99.53

Power (probability of rejecting H0 × 100) of the different test 
procedures to detect a low (µ = 1, left) or high (µ = 3, right) 
differential expression.

s B
2

Table 4: CPU times of procedures UP and REML

n UP CPU REML CPU No REML CV

5 2.3 787 56.9
10 2.6 212 5
20 2.8 467 0
30 3.2 1046 0.16

User CPU time of procedures (UP) and (REML), for σ2 = 0.5 and 
different numbers of samples. The last column provides the average 
number of genes for which REML did not converge.
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but because this mean difference is divided by a very low
standard error. So most of the 70 genes only found by the
REML method are due to too low estimates of the gene
variance obtained by the REML algorithm. This observa-
tion is in keeping with the results of the simulation study.
Therefore the UP method or the naive method should be
preferred in this particular experiment. The use of REML
without a sharp biological analysis of the results gene by
gene would be misleading.

Teleost fish dataset
An important application of the methodology proposed
in the previous section is the analysis of loop design
experiments. Loop and interwoven loop designs were ini-
tially proposed in [2] to compare p treatments, where p is
3 or higher. Figure 4 displays a particular interwoven loop
design where 3 different 2-by-2 loop comparisons of treat-
ments are combined in a single experiment. The 3 loop
comparisons are

• N1 → S1 → N3 → S3 → N5 → S5 → N2 → S2 → N4 →
S4 → N1

• S1 → G1 → S3 → G3 → S5 → G5 → S2 → G2 → S4 →
G4 → S1

• N1 → G2 → N3 → G4 → N5 → G1 → N2 → G3 → N4
→ G5 → N1

Each of these comparisons corresponds to the design of
Table 1.2 discussed in the previous section. Such experi-
mental designs have been studied both theoretically [15]
and practically [8,9]. Here, we briefly present the Teleost
fish data of [8].

The Teleost fish experiment aims to compare 3 popula-
tions of fish (Northern Fundulus heteroclitus, Southern
Fundulus heteroclitus and Fundulus grandis). Five indi-
viduals were examined in each population to determine
the variation in gene expression between populations.
Each individual is used to probe four cDNA microarrays,
according to the design of Figure 4. The raw data consist
of 120 measurements (15 individuals × 4 slides × 2 dupli-
cates per slide) for 907 genes.

In [8], the signal is modelled as follows (after per slide
duplicate averaging):

Yijkg = m + Ai + Dj + (AD)ij + Gg + (AG)ig + (DG)jg + (V G)kg + 
eijkg,

where A, D, G and V stand for Array, Dye, Gene and Vari-
ety, respectively. Then the 4 measurements corresponding
to a given individual are averaged, and an F statistic is
computed per gene to check whether the variety effect is
significant or not.

This strategy roughly amounts to the UU test procedure of
section when the number of treatments is higher than 2.
The main difference is that in model (4), the model does
not include the array random effect which takes into
account the dependency between two measures on the
same array. According to the results of section, this
implies that the variance estimator is biased, leading to a
loss of power.

As an alternative, we perform the statistical analysis using
the UP procedure. Each pairwise comparison between 2
varieties is made, and a gene is declared differentially
expressed if at least 2 of the 3 tests are significant. Each test
is performed at the level 0.02, meaning that for a given
gene, the nominal level is roughly 0.001 (3 × 0.022 for 2
of the 3 tests to be significant under H0 at level 0.02). This
is a good compromise between the 0.01 threshold
adopted in the original articles with no correction for mul-
tiple testing, and the 0.5 × 10-4 (0.05/907) threshold given
by a 5% level per test combined with a Bonferronni mul-
tiple testing correction. While the drawback of our strategy
is to replace one test by three, the advantage is that the var-
iance estimate is unbiased.

Comparison of the standard errors obtained with ML, REML and UP for the REML-DE genes of the embriogenomics experimentFigure 2
Comparison of the standard errors obtained with 
ML, REML and UP for the REML-DE genes of the 
embriogenomics experiment. Left: REML estimates (y-
axis) versus UP estimates (x-axis) of the standard error. 
Center: REML estimates versus ML estimates. Right: UP 
estimates versus ML estimates.
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Table 5 gives the Oleksiak original list of differentially
expressed genes found with the original method and the
UP list of genes found with the UP procedure.

Among the 15 genes originally identified, 5 are also
declared differentially expressed with the (UP) method. At
a first glance, the (UP) procedure seems less powerful
than the original method since only 9 genes are found
here compared with the 15 genes of the original article.
But due to the threshold adopted by the authors in [8], the
expected number of false positives is 9 for the Oleksiak
list, whereas for the (UP) list we expect only 1 false posi-
tive. Therefore most of the 10 extra genes found in [8] may
be false positives. To examine the discriminant effect of
the 9 genes of the (UP) list, we performed as in the origi-
nal publication a clustering of the individuals, according
to the significative genes. The corresponding tree is given
in Figure 5. A cutoff of the tree at 0.15 gives the following
3 classes :

{S1, S2, S4, S5, N1}, {G1, G2, G3, G4, G5, S3}, {N2, 
N5, N3, N4}.

These 3 classes roughly correspond to the three popula-
tions of interest, up to 2 misclassified observations. In the
original article, the partition in 3 classes gave

{N1, N2, N3, N4, N5}, {S1, S4}, {G1, G2, G3, G4, G5, 
S2, S3, S5}.

With only 9 genes (rather than 15), the classification
obtained with (UP) is improved compared with the clas-
sification of the original method.

Discussion
Random terms taking into account the array and the sam-
ple effects must be included in the statistical model at the
gene level for dye-switch experiments. We showed on sim-
ulations that the naive paired T-test, which does not take
into account the biological sample effect, leads to more
false positives than expected, especially when the biologi-
cal sample effect is high. It may be safely used only when
the biological variance is lower than the technical vari-
ance. The REML estimate for mixed model provides an
approximatively correct false positive rate, at the price of
high computational complexity, lack of convergence for
low or medium sample sizes and sometimes spurious
results. To the contrary, the UP method we propose is easy
to implement and not computationally intensive. The
method is protected against spurious results, leading to a
more robust and powerful analysis than REML when the
biological variability is high and the number of samples
low, an usual situation in microarray experiments.

Mean difference versus standard error for the REML-differentially expressed genes of the embriogenomics experimentFigure 3
Mean difference versus standard error for the REML-differentially expressed genes of the embriogenomics 
experiment. Standard error of the difference obtained by REML (y-axis) versus mean difference between the two conditions 
(x-axis). Black points are not found DE by other methods than REML.
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For small sample size experiments, it is advised to use reg-
ularized T-test, see [16-19]. Regularization strategies are
based on statistical methods that take the individual vari-
ance of each gene as input and give a regularized variance
for each gene as output. The UP procedure proposed in
this paper gives an estimate for the variance of the differ-
ential expression for each gene, so it allows a further appli-
cation of all these regularization methods.

Conclusion
In this paper the proposed estimate of the variance of the
differential expression is assessed for the comparison
between two conditions in a dye-switch design. The same
methodology could be extended to more complex designs
involving more than two conditions and duplicate
hybridizations of the same biological sample on different
arrays.

Methods
Paired test procedure

According to expression (2), an unbiased estimator of µ is

. The variance  of this estimator

is

To perform a statistical test on parameter µ, we need to

estimate .

Naive variance estimate

The naive estimate of  is

which is used to perform paired T-tests. But in a dye-

switch experiment the variables Di -  are not centered,

since the means of Di and  are µ + (-1)i+1 δ and µ,

respectively. Hence we consider the alternative estimator

where
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The Teleofish experiment designFigure 4
The Teleofish experiment design.

Table 5: Lists of genes for the Teleofish experiment

Oleksiak list [8] UP list

RAN GTP binding protein hypo P FLJ20727 ribosomal protein L27 dihydrolipoamide dehydrogenase GTP binding protein
Steroidogenic acute regulatory protein hypo P FLJ11275 capping protein 
muscle Z line orla C4 surface glycoprotein HT7 precursor methionine 

adeno. regulatory Von Willebrand factor succinate dehydrogenase 
complex KIAA1481 protein protein disulfide isomerase annexin V

Thioredoxin nascent polypeptide associated dnaK type molec. chap. 
prec. ribosomal protein S16

Lists of genes whose expression was significantly different between populations. The first 5 genes are found differentially expressed by both 
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The expectation of this alternative estimator is

S2 is a downward biased estimator of V( ). The higher

 compared with , the higher the bias:

From this naive estimate of the variance we can derive a
first T-test statistic to be used for the differential analysis:

Unbiased variance estimate

Let . We have

From this and equation (5) we can deduce the following

unbiased estimate of :

Finally, the "unbiased paired t-statistic" for testing the
null hypothesis H0 = {µ1 = µ2} is
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Clustering tree for the Teleofish datasetFigure 5
Clustering tree for the Teleofish dataset. Clustering tree for the Teleofish dataset, obtained from the second list of dif-
ferentially expressed genes of Table 5.
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which is approximately distributed as a Student distribu-
tion with 2n - 2 df under H0.

Unpaired test procedure

Let  (respectively ) be the mean of the 2 results

obtained with the same biological sample (in 2 different
arrays and with the 2 dyes) for condition A (respectively
condition B). From model (1) one obtains

where j is the biological sample index (recall that sample
j is different for the two conditions), i(j) and i'(j) are the

arrays on which sample j has been hybridized.  and 

may be correlated as a result of a possible common array

effect.  and  are uncorrelated because the two differ-

ent biological samples of the same condition cannot be
present together on the same array. From result (5) we
have:

The usual unpaired estimate of  is equal to

, where  and

, whose common mean (under the

homoscedastic model (1)) is equal to

Therefore

This method overestimates the true variance

The overestimation is more dramatic as  increases.

This estimate may be corrected:  may be estimated

using the empirical covariance between  and . Let

with the convention that . The mean of the first

sum is

It is easy to see that the second sum in CXY has the same

mean. Therefore an unbiased estimate of  is

, and the approximate unpaired t-sta-

tistic is
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