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Abstract
Background: Finding over- or under-represented motifs in biological sequences is now a common
task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified
and represent candidate functional motifs. The present work addresses the related question of
comparing the exceptionality of one motif in two different sequences. Just comparing the motif
count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more
exceptional in one sequence compared to the other one. A statistical test is required.

Results: We develop and analyze two statistical tests, an exact binomial one and an asymptotic
likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or
significantly different in two sequences of interest. For that purpose, motif occurrences are
modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the
sequence compositions into account. As an illustration, we compare the octamer exceptionalities
in the Escherichia coli K-12 backbone versus variable strain-specific loops.

Conclusion: The exact binomial test is particularly adapted for small counts. For large counts, we
advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact
binomial test and very simple to use.

Background
Detecting motifs with a significantly unexpected fre-
quency in DNA sequences has become a very common
task in genome analysis. It is generally addressed to pro-
pose candidate functional motifs based on their statistical
properties [1-3]. Lots of statistical methods have been
developed to that purpose (see the recent surveys by [4] or
[5] and references therein) and satisfactory solutions exist
now to find exceptional motifs thanks to p-value calcula-
tions.

More recently, a new related question has arisen in the lit-
erature concerning the comparison of motif exceptionali-
ties in two sequences. One wants for instance to compare
particular sets of genes [6], upstream regions of CDSs ver-
sus whole chromosome [7], structural domains [8], CDSs
versus intergenic regions, conserved regions versus strain-
specific regions of bacterial genomes [9], or chromosomes
from the same species [10]. Chromosomes from different
species can also be compared from a comparative genom-
ics point of view. In all these works, one would like to
know if a given motif is significantly more exceptional in
one sequence compared to another one. This criterion is
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usually used to identify motifs which are specific from
some regions or expected to be more frequent in some
particular parts of the genome. Transcription factor bind-
ing sites, for instance, are expected to be more frequent in
upstream regions than along the whole genome.

Surprisingly, no rigorous statistical method has been pro-
posed yet to decide if a given motif, exact or not, is signif-
icantly more exceptional in one sequence compared to a
second one. Of course, two p-values can be calculated sep-
arately on each sequence to know if the motif is excep-
tional in these sequences but the difficult point is how to
compare these two p-values from a statistical point of
view. It is indeed not sufficient to make the difference or
the ratio to know if the two p-values are significantly dif-
ferent; One needs a statistical test.

In this paper, we propose two statistical tests to compare
the motif count exceptionalities in two independent
sequences. In the Results Section, we first present the
underlying model for motif occurrences and the null
hypothesis to test, namely the motif is similarly excep-
tional in both sequences. Then we derive an exact bino-
mial test and an asymptotic likelihood ratio test adapted
for frequent motifs. Usage conditions and power of both
tests are described in the Discussion Section, together with
a more refined model for occurrences of overlapping
words and the associated tests. An illustration of the
method is finally given; We compare the octamer excep-
tionalities in two sets of regions (backbone/loops) from
the Escherichia coli K12 leading strands. These two sets cor-
respond to the mosaic structure of E. coli's genome when
comparing the two strains K12 and O157:H7: the back-
bone represents the common regions whereas the loops
are specific to the K12 strain. As a toy example all along
this paper, we will treat in detail the case of the palindro-
mic octamer cagcgctg which occurs respectively 30 times
in the loops (758434 bps long) and 113 times in the back-
bone (3 882 513 bps long).

Results
Poisson model
In sequence i, the motif count Ni is supposed to have a
Poisson distribution with mean (and variance) λi. This
distribution has been shown to fit correctly theoretical (in
Markovian sequences, for example) as well as observed
count distributions of non-overlapping words [11]; A
non-overlapping word is a word such that two occur-
rences of itself can not overlap in a sequence.

The mean count λi in sequence i must account for three
parameters: (i) the length �i of the sequence, (ii) the com-
position of the sequence, (iii) the possible exceptionality
of the motif in the sequence.

Expected intensity
The composition of the sequence can be accounted for via
the probability µi for the motif to occur at any position in
the sequence under a simple model. The most popular
models are Markov chain models which can fit the fre-
quencies in mono-, di-, tri-nucleotides, etc. Indeed, the
Markov chain model of order m (denoted by Mm) takes
the (m + 1)-mer composition into account. Under such
models, the occurrence probability µi of a h-letter motif w
= w1 w2 ... wh on the {a, c, g, t} alphabet can be expressed
in terms of counts of its subwords of length m and m + 1
[5]. For instance, here are the expression of µi in models
M0, M1 and M(h - 2) which fit respectively the composi-
tion in bases, in dinucleotides and in oligonucleotides of
length h - 1:

where Ni (·) denotes the count in sequence i.

If one does not want to account for the sequence compo-
sition (this case will be referred to as model M00), then µi
simply depends on the motif, hence µ1 = µ2 = (1/4)h.

The choice of the Markov chain model depends on the
sequence composition one wants to fit. For instance,
model M2 is often used for coding DNA sequences to take
the codon bias into account. Higher the model order, bet-
ter the fit, but usually the model order is bounded either
by h - 2 or because the sequence is too small (the number
of parameters to be estimated increases exponentially
with the order).

Table 1 gives the expected counts �i µi for the motif
cagcgctg in the E. coli loops/backbone sequences. Since N1
= 30 and N2 = 113, we see that this motif is highly over-
represented in both sequences under models M00, M0
and M1. However, under the richest possible model (M6),
it is over-represented in sequence 1 (loops) but under-rep-
resented in sequence 2 (backbone).

Exceptionality coefficient
When the motif is not exceptional with respect to the con-
sidered model, the mean count λi is simply �i µi. For excep-
tional motifs, i.e. motifs with an observed count Ni far
from its expectation �i µi, under a given model, the mean
count λi should reflect this exceptionality.
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We therefore introduce an exceptionality coefficient ki
which allows λi to be greater (or smaller) than the
expected value:

λi : = ki �i µi.

In the following, parameters �i and µi will be supposed to
be known a priori: they can be considered as two correc-
tion terms. The inference will only be made on ki.

Hypothesis testing
Comparing the (potential) exceptionality of a motif in
two sequences is equivalent to test the null hypothesis H0
= {k1 = k2}.

We emphasize that the respective values of k1 and k2 can
be larger than one (unexpectedly frequent motif), smaller
than one (unexpectedly rare motif) or close to one (motif
with expected count). These values do not matter: our
only concern is to know if they are significantly different
or not.

Exact binomial test

We first propose an exact test based on a general property
of the Poisson distribution. If N1 and N2 are two inde-

pendent Poisson counts with respective means λ1 and λ2,

the distribution of N1 given their sum N+ : = N1 + N2 is

binomial [12]: N1 ~  (N+, π) with

Under H0, we have π = π0 with

because k1 = k2. In absence of correction (M00 model) for
the sequence composition (i.e. µ1 = µ2), we have π0 = �1/
(�1 + �2). If furthermore the two sequences have the same
length, we get π0 = 1/2.

Moreover, the proportion π and then the expectation of
N1, increases as the ratio k1/k2 increases. Therefore, the p-

value for the one-sided alternative H1 = {k1 > k2} is pB = Pr

{  (n+, π0) ≥ n1}, i.e.

where n+ and n1 are the observed values of N+ and N1.

Table 2 gives the probability π0 and the p-value pB for the
motif cagcgctg in E. coli. At level 5%, the null hypothesis
is accepted under models M00 and M6 meaning that the
motif is similarly exceptional in both sequences with
respect to their length and/or 7-mer composition. How-
ever, {k1 = k2} is rejected at level 5% against {k1 > k2}
under models M0 and M1; since cagcgctg is over-repre-
sented in both sequences, it means that it is significantly
more exceptionally over-represented in sequence 1
(loops) with respect to the base and/or dinucleotide com-
positions of both sequences.

Likelihood ratio test (LRT)
Another test statistic based on the comparison of the like-
lihood of the data under the H0 and the alternative
hypothesis H1 = {k1 ≠ k2} can be derived. This statistic is
known as the Likelihood Ratio Test (see [13], vol. IV). In
our model (see the Methods Section), it is defined as

where π0 is defined in (1). Under the null hypothesis, its
asymptotic distribution is a chi-square distribution with
one degree of freedom.

This test is two-sided, because, under H1, parameters k1
and k2 are estimated independently (in particular, without
the constraint k1 > k2). The exact distribution of LRT could
be calculated via permutation techniques but the compu-
tation time would be tremendeous for large counts. We
will then calculate the following asymptotic p-value:

where n2 is the observed value of N2 and χ2 ~ χ2 (1).
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Table 1: Expected count for cagcgctg in the loops (1) and in the backbone (2) of E. coli leading strands under different models.

Model M00 M0 M1 M6 Count

�1 µ1 11.6 9.4 13.9 24.8 n1 = 30
�2 µ2 59.2 66.0 106.2 126.1 n2 = 113
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Table 3 gives the LRT statistic and the associated p-value
for the motif cagcgctg in E. coli. Remember that the LRT is
two-sided, so pL have to be divided by two when com-
pared to the one-sided binomial p-value pB. We see that
the significances obtained with the LRT are different from
the ones obtained with the exact binomial test, but the
qualitative conclusions are the same.

Chi-square test

Another standard asymptotic test is the chi-square test
where the counts Ni are compared to their expected values

i under H0 given the total count N+:

where 1 = π0 N+ and 2 = (1 - π0)N+. Under the null

hypothesis, X2 has also an asymptotic chi-square distribu-
tion with one degree of freedom. It is also an intrinsically
two-sided test. Further analyzes (including simulations)
not presented here (see [14]) show that this test performs
very similarly to the LRT in every situations. Note that the
chi-square test is the same as the score test [13].

Discussion
LRT distribution
The chi-square distribution of the LRT statistic is only
asymptotic, so the actual level may be different from the
nominal one (typically α = 5%). To measure this differ-
ence, we have calculated this actual level for different val-
ues of π0 and N+. Since LRT is a function of N1, the actual
level can be derived from the exact distribution of N1
given N+ which is binomial (see Results Section).

Figure 1 compares both levels (actual and nominal). Since
the counts are discrete, the actual level can never be
exactly α leading to oscillations in the plot. We see that
the nominal level is only reached with N+ � 1000 for π0 =

0.5 and even later for π0 = 0.95 (or π0 = 0.05). It means
that the chi-square approximation of the LRT statistics is
only valid for motifs with many total occurrences.

Regarding the motif cagcgctg, because π0 is about 15% (cf.
Table 2), the picture is close to the right plot of Figure 1;
In fact, with a total count of 143, the actual level is respec-
tively 0.095%, 1.1%, 5.1% and 12.5% for a nominal level
α equal to 0.1%, 1%, 5% and 10%.

LRT as a contrast measure
The LRT statistic can still be used as a contrast measure, i.e.
a measure of the difference, between the two exceptional-
ities. For large values of N+ it is much faster and easier to
compute than the binomial p-value. We will see in the
illustration below that the two quantities are strongly cor-
related.

Decidability limits for the binomial test

Because the binomial test is exact, the actual and nominal
levels are equal. The significance can then always be deter-
mined. It would be maximal when N1 = N+ (i.e. N2 = 0)

and the corresponding p-value pB would be equal to .

Therefore, if this minimal p-value is greater than the

desired level α (typically 5%), no significance conclusion

can be made. This happens when α, i.e. when N+ ≥ ln

(α)/ln(π0).

Figure 2 gives this critical value of N+ for various values of
π0 and α. We see, for instance, that for π0 = 0.7 and N+ =
10, one may get significant results at a level greater than
5% but not at a level smaller than 1%.

Power
An important property for a statistical test is its ability to
detect departure from the null hypothesis. This ability is
measured by the power of the test which is the probability
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Table 3: LRT statistic and associated p-value pL under different models for cagcgctg in the E. coli loops/backbone comparison.

Model M00 M0 M1 M6

LRT 2.1 8.2 10.2 2.0
pL 1.5 10-1 4.2 10-3 1.4 10-3 1.6 10-1

Table 2: Probability π0 and p-value pB under different models for cagcgctg in the E. coli loops/backbone comparison.

Model M00 M0 M1 M6

π0 (%) 16.3 12.4 11.6 16.4
pB 8.6 10-2 2.7 10-3 9.1 10-4 9.1 10-2
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to exceed the significance threshold (defined under H0)
when the true parameter satisfies H1. In our case, the
parameter of interest is

which is equal to π0 when k1 = k2. So the departure from
H0 will be measured by the ratio k1/k2 when it differs from
1.

Exact binomial
Figure 3 presents the power of the exact binomial test
when k1/k2 increases. As expected, the power increases
with N+. Moreover, it decreases when π0 increases i.e.
when the expected ratio �1 µ1/(�2 µ2) increases. It means
that, when the motif is already expected to be much more
frequent in sequence 1 than in sequence 2, it is more dif-
ficult to detect that its exceptionality in the first sequence
is also higher.

The motif cagcgctg occurs N+ = 143 times in the whole
genome. In the different models considered in Table 2,
probability π0 is between 11.6% and 16.4%. The power of
the binomial test in this case can therefore be read in Fig-
ure 3, in the two top plots between the black and red solid
lines. We see that a ratio k1/k2 = 2 can be detected with
probability greater than 90%, while a ratio of 1.5 will be
detected with a bit more than 50% probability.

LRT
The same analysis can be made for the LRT tests. However,
this only makes sense for sufficiently large N+, to guaranty
the validity of the chi-square distribution.

Case of overlapping words
Compound Poisson model
The distribution of overlapping word occurrences is better
modeled by a compound Poisson process (see [15]) in the
following way:

• The word occurs in clumps distributed according to a
Poisson process. The number of clumps Ci in sequence i is

hence a random Poisson variable with mean denoted by

i.

• The size Vic of the c-th clump (in sequence i) is random
with geometric distribution:

Pr{Vic = v} =  (1 - ai).

The clump sizes are supposed to be independent. Param-
eter ai is the overlapping probability of the motif and can be
calculated under various Markovian models (see [5]).

In this setting, the count Ni is hence the sum of the sizes

of Ci clumps and has the Polya-Aeppli (or geometric Pois-
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Actual level (log scale) of the LRT as a function of N+ (log scale) for a nominal level α = 0.1%, 1%, 5% or 10% and probability π0 = 0.5 (left) and 0.95 (right)Figure 1
Actual level (log scale) of the LRT as a function of N+ (log scale) for a nominal level α = 0.1%, 1%, 5% or 10% and probability π0 
= 0.5 (left) and 0.95 (right). (Since the LRT test is two-sided, the right plot also holds for π0 = 0.05).
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son) distribution (see [12]). We have (see [5]) i = (1 - ai)

λi. In the case of a non-overlapping word, we have Ci = Ni,

ai = 0 and λi = λi. For overlapping words, the mean clump

size is equal to 1/(1 - ai) and increases with ai.

Tests
An overlapping word can occur with an exceptional fre-
quency (i) because of an exceptional number of clumps or
(ii) because of exceptional sizes of clumps. Then compar-
ing the exceptionalities of an overlapping word in two
sequences leads to compare the number of clumps C1 with
C2, and/or the sizes V1c's with V2c's.

Comparison of the number of clumps

In this compound Poisson model, the number of clumps
in each sequence is Poisson distributed. The comparison
of the counts C1 and C2 is then exactly equivalent to the

comparison of the counts N1 and N2 studied in the Results

Section, replacing λi by i and µi by i := (1 - ai) µi.

Exact test for the overlapping probability under M00
The question is now to test the null hypothesis H0 = {a1 =
a2}. This comparison is made conditionally to the
observed counts N1 and N2. It only makes sense if the
motif occurs at least once in each sequence, i.e. if N1, N2,

C1 and C2 are all larger than (or equal to) 1. In this case,
the first occurrence necessarily corresponds to the first
clump and the Ci - 1 last clumps have to be chosen among
the other Ni - 1 motif occurrences. Since a motif occur-
rence (except the first one) corresponds to a clump occur-
rence with probability 1 - ai, the number of clumps
(except the first one) has a binomial distribution:

Ci - 1 ~  (Ni - 1, 1 - ai)  (2)

which means that the expected number of clumps
decreases when the overlapping probability increases.

Following the same strategy as for the non-overlapping
case, we base our test on the distribution of C1 given the

total clump count C+ = C1 + C2. Under H0, (C1 - 1) has an

hyper-geometric distribution  (N+ - 2, N1 - 1, C+ - 2)

(see [12], Eq. (3.23)):

The overlapping probability a1 is then significantly greater
than a2 if the probability Pr{C1 ≤ c1|N1, N2, C+} is smaller
than a given level α.

Exact test in the general case
The previous test does not account for the composition of
the sequences. The overlapping probabilities a1 and a2 can
be expected to be different, according to some null model.
In this case, the true overlapping probability in sequence
i is bi = hi ai, where hi is an exceptionality coefficient (anal-
ogous to ki for the mean count). The problem is then to
test H0 = {h1 = h2}. Such a test is proposed in Appendix: it
involves the generalized negative hyper-geometric distri-
bution.

Asymptotic tests
As for the counts N and C, asymptotic tests such as likeli-
hood ratio, chi-square or score tests can be derived to
compare exceptionalities in terms of overlaps. These tests
are not presented here to avoid further statistical develop-
ments but also because the small overlapping probabili-
ties generally observed make them rarely relevant.

Illustration
Materials
Comparing complete genomes of strains of single bacte-
rial species allows to determine highly conserved regions
(so-called backbone) and numerous strain-specific DNA
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Power of the exact binomial test with level α = 5% as a function of k1/k2 (x-axis) for different values of π0Figure 3
Power of the exact binomial test with level α = 5% as a function of k1/k2 (x-axis) for different values of π0. Curves correspond 
to different values of the total count N+ = 5 (dashed black), 10 (dashed red), 20 (dashed blue), 50 (dashed green), 100 (solid 
black), 500 (solid red) and 1000 (solid blue). Missing curves correspond to the values of N+ for which no significant results at 
level α = 5% can be obtained (cf. the Discussion Section).
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segments (so-called loops) for each strain. These mosaic
structures help to understand the evolution of bacterial
genomes. Indeed, the backbone probably corresponds to
the common ancestral strain and is under vertical pressure
whereas the loops may be associated with mobile ele-
ments or strain-specific pathogenicity. Such backbone/
loops segmentation has been systematically performed
[9] and store in the public MOSAIC database [16]. We
have extracted from this database the E. coli K-12 specific
loops (sequence 1) and the backbone (sequence 2)
obtained from the pairwise alignment of the complete
genomes of E. coli K-12 laboratory strain and the entero-
hemorrhagic E. coli O157:H7 strain. As an illustration, we
have compared the exceptionalities of all the 65536
octamers in the backbone versus in the loops. Such com-
parison will point out octamers which do not have the
same constraint, with respect to their frequency, on the
loops versus on the backbone.

Exact binomial test
Figure 4 presents the significance of the binomial test for
all octamers in the backbone/loops comparison. The lim-
its between the different significance levels are clear under
M00 because the probability π0 is the same for all octam-
ers, while they are fuzzy under M1 because π0 depends on
the octamer composition. In this case, same counts (N1,
N2) may result in different pB values. The distribution of
the p-value pB is summarized in Table 4. The 10 motifs
with smallest p-values, i.e. with an exceptionality coeffi-
cient significantly higher in the loops than in the back-
bone, are listed in the top of Table 5. Multiple testing
problems arise when we compare the exceptionalities of
the 65 536 octamers simultaneously. Table 6 gives the
number of significant octamers and the corresponding
threshold when adjusting for a False Discovery Rate (FDR,
[17]) of 1%. For example, under model M1 only 154
octamers are significantly more exceptional in the loops.
These octamers have all a p-value pB smaller than 2.2 10-5.

Symmetrically, to find the motifs with an exceptionality
coefficient significantly higher in the backbone than in

the loops, we have to test H0 versus  = {k2 > k1} using

the p-value  defined as  = Pr{  (n+, π0) ≤ n1}. The

10 most significant motifs for this test are given at the bot-
tom of Table 5. When adjusting for a False Discovery Rate
of 1%, only 14 octamers under model M1 are significantly
more exceptional in the backbone than in the loops.

These octamers have all a p-value  smaller than 1.8 10-

6. Note that under model M6, no octamer is significant
after multiple testing adjustment.

According to the pB list, the motif cagcgctg has rank 1 115

among 65 536 under the M1 model. Note that the well

known Chi motif (gctggtgg) which is the most overrepre-

sented octamer in E. coli genome has a  value of 5.1 10-

5 (rank 1 281) under the same model; It means that kback-

bone is significantly higher than kloops but due to multiple

testing Chi is not among the significant octamers.

LRT versus binomial
We now compare the results provided by the two tests:
binomial and LRT. Because the former is one-sided and
the latter is two-sided, we use a signed version LRTs of the
LRT statistic which is equal to LRT when N1 is greater than
expected (N1 ≥ π0 N+) and to – LRT otherwise (N1 <π0 N+).
To make the graph more readable, we also transform the
p-value pB into a Gaussian score SB ∈ �:

SB = Φ-1 (1 - pB)

where Φ is the cumulative distribution function of the
standard Gaussian distribution. High positive values of SB
correspond to motifs with an exceptionality coefficient in
sequence 1 significantly higher than in sequence 2, while
high negative values of SB correspond to motifs having an
exceptionality coefficient in sequence 1 significantly
lower than in sequence 2.

We see in Figure 5 that the two statistics give very similar
results for all the octamers in the backbone/loops com-
parison. Table 7 gives the Spearman and Kendall correla-
tion coefficients between the two statistics for different
models. Recall that Spearman's coefficient is the correla-
tion between the ranks, while Kendall's one is the propor-
tion of concordant pairs between the two rankings. This
confirms that the LRT statistics is a reliable exceptionality
comparison score, although the associated p-value is ques-
tionable for small counts.

Note that the naive comparison between the two p-values
simply associated with the exceptionality of each motif in
each sequence does not provide the same sets of signifi-
cant octamers (see Figure 6). Such p-values have been cal-
culated using the Poisson approximation of the number
of clumps.

Test for overlaps
Very few motifs have significant differences in their
clumps sizes. Table 8 presents the results for the 4 motifs
having a p-value smaller than 10%. For all of them, no
overlap is observed in the backbone (C2 = N2 means that
all clumps are of size 1 while few are observed in the loops
(C1 <N1). The probability a is the overlapping probability
under model M00.

′H1

′pB ′pB 

′pB

′pB
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Conclusion
We have proposed two complementary statistical tests to
compare the exceptionalities of motif counts in two
sequences. The binomial test is exact and particularly of
interest for small counts (from a computational point of
view). For large counts, we advise to use the likelihood
ratio test which is asymptotic but strongly correlated with
the exact binomial test. The LRT statistics is simple to cal-
culate and can be directly interpreted as a contrast meas-
ure between the exceptionalities; its p-value can be derived
from the chi-square distribution. Both tests will be imple-
mented in the R'MES software already devoted to excep-
tional motifs [18].

The likelihood ratio test can be generalized to more than
two sequences. Suppose we want to compare I sequences
S1, S2,..., SI. In each of them, we assume that the count Ni
has a Poisson distribution with parameter λi = ki �i µi and

we want to test H0 = {k1 = k2 = � = kI} versus H1 = {At least
one ki differs from the others}. The LRT statistics is

Under H0, LRT has an asymptotic chi-square distribution
with (I - 1) degrees of freedom. The Chi-square test can be
generalized as well.

Under the Poisson model, both tests can be easily used for
degenerated motifs or more generally for sets of motifs.

Let denote by  a set of motifs; The count Ni (respec-

tively the occurrence probability µi) will be the sum of the

counts (resp. occurrence probability) of w for all motifs w

from . However, the generalization is much more

LRT N
N

Ni
i

i j jj

i i
=













∑

∑
+

2 ln .
µ

µ





Counts N2 (x-axis: backbone) and N1 (y-axis: loops) for all the octamers under the M00 (left) and M1 (right) modelsFigure 4
Counts N2 (x-axis: backbone) and N1 (y-axis: loops) for all the octamers under the M00 (left) and M1 (right) models. The color 
indicates the significance of the binomial test in the M00 model: blue = 'pB > 0.01', green = 'pB < 0.01', yellow = 'pB < 0.001', red 
= 'pB < 0.0001'. The solid black line on the left indicates the expected ratio N1/N2 = π0/(1 - π0).

Table 4: Number of significantly unbalanced octamers under different models and for different thresholds.

Model: M00 M0 M1 M6

pB < 10-4 277 126 83 37
10-4 ≤ pB < 10-3 519 303 247 4
10-3 ≤ pB < 10-2 1758 1330 1143 104
10-2 ≤ pB 62982 63777 64063 65391
Page 9 of 12
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involved for the compound Poisson model because of the
possible overlaps between motifs from the set; In particu-
lar, the overlapping probability ai becomes a matrix [19].

We emphasize that these tests are valid only for independ-
ent sequences. They can not be used to detect skewed oli-
gomers because the leading strand is not independent
from the lagging strand [20]. This particular question
requires the development of another rigorous statistical
method; this is an ongoing work.

Finally, note that the exceptionality comparison of word
counts in sequences is actually equivalent to the differen-
tial analysis of SAGE expression data [21]. Indeed, in the
SAGE technology, the expression level of a given gene is
measured by a number of associated tags and the problem

is to compare the number of tags between two conditions.
In such problem, no correction has to be done except for
the total number of tags and our test statistics under
model M00 are adapted.

Methods
Likelihood ratio test

The model presented in the Results Section can be
rephrased as two Poisson processes with respective inten-
sity ki ui (i = 1,2). To calculate the likelihood, we need to

estimate the exceptionality coefficients k1 and k2. Under

the alternative hypothesis, their respective maximum like-

lihood estimates (MLE) are 1 = N1/(�1 µ1) and 2 = N2/k k

Table 5: Top: 10 motifs with smallest p-value pB (kloops > kbackbone) for model M00, M0, M1 and M6. * indicates overlapping words. 

Bottom: 10 motifs with smallest p-value  (kbackbone > kloops).

M00 M0 M1 M6

cggataag 1.2 10-19 cggataag 3.9 10-20 cggataag 2.7 10-18 gggataaa 2.4 10-4

ggataagg* 8.6 10-16 ccgcatcc* 2.0 10-16 taaggcgt* 9.1 10-15 tcgaccaa 3.0 10-4

taaggcgt* 4.6 10-15 ggataagg* 3.0 10-16 ccgcatcc* 4.0 10-14 agttttta* 4.5 10-4

gataaggc 1.2 10-14 tgtaggcc 1.1 10-15 acgccgca* 4.0 10-14 aagtgata* 5.3 10-4

taataaaa 1.9 10-14 tcaggcct* 2.9 10-15 ataaggcg 3.2 10-13 gatagcgc 8.1 10-4

ataaggcg 5.6 10-14 taaggcgt* 2.9 10-15 gccgcatc 1.0 10-12 gggtcagg* 1.5 10-3

ctgataag 1.2 10-13 gataaggc 4.9 10-15 gataaggc 2.2 10-12 agccgaga* 1.7 10-3

tgtaggcc 4.0 10-13 ggcctaca 1.1 10-14 gttccccg* 4.0 10-12 gaggttac 1.7 10-3

cttatccg 5.5 10-13 ccggccta 1.2 10-14 cgcatccg* 4.4 10-12 cagagtcc* 1.8 10-3

ccttatcc* 6.0 10-13 aggcctac 1.4 10-14 tgtaggcc 4.7 10-12 ccctggcc* 2.0 10-3

ggcgctgg* < 10-20 ctggaaga 6.8 10-10 ctggaaga 1.2 10-10 tcggttac 4.9 10-4

gcgctgga 2.5 10-14 cgatgaag 2.9 10-9 atctggtg 3.3 10-8 ggttgatg* 5.4 10-4

cggcgctg 3.0 10-13 gaagtgct 7.2 10-9 gaagtgct 4.6 10-8 gcgcatcc 6.8 10-4

tggcgctg* 5.8 10-12 tgaaactg* 4.0 10-8 ggcgctgg* 5.2 10-8 taggccgc 8.5 10-4

gcgctggt 7.2 10-12 atctggtg 4.9 10-8 cgatgaag 6.6 10-8 aagcttcg 1.1 10-3

cgctggtg 8.9 10-12 gcgctgga 8.0 10-8 tatctggt* 1.1 10-7 cgatgaag 1.1 10-3

cgcgctgg 1.0 10-10 cggtaaag 1.1 10-7 cggtaaag 1.4 10-7 cggataaa 1.2 10-3

gctggcga 1.3 10-10 ggttgatg* 1.4 10-7 ggttgatg* 2.0 10-7 ggggggac 1.4 10-3

tggcgcag 1.7 10-10 gtgctgga 1.6 10-7 gtgctgga 2.5 10-7 caggcgtt 1.6 10-3

ctggaaga 3.1 10-10 aattgtcg 2.1 10-7 tgggcttc 5.6 10-7 acgccttc 1.8 10-3

′pB

Table 6: Top: numbers of octamers significantly more exceptional in the loops when adjusting for a False Discovery Rate of 1% and 
associated thresholds for the p-value pB for different models. Bottom: idem for octamers significantly more exceptional in the 
backbone.

Model M00 M0 M1 M6

Nb. of significant octamers 677 257 154 0
Threshold for pB 1.0 10-4 3.9 10-5 2.2 10-5 _

Nb. of significant octamers 159 23 14 0

Threshold for 2.4 10-5 3.4 10-6 1.8 10-6 -′pB
Page 10 of 12
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Transformed binomial p-value Φ-1 (1 - pB) (y-axis) versus log ratio between the two p-values associated with the excep-tionality of the motif in each sequence (x-axis) under model M1 for all octamers in the E. coli backbone/loops comparisonFigure 6
Transformed binomial p-value Φ-1 (1 - pB) (y-axis) versus log 
ratio between the two p-values associated with the excep-
tionality of the motif in each sequence (x-axis) under model 
M1 for all octamers in the E. coli backbone/loops comparison.

Signed LRT statistic LRTs (y-axis) versus transformed binomial p-value Φ-1 (1 - pB) (x-axis) under model M1 for all octamers in the E. coli backbone/loops comparisonFigure 5
Signed LRT statistic LRTs (y-axis) versus transformed binomial 
p-value Φ-1 (1 - pB) (x-axis) under model M1 for all octamers 
in the E. coli backbone/loops comparison.

Table 7: Spearman and Kendall correlation coefficients between LRTs and SB for different models.

Model M00 M0 M1 M6

Spearman (%) 99.7 99.7 99.7 99.3
Kendall (%) 96.0 95.6 95.5 93.3

Table 8: Octamers with significant differences in terms of overlaps in the backbone/loops comparison.

Motif Loops backbone p a
C1 N1 C2 N2 (%) (%)

accactac 7 9 44 44 2.20 0.02
tattatta 38 41 69 69 4.83 1.56
tcggggtc 2 3 24 24 8.00 0.02
cgcgccgc 27 28 246 246 9.93 0.10
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(�2 µ2). Assuming that the two sequences are independ-

ent, the log-likelihood of the two processes is

Under the null hypothesis, the common MLE of k1 and k2

is  = (N1 + N2)/(�1 µ1 + �2 µ2) and the log-likelihood is

The LRT is defined as twice the difference between 1 and

0: LRT = 2( 1 - 0). The result follows after standard

algebraic manipulations.

Appendix
Exact hyper-geometric test
Conditional distribution of the number of clumps
The conditional distribution of Ci - 1 given in (2) can be
modified as

Ni - Ci ~  (Ni - 1, bi)

where bi = hiai is the true overlapping probability. This ver-
sion is preferable, since the exceptionality coefficient hi
directly appears here as a multiplicative constant. The con-
ditional distribution of the difference Ni - Ci given the
clump counts C1 and C2 and the total count N+ is a gener-
alized negative hyper-geometric distribution (see [12] p.
264 for the classical version and p. 270 for the generaliza-
tion):

where A is the constant such that the sum over all n1
between C1 and N+ is equal to one.

Test
Under H0 = {h1 = h2}, the term b1/b2 can be replaced by a1/
a2. The overlapping probability b1 is significantly greater
than b2 if N1 is significantly large, i.e. if Pr{N1 ≥ n1|C1, C2,
N+} is small. The power of this test can also be studied:
under H0, b1/b2 equals a1/a2, while under the alternative

hypothesis, it is equal to (h1/h2) (a1/a2). The power of the
test is then a function of h1/h2.
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