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Abstract

In this paper, we revisit two fundamental results of the self-stabilizing literature about silent
BFS spanning tree constructions: the Dolev et al algorithm and the Huang and Chen’s algorithm.
More precisely, we propose in the composite atomicity model three straightforward adaptations
inspired from those algorithms. We then present a deep study of these three algorithms. Our
results are related to both correctness (convergence and closure, assuming a distributed unfair
daemon) and complexity (analysis of the stabilization time in terms of rounds and steps).

Keywords: Self-stabilization, BFS spanning tree, composite atomicity model, distributed unfair
daemon, stabilization time, round and step complexity.

1 Introduction

Self-stabilization [1] is a versatile technique to withstand any finite number of transient faults in
a distributed system: a self-stabilizing algorithm is able to recover a correct behavior in finite
time, regardless of the arbitrary initial configuration of the system, and therefore, also after the
occurrence of transient faults.

After the seminal work of Dijkstra, several self-stabilizing algorithms have been proposed to
solve various tasks such as token circulations [2], clock synchronization [3], propagation of informa-
tion with feedbacks [4], etc. Among the vast self-stabilizing literature, many works more precisely
focus on the construction of distributed data structures, e.g., minimal dominating sets [5], cluster-
ing [6], spanning trees [7]. Most of the self-stabilizing algorithms which construct distributed data
structures actually achieve an additional property called silence [8]: a silent self-stabilizing algo-
rithm converges within finite time to a configuration from which the value of all its communication
variables are constant.

Related Works. We focus here on silent self-stabilizing spanning tree constructions, e.g., [7, 9,
10, 11, 12, 13]. Spanning tree constructions are of major interest in networking, e.g., they are often
involved in the design of routing and broadcasting tasks. Moreover, (silent) self-stabilizing span-
ning tree constructions are widely used as a basic building blocks of more complex self-stabilizing
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solutions. Indeed, composition is a natural way to design self-stabilizing algorithms [14] since it
allows to simplify both the design and proofs of self-stabilizing algorithms. Various composition
techniques have been introduced so far, e.g., collateral composition [15], fair composition [16], and
conditional composition [17]; and many self-stabilizing algorithms actually are made as a compo-
sition of a silent spanning tree algorithm and another algorithm designed for tree topologies. For
example, collateral, fair, and conditional compositions are respectively used the design of the algo-
rithms given in [18], [19], and [20]. Notably, the silence property is not mandatory in such designs,
however it allows to write simpler proofs [21].

Many self-stabilizing spanning tree constructions have been proposed, e.g., [7, 9, 10, 11, 12,
22, 13]. These constructions mainly differ by the type of tree they compute, e.g., the tree can
be arbitrary [7], depth-first [11], breadth-first [9, 10, 22, 13], etc. In this paper, we focus two
particular Breadth-First Search (BFS) spanning tree constructions: the one of Huang and Chen [9],
and the one of Dolev et al [10]. These two constructions are among the most commonly used in
the self-stabilizing literature.1 Indeed, these constructions cumulate several advantages:

1. Their design is simple.

2. The BFS spanning tree is really popular because of its minimum height.

3. They are silent. Notice, by contrast, that the solution given in [22] is not silent.

4. Despite their time complexity was not analyzed until now, they are commonly assumed to be
asymptotically optimal in rounds, i.e., O(D) rounds, where D is the diameter of the network.
Notice, by contrast, that the stabilization time of the solutions proposed in [22] and [13] are
O(n+D2) rounds and O(D2) rounds, respectively.

More precisely, the Huang and Chen’s algorithm [9] is written in the composite atomicity model.
It assumes the processes have the knowledge of n, the size of the network. This assumption allows
processes to have a bounded memory: Θ(log n) bits are required per process. The algorithm
is proven assuming a distributed unfair daemon, the most general scheduling assumption of the
model. However, no complexity analysis is given about its stabilization time in steps or rounds,
the two main complexity metrics of the model.

The Dolev et al’s algorithm [10] is written in the read/write atomicity model. This model is
more general than the composite atomicity model. The algorithm does not assume any knowledge
on any global parameter of the network, such as n for example. The counterpart being that there
is no bound on process local memories. The algorithm is proven under the central fair assumption
(n.b., the notion of unfair daemon is meaningless in this model). Despite no complexity analysis is
given in the paper, authors conjecture the stabilization time is asymptotically optimal, i.e., O(D)
rounds. By definition, a straightforward translation of the algorithm of Dolev et al also works in
the composite atomicity model assuming a distributed weakly fair daemon. However, an ad hoc
proof is necessary if one want to establish its self-stabilization under a distributed unfair daemon.
Notice that the algorithm of Dolev et al and its bounded memory variant are used in the design
of several algorithms written in this composite atomicity model, e.g., [23, 24]. Moreover, several
algorithms are based on similar principles, i.e., [25, 26]. Hence, a proof of its self-stabilization
assuming a distributed unfair daemon is highly desirable.

1As a matter of facts, [9] and [10] are respectively cited 109 and 409 times in Google Scholar.
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Contribution. In this paper, we study three silent self-stabilizing BFS spanning tree algorithms
written in the composite atomicity model. The first algorithm, called AlgoU , is the straightforward
translation of the Dolev et al’s algorithm [10] into the composite atomicity model. The second one,
AlgoB(D), is a variant of AlgoU , where the process local memories are bounded. To that goal,
the knowledge of some upper bound D on the network diameter is assumed. Finally, The third
algorithm, noted AlgoHC(D), is a generalization of the Huang and Chen’s algorithm [9], where the
exact knowledge of n is replaced by the knowledge of some upper bound D on the network diameter
(n.b., by definition, n is a particular upper bound on the diameter).

The general purpose of this paper is twofold. First, we show the close relationship between
these three algorithms. To see this, we propose a general and simple proof of self-stabilization for
the three algorithms under the distributed unfair daemon. This proof implies that every executions
of each of the three algorithms is finite in terms of steps. Moreover, notice that the proof shows in
particular that the assumption on the exact knowledge of n in the initial algorithm of Huang and
Chen was too strong. Second, the proof also validates the use of the Dolev et al’s algorithm and its
bounded-memory variant in the composite atomicity model assuming any daemon (in particular,
the unfair one).

Second, we propose a complexity analysis the stabilization time of these three algorithms in both
steps and rounds. Our results are both positive and negative. First, we show that the stabilization
time of AlgoU and AlgoB(D) is optimal in rounds by showing that in both cases the worst case is
exactly D rounds. With few modifications our proof can be adapted for the read/write atomicity
model, validating then the conjecture in [10] which claimed that the stabilization time the Dolev
et al’s algorithm was asymptotically optimal in rounds.

We then establish a lower bound in Ω(D) rounds on the stabilization time of AlgoHC(D). Now,
AlgoHC(n) is actually the algorithm of Huang and Chen. Thus, the algorithm of Huang and Chen
stabilizes in Ω(n) rounds. This result may be surprising as until now this algorithm was conjectured
to stabilize in O(D) rounds. More precisely, this negative result is mainly due to the fact that two
rules of the algorithm are not mutually exclusive, and when both rules are enabled at the same
process p, the daemon may choose to activate any of them. Our lower bound is thus established
when the daemon gives priority to one of the two rules (HC1). Hence, to circumvent this problem
we proposed a straightforward variant, noted AlgoFHC(D), where we give priority to the other rule
(HC2). We then establish that in this latter case the stabilization time becomes exactly D + 1
rounds in the worst case.

Finally, we consider the stabilization time in steps. Our results are all negative. Indeed, we first
show that the stabilization time in steps of AlgoU cannot be bounded by any function depending on
topological parameters. We then exhibit a lower bound exponential in D (the actual diameter of the
network) on the stabilization time in steps which holds for both AlgoB(D) and AlgoHC(D). Notice,
by contrast, that the stabilization time of the solutions proposed in [22] and [13] are O(∆.n3) steps
and O(n6) steps, respectively.

Roadmap. The rest of the paper is organized as follows. The next section is dedicated to the
description of the computation model and definitions. The formal codes of the three algorithms
are given in Section 3. In Section 4, we propose our general proof of self-stabilization assuming
a distributed unfair daemon. In Section 5, we analyze the stabilization time in rounds of the
three solutions. We present an analysis of the stabilization time in steps of the three solutions in
Section 6. Section 7 is dedicated to concluding remarks.
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2 Preliminaries

2.1 Distributed Systems

We assume distributed systems of n > 0 interconnected processes. One process, called the root, is
distinguished, the others are anonymous. The root of the system is simply denoted by R. Each
process p can directly communicate with a subset Np of other processes, called its neighbors. We
assume bidirectional communications, i.e., if q ∈ Np, then p ∈ Nq. The topology of the system is
a simple undirected connected graph G = (V,E), where V is the set of processes and E is the set
of edges, each edge being an unordered pair of neighboring processes. ‖p, q‖ denotes the distance
(the length of the shortest path) from p to q in G. We denote by D the diameter of G, i.e.,
D = maxp,q∈V ‖p, q‖.

2.2 Computational Model

We consider the locally shared memory model with composite atomicity introduced by Dijkstra [1],
where each process communicates with its neighbors using a finite set of locally shared variables,
henceforth called simply variables. Each process can read its own variables and those of its neigh-
bors, but can write only to its own variables. Each process operates according to its (local) program.
A distributed algorithm A consists of one local program A(p) per process p.
A(p) is given as a finite set of rules: {Labeli : Guardi → Actioni}. Labels are only used to

identify rules in the reasoning. The guard of a rule in A(p) is a Boolean expression involving the
variables of p and its neighbors. The action part of a rule in A(p) updates some variables of p.
The state of a process in A is defined by the values of its variables in A. A configuration of A is
an instance of the states of every process in A. CA is the set of all possible configurations of A.
(When there is no ambiguity, we omit the subscript A.) A rule can be executed only if its guard
evaluates to true; in this case, the rule is said to be enabled . A process is said to be enabled if at
least one of its rules is enabled. We denote by Enabled(γ) the subset of processes that are enabled
in configuration γ. When the configuration is γ and Enabled(γ) 6= ∅, a daemon selects a non-empty
set X ⊆ Enabled(γ); then every process of X atomically executes one of its enabled rule, leading to
a new configuration γ′, and so on. The transition from γ to γ′ is called a step (of A). The possible
steps induce a binary relation over CA, denoted by 7→A (or, simply 7→, when it is clear from the
context). An execution of A is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that
γi−1 7→ γi for all i > 0. The term “maximal” means that the execution is either infinite, or ends
at a terminal configuration in which no rule of A is enabled at any process. We denote by EA (or,
simply E , when it is clear from the context) the set of all possible executions of A. The set of all
executions starting from a particular configuration γ is denoted E(γ). Similarly, E(S) is the set of
execution whose the initial configuration belongs to S ⊆ C.

As previously stated, each step from a configuration to another is driven by a daemon. In
this paper we assume the daemon is distributed and unfair. “Distributed” means that while the
configuration is not terminal, the daemon should select at least one enabled process, maybe more.
“Unfair” means that there is no fairness constraint, i.e., the daemon might never select an enabled
process unless it is the only enabled process.

We say that a process p is neutralized during the step γi 7→ γi+1 if p is enabled at γi and
not enabled at γi+1, but does not execute any rule between these two configurations. An enabled
process is neutralized if at least one neighbor of p changes its state between γi and γi+1, and this
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change makes the guards of all rules of p false. To evaluate time complexity, we use the notion of
round. This notion captures the execution rate of the slowest process in any execution. The first
round of an execution e, noted e′, is the minimal prefix of e in which every process that is enabled
in the initial configuration either executes an action or becomes neutralized. Let e′′ be the suffix
of e starting from the last configuration of e′. The second round of e is the first round of e′′, and
so forth.

2.3 Self-Stabilization and Silence

We are interesting in algorithms which converge from an arbitrary configuration to a configuration
where output variables define a specific data structure, namely a BFS spanning tree. Hence, we
define a specification as a predicate SP on C which is true if and only if the outputs define the
expected data structure.

Silent Self-stabilization is a particular form of self-stabilization defined by Dolev et al [8] as
follows. A distributed algorithm A is silent self-stabilizing w.r.t. specification SP if following two
conditions holds:

Termination: all executions of A are finite; and

Partial Correctness: all terminal configurations of A satisfy SP.

In this context, the stabilization time is the maximum time (in steps or rounds) to reach a
terminal configuration starting from any configuration.

3 Three Self-Stabilizing BFS Constructions

Below we give three self-stabilizing BFS constructions: AlgoU , AlgoB(D), and AlgoHC(D).2 In all
these variants, the local program of the R just consists in the following constant: dR = 0.

Each non-root process p maintains two variables: dp and parp. The domain of parp is Np, the
set of p’s neighbors. The domain of dp differs depending on the version:

• dp is an unbounded positive integer in the first version, AlgoU .

• dp ∈ [1..D] in the two other algorithms, AlgoB(D) and AlgoHC(D). The correctness of both
AlgoB(D) and AlgoHC(D) will be established for any D ≥ D.

The three algorithms use the following three macros:

• Min d(p) = min{dq | q ∈ Np}

• bestParent(p) is any neighbor q such that dq = Min d(p)

• update(p): dp ←Min d(p) + 1; parp ← bestParent(p)

Moreover, the following two predicates are used in the algorithms:

• dOk(p) ≡ (dp = Min d(p) + 1)

• parOk(p) ≡ (dp = dparp + 1)

The two variables are maintained using the actions defined below.

2U , B, HC respectively stand for unbounded, bounded, and Huang-Chen.

5



3.1 Actions of AlgoU

The BFS algorithm in [10] is designed for the read/write atomicity model. The straightforward
adaptation of this algorithm in the locally shared memory model is given below.

U1 :: ¬dOk(p) → update(p)
U2 :: dOk(p) ∧ ¬parOk(p) → parp ← bestParent(p);

3.2 Actions of AlgoB(D)

The following algorithm is a variant of AlgoU , where the domain of the d-variable is now bounded
by the input parameter D.

B1 :: Min d(p) < D ∧ ¬dOk(p) → update(p)
B2 :: Min d(p) < D ∧ dOk(p) ∧ ¬parOk(p) → parp ← bestParent(p);
B3 :: Min d(p) = D ∧ (dp 6= D) → dp ← D

3.3 Actions of AlgoHC(D)

Actions given below are essentially the same as those of the BFS algorithm given in [9]. Actually,
they differ in two points from the version of [9].

• In [9], d-variables are defined in such way that dR = 1 and dp ≥ 2, ∀p ∈ V \ {R}. We
have changed the domain definition of the d-variables for sake of uniformity. However, this
difference on the domain definitions has no impact on the behavior of the algorithm.

• Moreover, to be more general, we have replaced in the code the exact value n (the number of
processes) by D.

HC1 :: ¬parOk(p) ∧ dparp < D → dp ← dparp + 1
HC2 :: dparp > Min d(p) → update(p)

Notice that HC1 and HC2 are not mutually exclusive, i.e., in some configurations, both rules
can be enabled at the same process. For instance, in the initial configuration of Figure 1 (page
12), rules HC1 and HC2 are enabled at process a. In this case, if a is selected by the daemon, the
daemon also chooses which of the two rules is executed.

4 Correctness

In this section, we give a general proof which establishes the self-stabilization of the three algorithms
under a distributed unfair daemon. The proof of correctness consists of the following two main
steps:

Partial correctness (Theorems 1 and 2) which means that if an execution terminates, then
the output of the terminal configuration is correct. (In our context, the output of the terminal
configuration define a BFS spanning tree rooted at R.)

Termination (Theorem 4) which means that every possible execution is finite in terms of steps.
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4.1 Partial Correctness

Below we establish the partial correctness of AlgoU , AlgoB(D), and AlgoHC(D) using three main
steps: (1) we define a set of legitimate configurations (Definition 1), and show that (2) a BFS
spanning tree is defined in each legitimate configuration (Theorem 1) and (3) every terminal con-
figuration of each algorithm is legitimate (Theorem 2). additionally, we show that every legitimate
configuration is terminal in any of the three algorithms (Theorem 3).

4.1.1 Legitimate Configurations

Definition 1 A configuration is legitimate if and only if for every process p, we have dp = ‖p,R‖
and if p 6= R, then dp = dparp + 1.

Let Tγ = (V,ET ), where ETγ = {{p, q} ∈ E | q 6= R ∧ parq = p in γ}.

Theorem 1 Tγ is a BFS spanning tree in every legitimate configuration γ.

Proof. Let γ be any legitimate configuration. We first demonstrate that Tγ is a spanning tree by
showing the following two claims:

Tγ is acyclic: Assume, by contradiction, that Tγ contains a cycle p0, . . . , pk, p0. By definition, R is
not involved into the cycle. Assume, without loss of generality, that for all i > 0, parpi = pi−1

et parp0 = pk in γ. From Definition 1, in γ we have dpi > dpi−1 and, by transitivity, dpk > dp0 .
Now, as parp0 = pk, we have dp0 > dpk by Definition 1, a contradiction.

|ETγ | = n− 1: First, by definition we have |ETγ | ≤ n − 1. Now, if |ETγ | < n − 1, then there is at
least one edge {p, q} such that parp = q and parq = p. This contradicts the fact that Tγ is
acyclic. Hence, |ETγ | = n− 1.

We now show that Tγ is breadth-first. Let p0 = R, . . . , p the unique path from R to p in the tree. By
definition, for all i > 0, parpi = pi−1. By Definition 1, we have dpi = dpi−1 + 1 and, by transitivity,
dpk = dp0 + k. Moreover, dp0 = dR = 0. So, dpk is the length k of the path from R to pk. Now, by
Definition 1, dpk is also equal to ‖R, pk‖. Hence, the length k of the path from R to pk is equal to
the distance from R to pk in G. �

4.1.2 Legitimacy of Terminal Configurations

Let D ≥ D. Let T CAlgoU , T CAlgoB(D), and T CAlgoHC(D) be the set of terminal configurations of
AlgoU , AlgoB(D), and AlgoHC(D), respectively.

Lemma 1 Let γ be a configuration of T CAlgoU . Let X be the largest distance value in γ. γ is a
configuration of T CAlgoB(X).

Proof. Every process p satisfies dOk(p)∧ parOk(p) in γ. So, the rule B1 and B2 of T CAlgoB(X) are
disabled at p in γ. Moreover, by definition, dp ≤ X and parOk(p) in γ implies that dparp < X in
γ. So, Min d(p) < X in γ and, consequently, B3 of T CAlgoB(X) is disabled at p in γ. �

Lemma 2 Let D ≥ D and γ be a configuration. If γ be a terminal configuration of AlgoB(D),
then γ is a terminal configuration of AlgoHC(D).

7



Proof. We establish this lemma by showing its contrapositive. Let γ′ be a non-terminal configura-
tion of AlgoHC(D). There is a process p such that (¬parOk(p) ∧ dparp < D) ∨ (dparp > Min d(p))
holds in γ′.

Assume first that ¬parOk(p)∧dparp < D holds in γ′. Then, dparp < D implies that Min d(p) <
D holds. Thus either B1 or B2 is enabled in γ′ because ¬parOk(p) holds.

Assume then that dparp > Min d(p). Then, as dparp ≤ D (by definition), we have Min d(p) <
D. So, if ¬dOk(p), then B1 is enabled in γ′. Otherwise, we have dp = Min d(p) + 1. So,
dp 6= dparp + 1 and, consequently, B2 is enabled in γ′.

Hence, every non-terminal configuration of AlgoHC(D) is a non-terminal configuration of AlgoB(D).
�

From the two previous lemmas, we have:

Corollary 1 T CAlgoU ⊆
⋃∞
i=D T CAlgoB(i) ⊆

⋃∞
i=D T CAlgoHC(i).

From the previous corollary, we know that it is sufficient to show that any configuration of⋃∞
i=D T CAlgoHC(i) is legitimate to establish that any configuration of T CAlgoU ,

⋃∞
i=D T CAlgoB(i), and⋃∞

i=D T CAlgoHC(i) are legitimate.

Lemma 3 Let D ≥ D. In any configuration of T CAlgoHC(D) we have dp ≤ ‖p,R‖ for every process
p.

Proof. Let γ be any terminal configuration of AlgoHC(D). Assume, by the contradiction, that
there is a process p such that dp > ‖p,R‖ in γ. Without loss of generality, assume p is one of the
closest processes from R such that dp > ‖p,R‖ in γ. By definition, ‖p,R‖ ≤ D, and p has at least a
neighbor, q, such that ‖q,R‖ = ‖p,R‖ − 1 < D. By hypothesis, dq ≤ ‖q,R‖ = ‖p,R‖ − 1 in γ. So,
we have Min d(p) ≤ ‖p,R‖ − 1 < D ≤ D in γ. Then, by definition, dparp ≥ Min d(p) in γ. Now,
HC2 is disabled at p in γ. So, dparp = Min d(p) in γ. Consequently, dparp ≤ ‖p,R‖ − 1 < D in γ.
Now, HC1 is disabled at p in γ. So, dp = dparp + 1 ≤ ‖p,R‖ in γ, a contradiction. �

Corollary 2 Let γ be a configuration of T CAlgoHC(D) where D ≥ D. Every process p 6= R satisfies
dp = dparp + 1 and dparp = Min d(p) in γ.

Proof. Let p 6= R be process. By definition, dparp ≥Min d(p) in γ. HC2 is disabled at p in γ. So,
dparp = Min d(p) in γ. p has a neighbor such that ‖q,R‖ ≤ D − 1. So, we have dq ≤ D − 1 in γ
(by Lemma 3) and, consequently, Min d(p) < D in γ. So, dparp < D in γ. As HC1 is disabled at
p in γ, we have also dp = dparp + 1. �

Lemma 4 Let D ≥ D. Let γ be a configuration of T CAlgoHC(D). dp = ‖p,R‖ holds for every process
p, in γ.

Proof. We have dR = 0 (by definition) and dq = dparq + 1 for every process q 6= R in γ (corollary
2). So, similarly to the proof of Theorem 1, we can establish that Tγ is spanning tree and for every
process p, dp is the length of the path in Tγ from R to p. So, we have dp ≥ ‖p,R‖ in γ. Now,
dp ≤ ‖p,R‖ in γ, by Lemma 3. So, we conclude that dp = ‖p,R‖ in γ, for every process p.

�

From Corollaries 1,2, and Lemma 4, we can deduce the following theorem:

Theorem 2 Let D ≥ D. Every terminal configuration of AlgoU , AlgoB(D), or AlgoHC(D) is γ is
legitimate.
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4.1.3 Legitimate Configurations are Terminal

Theorem 3 Let D ≥ D. Every legitimate configuration is a terminal configuration of AlgoU ,
AlgoB(D), and AlgoHC(D), respectively.

Proof. Let γ be a legitimate configuration. First, for every process p, dp = ‖p,R‖ ≤ D. So, γ is a
possible configuration of AlgoU , AlgoB(D), and AlgoHC(D), respectively.

Let p be a non-root process. We have Min d(p) = min{dq | q ∈ Np} = min{‖q,R‖ | q ∈ Np} =
‖p,R‖ − 1 < D ≤ D in γ. So, B3 is disabled at every non-root process in γ.

Moreover, Min d(p) + 1 = ‖p,R‖ = dp in γ. So, U1 and B1 are disabled at every non-root
process in γ.

By definition, parOk(p) holds in γ. So, U2, B2, and HC1 are disabled at non-root process in γ.
Finally, parOk(p) implies that dparp = dp − 1 = ‖p,R‖ − 1 = Min d(p) in γ. Hence, HC2 is

disabled at every non-root process in γ. �

4.2 Termination

In this subsection, we will establish that, under a distributed unfair daemon, all executions of
AlgoU , AlgoB(D), and AlgoHC(D) are finite.

The lemma given below establish that we only need to prove that the number of d-variable
updates is finite in any execution e of AlgoU , AlgoB(D), or AlgoHC(D) to establish that e is finite.

Lemma 5 Let e = γ0, . . . γi, γi+1, . . . be any execution of AlgoU , AlgoB(D), or AlgoHC(D). If for
every process p, dp is modified only a finite number of time along e, then e is finite.

Proof. Assume that every process p, dp is modified only a finite number of time along e. Then,
there exists i ≥ 0 such that no d-variable is modified in the suffix e′ = γiγi+1 . . . of e. By definition
of the three algorithms, only par-variables can be modified along e′. So the rules U1 for AlgoU , B1

and B3 for AlgoB(D), and HC1 for AlgoHC(D) are not executed along e′. Now, by definition of
the algorithms, in e′, we have:

• Once the rule modifying parp (Rule U2, B2, or HC2) is disabled, it remains disabled forever by
p, because the values of d-variables are constant (in particular, those of p and its neighbors).

• The rule modifying parp (Rule U2, B2, or HC2) becomes disabled immediately after p’s
execution.

Consequently, each process takes at most one step along e′; we conclude that the execution e is
finite. �

Notation 1 For every configuration γ, for any integer k ≥ 0, we denote by Set dk(γ) the set of
processes p such that dp = k in γ.

Remark 1 In every configuration γ, Set d0(γ) = {R}, and Set d`(γ)
⋂
Set dk(γ) = ∅ for every

0 ≤ ` < k. V =
⋃∞
i=0 Set di(γ).

The following lemma establishes that for every execution e of AlgoU , AlgoB(D), or AlgoHC(D),
there is a upper bound kb on the values taken in e by the d-variables of all processes.
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Lemma 6 Let e = γ0, . . . γi, γi+1, . . . be any execution of AlgoU , AlgoB(D), or AlgoHC(D). ∃kb ≥
0 | ∀j ≥ 0, ∀` > kb we have Set d`(γj) = ∅.

Proof. By definition, the lemma is established by letting kb = D if e is an execution of AlgoB(D)
or AlgoHC(D).

Consider now the case where e is an execution of AlgoU . V UB is the set of processes that have
no upper bound on their distance value in e, formally, V UB = {p ∈ V | ∀k ≥ 0, ∃j ≥ 0, ∃` > k | p ∈
Set d`(γj)}

Assume, by the contradiction, that V UB is not empty. The set V \ V UB is not empty, by
Remark 1. As the network is connected, there are two neighboring processes p and q such that
p ∈ V UB and q ∈ V \ V UB. By definition, ∃x ≥ 0 such that dq ≤ x in all configurations of
e. Consequently, Min d(p) ≤ x in all configurations of e. So, we have dp ≤ max{x + 1, y} in all
configurations of e, where y be the initial value of dp (according to the rule U1). Consequently,
p /∈ V UB, a contradiction.

Hence, V UB is empty. Let ubp the upper bound on the distance values taken by the process p
in e. The lemma holds for kb = maxp∈V {ubp}. �

Below, we show that, for every k ≥ 0, for every execution e of AlgoU , AlgoB(D), or AlgoHC(D),
if there is a suffix e′ of e where every d-variable whose value is less than k is constant, then there
is a suffix e′′ of e′ where no process switches its d-variable from any non-k value to k.

Lemma 7 Let e = γ0, . . . γi, γi+1, . . . be an execution of AlgoU , AlgoB(D), or AlgoHC(D). Let
k > 0. If ∃ik | ∀j ≥ ik,∀` ∈ [0..k − 1] we have Set d`(γj) = Set d`(γik), then ∃` ≥ ik | ∀j ≥ ` we
have Set dk(γj+1) ⊆ Set dk(γj).

Proof. Let γj 7→ γj+1 be any step in the suffix of e starting in γik where Set dk(γj+1) * Set dk(γj).
There is at least a process p 6= R such that p /∈ Set dk(γj) ∧ p ∈ Set dk(γj+1). In γj , we have
dp > k, as Set d`(γj) = Set d`(γj+1) ∀` ∈ [0..k − 1] and p /∈ Set dk(γj). Moreover, p executes a
rule in γj 7→ γj+1. In the following, we prove that p will no more change its d-variable in e after
this step.

• Consider first AlgoU . We have Min d(p) = k−1 in γj . Moreover, by hypothesis, Min d(p) =
k− 1 forever from γik (so, in particular from γj). So, p will no more change its distance value
after γj+1.

• Consider AlgoB(D). If k = D, then dp should be greater than D in γj , a contradiction. So,
k < D and dp > k in γj . So p executes B1 in γj 7→ γj+1, and similarly to the previous case,
γj 7→ γj+1 is the only step in the suffix of e starting in γik where p sets dp to k.

• Finally, consider AlgoHC(D). We have to study the two following cases:

– Assume that p executes HC2 to set parp to q in γj 7→ γj+1. By definition, Min d(p) =
k − 1 = dq holds in γik and all subsequent configurations. So, p is disabled forever from
γj+1.

– Assume that p executes HC1 to set parp to q in γj 7→ γj+1 By definition, Min d(p) ≤
k−1 = dq < D in γik and all subsequent configurations. So, until p next action, we have
parOk(p) and dp = k. So, p next action is necessarily HC2 to set dp to a value smaller
than k, a contradiction. So, p cannot execute any rule in the suffix starting from γj+1.
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Hence, in the suffix of e starting in γik , there is at most n steps γj 7→ γj+1 where Set dk(γj+1) *
Set dk(γj). �

Below, we show that, for every k ≥ 0, for every execution e of AlgoU , AlgoB(D), or AlgoHC(D),
if eventually every d-variable whose value is less than k becomes constant, then eventually every
d-variable whose value is k becomes constant.

Lemma 8 Let e = γ0, . . . γi, γi+1, . . . be an execution of AlgoU , AlgoB(D), or AlgoHC(D). Let
k > 0. If ∃ik | ∀j ≥ ik,∀` ∈ [0..k − 1] we have Set d`(γj) = Set d`(γik), then ∃` ≥ ik | ∀j ≥ ` we
have Set dk(γj+1) = Set dk(γj).

Proof. By lemma 7, there exists a suffix e′ of e starting in γx, such that ∀j ≥ x, we have
Set dk(γj+1) ⊆ Set dk(γj). During e′, there is at most |Set dk(γix)| steps γj 7→ γj+1 where
Set dk(γj+1) 6= Set dk(γj). �

From Remark 1, Lemmas 6 and 8, we can deduce the following corollary.

Corollary 3 For every process p, dp can be modified only a finite number of time in e.

By Lemma 5, Corollary 3, follows:

Theorem 4 Under a distributed unfair daemon, all executions of AlgoU , AlgoB(D), and AlgoHC(D)
are finite.

5 Stabilization Time in Rounds

In this section, we study the stabilization time in rounds of the three algorithms presented in
Section 3. Throughout this section we will use the notion of attractor defined below.

Let A be a distributed algorithm. Let C1 and C2 be two subsets of C, the set of all possible
configurations of A. C2 is an attractor for C1 (under A) if the following conditions hold:

Convergence: ∀e = γ0, γ1, . . . ∈ E(C1),∃i ≥ 0 | γi ∈ C2.

Closure: ∀e = γ0, γ1, . . . ∈ E(C2), ∀i ≥ 0 | γi ∈ C2.

The following predicate is useful to establish a sequence of attractors.

Pred correct node(p, i) ≡ (‖R, p‖ ≤ i⇒ (dp = ‖R, p‖ = dparp + 1))

For every i ≥ 0, Att(i) is the set of configurations, where every process p 6= R satisfies
Pred correct node(p, i).

In any configuration of Att(D), every process p 6= R satisfies (dp = ‖R, p‖ = dparp +1), moreover
dr = 0, by definition. So, all configurations of Att(D) are legitimate. Furthermore, every legitimate
configuration is terminal in all of the three algorithms (Theorem 3). Hence, the stabilization time
of any of the three algorithms is bounded by the maximum number of rounds it requires to reach
any configuration of Att(D) starting from any arbitrary configuration.

11



5.1 Lower Bound in Ω(D) Rounds for AlgoHC(D)

We first show that the stabilization time in rounds of AlgoHC(D) actually depends on the size of
the domain of the d-variables. Hence, we can conclude that AlgoHC(n), i.e., the algorithm proposed
in [9], stabilizes in Ω(n) rounds, where n is the number of processes.

Let k ≥ 1. We now exhibit a possible execution of AlgoHC(2k) which stabilizes in k+ 1 rounds
in the 3-nodes graph given in Figure 1 (its diameter is 2). Notice that this execution requires 2k
steps.
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2k 2k − 1
Configuration at the end of the k − 1th round

R

ba

Configuration at the end of the k + 1th round

R

a b

Initial configuration

R

a b

Configuration at the end of the first round

R

b

2k − 1

a

Configuration at the end of the kth round

R

Figure 1: Execution of AlgoHC(2k) which converges in k + 1 rounds

• At the beginning of the ith round with i ∈ [1, k − 1], processes a and b are enabled. In the
first step of these rounds, b executes HC1. During the second step (the last step of these
rounds) the node a executes HC1.

• At the beginning of the kth round, only process a is enabled. During the only step of this
round, a executes HC2 and gets its terminal state.

• At the beginning of the k+ 1th round, only process b is enabled. During the only step of this
round, process b executes and gets its terminal state.

This example can be generalized to any number of processes n ≥ 3. Just construct a network G
of n processes by adding n − 3 processes to the network given in Figure 1; those n − 3 processes
being only neighbors of R. Since the state of R is constant, these n − 3 processes have no impact
on the behavior of a and b. Hence, the previous execution is a possible execution prefix in G which
contains Ω(D) rounds.
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Hence, the stabilization time of AlgoHC(D) is Ω(D) rounds.
The lower bound on the stabilization time is mainly due to the fact that rules HC1 and HC2

are not mutually exclusive. Hence, when both are enabled at the same process p, the daemon
may choose to activate any of them. Our lower bound is then established when the daemon makes
priority on HC1.

In the following subsection, we show that this lower bound can be easily circumvented to obtain
the stabilization time in Θ(D) rounds.

5.2 Fast Implementation of AlgoHC(D)

5.2.1 Algorithm AlgoFHC(D)

Below, we propose a variant of AlgoHC(D) where we have modified HC1 into FHC1, so that FHC1

and HC2 are now mutually exclusive. The modification of HC1 into FHC1 gives it priority on
HC2. In the following, this variant will be denoted by AlgoFHC(D) and called fast implementation
of AlgoHC(D).

FHC1 :: ¬parOk(p) ∧ dparp < D ∧ dparp = Min d(p) → dp ← dparp + 1
HC2 :: dparp > Min d(p) → update(p)

The lemma given below show the close relationship between AlgoFHC(D) and AlgoB(D).

Lemma 9 If γ 7→ γ′ is a step of AlgoFHC(D) containing execution of rules HC2 only, then γ 7→ γ′

is a possible step of AlgoB(D).

Proof. Let γ 7→ γ′ be any step of AlgoFHC(D) containing execution of rules HC2 only. Consider
any process p that moves during γ 7→ γ′. So, p performs HC2 during γ 7→ γ′ and we have
Min d(p) < dparp ≤ D in γ.

If ¬dOk(p) is true in γ, then B1 is enabled at p in γ. Now, the action part of B1 and HC2 are
identical.

Conversely, assume that dOk(p) is true in γ. During γ 7→ γ′, p does not modify dp, however
parp is set to bestParent(p). Now, ¬parOk(p) is true in γ, so B2 is enabled while B1 is not. In
this case, the action part of B2 has the same effect as the action part of HC2.

Hence, in any case, γ 7→ γ′ is a possible step of AlgoB(D). �

5.2.2 Upper Bound on Stabilization Time in Rounds of AlgoFHC(D)

The Pred UB d(p, i) and Pred correct d(p, i) predicate defined below are used to establish a se-
quence of D + 1 attractors under AlgoFHC(D) (with D ≥ D) ending in the set of the terminal
configurations.

Pred UB d(p, i) ≡ (‖R, p‖ > i⇒ (dp > i ∨ (dp = i ∧ (∃q ∈ Np | dq ≤ i+ 1))))

Pred UB d(p, i) means that if a process p is at distance larger than i from R, then either dp
should be also larger than i, or dp should be equal to i and a neighbor of p should have its distance
to R smaller than or equal to i+ 1.

Pred correct d(p, i) ≡ (‖R, p‖ ≤ i⇒ dp = ‖R, p‖)

13



Pred correct d(p, i) means that if a process p is at least at distance i from R, then its distance
value should be correct, i.e., dp is equal to its distance to the R.

Below, we define some useful subsets of configurations.

• LetAtt UB(i) be the set of configurations, where every process p 6= R satisfies Pred UB d(p, i).

• LetAtt dist(i) be the set of configurations, where every process p satisfies Pred correct d(p, i).

• Let Att HC(i) = Att dist(i) ∩Att UB(i).

Notice that Att HC(0) is the set of all possible configurations.

Observation 1 Let p be an process such that ‖p,R‖ > i + 1. So, we have i + 2 ≤ D. Let γ be
a configuration of Att HC(i). By definition of Att HC(i), we have dp ≥ i and dq ≥ i for every
q ∈ Np in every execution from γ. Consequently, Min d(p) ≥ i along any execution from γ.

Lemma 10 Assume that Att HC(i) is an attractor under AlgoFHC(D) with D ≥ D and 0 ≤ i < D.
Let γ be a configuration of Att HC(i). Let γ 7→ γ′ be a possible step where process p moves.
Pred UB d(p, i+ 1) holds in γ′.

Proof. Let p be a process such that ‖p,R‖ > i+ 1 (the other case is trivial). We have dp ≥ i+ 1
in γ′ according to observation 1.
If dp > i + 1 in γ′, then Pred UB d(p, i + 1) holds. Otherwise, we have dp = i + 1 in γ′. Let
q ∈ Np such that dq = Min d(p) in γ. We have dq = i in γ. By definition of Att HC(i), we have
Min d(p) ≤ i+ 2 in γ′. Hence, Pred UB d(p, i+ 1) holds in γ′. �

Lemma 11 If Att HC(i) is an attractor under AlgoFHC(D) with D ≥ D and 0 ≤ i < D, then
Att UB(i+ 1) is an attractor under AlgoFHC(D) from Att HC(i) which is reached within at most
one round from Att HC(i).

Proof.

Closure. Let γ 7→ γ′ be a possible step from any configuration γ of Att HC(i). We show that for
every process p 6= R, if Pred UB d(p, i + 1) holds in γ, then Pred UB d(p, i + 1) holds in
γ′. Assume ‖p,R‖ > i + 1 (the other case is trivial). Assume that p does not move during
the step; otherwise Pred UB d(p, i+ 1) holds in γ′ according to Lemma 10. If dp > i+ 1 in
γ, Pred UB d(p, i + 1) holds in γ′. Assume now that in γ, dp = i + 1 and p has a neighbor
q such that dq ≤ i + 2. While dp = i + 1, Min d(q) ≤ i + 1, so dq ≤ i + 2. Hence, we can
conclude that Pred UB d(p, i+ 1) still holds in γ′.

Convergence. We now show that for every process p 6= R, Pred UB d(p, i + 1) becomes true
within at most one round from any configuration γ of Att HC(i). Assume ‖p,R‖ > i+1 (the
other case is trivial).

• If dp > i+ 1 in γ, then Pred UB d(p, i+ 1) holds.

• If dp = i in γ, then p is enabled while dp = i because Min d(p) ≥ i forever from
γ (Observation 1). So, p moves during the first round from γ, and we are done, by
Lemma 10.
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• Assume that dp = i+ 1 in γ.

– If p moves during the first round from γ, then Pred UB d(p, i + 1) holds after the
step, by Lemma 10.

– Assume that p does not move during the first round from γ.

∗ If a neighbor of p, q, moves during a step of the round, then after this step
Pred UB d(p, i+ 1) holds because dq ≤ i+ 2.

∗ Assume that neither p nor its neighbors move during the round. So the value
of dq is less than or equal to i+ 2 in γ, for all q ∈ Np. Indeed, if some neighbor
of p, q, satisfies dq > i + 2 in γ, then q stay enabled along the round from γ,
because of the state of p. This contradicts the definition of round. Hence, the
value of dq is less than or equal to i + 2 in γ, for all q ∈ Np, and consequently
Pred UB d(p, i+ 1) holds in γ.

�

Lemma 12 If Att HC(i) is an attractor under AlgoFHC(D) with D ≥ D and 0 ≤ i < D, then
Att dist(i+ 1) is an attractor under AlgoFHC(D) from Att HC(i) which is reached within at most
one round from any configuration of Att HC(i).

Proof. Let pi+1 be a process at distance i + 1 of R. pi+1 has at least a neighbor pi such that
‖pi,R‖ = i. Let γ ∈ Att HC(i). By definition of Att HC(i) and as Att HC(i) is an attractor, we
can deduce that dpi = i and ∀q ∈ Npi+1 , dq ≥ i forever from γ. So, from γ Min d(pi+1) = i forever.

Consequently, if dpi+1 6= i+ 1 in γ, then pi+1 is enabled to execute FHC1 or HC2 to set dpi+1

to i+ 1.
Moreover, if dpi+1 = i+ 1 in γ, then pi+1 cannot modify dpi+1 in any step from γ.
Hence, Att dist(i + 1) is an attractor under AlgoFHC(D) from Att HC(i) which is reached

within at most one round from any configuration of Att HC(i). �

From the two previous lemmas, we can deduce the following corollary.

Corollary 4 If Att HC(i) is an attractor under AlgoFHC(D) with D ≥ D and 0 ≤ i < D, then
Att HC(i+ 1) is an attractor under AlgoFHC(D) from Att HC(i) which is reached within at most
one round from any configuration of Att HC(i).

The previous corollary establishes that after at most D rounds, the distance value in every
process is accurate forever. We now show one additional is necessary to fix the par-variables.

Lemma 13 Att(D) is an attractor under AlgoFHC(D) (with D ≥ D) from Att HC(D) which is
reached within at most one round from any configuration of Att HC(D).

Proof. In any configuration of Att HC(D), dp = Min d(p) + 1 holds forever for every process p.
So, the distance value of any process stays unchanged along any execution of AlgoFHC(D) from a
configuration of Att HC(D).

Let γ be a configuration of Att HC(D) where dparp 6= Min d(p). The rule HC2 is enabled at p
until p executes it. After the execution of this rule, we have dp = dparp + 1. As no process changes
its distance value in Att HC(D), p is become disabled forever.

Hence, we conclude that Att(D) is an attractor which is reached within at most one round from
Att HC(D). �

From Corollary 4 and Lemma 13, we have the following theorem:
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Theorem 5 For every D ≥ D, the stabilization time of AlgoFHC(D) is at most D + 1 rounds.

5.2.3 Lower Bound on Stabilization Time in Rounds of AlgoFHC(D)

Below, we show that the upper bound given in the previous theorem is exact when D = D: ∀D ≥ 2,
there exists an execution of AlgoHC(D) in a graph of diameter D that stabilizing in D + 1 rounds.

We consider any graph G = (V,E) of D + 2 nodes of diameter D ≥ 1, where

• V = {p0 = R, . . . , pD+1}, and

• E = {{pi, pi+1}|i ∈ [0..D]} ∪ {{pD+1, pD−1}}.

We consider a synchronous execution (i.e. an execution where the distributed unfair daemon
activates all enabled processes at each step) which starts from the following initial configuration:

• dR = 0,

• ∀i ∈ [1..D − 2], parpi = pi−1 ∧ dpi = D,

• parpD−1 = pD+1 ∧ dpD−1 = D,

• parpD = pD+1 ∧ dpD = D, and

• parpD+1 = pD−1 ∧ dpD = D − 1.

An example of initial configuration is given in Figure 2. Notice that in a synchronous execution,
every round lasts one step.

• At each round i ∈ [1..D − 2], pi executes FHC1 to change dpi to i.

• At the D − 1th round, pD−1 executes HC2 to set dpD−1 to D − 1 and parpD−1 to pD−2.

• At the Dth round, pD+1 executes FHC1 to set dpD+1 to D.

• At the D + 1th round, pD executes HC2 to set parpD to pD−1.

Hence, we can conclude with the theorem below.

Theorem 6 The worst case stabilization time of AlgoFHC(D) is D + 1 rounds.

5.3 Algorithms AlgoU and AlgoB(D)

We now establish that the stabilization time of both AlgoU and AlgoB(D) is exactly D rounds in
the worst case.
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D − 1

0 D D D D

p0 = R p1 pD−2 pD−1 pD

pD+1

Figure 2: Initial configuration of a synchronous execution of AlgoFHC(D) which stabilizes in D+ 1
rounds

5.3.1 Upper bound on the Stabilization Time in Rounds for both AlgoU and AlgoB(D)

We first establish that the stabilization time of both AlgoU and AlgoB(D) is at most D rounds in
the worst case. To that goal, we use the predicate Pred SUB d(p, i) defined below:

Pred SUB d(p, i) ≡ (‖R, p‖ > i⇒ dp > i)

Pred SUB d(p, i) means that dp must be larger than i if the process p is at a distance larger
than i from R.

We will also use the following sets:

• Let Att SUB(i) be the set of configurations where every process p satisfies Pred SUB d(p, i)).

• Let Att B(i) = Att(i) ∩Att SUB(i).

Notice that all configurations belong to Att SUB(0).

Lemma 14 If Att B(i) is an attractor under AlgoU (resp. AlgoB(D) where D ≥ D) with 0 ≤ i <
D, then Att(i + 1) is an attractor under AlgoU (resp. AlgoB(D)) from Att B(i) which is reached
within at most one round from any configuration of Att B(i).

Proof. Let pi+1 be a process at distance i + 1 of R. By definition, pi+1 has at least one neighbor
pi at distance i of R. As Att B(i) is an attractor, from any configuration of Att B(i), the three
following conditions hold forever: (i) dpi = i, (ii) Min d(pi+1) = i < D, and (iii) for every process
q, dq = i⇒ ‖q,R‖ = i.

Let γ 7→ γ′ be a possible step such that γ is a configuration of Att B(i). We first show that for
every process p, if Pred correct node(pi+1, i + 1) holds in γ, then Pred correct node(pi+1, i + 1)
holds in γ′. From γ, dparpi+1

= i, so dparpi+1
is no more modified by (iii). In γ, dpi+1 = i + 1 and

dpi+1 is no more modified by (ii). Hence, dpi+1 = dparpi+1
+ 1 and p is disabled forever from γ.

Hence, Pred correct node(pi+1, i+ 1) still holds in γ′.
We now show that for every process p, Pred correct node(pi+1, i + 1) becomes true within at

most one round from any configuration γ of Att B(i). Assume that dpi+1 6= i + 1 or dparpi+1
6= i

in γ. Then, pi+1 is enabled in AlgoU (resp. AlgoB(D)) until it executes an action, by (i) and
(ii). Moreover, after pi+1 move, we have dpi+1 = i + 1 = dparpi+1

+ 1, by (i) and (ii). Hence,
Pred correct node(pi+1, i+ 1) becomes true within at most one round from γ. �
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Lemma 15 If Att B(i) is an attractor under AlgoU (resp. AlgoB(D) where D ≥ D) with 0 ≤ i <
D, then Att SUB(i + 1) is an attractor under AlgoU (resp. AlgoB(D)) from Att B(i) which is
reached within at most one round from any configuration of Att B(i).

Proof. Let p be a process such that ‖p,R‖ > i+ 1. In this case, we have i+ 2 ≤ D ≤ D.
In any configuration of Att B(i), we have dp > i and dq > i for any neighbor q of p by definition

of Att B(i). So, starting from any configuration γ of Att B(i), Min d(p) > i holds forever.
Hence, if dp > i+ 1 in γ, then dp > i+ 1 forever from γ, which implies that if Att SUB(i+ 1)

holds in γ, then Att SUB(i+ 1) holds forever from γ.
Assume now that dp = i + 1 in γ. Then, dp = i + 1 < D and, as Min d(p) > i holds forever

from γ, p is continuously enabled from γ until it executes either U1 in AlgoU , or Bj , j ∈ {1, 2} in
AlgoB(D). After p move, dp ≥ i+ 1. Hence, Att SUB(i+ 1) holds within at most one round from
γ. �

Corollary 5 If Att B(i) is an attractor under AlgoU (resp. of AlgoB(D) where D ≥ D) with
0 ≤ i < D, then Att B(i + 1) is an attractor under AlgoU (resp. AlgoB(D)) from Att B(i) which
is reached within at most one round from any configuration of Att B(i).

From the previous corollary and owing the fact that Att B(D) = Att(D), we can deduce the
following theorem:

Theorem 7 The stabilization time of AlgoU and AlgoB(D) (for every D ≥ D) is at most D rounds.

5.3.2 Lower Bound on the Stabilization Time in Rounds for both AlgoU and AlgoB(D)

Below, we show that the upper bound is exact for both AlgoU and AlgoB(D) when D ≥ D.
Consider first AlgoU . Let G = (V,E) be any line graph of diameter D, i.e., V = {p0 =

R, p1, . . . , pD} and E = {{pi, pi+1} | i ∈ [0..D − 1]}. Consider the initial configuration where
dp0 = 0 and ∀i ∈ [1..D], dpi = X, where X > D. (Par-variables have arbitrary values). Consider
a synchronous execution starting from that initial configuration. Then, at each round i, with
i ∈ [1..D], pi executes U1 to definitely set dpi to i and parpi to pi−1. Moreover, ∀j ∈ [i + 1..D], pj
increments dpj by U1. Hence, after D rounds the system is in a terminal configuration.

Consider now AlgoB(D) with any value D ≥ D. Consider the same graph as for AlgoFHC(D).
However, we consider now a synchronous execution starting from any configuration where:

• dR = 0,

• ∀i ∈ [1..D + 1], dpi = D,

• parpD = pD+1, and

• parpD+1 = pD.

An example of initial configuration is given in Figure 3. The synchronous execution starting from
that configuration then works as follows:

• In round i, with i ∈ [1..D − 1], only process pi moves. It executes rule B1 to set dpi to i and
parpi to pi−1.
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0 D D D D

p0 = R p1 pD−2 pD−1 pD

pD+1D

Figure 3: Initial configuration of a synchronous execution of AlgoB(D) which stabilizes in D rounds

• In round D, only pD and pD+1 move. Two cases are possibles. Either D > D and they both
execute B1 to set dpD (resp. dpD+1) to D and parpD (resp. parpD+1) to pD−1. Or, D = D and
they both execute B2 to set parpD and parpD+1 to pD−1.

Hence, we can conclude with the theorem below.

Theorem 8 The worst case stabilization time of AlgoU and AlgoB(D) (with D ≥ D) is D rounds.

6 Stabilization Time in Steps

In this section, we propose a step complexity analysis of the three algorithms presented in Section 3.

6.1 A General Bound

The theorem below exhibits a trivial upper bound on the stabilization time in steps of every self-
stabilizing algorithm working under an unfair daemon.

Theorem 9 Let A be any self-stabilizing algorithm under an unfair daemon,3 the stabilization
time of A is less than or equal to

∏
p∈V |Sp| − 2 steps, where Sp is the set of possible states of p,

for every process p.

Proof. First, the number of possible configurations of A is
∏
p∈V |Sp|. Let e be any execution

of A. A being self-stabilizing, e contain a maximal prefix of finite size e′ = γi, γi+1 . . . where its
specification is not achieved. Let e′′ such that e = e′e′′.

Assume, by the contradiction, that ∃k, ` such that i ≤ k < ` and γk = γ`. Then, (γk+1, . . . , γ`)
∞

is an infinite execution of A under the unfair daemon that never stabilized. So, A is not self-
stabilizing under an unfair daemon, a contradiction.

Hence, all configurations of e′ are distinct. Moreover, |e′′| ≥ 1 and e′ and e′′ have no common
configuration. Hence, e′ contains at most

∏
p∈V |Sp|−1 configurations, and so at most

∏
p∈V |Sp|−2

steps. �

The previous theorem is useless when considering algorithms where at least one variable as an
infinite domain, e.g., AlgoU . Now, for AlgoB(D) and AlgoHC(D), the theorem claims that their
respective stabilization times are less than or equal to (n − 1)∆.D steps. This upper bound may
appear to be overestimated at the first glance. However, we will see in the next subsections that
those algorithms are exponential in steps in the worst case.

3The daemon can be central or distributed.

19



0 X X1 1

R p1 p2 p3 p4

Figure 4: Possible initial Configuration of the line of 5 nodes

6.2 Algorithm AlgoU

Here we consider the unbounded version given in Subsection 3.1. The following theorem shows
that the step complexity of AlgoU cannot be bounded by any function depending on topological
parameters, e.g., n, N , D, or D. . .

Theorem 10 Let f be any function mapping graphs to integers. There exists a graph G and an
execution e of AlgoU in G such that e stabilizes in more than f(G) steps.

(The following proof is illustrated with Figure 4.)
Proof. Consider a line graph G of 5 nodes, where R is an extremity, i.e., G = {R, p1, p2, p3, p4}
and E = {{R, p1}} ∪ {{pi, pi+1}, i ∈ [1..3]}. Let X ≥ f(G) + 1. Assume an initial configuration,
where dp1 = dp4 = X and dp2 = dp3 = 1. (The initial values of par variables are arbitrary and, by
definition, dR = 0.) Initially, all processes, except R, are enabled. Assume that p2 moves, then in
the next configuration, dp2 takes value 2 and all processes, except R and p2, are enabled. Assume
that p3 moves, then in the next configuration, dp3 takes value 3 and all processes, except R and p3,
are enabled. By alternating activations of p2 and p3 the system reaches in X ≥ f(G) + 1 steps a
configuration where dR = 0, dp1 = dp4 = X, and dp2 = dp3 = X + 1. �

6.3 Algorithm AlgoHC(D)

In this subsection, we establish that the stabilization times in steps of both AlgoHC(D) and
AlgoB(D) are exponential in the worst case. The lowed bound is based on a family of graphs
called Gk. For every k ≥ 0, the graph Gk contains 4k + 3 processes and has a diameter of 2k + 3.

Definition 2 (Graph G1) Let G1 = (V1, E1) be the undirected graph, where

• V1 = {f.0, e.1, f.1, h.0, g.1, h.1,R} and

• E1 = {{R, h.0}, {h.0, f.0}, {f.0, e.1}, {e.1, f.1}, {f.1, h.1}, {g.1, e.1}}.

We now consider three classes of configurations for the graph G1. In all consider configurations:

• the distance value of g.1, h.1, and h.0 are z − 1,

• de.1 = z if and only if pare.1 = g.1, and

• df.i = z if and only if parf.i = h.i, for i ∈ [0, 1].

The three classes of configurations are defined as follows where x ≥ 1 and z > 1:
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Figure 5: Examples of configurations of G1

• In the configurations of conf21(x, z), the distance value of e.1 and f.1 is z, and the distance
value of f.0 is x.

• In the configurations of conf31(x, z), the distance value of e.1 is x, and the distance value of
f.1 and f.0 is z.

• In the configurations of conf41(x, z), the distance value of e.1 and f.0 is z, and the distance
value of f.1 is x.

Except otherwise mentioned, all other variables have arbitrary values. Notice that we have conf2(z, z) =
conf31(z, z) = conf41(z, z). An illustrative example of these three types of configurations of G1 is
given in Figure 5.

Observation 2 Let v, z,D be three integers such that 1 ≥ v < z ≤ D.

• From any configuration of conf31(v, z), a configuration of conf21(v + 1, z) is reachable in a
single step of AlgoHC(D), where e.1 and f.0 execute HC2.

• From a configuration of conf21(v, z), a configuration of conf31(v+1, z) is reached in a single
step of AlgoHC(D), where e.1 and f.0 execute HC2.

Notation 2 Let v and z be two integers such that 1 ≤ v ≤ z and z > 1. Let nbSteps(v, z, 1) be
the maximal number of steps of AlgoHC(D) (with D ≥ z) to reach a configuration of conf31(z, z)
from a configuration of conf31(v, z).

Observation 3 Let v and z be two integers such that 1 ≤ v ≤ z and z > 1. We have nbSteps(v+
2, z + 2, 1) = nbSteps(v, z, 1).

Lemma 16 In G1, for every 1 ≤ v ≤ z− 2, there is a execution e1(k) of AlgoHC(D) (with D ≥ z),
starting in a configuration of conf31(v, z) and where only rules HC2 are executed, which reaches a
configuration of conf31(v + 2, z) in at least 2 steps.

Proof. Immediate from Observation 2. �

Corollary 6

• If 1 ≤ v ≤ z and z > 1 then nbSteps(v, z + 2, 1) ≥ z − v.
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• Let k ≥ 1. In G1, there is a execution of AlgoHC(D), with D ≥ 2k + 3, which starts in
a configuration of conf31(1, 2k + 3), contains only executions of rules HC2, and reaches a
configuration of conf31(2k + 3, 2k + 3) in at least 2k + 2 steps.

• nbSteps(1, 5, 1) = 4.

The following definition generalizes Definition 2.

Definition 3 (Graph Gi+1) Let Gi+1 = (Vi+1, Ei+1) be the undirected graph, where

• Vi+1 = Vi ∪ {e.i+ 1, f.i+ 1, g.i+ 1, h.i+ 1} and

• Ei+1 = Ei∪E′i+1, where E′i+1 = {{f.i, e.i+1}, {g.i+1, e.i+1}, {e.i+1, f.i+1}, {f.i+1, h.i+1}}.

We mainly consider four classes of configurations for any graph Gi+1. In all consider configura-
tions:

• the distance value of g.i+ 1 and h.i+ 1 is z − 1,

• for every j ∈ [0, i+ 1], de.j = z if and only if pare.j = g.j, and

• for every j ∈ [0, i+ 1], df.j = z if and only if parf.j = h.j.

The four classes of configurations are then defined as follows where x ≥ 1 and z > 1:

• In the configurations of conf1i+1(x, z), the configuration of the subgraph Gi belongs to
conf3i(x, z), the distance value of e.i+ 1 is x and the distance value of f.i+ 1 is z.

• In the configurations of conf2i+1(x, z), the configuration of the subgraph Gi belongs to
conf4i(x, z), the distance value of e.i+ 1 and f.i+ 1 is z.

• In the configurations of conf3i+1(x, z), the configuration of the subgraph Gi belongs to
conf3i(z, z), the distance value of e.i+ 1 is x, and the distance value of f.i+ 1 is z.

• In the configurations of conf4i+1(x, z), the configuration of the subgraph Gi belongs to
conf3i(z, z), the distance value of e.i+ 1 is z, and the distance value of f.i+ 1 is x.

Except otherwise mentioned, all other variables have arbitrary values. Notice that we have conf1i+1(z, z) =
conf2i+1(z, z) and conf3i+1(z, z) = conf4i+1(z, z). Some illustrative examples are given in Fig-
ures 6.

Observation 4 Let v, z,D be three integers such that 1 ≤ v < z ≤ D.

• From any configuration of conf3i+1(v, z), a configuration of conf2i+1(v + 1, z) is reachable
in a single step of AlgoHC(D), where e.i+ 1 and f.i execute HC2.

• From a configuration of conf2i+1(v, z), a configuration of conf1i+1(v + 1, z) is reached in a
single step of AlgoHC(D), where e.i+ 1, e.i, and f.i execute HC2.

The notation below generalizes Notation 2.
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Figure 6: Some configurations of G3

Notation 3 Let v and z be two integers such that v ≤ z. Let i ≥ 1. Let nbSteps(v, z, i) be the
maximal number of steps of AlgoHC(D) (with D ≥ z) to reach a configuration of conf3i(z, z) from
a configuration of conf3i(v, z) in the graph Gj with j ≥ i.

Observation 5 Let v and z be two integers such that 1 ≤ v ≤ z and 1 < z. We have nbSteps(v+
2, z + 2, i) = nbSteps(v, z, i) and nbSteps(v, z, i+ 1) ≥ nbSteps(v, z, i).

Lemma 17 Let z and D be two integers such that z ≤ D. Let i ≥ 1. In the graph Gj+1 with
j ≥ i, for every 1 ≤ v ≤ z− 2, there is an execution of AlgoHC(D) starting from a configuration of
conf3i+1(v, z), where only rules HC2 are executed, which reaches a configuration of conf3i+1(v +
2, z) in at least nbSteps(v + 2, z, i) + 2 steps.

Proof. From a configuration of conf3i+1(v, z), a configuration of conf1i+1(v + 2, z) is reached in
two steps of AlgoHC(D) where only rules HC2 are executed, by Observation 4. From a configuration
of conf1i+1(v+ 2, z), a configuration of conf3i+1(v+ 2, z) is reached in at least nbSteps(v+ 2, z, i)
steps of AlgoHC(D) where processes of the subgraph Gi only execute rules HC2 (according to the
definition of nbSteps(v, z, i)). �

From Observation 5 and Lemma 17, we can deduce the following corollary.

Corollary 7

• Let 1 ≤ v ≤ z and 1 < z. nbSteps(v, z + 2, i+ 1) ≥ 2 + nbSteps(v, z, i) + nbSteps(v, z, i+ 1).
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• Let j ≥ k. In the graph Gj, there is a execution ek(j) of AlgoHC(D), with D ≥ 2j + 3, which
starts in a configuration of conf3k(1, 2j + 3), contains only executions of rules HC2, and
reaches a configuration of conf3k(2j + 3, 2j + 3).

Notation 4 nbTotal(2k + 3) =
∑k

`=1 nbSteps(1, 2k + 3, `).

Definition 4 let k ≥ 1. Let ek be the execution of AlgoHC(D), with D ≥ 2k + 3, in the graph Gk
defined as follows: ek is the concatenation of e1(k) . . . ek(k).

By definition, ek contains at least nbTotal(2k + 3) steps, moreover those steps are only made
of rules HC2’s executions.

Theorem 11 For all k > 1, nbTotal(2k + 3) = 2.nbTotal(2k + 1) + 2k + nbSteps(3, 2k + 3, k).

Proof. nbTotal(2k + 3) =
∑k

`=1 nbSteps(1, 2k + 3, `).
We have:

• nbSteps(1, 2k + 3, 1) = 2 + nbSteps(1, 2k + 1, 1), by Corollary 6.

• nbSteps(1, 2k + 3, k) = 2 + nbSteps(1, 2k + 1, k − 1) + nbSteps(3, 2k + 3, k), by Corollary 7
and Observation 5.

• nbSteps(1, 2k + 3, `) = 2 + nbSteps(1, 2k + 1, `− 1) + nbSteps(1, 2k + 1, `) for ` ∈ [2, k − 1],
by Corollary 7.

So, we can conclude that nbTotal(2k+3) =
∑k−1

`=1 (2.nbSteps(1, 2k+1, `))+2k+nbSteps(3, 2k+3, k).
�

The following corollary establishes a lower bound on the number of steps of ek which is expo-

nential on the graph diameter: 2
D−1
2 .

Corollary 8 For all k ≥ 1, nbTotal(2k + 3) ≥ 2k−1.nbSteps(1, 5, 1) ≥ 2k+1.

We now propose a tighter bound on nbTotal(2k + 3).

Lemma 18 For all k ≥ 1, nbSteps(3, 2k + 3, k) ≥ 2.(2k − 1).

Proof. By induction.

Base Case: Let k = 1. We have nbSteps(3, 5, 1) ≥ 2 = 2.(21 − 1), by Corollary 6.

Induction Hypothesis: Assume that nbSteps(3, 2k + 3, k) ≥ 2.(2k − 1).

Induction Step: By Corollary 7, we have:

nbSteps(3, 2k + 5, k + 1) ≥ 2 + nbSteps(3, 2k + 3, k) + nbSteps(3, 2k + 3, k + 1)

By Observation 5, we have:

nbSteps(3, 2k + 5, k + 1) ≥ 2 + 2.nbSteps(3, 2k + 3, k) ≥ 2 + 4.(2k − 1) = 2.(2k+1 − 1)

�
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Lemma 19 For all k ≥ 1, nbTotal(2k + 3) ≥ (2k + 2)(2k − 1).

Proof. By induction.

Base Case: Let k = 1. nbTotal(5) = nbSteps(1, 5, 1) = 4, by Corollary 6.

Induction Hypothesis: Assume that nbTotal(2k + 3) ≥ (2k + 2)(2k − 1) for k ≥ 1.

Induction Step:

• nbTotal(2k + 5) = 2.nbTotal(2k + 3) + 2k + 2 + nbSteps(3, 2k + 5, k), by Theorem 11.

• nbTotal(2k + 5) ≥ 2.(2k + 2)(2k − 1) + 2k + 2 + nbSteps(3, 2k + 5, k), by induction
hypothesis.

• nbTotal(2k + 5) ≥ 2.(2k + 2)(2k − 1) + 2k + 2 + 2.(2k − 1), by Lemma 18.

• nbTotal(2k + 5) ≥ (2k + 2)(2k+1 − 2) + 2.2k+1 + 2k.

• nbTotal(2k + 5) ≥ (2k + 4)2k+1 − 2.(2k + 2) + 2k.

So, we conclude that nbTotal(2k + 5) ≥ (2k + 4)2k+1 − (2k + 4).

�

Theorem 12 Let n ≥ 7. Let k the maximum integer such that n = 4k + 3 + y with y ≥ 0. For
every D ≥ 2k + 3, there is an execution of AlgoHC(D) which stabilizes in at least (2k + 2)(2k − 1)
steps containing only executions of rules HC2 in an n-node graph of diameter at most 2k + 4.

Proof. Let Gk = (Vk, Ek). Let G′k = (Vk ∪ v1, . . . , vy, Ek ∪ {{vi,R}, i ∈ [1..y]}). Since Gk has
diameter 2k + 3, G′k has at most diameter 2k + 4. Since Gk contains 4k + 3 nodes, G′k contains n
nodes. Finally, nodes v1, . . . , vy are only neighbors of R whose state is constant. So, v1, . . . , vy have
no impact on the behavior of nodes of Gk. Hence, we can apply Lemma 19 and we are done. �

Corollary 9 For every n-node graph G, AlgoHC(n), i.e., the algorithm proposed in [9], stabilizes
in Ω(2D) steps, where D is the diameter of G.

6.4 Algorithm AlgoB(D)

Theorem 12 exhibits an execution exponential in steps where only rules HC2 are executed. So,
this execution is also an execution of AlgoFHC(D) (i.e., the fast implementation of AlgoHC(D)).
Moreover, this is also a definition of AlgoB(D), by Lemma 9). Hence, we can conclude with the
following theorem:

Theorem 13 Let n ≥ 7. Let k the maximum integer such that n = 4k + 3 + y with y ≥ 0. For
every D ≥ 2k + 3, there is an execution of AlgoB(D) (resp. AlgoFHC(D)) which stabilizes in at
least (2k + 2)(2k − 1) steps in an n-node graph of diameter at most 2k + 4.
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7 Conclusion and Perspective

In this paper, we revisited two fundamental results of the self-stabilizing literature [9, 10]. More
precisely, we proposed three silent self-stabilizing BFS spanning tree algorithms working in the
composite atomicity model inspired from the solutions proposed in [9, 10]: Algorithms AlgoU ,
AlgoB(D), and AlgoHC(D). We then presented a deep study of these algorithms. Our results are
related to both correctness and complexity.

Concerning the correctness part, we proposed in particular a new, simple, and general proof
scheme to show the convergence of silent algorithms under the distributed unfair daemon. We
believe that our approach, based on process partitioning, is versatile enough to be applied in the
convergence proof of many other silent algorithms.

Concerning the complexity part, our analysis notably shows that the Huang and Chen’s al-
gorithm [9] stabilizes in Ω(n) rounds (where n is the size of the network), while it confirms that
the stabilization time in rounds of the Dolev et al’s algorithm [10] is optimal (exactly D rounds in
the worst case). Finally, our analysis reveals that the stabilization time in steps of AlgoU cannot
be bounded, while the stabilization time of both AlgoB(D) and AlgoHC(D) can be exponential in
D, the diameter of the network. Our results must be put in perspective with the complexities of
the silent BFS construction proposed in [13], which stabilizes in O(D2) rounds and O(n6) steps,
respectively. This suggests the existence of a trade-off between the complexity in rounds and steps
for the silent construction of a BFS tree. This conjecture would have to be investigated in future
works.
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