Stéphane Devismes

Colette Johnen

Silent Self-stabilizing BFS Tree Algorithms Revised

Keywords: Self-stabilization, BFS spanning tree, composite atomicity model, distributed unfair daemon, stabilization time, round and step complexity

In this paper, we revisit two fundamental results of the self-stabilizing literature about silent BFS spanning tree constructions: the Dolev et al algorithm and the Huang and Chen's algorithm. More precisely, we propose in the composite atomicity model three straightforward adaptations inspired from those algorithms. We then present a deep study of these three algorithms. Our results are related to both correctness (convergence and closure, assuming a distributed unfair daemon) and complexity (analysis of the stabilization time in terms of rounds and steps).

Introduction

Self-stabilization [START_REF] Edsger | Self-Stabilizing Systems in Spite of Distributed Control[END_REF] is a versatile technique to withstand any finite number of transient faults in a distributed system: a self-stabilizing algorithm is able to recover a correct behavior in finite time, regardless of the arbitrary initial configuration of the system, and therefore, also after the occurrence of transient faults.

After the seminal work of Dijkstra, several self-stabilizing algorithms have been proposed to solve various tasks such as token circulations [START_REF] Huang | Self-stabilizing depth-first token circulation on networks[END_REF], clock synchronization [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF], propagation of information with feedbacks [START_REF] Bui | Optimal PIF in tree networks[END_REF], etc. Among the vast self-stabilizing literature, many works more precisely focus on the construction of distributed data structures, e.g., minimal dominating sets [START_REF] Kakugawa | A self-stabilizing minimal dominating set algorithm with safe convergence[END_REF], clustering [START_REF] Caron | A self-stabilizing k-clustering algorithm for weighted graphs[END_REF], spanning trees [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF]. Most of the self-stabilizing algorithms which construct distributed data structures actually achieve an additional property called silence [START_REF] Dolev | Memory requirements for silent stabilization[END_REF]: a silent self-stabilizing algorithm converges within finite time to a configuration from which the value of all its communication variables are constant. Related Works. We focus here on silent self-stabilizing spanning tree constructions, e.g., [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF][START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF][START_REF] Collin | Self-stabilizing depth-first search[END_REF][START_REF] Kosowski | A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves[END_REF][START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF]. Spanning tree constructions are of major interest in networking, e.g., they are often involved in the design of routing and broadcasting tasks. Moreover, (silent) self-stabilizing spanning tree constructions are widely used as a basic building blocks of more complex self-stabilizing 1 solutions. Indeed, composition is a natural way to design self-stabilizing algorithms [START_REF] Tel | Introduction to distributed algorithms[END_REF] since it allows to simplify both the design and proofs of self-stabilizing algorithms. Various composition techniques have been introduced so far, e.g., collateral composition [START_REF] Gouda | Adaptive programming[END_REF], fair composition [START_REF] Dolev | Self-Stabilization[END_REF], and conditional composition [START_REF] Kumar Datta | Selfstabilizing network orientation algorithms in arbitrary rooted networks[END_REF]; and many self-stabilizing algorithms actually are made as a composition of a silent spanning tree algorithm and another algorithm designed for tree topologies. For example, collateral, fair, and conditional compositions are respectively used the design of the algorithms given in [START_REF] Fei | Self stabilizing distributed transactional memory model and algorithms[END_REF], [START_REF] Butelle | A uniform self-stabilizing minimum diameter tree algorithm[END_REF], and [START_REF] Cournier | Snap-stabilizing detection of cutsets[END_REF]. Notably, the silence property is not mandatory in such designs, however it allows to write simpler proofs [START_REF] Kumar Datta | Self-stabilizing small k-dominating sets[END_REF].

Many self-stabilizing spanning tree constructions have been proposed, e.g., [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF][START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF][START_REF] Collin | Self-stabilizing depth-first search[END_REF][START_REF] Kosowski | A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves[END_REF][START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF]. These constructions mainly differ by the type of tree they compute, e.g., the tree can be arbitrary [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF], depth-first [START_REF] Collin | Self-stabilizing depth-first search[END_REF], breadth-first [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF][START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF], etc. In this paper, we focus two particular Breadth-First Search (BFS) spanning tree constructions: the one of Huang and Chen [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], and the one of Dolev et al [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF]. These two constructions are among the most commonly used in the self-stabilizing literature. 1 Indeed, these constructions cumulate several advantages:

1. Their design is simple.

2. The BFS spanning tree is really popular because of its minimum height.

3. They are silent. Notice, by contrast, that the solution given in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] is not silent. [START_REF] Bui | Optimal PIF in tree networks[END_REF]. Despite their time complexity was not analyzed until now, they are commonly assumed to be asymptotically optimal in rounds, i.e., O(D) rounds, where D is the diameter of the network. Notice, by contrast, that the stabilization time of the solutions proposed in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] and [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] are O(n + D 2) rounds and O(D 2) rounds, respectively.

More precisely, the Huang and Chen's algorithm [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] is written in the composite atomicity model. It assumes the processes have the knowledge of n, the size of the network. This assumption allows processes to have a bounded memory: Θ(log n) bits are required per process. The algorithm is proven assuming a distributed unfair daemon, the most general scheduling assumption of the model. However, no complexity analysis is given about its stabilization time in steps or rounds, the two main complexity metrics of the model. The Dolev et al's algorithm [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] is written in the read/write atomicity model. This model is more general than the composite atomicity model. The algorithm does not assume any knowledge on any global parameter of the network, such as n for example. The counterpart being that there is no bound on process local memories. The algorithm is proven under the central fair assumption (n.b., the notion of unfair daemon is meaningless in this model). Despite no complexity analysis is given in the paper, authors conjecture the stabilization time is asymptotically optimal, i.e., O(D) rounds. By definition, a straightforward translation of the algorithm of Dolev et al also works in the composite atomicity model assuming a distributed weakly fair daemon. However, an ad hoc proof is necessary if one want to establish its self-stabilization under a distributed unfair daemon. Notice that the algorithm of Dolev et al and its bounded memory variant are used in the design of several algorithms written in this composite atomicity model, e.g., [START_REF] Arora | Distributed reset[END_REF][START_REF] Hakan | A stabilizing algorithm for finding biconnected components[END_REF]. Moreover, several algorithms are based on similar principles, i.e., [START_REF] Kumar Datta | An O(n)-time Self-stabilizing Leader Election Algorithm[END_REF][START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks[END_REF]. Hence, a proof of its self-stabilization assuming a distributed unfair daemon is highly desirable.

Contribution. In this paper, we study three silent self-stabilizing BFS spanning tree algorithms written in the composite atomicity model. The first algorithm, called Algo U , is the straightforward translation of the Dolev et al's algorithm [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] into the composite atomicity model. The second one, Algo B (D), is a variant of Algo U , where the process local memories are bounded. To that goal, the knowledge of some upper bound D on the network diameter is assumed. Finally, The third algorithm, noted Algo HC (D), is a generalization of the Huang and Chen's algorithm [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], where the exact knowledge of n is replaced by the knowledge of some upper bound D on the network diameter (n.b., by definition, n is a particular upper bound on the diameter).

The general purpose of this paper is twofold. First, we show the close relationship between these three algorithms. To see this, we propose a general and simple proof of self-stabilization for the three algorithms under the distributed unfair daemon. This proof implies that every executions of each of the three algorithms is finite in terms of steps. Moreover, notice that the proof shows in particular that the assumption on the exact knowledge of n in the initial algorithm of Huang and Chen was too strong. Second, the proof also validates the use of the Dolev et al's algorithm and its bounded-memory variant in the composite atomicity model assuming any daemon (in particular, the unfair one).

Second, we propose a complexity analysis the stabilization time of these three algorithms in both steps and rounds. Our results are both positive and negative. First, we show that the stabilization time of Algo U and Algo B (D) is optimal in rounds by showing that in both cases the worst case is exactly D rounds. With few modifications our proof can be adapted for the read/write atomicity model, validating then the conjecture in [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] which claimed that the stabilization time the Dolev et al's algorithm was asymptotically optimal in rounds.

We then establish a lower bound in Ω(D) rounds on the stabilization time of Algo HC (D). Now, Algo HC (n) is actually the algorithm of Huang and Chen. Thus, the algorithm of Huang and Chen stabilizes in Ω(n) rounds. This result may be surprising as until now this algorithm was conjectured to stabilize in O(D) rounds. More precisely, this negative result is mainly due to the fact that two rules of the algorithm are not mutually exclusive, and when both rules are enabled at the same process p, the daemon may choose to activate any of them. Our lower bound is thus established when the daemon gives priority to one of the two rules (HC 1). Hence, to circumvent this problem we proposed a straightforward variant, noted Algo F HC (D), where we give priority to the other rule (HC 2). We then establish that in this latter case the stabilization time becomes exactly D + 1 rounds in the worst case.

Finally, we consider the stabilization time in steps. Our results are all negative. Indeed, we first show that the stabilization time in steps of Algo U cannot be bounded by any function depending on topological parameters. We then exhibit a lower bound exponential in D (the actual diameter of the network) on the stabilization time in steps which holds for both Algo B (D) and Algo HC (D). Notice, by contrast, that the stabilization time of the solutions proposed in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] and [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] are O(∆.n 3) steps and O(n 6) steps, respectively.

Roadmap. The rest of the paper is organized as follows. The next section is dedicated to the description of the computation model and definitions. The formal codes of the three algorithms are given in Section 3. In Section 4, we propose our general proof of self-stabilization assuming a distributed unfair daemon. In Section 5, we analyze the stabilization time in rounds of the three solutions. We present an analysis of the stabilization time in steps of the three solutions in Section 6. Section 7 is dedicated to concluding remarks.

Preliminaries

Distributed Systems

We assume distributed systems of n > 0 interconnected processes. One process, called the root, is distinguished, the others are anonymous. The root of the system is simply denoted by R. Each process p can directly communicate with a subset N p of other processes, called its neighbors. We assume bidirectional communications, i.e., if q ∈ N p , then p ∈ N q . The topology of the system is a simple undirected connected graph G = (V, E), where V is the set of processes and E is the set of edges, each edge being an unordered pair of neighboring processes. p, q denotes the distance (the length of the shortest path) from p to q in G. We denote by D the diameter of G, i.e., D = max p,q∈V p, q .

Computational Model

We consider the locally shared memory model with composite atomicity introduced by Dijkstra [START_REF] Edsger | Self-Stabilizing Systems in Spite of Distributed Control[END_REF], where each process communicates with its neighbors using a finite set of locally shared variables, henceforth called simply variables. Each process can read its own variables and those of its neighbors, but can write only to its own variables. Each process operates according to its (local) program. A distributed algorithm A consists of one local program A(p) per process p.

A(p) is given as a finite set of rules: {Label i : Guard i → Action i }. Labels are only used to identify rules in the reasoning. The guard of a rule in A(p) is a Boolean expression involving the variables of p and its neighbors. The action part of a rule in A(p) updates some variables of p. The state of a process in A is defined by the values of its variables in A. A configuration of A is an instance of the states of every process in A. C A is the set of all possible configurations of A. (When there is no ambiguity, we omit the subscript A.) A rule can be executed only if its guard evaluates to true; in this case, the rule is said to be enabled . A process is said to be enabled if at least one of its rules is enabled. We denote by Enabled(γ) the subset of processes that are enabled in configuration γ. When the configuration is γ and Enabled(γ) = ∅, a daemon selects a non-empty set X ⊆ Enabled(γ); then every process of X atomically executes one of its enabled rule, leading to a new configuration γ , and so on. The transition from γ to γ is called a step (of A). The possible steps induce a binary relation over C A , denoted by → A (or, simply →, when it is clear from the context). An execution of A is a maximal sequence of its configurations e = γ 0 γ 1 . . . γ i . . . such that γ i-1 → γ i for all i > 0. The term "maximal" means that the execution is either infinite, or ends at a terminal configuration in which no rule of A is enabled at any process. We denote by E A (or, simply E, when it is clear from the context) the set of all possible executions of A. The set of all executions starting from a particular configuration γ is denoted E(γ). Similarly, E(S) is the set of execution whose the initial configuration belongs to S ⊆ C.

As previously stated, each step from a configuration to another is driven by a daemon. In this paper we assume the daemon is distributed and unfair. "Distributed" means that while the configuration is not terminal, the daemon should select at least one enabled process, maybe more. "Unfair" means that there is no fairness constraint, i.e., the daemon might never select an enabled process unless it is the only enabled process.

We say that a process p is neutralized during the step γ i → γ i+1 if p is enabled at γ i and not enabled at γ i+1 , but does not execute any rule between these two configurations. An enabled process is neutralized if at least one neighbor of p changes its state between γ i and γ i+1 , and this change makes the guards of all rules of p false. To evaluate time complexity, we use the notion of round. This notion captures the execution rate of the slowest process in any execution. The first round of an execution e, noted e , is the minimal prefix of e in which every process that is enabled in the initial configuration either executes an action or becomes neutralized. Let e be the suffix of e starting from the last configuration of e . The second round of e is the first round of e , and so forth.

Self-Stabilization and Silence

We are interesting in algorithms which converge from an arbitrary configuration to a configuration where output variables define a specific data structure, namely a BFS spanning tree. Hence, we define a specification as a predicate SP on C which is true if and only if the outputs define the expected data structure.

Silent Self-stabilization is a particular form of self-stabilization defined by Dolev et al [START_REF] Dolev | Memory requirements for silent stabilization[END_REF] as follows. A distributed algorithm A is silent self-stabilizing w.r.t. specification SP if following two conditions holds:

Termination: all executions of A are finite; and Partial Correctness: all terminal configurations of A satisfy SP.

In this context, the stabilization time is the maximum time (in steps or rounds) to reach a terminal configuration starting from any configuration.

Three Self-Stabilizing BFS Constructions

Below we give three self-stabilizing BFS constructions: Algo U , Algo B (D), and Algo HC (D). 2 In all these variants, the local program of the R just consists in the following constant: d R = 0.

Each non-root process p maintains two variables: d p and par p . The domain of par p is N p , the set of p's neighbors. The domain of d p differs depending on the version: The three algorithms use the following three macros:

• d p is
• M in d(p) = min{d q | q ∈ N p } • bestP arent(p) is any neighbor q such that d q = M in d(p) • update(p): d p ← M in d(p) + 1; par p ← bestP arent(p)
Moreover, the following two predicates are used in the algorithms:

• dOk(p) ≡ (d p = M in d(p) + 1) • parOk(p) ≡ (d p = d parp + 1)
The two variables are maintained using the actions defined below.

Actions of Algo U

The BFS algorithm in [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] is designed for the read/write atomicity model. The straightforward adaptation of this algorithm in the locally shared memory model is given below.

Actions of Algo B (D)

The following algorithm is a variant of Algo U , where the domain of the d-variable is now bounded by the input parameter D. Actions given below are essentially the same as those of the BFS algorithm given in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF]. Actually, they differ in two points from the version of [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF].

• In [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], d-variables are defined in such way that d R = 1 and d p ≥ 2, ∀p ∈ V \ {R}. We have changed the domain definition of the d-variables for sake of uniformity. However, this difference on the domain definitions has no impact on the behavior of the algorithm.

• Moreover, to be more general, we have replaced in the code the exact value n (the number of processes) by D.

HC 1 :: ¬parOk(p) ∧ d parp < D → d p ← d parp + 1 HC 2 :: d parp > M in d(p) → update(p)
Notice that HC 1 and HC 2 are not mutually exclusive, i.e., in some configurations, both rules can be enabled at the same process. For instance, in the initial configuration of Figure 1 (page 12), rules HC 1 and HC 2 are enabled at process a. In this case, if a is selected by the daemon, the daemon also chooses which of the two rules is executed.

Correctness

In this section, we give a general proof which establishes the self-stabilization of the three algorithms under a distributed unfair daemon. The proof of correctness consists of the following two main steps:

Partial correctness (Theorems 1 and 2) which means that if an execution terminates, then the output of the terminal configuration is correct. (In our context, the output of the terminal configuration define a BFS spanning tree rooted at R.)

Termination (Theorem 4) which means that every possible execution is finite in terms of steps.

Partial Correctness

Below we establish the partial correctness of Algo U , Algo B (D), and Algo HC (D) using three main steps: (1) we define a set of legitimate configurations (Definition 1), and show that (2) a BFS spanning tree is defined in each legitimate configuration (Theorem 1) and (3) every terminal configuration of each algorithm is legitimate (Theorem 2). additionally, we show that every legitimate configuration is terminal in any of the three algorithms (Theorem 3).

Legitimate Configurations

Definition 1 A configuration is legitimate if and only if for every process p, we have

d p = p, R and if p = R, then d p = d parp + 1. Let T γ = (V, E T), where E Tγ = {{p, q} ∈ E | q = R ∧ par q = p in γ}.
Theorem 1 T γ is a BFS spanning tree in every legitimate configuration γ.

Proof. Let γ be any legitimate configuration. We first demonstrate that T γ is a spanning tree by showing the following two claims:

T γ is acyclic: Assume, by contradiction, that T γ contains a cycle p 0 , . . . , p k , p 0 . By definition, R is not involved into the cycle. Assume, without loss of generality, that for all i > 0,

par p i = p i-1 et par p 0 = p k in γ. From Definition 1, in γ we have d p i > d p i-1 and, by transitivity, d p k > d p 0 . Now, as par p 0 = p k , we have d p 0 > d p k by Definition 1, a contradiction. |E Tγ | = n -1: First, by definition we have |E Tγ | ≤ n -1. Now, if |E Tγ | < n -1,
then there is at least one edge {p, q} such that par p = q and par q = p. This contradicts the fact that T γ is acyclic. Hence,

|E Tγ | = n -1.
We now show that T γ is breadth-first. Let p 0 = R, . . . , p the unique path from R to p in the tree. By definition, for all i > 0, par p i = p i-1 . By Definition 1, we have d p i = d p i-1 + 1 and, by transitivity,

d p k = d p 0 + k. Moreover, d p 0 = d R = 0. So, d p k is the length k of the path from R to p k . Now, by Definition 1, d p k is also equal to R, p k . Hence, the length k of the path from R to p k is equal to the distance from R to p k in G.

Legitimacy of Terminal Configurations

Let D ≥ D. Let T C Algo U , T C Algo B (D)
, and T C Algo HC (D) be the set of terminal configurations of Algo U , Algo B (D), and Algo HC (D), respectively.

Lemma 1 Let γ be a configuration of T C Algo U . Let X be the largest distance value in γ. γ is a configuration of T C Algo B (X) .
Proof. Every process p satisfies dOk(p) ∧ parOk(p) in γ. So, the rule B 1 and

B 2 of T C Algo B (X) are disabled at p in γ. Moreover, by definition, d p ≤ X and parOk(p) in γ implies that d parp < X in γ. So, M in d(p) < X in γ and, consequently, B 3 of T C Algo B (X) is disabled at p in γ.
Lemma 2 Let D ≥ D and γ be a configuration. If γ be a terminal configuration of Algo B (D), then γ is a terminal configuration of Algo HC (D).

Proof. We establish this lemma by showing its contrapositive. Let γ be a non-terminal configuration of Algo HC (D). There is a process p such that (¬parOk(p)

∧ d parp < D) ∨ (d parp > M in d(p)) holds in γ . Assume first that ¬parOk(p) ∧ d parp < D holds in γ . Then, d parp < D implies that M in d(p) < D holds. Thus either B 1 or B 2 is enabled in γ because ¬parOk(p) holds.
Assume then that d parp > M in d(p). Then, as

d parp ≤ D (by definition), we have M in d(p) < D. So, if ¬dOk(p), then B 1 is enabled in γ . Otherwise, we have d p = M in d(p) + 1. So, d p = d parp + 1 and, consequently, B 2 is enabled in γ .
Hence, every non-terminal configuration of Algo HC (D) is a non-terminal configuration of Algo B (D).

From the two previous lemmas, we have:

Corollary 1 T C Algo U ⊆ ∞ i=D T C Algo B (i) ⊆ ∞ i=D T C Algo HC (i) .
From the previous corollary, we know that it is sufficient to show that any configuration of

∞ i=D T C Algo HC (i) is legitimate to establish that any configuration of T C Algo U , ∞ i=D T C Algo B (i) ,
and

∞ i=D T C Algo HC (i) are legitimate. Lemma 3 Let D ≥ D.
In any configuration of T C Algo HC (D) we have d p ≤ p, R for every process p.

Proof. Let γ be any terminal configuration of Algo HC (D). Assume, by the contradiction, that there is a process p such that d p > p, R in γ. Without loss of generality, assume p is one of the closest processes from R such that d p > p, R in γ. By definition, p, R ≤ D, and p has at least a neighbor, q, such that q, R = p, R -1 < D. By hypothesis, Proof. We have d R = 0 (by definition) and d q = d parq + 1 for every process q = R in γ (corollary 2). So, similarly to the proof of Theorem 1, we can establish that T γ is spanning tree and for every process p, d p is the length of the path in T γ from R to p. So, we have d p ≥ p, R in γ. Now, d p ≤ p, R in γ, by Lemma 3. So, we conclude that d p = p, R in γ, for every process p.

d q ≤ q, R = p, R -1 in γ. So, we have M in d(p) ≤ p, R -1 < D ≤ D in γ. Then, by definition, d parp ≥ M in d(p) in γ. Now, HC 2 is disabled at p in γ. So, d parp = M in d(p) in γ. Consequently, d parp ≤ p, R -1 < D in γ. Now, HC 1 is disabled at p in γ. So, d p = d parp + 1 ≤ p, R in γ, a contradiction.
From Corollaries 1,2, and Lemma 4, we can deduce the following theorem: Proof. Let γ be a legitimate configuration. First, for every process p, d p = p, R ≤ D. So, γ is a possible configuration of Algo U , Algo B (D), and Algo HC (D), respectively.

Theorem 2 Let D ≥ D. Every terminal configuration of Algo U , Algo B (D), or Algo HC (D) is γ is legitimate.
Let p be a non-root process. We have

M in d(p) = min{d q | q ∈ N p } = min{ q, R | q ∈ N p } = p, R -1 < D ≤ D in γ. So, B 3 is disabled at every non-root process in γ.
Moreover, M in d(p) + 1 = p, R = d p in γ. So, U 1 and B 1 are disabled at every non-root process in γ.

By definition, parOk(p) holds in γ. So, U 2 , B 2 , and HC 1 are disabled at non-root process in γ.

Finally, parOk(p) implies that

d parp = d p -1 = p, R -1 = M in d(p) in γ.
Hence, HC 2 is disabled at every non-root process in γ.

Termination

In this subsection, we will establish that, under a distributed unfair daemon, all executions of Algo U , Algo B (D), and Algo HC (D) are finite.

The lemma given below establish that we only need to prove that the number of d-variable updates is finite in any execution e of Algo U , Algo B (D), or Algo HC (D) to establish that e is finite.

Lemma 5 Let e = γ 0 , . . . γ i , γ i+1 , . . . be any execution of Algo U , Algo B (D), or Algo HC (D). If for every process p, d p is modified only a finite number of time along e, then e is finite.

Proof. Assume that every process p, d p is modified only a finite number of time along e. Then, there exists i ≥ 0 such that no d-variable is modified in the suffix e = γ i γ i+1 . . . of e. By definition of the three algorithms, only par-variables can be modified along e . So the rules U 1 for Algo U , B 1 and B 3 for Algo B (D), and HC 1 for Algo HC (D) are not executed along e . Now, by definition of the algorithms, in e , we have:

• Once the rule modifying par p (Rule U 2 , B 2 , or HC 2) is disabled, it remains disabled forever by p, because the values of d-variables are constant (in particular, those of p and its neighbors).

• The rule modifying par p (Rule U 2 , B 2 , or HC 2) becomes disabled immediately after p's execution.

Consequently, each process takes at most one step along e ; we conclude that the execution e is finite.

Notation 1 For every configuration γ, for any integer k ≥ 0, we denote by Set d k (γ) the set of processes p such that d p = k in γ.

Remark 1 In every configuration γ, Set d 0 (γ) = {R}, and

Set d (γ) Set d k (γ) = ∅ for every 0 ≤ < k. V = ∞ i=0 Set d i (γ).
The following lemma establishes that for every execution e of Algo U , Algo B (D), or Algo HC (D), there is a upper bound kb on the values taken in e by the d-variables of all processes. Consider now the case where e is an execution of Algo U . V U B is the set of processes that have no upper bound on their distance value in e, formally,

V U B = {p ∈ V | ∀k ≥ 0, ∃j ≥ 0, ∃ > k | p ∈ Set d (γ j)}
Assume, by the contradiction, that V U B is not empty. The set V \ V U B is not empty, by Remark 1. As the network is connected, there are two neighboring processes p and q such that p ∈ V U B and q ∈ V \ V U B. By definition, ∃x ≥ 0 such that d q ≤ x in all configurations of e. Consequently, M in d(p) ≤ x in all configurations of e. So, we have d p ≤ max{x + 1, y} in all configurations of e, where y be the initial value of d p (according to the rule U 1). Consequently, p / ∈ V U B, a contradiction. Hence, V U B is empty. Let ub p the upper bound on the distance values taken by the process p in e. The lemma holds for kb = max p∈V {ub p }.

Below, we show that, for every k ≥ 0, for every execution e of Algo U , Algo B (D), or Algo HC (D), if there is a suffix e of e where every d-variable whose value is less than k is constant, then there is a suffix e of e where no process switches its d-variable from any non-k value to k.

Lemma 7 Let e = γ 0 , . . . γ i , γ i+1 , . . . be an execution of Algo U , Algo B (D), or Algo HC (D). Let k > 0. If ∃i k | ∀j ≥ i k , ∀ ∈ [0..k -1] we have Set d (γ j) = Set d (γ i k), then ∃ ≥ i k | ∀j ≥ we have Set d k (γ j+1) ⊆ Set d k (γ j).
Proof. Let γ j → γ j+1 be any step in the suffix of e starting in γ i k where Set d k (γ j+1) Set d k (γ j). There is at least a process p = R such that p / ∈ Set d k (γ j) ∧ p ∈ Set d k (γ j+1). In γ j , we have

d p > k, as Set d (γ j) = Set d (γ j+1) ∀ ∈ [0..k -1] and p / ∈ Set d k (γ j).
Moreover, p executes a rule in γ j → γ j+1 . In the following, we prove that p will no more change its d-variable in e after this step.

• Consider first Algo U . We have M in d(p) = k -1 in γ j . Moreover, by hypothesis, M in d(p) = k -1 forever from γ i k (so, in particular from γ j). So, p will no more change its distance value after γ j+1 .

• Consider Algo B (D). If k = D, then d p should be greater than D in γ j , a contradiction. So, k < D and d p > k in γ j . So p executes B 1 in γ j → γ j+1 , and similarly to the previous case, γ j → γ j+1 is the only step in the suffix of e starting in γ i k where p sets d p to k.

• Finally, consider Algo HC (D). We have to study the two following cases:

-Assume that p executes HC 2 to set par p to q in γ j → γ j+1 . By definition, M in d(p) = k -1 = d q holds in γ i k and all subsequent configurations. So, p is disabled forever from γ j+1 .

-Assume that p executes HC 1 to set par p to q in γ j → γ j+1 By definition, M in d(p) ≤ k -1 = d q < D in γ i k and all subsequent configurations. So, until p next action, we have parOk(p) and d p = k. So, p next action is necessarily HC 2 to set d p to a value smaller than k, a contradiction. So, p cannot execute any rule in the suffix starting from γ j+1 .

Hence, in the suffix of e starting in γ i k , there is at most n steps γ j → γ j+1 where Set d k (γ j+1) Set d k (γ j).

Below, we show that, for every k ≥ 0, for every execution e of Algo U , Algo B (D), or Algo HC (D), if eventually every d-variable whose value is less than k becomes constant, then eventually every d-variable whose value is k becomes constant.

Lemma 8 Let e = γ 0 , . . . γ i , γ i+1 , . . . be an execution of Algo U , Algo B (D), or Algo HC (D). Let

k > 0. If ∃i k | ∀j ≥ i k , ∀ ∈ [0..k -1] we have Set d (γ j) = Set d (γ i k), then ∃ ≥ i k | ∀j ≥ we have Set d k (γ j+1) = Set d k (γ j).
Proof. By lemma 7, there exists a suffix e of e starting in γ x , such that ∀j ≥ x, we have

Set d k (γ j+1) ⊆ Set d k (γ j). During e , there is at most |Set d k (γ ix)| steps γ j → γ j+1 where Set d k (γ j+1) = Set d k (γ j).
From Remark 1, Lemmas 6 and 8, we can deduce the following corollary.

Stabilization Time in Rounds

In this section, we study the stabilization time in rounds of the three algorithms presented in Section 3. Throughout this section we will use the notion of attractor defined below.

Let A be a distributed algorithm. Let C 1 and C 2 be two subsets of C, the set of all possible configurations of A. C 2 is an attractor for C 1 (under A) if the following conditions hold:

Convergence: ∀e = γ 0 , γ 1 , . . . ∈ E(C 1), ∃i ≥ 0 | γ i ∈ C 2 . Closure: ∀e = γ 0 , γ 1 , . . . ∈ E(C 2), ∀i ≥ 0 | γ i ∈ C 2 .
The following predicate is useful to establish a sequence of attractors.

P red correct node(p, i) ≡ (R, p ≤ i ⇒ (d p = R, p = d parp + 1))
For every i ≥ 0, Att(i) is the set of configurations, where every process p = R satisfies P red correct node(p, i).

In any configuration of Att(D), every process p = R satisfies (d p = R, p = d parp +1), moreover d r = 0, by definition. So, all configurations of Att(D) are legitimate. Furthermore, every legitimate configuration is terminal in all of the three algorithms (Theorem 3). Hence, the stabilization time of any of the three algorithms is bounded by the maximum number of rounds it requires to reach any configuration of Att(D) starting from any arbitrary configuration.

Lower Bound in Ω(D) Rounds for Algo HC (D)

We first show that the stabilization time in rounds of Algo HC (D) actually depends on the size of the domain of the d-variables. Hence, we can conclude that Algo HC (n), i.e., the algorithm proposed in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], stabilizes in Ω(n) rounds, where n is the number of processes.

Let k ≥ 1. We now exhibit a possible execution of Algo HC (2k) which stabilizes in k + 1 rounds in the 3-nodes graph given in Figure 1 (its diameter is 2). Notice that this execution requires 2k steps. • At the beginning of the kth round, only process a is enabled. During the only step of this round, a executes HC 2 and gets its terminal state.

• At the beginning of the k + 1th round, only process b is enabled. During the only step of this round, process b executes and gets its terminal state.

This example can be generalized to any number of processes n ≥ 3. Just construct a network G of n processes by adding n -3 processes to the network given in Figure 1; those n -3 processes being only neighbors of R. Since the state of R is constant, these n -3 processes have no impact on the behavior of a and b. Hence, the previous execution is a possible execution prefix in G which contains Ω(D) rounds.

Hence, the stabilization time of Algo HC (D) is Ω(D) rounds.

The lower bound on the stabilization time is mainly due to the fact that rules HC 1 and HC 2 are not mutually exclusive. Hence, when both are enabled at the same process p, the daemon may choose to activate any of them. Our lower bound is then established when the daemon makes priority on HC 1 .

In the following subsection, we show that this lower bound can be easily circumvented to obtain the stabilization time in Θ(D) rounds.

Fast Implementation of Algo HC (D)

Algorithm Algo F HC (D)

Below, we propose a variant of Algo HC (D) where we have modified HC 1 into F HC 1 , so that F HC 1 and HC 2 are now mutually exclusive. The modification of HC 1 into F HC 1 gives it priority on HC 2 . In the following, this variant will be denoted by Algo F HC (D) and called fast implementation of Algo HC (D).

F HC 1 ::

¬parOk(p) ∧ d parp < D ∧ d parp = M in d(p) → d p ← d parp + 1 HC 2 :: d parp > M in d(p) → update(p)
The lemma given below show the close relationship between Algo F HC (D) and Algo B (D). Conversely, assume that dOk(p) is true in γ. During γ → γ , p does not modify d p , however par p is set to bestP arent(p). Now, ¬parOk(p) is true in γ, so B 2 is enabled while B 1 is not. In this case, the action part of B 2 has the same effect as the action part of HC 2 .

Hence, in any case, γ → γ is a possible step of Algo B (D).

Upper Bound on Stabilization Time in Rounds of Algo F HC (D)

The P red U B d(p, i) and P red correct d(p, i) predicate defined below are used to establish a sequence of D + 1 attractors under Algo F HC (D) (with D ≥ D) ending in the set of the terminal configurations.

P red U B d(p, i) ≡ (R, p > i ⇒ (d p > i ∨ (d p = i ∧ (∃q ∈ N p | d q ≤ i + 1))))
P red U B d(p, i) means that if a process p is at distance larger than i from R, then either d p should be also larger than i, or d p should be equal to i and a neighbor of p should have its distance to R smaller than or equal to i + 1.

P red correct d(p, i) ≡ (R, p ≤ i ⇒ d p = R, p)
P red correct d(p, i) means that if a process p is at least at distance i from R, then its distance value should be correct, i.e., d p is equal to its distance to the R.

Below, we define some useful subsets of configurations.

• Let Att U B(i) be the set of configurations, where every process p = R satisfies P red U B d(p, i).

• Let Att dist(i) be the set of configurations, where every process p satisfies P red correct d(p, i).

• Let Att HC(i) = Att dist(i) ∩ Att U B(i).
Notice that Att HC(0) is the set of all possible configurations.

Observation 1 Let p be an process such that p, R > i + 1. So, we have i + 2 ≤ D. Let γ be a configuration of Att HC(i). By definition of Att HC(i), we have d p ≥ i and d q ≥ i for every q ∈ N p in every execution from γ. Consequently, M in d(p) ≥ i along any execution from γ.

Lemma 10 Assume that Att HC(i) is an attractor under Algo F HC (D) with D ≥ D and 0 ≤ i < D.

Let γ be a configuration of Att HC(i). Let γ → γ be a possible step where process p moves. P red U B d(p, i + 1) holds in γ .

Proof. Let p be a process such that p, R > i + 1 (the other case is trivial). We have d p ≥ i + 1 in γ according to observation 1. If d p > i + 1 in γ , then P red U B d(p, i + 1) holds. Otherwise, we have Proof.

d p = i + 1 in γ . Let q ∈ N p such that d q = M in d(p) in γ. We have d q = i in γ.
Closure. Let γ → γ be a possible step from any configuration γ of Att HC(i). We show that for every process p = R, if P red U B d(p, i + 1) holds in γ, then P red U B d(p, i + 1) holds in γ . Assume p, R > i + 1 (the other case is trivial). Assume that p does not move during the step; otherwise P red U B d(p, i + 1) holds in γ according to Lemma 10. If d p > i + 1 in γ, P red U B d(p, i + 1) holds in γ . Assume now that in γ, d p = i + 1 and p has a neighbor q such that d q ≤ i + 2. While

d p = i + 1, M in d(q) ≤ i + 1, so d q ≤ i + 2.
Hence, we can conclude that P red U B d(p, i + 1) still holds in γ .

Convergence. We now show that for every process p = R, P red U B d(p, i + 1) becomes true within at most one round from any configuration γ of Att HC(i). Assume p, R > i + 1 (the other case is trivial).

• If d p > i + 1 in γ, then P red U B d(p, i + 1) holds.

• If d p = i in γ, then p is enabled while d p = i because M in d(p) ≥ i forever from γ (Observation 1). So, p moves during the first round from γ, and we are done, by Lemma 10.

• Assume that d p = i + 1 in γ.

-If p moves during the first round from γ, then P red U B d(p, i + 1) holds after the step, by Lemma 10. -Assume that p does not move during the first round from γ.

* If a neighbor of p, q, moves during a step of the round, then after this step P red U B d(p, i + 1) holds because d q ≤ i + 2. * Assume that neither p nor its neighbors move during the round. So the value of d q is less than or equal to i + 2 in γ, for all q ∈ N p . Indeed, if some neighbor of p, q, satisfies d q > i + 2 in γ, then q stay enabled along the round from γ, because of the state of p. This contradicts the definition of round. Hence, the value of d q is less than or equal to i + 2 in γ, for all q ∈ N p , and consequently P red U B d(p, i + 1) holds in γ.

Lemma 12 If Att HC(i) is an attractor under Algo F HC (D) with D ≥ D and 0 ≤ i < D, then Att dist(i + 1) is an attractor under Algo F HC (D) from Att HC(i) which is reached within at most one round from any configuration of Att HC(i).

Proof. Let p i+1 be a process at distance i + 1 of R. p i+1 has at least a neighbor p i such that p i , R = i. Let γ ∈ Att HC(i). By definition of Att HC(i) and as Att HC(i) is an attractor, we can deduce that

d p i = i and ∀q ∈ N p i+1 , d q ≥ i forever from γ. So, from γ M in d(p i+1) = i forever. Consequently, if d p i+1 = i + 1 in γ, then p i+1 is enabled to execute F HC 1 or HC 2 to set d p i+1 to i + 1.
Moreover, if d p i+1 = i + 1 in γ, then p i+1 cannot modify d p i+1 in any step from γ. Hence, Att dist(i + 1) is an attractor under Algo F HC (D) from Att HC(i) which is reached within at most one round from any configuration of Att HC(i).

From the two previous lemmas, we can deduce the following corollary.

Corollary 4 If Att HC(i) is an attractor under Algo F HC (D) with D ≥ D and 0 ≤ i < D, then Att HC(i + 1) is an attractor under Algo F HC (D) from Att HC(i) which is reached within at most one round from any configuration of Att HC(i).

The previous corollary establishes that after at most D rounds, the distance value in every process is accurate forever. We now show one additional is necessary to fix the par-variables. Let γ be a configuration of Att HC(D) where d parp = M in d(p). The rule HC 2 is enabled at p until p executes it. After the execution of this rule, we have d p = d parp + 1. As no process changes its distance value in Att HC(D), p is become disabled forever.

Hence, we conclude that Att(D) is an attractor which is reached within at most one round from Att HC(D).

From Corollary 4 and Lemma 13, we have the following theorem: Theorem 5 For every D ≥ D, the stabilization time of Algo F HC (D) is at most D + 1 rounds.

Lower Bound on Stabilization Time in Rounds of Algo F HC (D)

Below, we show that the upper bound given in the previous theorem is exact when D = D: ∀D ≥ 2, there exists an execution of Algo HC (D) in a graph of diameter D that stabilizing in D + 1 rounds.

We consider any graph G = (V, E) of D + 2 nodes of diameter D ≥ 1, where

• V = {p 0 = R, .
. . , p D+1 }, and

• E = {{p i , p i+1 }|i ∈ [0..D]} ∪ {{p D+1 , p D-1 }}.
We consider a synchronous execution (i.e. an execution where the distributed unfair daemon activates all enabled processes at each step) which starts from the following initial configuration:

• d R = 0, • ∀i ∈ [1..D -2], par p i = p i-1 ∧ d p i = D, • par p D-1 = p D+1 ∧ d p D-1 = D, • par p D = p D+1 ∧ d p D = D, and
• par p D+1 = p D-1 ∧ d p D = D -1.
An example of initial configuration is given in Figure 2. Notice that in a synchronous execution, every round lasts one step.

• At each round i ∈ [1..D -2], p i executes F HC 1 to change d p i to i.

• At the D -1th round, p D-1 executes HC 2 to set d p D-1 to D -1 and par p D-1 to p D-2 .

• At the Dth round, p D+1 executes F HC 1 to set d p D+1 to D.

• At the D + 1th round, p D executes HC 2 to set par p D to p D-1 .

Hence, we can conclude with the theorem below.

Theorem 6 The worst case stabilization time of Algo F HC (D) is D + 1 rounds.

Algorithms Algo U and Algo B (D)

We now establish that the stabilization time of both Algo U and Algo B (D) is exactly D rounds in the worst case.

16 We first establish that the stabilization time of both Algo U and Algo B (D) is at most D rounds in the worst case. To that goal, we use the predicate P red SU B d(p, i) defined below:

D -1 0 D D D D p 0 = R p 1 p D-2 p D-1 p D p D+1
P red SU B d(p, i) ≡ (R, p > i ⇒ d p > i)
P red SU B d(p, i) means that d p must be larger than i if the process p is at a distance larger than i from R.

We will also use the following sets:

• Let Att SU B(i) be the set of configurations where every process p satisfies P red SU B d(p, i)).

• Let Att B(i) = Att(i) ∩ Att SU B(i).
Notice that all configurations belong to Att SU B(0).

Lemma 14 If Att B(i) is an attractor under Algo U (resp. Algo B (D) where D ≥ D) with 0 ≤ i < D, then Att(i + 1) is an attractor under Algo U (resp. Algo B (D)) from Att B(i) which is reached within at most one round from any configuration of Att B(i).

Proof. Let p i+1 be a process at distance i + 1 of R. By definition, p i+1 has at least one neighbor p i at distance i of R. As Att B(i) is an attractor, from any configuration of Att B(i), the three following conditions hold forever: (i)

d p i = i, (ii) M in d(p i+1) = i < D
, and (iii) for every process q, d q = i ⇒ q, R = i. Let γ → γ be a possible step such that γ is a configuration of Att B(i). We first show that for every process p, if P red correct node(p i+1 , i + 1) holds in γ, then P red correct node(p i+1 , i + 1) holds in γ . From γ, d parp i+1 = i, so d parp i+1 is no more modified by (iii). In γ, d p i+1 = i + 1 and d p i+1 is no more modified by (ii). Hence, d p i+1 = d parp i+1 + 1 and p is disabled forever from γ. Hence, P red correct node(p i+1 , i + 1) still holds in γ .

We now show that for every process p, P red correct node(p i+1 , i + 1) becomes true within at most one round from any configuration γ of Att B(i). Assume that d p i+1 = i + 1 or d parp i+1 = i in γ. Then, p i+1 is enabled in Algo U (resp. Algo B (D)) until it executes an action, by (i) and (ii). Moreover, after p i+1 move, we have d p i+1 = i + 1 = d parp i+1 + 1, by (i) and (ii). Hence, P red correct node(p i+1 , i + 1) becomes true within at most one round from γ.

Lemma 15 If Att B(i) is an attractor under Algo U (resp. Algo B (D) where D ≥ D) with 0 ≤ i < D, then Att SU B(i + 1) is an attractor under Algo U (resp. Algo B (D)) from Att B(i) which is reached within at most one round from any configuration of Att B(i).

Proof. Let p be a process such that p, R > i + 1. In this case, we have i + 2 ≤ D ≤ D.

In any configuration of Att B(i), we have d p > i and d q > i for any neighbor q of p by definition of Att B(i). So, starting from any configuration γ of Att B(i), M in d(p) > i holds forever.

Hence, if d p > i + 1 in γ, then d p > i + 1 forever from γ, which implies that if Att SU B(i + 1) holds in γ, then Att SU B(i + 1) holds forever from γ.

Assume now that d p = i + 1 in γ. Then, d p = i + 1 < D and, as M in d(p) > i holds forever from γ, p is continuously enabled from γ until it executes either U 1 in Algo U , or B j , j ∈ {1, 2} in Algo B (D). After p move, d p ≥ i + 1. Hence, Att SU B(i + 1) holds within at most one round from γ.

Corollary 5 If Att B(i) is an attractor under Algo U (resp. of Algo B (D) where D ≥ D) with 0 ≤ i < D, then Att B(i + 1) is an attractor under Algo U (resp. Algo B (D)) from Att B(i) which is reached within at most one round from any configuration of Att B(i).

From the previous corollary and owing the fact that Att B(D) = Att(D), we can deduce the following theorem: .D], d p i = X, where X > D. (P ar-variables have arbitrary values). Consider a synchronous execution starting from that initial configuration. Then, at each round i, with i ∈ [1..D], p i executes U 1 to definitely set d p i to i and par p i to p i-1 . Moreover, ∀j ∈ [i + 1..D], p j increments d p j by U 1 . Hence, after D rounds the system is in a terminal configuration.

Consider now Algo B (D) with any value D ≥ D. Consider the same graph as for Algo F HC (D). However, we consider now a synchronous execution starting from any configuration where:

• d R = 0, • ∀i ∈ [1..D + 1], d p i = D,
• par p D = p D+1 , and

• par p D+1 = p D .
An example of initial configuration is given in Figure 3. The synchronous execution starting from that configuration then works as follows:

• In round i, with i ∈ [1..D -1], only process p i moves. It executes rule B 1 to set d p i to i and par p i to p i-1 .

Stabilization Time in Steps

In this section, we propose a step complexity analysis of the three algorithms presented in Section 3.

A General Bound

The theorem below exhibits a trivial upper bound on the stabilization time in steps of every selfstabilizing algorithm working under an unfair daemon.

Theorem 9 Let A be any self-stabilizing algorithm under an unfair daemon,3 the stabilization time of A is less than or equal to p∈V |S p | -2 steps, where S p is the set of possible states of p, for every process p.

Proof. First, the number of possible configurations of A is p∈V |S p |. Let e be any execution of A. A being self-stabilizing, e contain a maximal prefix of finite size e = γ i , γ i+1 . . . where its specification is not achieved. Let e such that e = e e . Assume, by the contradiction, that ∃k, such that i ≤ k < and γ k = γ . Then, (γ k+1 , . . . , γ) ∞ is an infinite execution of A under the unfair daemon that never stabilized. So, A is not selfstabilizing under an unfair daemon, a contradiction.

Hence, all configurations of e are distinct. Moreover, |e | ≥ 1 and e and e have no common configuration. Hence, e contains at most p∈V |S p |-1 configurations, and so at most p∈V |S p |-2 steps.

The previous theorem is useless when considering algorithms where at least one variable as an infinite domain, e.g., Algo U . Now, for Algo B (D) and Algo HC (D), the theorem claims that their respective stabilization times are less than or equal to (n -1) ∆.D steps. This upper bound may appear to be overestimated at the first glance. However, we will see in the next subsections that those algorithms are exponential in steps in the worst case.

Algorithm Algo HC (D)

In this subsection, we establish that the stabilization times in steps of both Algo HC (D) and Algo B (D) are exponential in the worst case. The lowed bound is based on a family of graphs called G k . For every k ≥ 0, the graph G k contains 4k + 3 processes and has a diameter of 2k + 3.

Definition 2 (Graph G 1) Let G 1 = (V 1 , E 1
) be the undirected graph, where We now consider three classes of configurations for the graph G 1 . In all consider configurations:

• V 1 = {f.0, e.
• the distance value of g.1, h.1, and h.0 are z -1,

• d e.1 = z if and only if par e.1 = g.1, and

• d f.i = z if and only if par f.i = h.i, for i ∈ [0, 1].
The three classes of configurations are defined as follows where x ≥ 1 and z > 1:

f.0 e.1 configuration conf 2 1 (v + 1, z) R h.1 h.0 g.1 f.1 z z z-1 z-1 z-1 0 v + 1 f.0 e.1 f.1 configuration conf 3 1 (v, z) g.1 h.1 h.0 0 R z-1 z z-1 z-1 z v v z z-1 z-1 z z-1 f.0 e.1 f.1 configuration conf 4 1 (v, z) g.1 h.1 h.0 0 R Figure 5: Examples of configurations of G 1
• In the configurations of conf 2 1 (x, z), the distance value of e.1 and f.1 is z, and the distance value of f.0 is x.

• In the configurations of conf 3 1 (x, z), the distance value of e.1 is x, and the distance value of f.1 and f.0 is z.

• In the configurations of conf 4 1 (x, z), the distance value of e.1 and f.0 is z, and the distance value of f.1 is x.

Except otherwise mentioned, all other variables have arbitrary values. Notice that we have conf 2(z, z) = conf 3 1 (z, z) = conf 4 1 (z, z). An illustrative example of these three types of configurations of G 1 is given in Figure 5.

Observation 2 Let v, z, D be three integers such that 1 ≥ v < z ≤ D.

• From any configuration of conf 3 1 (v, z), a configuration of conf 2 1 (v + 1, z) is reachable in a single step of Algo HC (D), where e.1 and f.0 execute HC 2 .

• From a configuration of conf 2 1 (v, z), a configuration of conf 3 1 (v + 1, z) is reached in a single step of Algo HC (D), where e.1 and f.0 execute HC 2 .

Notation 2 Let v and z be two integers such that 1 ≤ v ≤ z and z > 1. Let nbSteps(v, z, 1) be the maximal number of steps of Algo HC (D) (with D ≥ z) to reach a configuration of conf 3 1 (z, z) from a configuration of conf 3 1 (v, z).

Observation 3 Let v and z be two integers such that 1 ≤ v ≤ z and z > 1. We have nbSteps(v + 2, z + 2, 1) = nbSteps(v, z, 1).

Lemma 16

In G 1 , for every 1 ≤ v ≤ z -2, there is a execution e 1 (k) of Algo HC (D) (with D ≥ z), starting in a configuration of conf 3 1 (v, z) and where only rules HC 2 are executed, which reaches a configuration of conf 3 1 (v + 2, z) in at least 2 steps.

Proof. Immediate from Observation 2.

Corollary 6

• If 1 ≤ v ≤ z and z > 1 then nbSteps(v, z + 2, 1) ≥ z -v.

• Let k ≥ 1. In G 1 , there is a execution of Algo HC (D), with D ≥ 2k + 3, which starts in a configuration of conf 3 1 (1, 2k + 3), contains only executions of rules HC 2 , and reaches a configuration of conf 3 1 (2k + 3, 2k + 3) in at least 2k + 2 steps.

• nbSteps(1, 5, 1) = 4.

The following definition generalizes Definition 2.

Definition 3 (Graph G i+1) Let G i+1 = (V i+1 , E i+1) be the undirected graph, where

• V i+1 = V i ∪ {e.i + 1, f.i + 1, g.i + 1, h.i + 1}
and

• E i+1 = E i ∪E i+1
, where E i+1 = {{f.i, e.i+1}, {g.i+1, e.i+1}, {e.i+1, f.i+1}, {f.i+1, h.i+1}}.

We mainly consider four classes of configurations for any graph G i+1 . In all consider configurations:

• the distance value of g.i + 1 and h.i + 1 is z -1,

• for every j ∈ [0, i + 1], d e.j = z if and only if par e.j = g.j, and

• for every j ∈ [0, i + 1], d f.j = z if and only if par f.j = h.j.

The four classes of configurations are then defined as follows where x ≥ 1 and z > 1:

• In the configurations of conf 1 i+1 (x, z), the configuration of the subgraph G i belongs to conf 3 i (x, z), the distance value of e.i + 1 is x and the distance value of f.i + 1 is z.

• In the configurations of conf 2 i+1 (x, z), the configuration of the subgraph G i belongs to conf 4 i (x, z), the distance value of e.i + 1 and f.i + 1 is z.

• In the configurations of conf 3 i+1 (x, z), the configuration of the subgraph G i belongs to conf 3 i (z, z), the distance value of e.i + 1 is x, and the distance value of f.i + 1 is z.

• In the configurations of conf 4 i+1 (x, z), the configuration of the subgraph G i belongs to conf 3 i (z, z), the distance value of e.i + 1 is z, and the distance value of f.i + 1 is x.

Except otherwise mentioned, all other variables have arbitrary values. Notice that we have conf Observation 4 Let v, z, D be three integers such that 1 ≤ v < z ≤ D.

1 i+1 (z, z) = conf 2
• From any configuration of conf 3 i+1 (v, z), a configuration of conf 2 i+1 (v + 1, z) is reachable in a single step of Algo HC (D), where e.i + 1 and f.i execute HC 2 .

• From a configuration of conf 2 i+1 (v, z), a configuration of conf 1 i+1 (v + 1, z) is reached in a single step of Algo HC (D), where e.i + 1, e.i, and f.i execute HC 2 .

The notation below generalizes Notation 2.

f.0 e.1 e.2 e.3 f.1 f.2 f.3

z z-1 z-1 z-1 z-1 z-1 z-1 z-1 z z z z z v configuration conf 3 3 (v, z) R 0 f.0 e.1 e.2 e.3 f.1 f.2 f.3 z z z z z z z-1 z-1 z-1 z-1 z-1 z-1 z-1 v+1 configuration conf 2 3 (v + 1, z) R 0 f.0 e.1 e.2 e.3 f.1 f.2 f.3 z z z z z z-1 v+2 v+2 z-1 z-1 z-1 z-1 z-1 z-1 configuration conf 1 3 (v + 2, z) R 0 Figure 6: Some configurations of G 3
Notation 3 Let v and z be two integers such that v ≤ z. Let i ≥ 1. Let nbSteps(v, z, i) be the maximal number of steps of Algo HC (D) (with D ≥ z) to reach a configuration of conf 3 i (z, z) from a configuration of conf 3 i (v, z) in the graph G j with j ≥ i.

Observation 5 Let v and z be two integers such that 1 ≤ v ≤ z and 1 < z. We have nbSteps(v + 2, z + 2, i) = nbSteps(v, z, i) and nbSteps(v, z, i + 1) ≥ nbSteps(v, z, i).

Lemma 17 Let z and D be two integers such that z ≤ D. Let i ≥ 1. In the graph G j+1 with j ≥ i, for every 1 ≤ v ≤ z -2, there is an execution of Algo HC (D) starting from a configuration of conf 3 i+1 (v, z), where only rules HC 2 are executed, which reaches a configuration of conf 3 i+1 (v + 2, z) in at least nbSteps(v + 2, z, i) + 2 steps.

Proof. From a configuration of conf 3 i+1 (v, z), a configuration of conf 1 i+1 (v + 2, z) is reached in two steps of Algo HC (D) where only rules HC 2 are executed, by Observation 4. From a configuration of conf 1 i+1 (v + 2, z), a configuration of conf 3 i+1 (v + 2, z) is reached in at least nbSteps(v + 2, z, i) steps of Algo HC (D) where processes of the subgraph G i only execute rules HC 2 (according to the definition of nbSteps(v, z, i)).

From Observation 5 and Lemma 17, we can deduce the following corollary.

Corollary 7

• Let 1 ≤ v ≤ z and 1 < z. nbSteps(v, z + 2, i + 1) ≥ 2 + nbSteps(v, z, i) + nbSteps(v, z, i + 1).

• Let j ≥ k. In the graph G j , there is a execution e k (j) of Algo HC (D), with D ≥ 2j + 3, which starts in a configuration of conf 3 k (1, 2j + 3), contains only executions of rules HC 2 , and reaches a configuration of conf 3 k (2j + 3, 2j + 3). By definition, e k contains at least nbT otal(2k + 3) steps, moreover those steps are only made of rules HC 2 's executions.

Theorem 11 For all k > 1, nbT otal(2k + 3) = 2.nbT otal(2k + 1) + 2k + nbSteps(3, 2k + 3, k).

Proof. nbT otal(2k + 3) = k =1 nbSteps(1, 2k + 3,). We have:

• nbSteps(1, 2k + 3, 1) = 2 + nbSteps(1, 2k + 1, 1), by Corollary 6. The following corollary establishes a lower bound on the number of steps of e k which is exponential on the graph diameter: 2

D-1 2 .
Corollary 8 For all k ≥ 1, nbT otal(2k + 3) ≥ 2 k-1 .nbSteps(1, 5, 1) ≥ 2 k+1 .

We now propose a tighter bound on nbT otal(2k + 3). Induction Hypothesis: Assume that nbT otal(2k + 3) ≥ (2k + 2)(2 k -1) for k ≥ 1.

Induction Step:

• nbT otal(2k + 5) = 2.nbT otal(2k + 3) + 2k + 2 + nbSteps(3, 2k + 5, k), by Theorem 11.

• nbT otal(2k + 5) ≥ 2.(2k + 2)(2 k -1) + 2k + 2 + nbSteps(3, 2k + 5, k), by induction hypothesis.

• nbT otal(2k + 5) ≥ 2.(2k + 2)(2 k -1) + 2k + 2 + 2.(2 k -1), by Lemma 18.

• nbT otal(2k + 5) ≥ (2k + 2)(2 k+1 -2) + 2.2 k+1 + 2k.

• nbT otal(2k + 5) ≥ (2k + 4)2 k+1 -2.(2k + 2) + 2k.

So, we conclude that nbT otal(2k + 5) ≥ (2k + 4)2 k+1 -(2k + 4). Corollary 9 For every n-node graph G, Algo HC (n), i.e., the algorithm proposed in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], stabilizes in Ω(2 D) steps, where D is the diameter of G.

Algorithm Algo B (D)

Theorem 12 exhibits an execution exponential in steps where only rules HC 2 are executed. So, this execution is also an execution of Algo F HC (D) (i.e., the fast implementation of Algo HC (D)). Moreover, this is also a definition of Algo B (D), by Lemma 9). Hence, we can conclude with the following theorem:

Theorem 13 Let n ≥ 7. Let k the maximum integer such that n = 4k + 3 + y with y ≥ 0. For every D ≥ 2k + 3, there is an execution of Algo B (D) (resp. Algo F HC (D)) which stabilizes in at least (2k + 2)(2 k -1) steps in an n-node graph of diameter at most 2k + 4.

Conclusion and Perspective

In this paper, we revisited two fundamental results of the self-stabilizing literature [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF]. More precisely, we proposed three silent self-stabilizing BFS spanning tree algorithms working in the composite atomicity model inspired from the solutions proposed in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF]: Algorithms Algo U , Algo B (D), and Algo HC (D). We then presented a deep study of these algorithms. Our results are related to both correctness and complexity.

Concerning the correctness part, we proposed in particular a new, simple, and general proof scheme to show the convergence of silent algorithms under the distributed unfair daemon. We believe that our approach, based on process partitioning, is versatile enough to be applied in the convergence proof of many other silent algorithms.

Concerning the complexity part, our analysis notably shows that the Huang and Chen's algorithm [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] stabilizes in Ω(n) rounds (where n is the size of the network), while it confirms that the stabilization time in rounds of the Dolev et al's algorithm [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] is optimal (exactly D rounds in the worst case). Finally, our analysis reveals that the stabilization time in steps of Algo U cannot be bounded, while the stabilization time of both Algo B (D) and Algo HC (D) can be exponential in D, the diameter of the network. Our results must be put in perspective with the complexities of the silent BFS construction proposed in [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF], which stabilizes in O(D 2) rounds and O(n 6) steps, respectively. This suggests the existence of a trade-off between the complexity in rounds and steps for the silent construction of a BFS tree. This conjecture would have to be investigated in future works.

 an unbounded positive integer in the first version, Algo U . • d p ∈ [1..D] in the two other algorithms, Algo B (D) and Algo HC (D). The correctness of both Algo B (D) and Algo HC (D) will be established for any D ≥ D.

U 1 :

 1 : ¬dOk(p) → update(p) U 2 :: dOk(p) ∧ ¬parOk(p) → par p ← bestP arent(p);

B 1 :

 1 : M in d(p) < D ∧ ¬dOk(p) → update(p) B 2 :: M in d(p) < D ∧ dOk(p) ∧ ¬parOk(p) → par p ← bestP arent(p); B 3 :: M in d(p) = D ∧ (d p = D) → d p ← D 3.3 Actions of Algo HC (D)

Corollary 2

 2 Let γ be a configuration of T C Algo HC (D) where D ≥ D. Every process p = R satisfies d p = d parp + 1 and d parp = M in d(p) in γ. Proof. Let p = R be process. By definition, d parp ≥ M in d(p) in γ. HC 2 is disabled at p in γ. So, d parp = M in d(p) in γ. p has a neighbor such that q, R ≤ D -1. So, we have d q ≤ D -1 in γ (by Lemma 3) and, consequently, M in d(p) < D in γ. So, d parp < D in γ. As HC 1 is disabled at p in γ, we have also d p = d parp + 1. Lemma 4 Let D ≥ D. Let γ be a configuration of T C Algo HC (D) . d p = p, R holds for every process p, in γ.

4. 1 . 3

 13 Legitimate Configurations are Terminal Theorem 3 Let D ≥ D. Every legitimate configuration is a terminal configuration of Algo U , Algo B (D), and Algo HC (D), respectively.

Lemma 6

 6 Let e = γ 0 , . . . γ i , γ i+1 , . . . be any execution of Algo U , Algo B (D), or Algo HC (D). ∃kb ≥ 0 | ∀j ≥ 0, ∀ > kb we have Set d (γ j) = ∅. Proof. By definition, the lemma is established by letting kb = D if e is an execution of Algo B (D) or Algo HC (D).

Corollary 3

 3 For every process p, d p can be modified only a finite number of time in e.By Lemma 5, Corollary 3, follows:Theorem 4 Under a distributed unfair daemon, all executions of Algo U , Algo B (D), and Algo HC (D) are finite.

1 b 2k - 1 aFigure 1 :

 111 Figure 1: Execution of Algo HC (2k) which converges in k + 1 rounds

Lemma 9

 9 If γ → γ is a step of Algo F HC (D) containing execution of rules HC2 only, then γ → γ is a possible step of Algo B (D). Proof. Let γ → γ be any step of Algo F HC (D) containing execution of rules HC2 only. Consider any process p that moves during γ → γ . So, p performs HC 2 during γ → γ and we have M in d(p) < d parp ≤ D in γ.If ¬dOk(p) is true in γ, then B 1 is enabled at p in γ. Now, the action part of B 1 and HC 2 are identical.

 By definition of Att HC(i), we have M in d(p) ≤ i + 2 in γ . Hence, P red U B d(p, i + 1) holds in γ . Lemma 11 If Att HC(i) is an attractor under Algo F HC (D) with D ≥ D and 0 ≤ i < D, then Att U B(i + 1) is an attractor under Algo F HC (D) from Att HC(i) which is reached within at most one round from Att HC(i).

Lemma 13

 13 Att(D) is an attractor under Algo F HC (D) (with D ≥ D) from Att HC(D) which is reached within at most one round from any configuration of Att HC(D). Proof. In any configuration of Att HC(D), d p = M in d(p) + 1 holds forever for every process p. So, the distance value of any process stays unchanged along any execution of Algo F HC (D) from a configuration of Att HC(D).

Figure 2 :

 2 Figure 2: Initial configuration of a synchronous execution of Algo F HC (D) which stabilizes in D + 1 rounds

Theorem 7

 7 The stabilization time of Algo U and Algo B (D) (for every D ≥ D) is at most D rounds.5.3.2 Lower Bound on the Stabilization Time in Rounds for both Algo U and Algo B (D) Below, we show that the upper bound is exact for both Algo U and Algo B (D) when D ≥ D. Consider first Algo U . Let G = (V, E) be any line graph of diameter D, i.e., V = {p 0 = R, p 1 , . . . , p D } and E = {{p i , p i+1 } | i ∈ [0..D -1]}. Consider the initial configuration where d p 0 = 0 and ∀i ∈ [1.

Figure 3 :Theorem 8

 38 Figure 3: Initial configuration of a synchronous execution of Algo B (D) which stabilizes in D rounds

4 Figure 4 :

 44 Figure 4: Possible initial Configuration of the line of 5 nodes

 i+1 (z, z) and conf 3 i+1 (z, z) = conf 4 i+1 (z, z). Some illustrative examples are given in Figures 6.

Notation 4

 4 nbT otal(2k + 3) = k =1 nbSteps(1, 2k + 3,). Definition 4 let k ≥ 1. Let e k be the execution of Algo HC (D), with D ≥ 2k + 3, in the graph G k defined as follows: e k is the concatenation of e 1 (k) . . . e k (k).

•

 nbSteps(1, 2k + 3, k) = 2 + nbSteps(1, 2k + 1, k -1) + nbSteps(3, 2k + 3, k), by Corollary 7 and Observation 5.• nbSteps(1, 2k + 3,) = 2 + nbSteps(1, 2k + 1, -1) + nbSteps(1, 2k + 1,) for ∈ [2, k -1], byCorollary 7.So, we can conclude that nbT otal(2k+3) = k-1 =1 (2.nbSteps(1, 2k+1,))+2k+nbSteps(3, 2k+3, k).

Lemma 18

 18 For all k ≥ 1, nbSteps(3, 2k + 3, k) ≥ 2.(2 k -1).Proof. By induction.Base Case: Let k = 1. We have nbSteps(3, 5, 1) ≥ 2 = 2.(2 1 -1), by Corollary 6.Induction Hypothesis: Assume that nbSteps(3, 2k + 3, k) ≥ 2.(2 k -1).Induction Step: By Corollary 7, we have:nbSteps(3, 2k + 5, k + 1) ≥ 2 + nbSteps(3, 2k + 3, k) + nbSteps(3, 2k + 3, k + 1)By Observation 5, we have:nbSteps(3, 2k + 5, k + 1) ≥ 2 + 2.nbSteps(3, 2k + 3, k) ≥ 2 + 4.(2 k -1) = 2.(2 k+1 -1)Lemma 19 For all k ≥ 1, nbT otal(2k + 3) ≥ (2k + 2)(2 k -1).Proof. By induction.Base Case: Let k = 1. nbT otal(5) = nbSteps(1, 5, 1) = 4, by Corollary 6.

Theorem 12 Let n ≥ 7 .

 7 Let k the maximum integer such that n = 4k + 3 + y with y ≥ 0. For every D ≥ 2k + 3, there is an execution of Algo HC (D) which stabilizes in at least (2k + 2)(2 k -1) steps containing only executions of rules HC 2 in an n-node graph of diameter at most 2k + 4.Proof. Let G k = (V k , E k). Let G k = (V k ∪ v 1 , . . . , v y , E k ∪ {{v i , R}, i ∈ [1..y]}). Since G k has diameter 2k + 3, G k has at most diameter 2k + 4. Since G k contains 4k + 3 nodes, G k contains n nodes. Finally, nodes v 1 , . . . , v y are only neighbors of R whose state is constant. So, v 1 , . . . , v y have no impact on the behavior of nodes of G k . Hence, we can apply Lemma 19 and we are done.

 1, f.1, h.0, g.1, h.1, R} and• E 1 = {{R, h.0}, {h.0, f.0}, {f.0, e.1}, {e.1, f.1}, {f.1, h.1}, {g.1, e.1}}.

As a matter of facts,[START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] and[START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] are respectively cited 109 and 409 times in Google Scholar.

U, B, HC respectively stand for unbounded, bounded, and Huang-Chen.

The daemon can be central or distributed.