
HAL Id: hal-01197464
https://hal.science/hal-01197464

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based modeling and observer-based
verification for railway safety-critical applications

Marc Sango, Laurence Duchien, Christophe Gransart

To cite this version:
Marc Sango, Laurence Duchien, Christophe Gransart. Component-based modeling and observer-based
verification for railway safety-critical applications. 11th International Symposium on Formal Aspects
of Component Software, Sep 2014, Bertinoro, Italy. p 248-266. �hal-01197464�

https://hal.science/hal-01197464
https://hal.archives-ouvertes.fr

Component-Based Modeling and
Observer-Based Verification for Railway

Safety-Critical Applications

Marc Sango1, Laurence Duchien2, and Christophe Gransart1

1 Univ Lille Nord de France, F-59000 Lille, IFSTTAR, LEOST, F-59650, France
{marc.sango, christophe.gransart}@ifsttar.fr

2 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022, University of Lille 1, France
{laurence.duchien}@inria.fr

Abstract. One of the challenges that engineers face, during the de-
velopment process of safety-critical systems, is the verification of safety
application models before implementation. Formalization is important
in order to verify that the design meets the specified safety require-
ments. In this paper, we formally describe the set of transformation rules,
which are defined for the automatic transformation of safety application
source models to timed automata target models. The source models are
based on our domain-specific component model, named SARA, dedicated
to SAfety-critical RAilway control applications. The target models are
then used for the observer-based verification of safety requirements. This
method provides an intuitive way of expressing system properties with-
out requiring a significant knowledge of higher order logic and theorem
proving, as required in most of existing approaches. An experimentation
over a chosen benchmark at rail-road crossing protection application is
shown to highlight the proposed approach.

Keywords: software component, timed automata, transformation, ver-
ification, safety-critical applications

1 Introduction

Safety-critical systems must conform to safety standards defined by domain stan-
dardizations, such as the European standard of software for railway control and
protection systems, EN 50128 [8]. This is why one of the challenges that engineers
face, during the development process of safety-critical systems, is the verifica-
tion of safety application models before implementation. Over the last few years,
the complexity of safety applications has increased. Then the modeling and the
formalization of safety applications is becoming a very difficult task.

Component-Based Software Engineering (CBSE) is a possible software mod-
eling solution. It is an established approach for modeling a complex software
and for facilitating integration by a third party [20]. There are several research
works that facilitate component-based development in general or in domain-
specific purposes [5, 2, 10, 21]. In this paper, we use our domain-specific com-
ponent model, named SARA, dedicated to the development of SAfety-critical

2 Marc Sango, Laurence Duchien, and Christophe Gransart

RAilway control applications [17]. The objective of our approach consists in mod-
eling and enforcing dependability requirements during the development process
of safety-critical applications in order to facilitate their certification process.

On the other hand, design models have to be mapped to formal models for
automatic verification. In this work, we focus on verification approaches that
take advantage of the flexibility of reliable component models and analysis fa-
cilities offered by formal models in order to satisfy timing requirements. There
are several research works that propose the transformation of informal or semi-
formal models into formal models, which are supported by available verification
tools [1, 4, 15]. For example, for the safety of rail-road protection systems, Mekki
et al. use the model-driven architecture approach to systematically transform
the UML state machine into the Timed Automata (TA) in order to validate
some temporal requirements [15]. In this approach, the three-tier approach for
the composition of pre-verified components is not explicitly considered. Based on
pre-defined formal models of source and target models, Soliman et al. transform
the function block diagram to the Uppaal timed automata [19]. In the same way,
Bhatti et al. suggest an approach for the verification of IEC 61499 function block
applications by using the observer-based verification [4].

In this paper, we focus on the transformation phase from our SARA model
to the TA model, which is one of the most popular models adapted for the
verification of timing properties [3]. The transformation algorithm consists of
transformation rules. Both the source and the target domain models have been
formally defined. Then, these formal definitions are used for the definition of
transformation rules. The target models and the timing requirement observers
are next used for the observer-based verification of safety applications. This
method provides an intuitive way of expressing system properties without re-
quiring a significant knowledge of higher order logic and theorem proving, as
required in most of the existing approaches [4]. Indeed, users can use predefined
observer patterns or can enhance them for their verification tasks.

The remainder of this paper is organized as follows. In Section 2, we motivate
our approach by an example of rail-road crossing protection system. In Section
3, we give an overview of the suggested process of modeling and verification. In
section 4, we introduce the formal definitions of the SARA component model
and the formal definitions in terms of the TA formalism. Then, based on these
definitions, the transformation rules are defined. In Section 5, based on a use case
of our motivating example, the observer patterns of some safety requirements are
presented. These observer models are synchronized with the use case model to do
the verification. Finally, we discuss related works in Section 6 before concluding
and pointing out future directions of our research in Section 7.

2 Motivating example

Our approach is motivated by using a rail-road intersection protection system.
Fig. 1 presents an implementation of a rail-road level crossing control application
by using software components. Note that, in this section, we focus on its global

Component-Based Modeling and Observer-Based Verification 3

description. The elements, component types and component connections types
will be detailed in Section 4.1. The component Sensor embedded in the train
reads information from track sensors to detect an approaching and an exiting
of trains in the monitored intersection. This information is translated into a
sequence of events appr and exit depending on the distance dist of trains from
the intersection. The intersection gate is operated through the Gate component
which closes or opens the gate. The Gate component responds to events by
moving barriers up or down. The component Controller acts as a mediator
between the other two components. It receives events from the sensor component
and decides to open or not the gate to road traffic.

Fig. 1. The example of SARA components

For example, when the approach signal appr is received (respectively exit),
the component instance Controller Inst 1 sends immediately a close signal (re-
spectively open) to the gate instance Gate Inst 1. In general, the behavior of
controller instance depends on operation rules, i.e., in some operation scenar-
ios. In fact, railway level crossing behavior depends generally on the national
operation rules [22]. But in most European countries, the automatic protection
system gives absolute or relative priority to railway traffic, while preventing road
users from crossing whenever a train is approaching [15]. In this work, we use
an adapted use case, which is presented in detail in Section 5.

It is possible that the interaction of components in Fig. 1 results in the
violation of system safety requirements specification, such as:

Requirement 1: “the gate must be down whenever a train is inside the
rail-road crossing section” (adapted from [4]);

Requirement 2: “when the gate is opened to road traffic, it must stay open
at least Tmin time units, where Tmin represents the minimum desired period of
time separating two successive closing cycles of gate” (adapted from [15]);

Requirement 3: “once closed and when there is no train approaching mean-
while, the gate must be kept closed at least (Tbegin) and at most (Tend), where
Tbegin and Tend are the time limits prescribed” (adapted from [15]).

The above application architecture and these safety requirements under ver-
ification are used throughout the rest of the paper.

4 Marc Sango, Laurence Duchien, and Christophe Gransart

3 Overview

Fig. 2 shows the schematic structure of our component-based modeling and
observer-based verification approach. It is composed of two development paths
and one verification tool.

Fig. 2. Our methodology

The path on the left of Fig. 2 represents the system functional development
path. It is responsible for performing the functional requirements. Functional
requirements are modeled according to a component-based paradigm. In this
paper, we use our SARA component model. Then, this model is translated into
the TA formal model. One of the main parts of our method is the transformation
of the SARA model to the TA model, as detailed in Section 4. The result of this
path is a system TA model.

The path on the right of Fig. 2 represents the system safety development
path. It is responsible for monitoring safety requirements. Generally, safety re-
quirements depend on operation rules developed with a rule-based paradigm. For
each safety requirement, the appropriate observation pattern is selected from the
generic patterns and then instantiated to produce a corresponding safety require-
ment observer, as detailed in Section 5. The result of this development path is
a safety TA observer.

In the end, the safety TA observers instantiated are synchronized with the
system TA model obtained to generate a system global TA model. Then, by
using a verification tool (e.g., Uppaal model checkers), the verification task is
reduced to a reachability search of an error or no-error states (KO or OK states)
on the global TA model.

Component-Based Modeling and Observer-Based Verification 5

4 From SARA model to TA model

In order to define the transformation rules, we first formally define our source
model, i.e., the SARA model and the target model, i.e., the TA model. Then,
based on these two formal models, we define the transformation rules from the
SARA model to the TA model for the verification of safety-critical applications.

4.1 SARA model

SARA component model is a domain-specific component model dedicated to
SAfety-critical RAilway control applications [17]. Its Application Programming
Interface (API), which is specified with Ravenscar profile of Ada programming
language, is defined to implement the train speed supervision application [16].

According to the SARA model and its Ravenscar API, a component specifi-
cation is defined as an entity which encapsulates data structures with operations
working on these data. The component specification (a) is separated from the
component body (b), from the component instance (c) and from the component
runtime (d) (see Fig. 3). Firstly, each component specification is distinguished by
a unique name (e.g., CompTypeName in line 1 of Fig. 3.(a)). Each component
specification defines the interface of operations for its instances by a set of input
parameters, a set of output parameters or input/output parameters (e.g., see
line 10 in Fig. 3.(a)). Operations are annotated with the timing requirement an-
notations (e.g., see lines 12-15 in Fig. 3.(a)). These annotations can be checked,
as illustrated in Fig. 3.(d) with the Ada language annotations checking tool [9].
However, tasks and synchronization are not currently permitted in this tool.

Secondly, in the body of components, the behavior of component instances is
defined by users (e.g., see lines 5-6 Fig. 3.(b)). Thirdly, SARA application, i.e.,
a top-level component named SARAProg, built from others connected compo-
nents, can only be instantiated when the required resources are present (e.g., see
lines 17-18 in Fig. 3.(c)), while components can only be instantiated within an
application or other components (e.g.; see lines 7-15 in Fig. 3.(c)). Finally, Fig.
3.(d) shows the screen shot of the runtime execution and runtime annotation
checking of our application implementation based on SARA component model.

More formally, the SARA component model is defined as follows.
Definition 1 (SARAProg). A SARA program is defined as a tuple SARA-

Prog = (ProgName, IP, OP, LV, CV, IO, ProgBody), where:

– ProgName is the name of the program, which is defined by its developer;
– IP is a set of input parameters, which enter the input ports of program

components, e.g., IP = {dist, init, reset,monitorT} in Fig. 1;
– OP is a set of output parameters, which exit the output ports of program

components, e.g., OP = {up, down, emergency} in Fig. 1;
– LV is a set of local variables of this program. For technical reasons, we assume

that all the local variables of program components occur somewhere in the
program structure. e.g., LV = {init, set, urgent, refT ime} in Fig. 1;

6 Marc Sango, Laurence Duchien, and Christophe Gransart

(a)
1 package CompTypeName i s
2 −− Component type :
3 type CompType i s new Sara . Comps←↩

with record
4 Time Var : I n t e g e r ;
5 Train Pos : Float ;
6 end record ;
7 −− o ther data :
8 Tmax : constant I n t e g e r := 15 ;
9 −− opera t i ons :

10 Procedure Op (C : in out ←↩
CompType)

11 −− opera t ion annota t ions :
12 with
13 pre => (C. Time Var = 0) ,
14 Post => (C. Time Var <= Tmax
15 and then C. Train Pos =10.0) ;
16 end CompTypeName ;

(b)

1 package body ←↩
CompTypeName i s

2 Procedure Op (C : in←↩
out CompType) ←↩

i s
3 begin
4 −− user de f ined ←↩

behav ior : e . g . ,
5 C. Time Var := 10 ;
6 C. Train Pos := 1 2 . 0 ;
7 end Op;
8 end CompTypeName ;

(c)
1 with CompTypeName ;
2 Procedure SARAProg −− Top− l e v e l component
3 −− prog input parameters :
4 T r a i n I n i t : I n t e g e r := 0 ;
5 Train X Coord : Float := 0 . 0 ;
6 −− prog component in s t ance s :
7 CompInst : Sara . Prog . CompType :=
8 (Time Var => Tra in In i t ,
9 Train Pos => Train X Coord) ;

10 −− program component execu t i on :
11 package Defined Task i s new Sara .←↩

Per iod ic Task
12 (Comp Type => Sara . Prog . CompType ,
13 Comp Inst => Sara . Prog . CompInst ,
14 P r i o r i t y => 1 , Period => 0 .010 ,
15 Provided Op => CompTypeName .Op) ;
16 −− program resource s :
17 use Defined Task ;
18 use Ada . Calendar ; −− or Ada . Real Time
19 Start , F in i sh : Time ;
20 begin
21 Star t := Clock ; −− ge t system s t a r t time
22 . . .
23 end SARAProg ;

(d)

Fig. 3. (a) Specification (b) Body (c) Instance (d) run-time checks

Component-Based Modeling and Observer-Based Verification 7

– CV is a set of clock variables that monitor the time, e.g., CV = {monitorT}.
– IO is a set of input/ouput variables of the program body, e.g., IO = {approach,

exit, close, open} ∪ IP ∪ OP ∪ LV ∪ CV in Fig. 1;
– ProgBody is a SARA program body. It is defined as a set of component

instances which are interconnected using variables. The connections of com-
ponent instances are defined as a program configurations, ProgConfigs (def-
inition 2).

Definition 2 (ProgConfig). A program component configuration is defined
as a tuple ProgConfig = (CompInsts, CompConnects), where

– CompInsts is a set of component instances (see Definition 3),
– CompConnects is a set of component connections (see Definition 5).

Definition 3 (CompInst). A component Instance is defined as a tuple (In-
stName, CompTypeName, Priority), where:

– InstName is a user defined name of specific instance of a component type;
– CompTypeName is the name of the corresponding component type, Comp-

Type (see definition 4);
– Priority is an integer that defines the execution order of component instances

in the context of the component configuration. For instance, the execution
order of Fig. 1 is: Gate Inst 1 < Controller Inst 1 < Sensor Inst 1. This
means that Sensor Inst 1 has a highest priority than Controller Inst 1 and
Controller Inst 1 has a highest priority than Gate Inst 1.

Definition 4 (CompType). A component type is defined as a tuple Comp-
Type = (CompTypeName, IP, OP, LV, Annotation, CompBody), where:

– CompTypeName is the name of the component type, which is defined by
its developer. We distinguish two kinds of component type: active and pas-
sive components. An active component has its own dedicated thread of ex-
ecution. While a passive component is directly processed in the context of
the calling thread of an active component. Note that a component is either
a basic component or a hierarchical component. A hierarchical component
contains other components that can be themselves hierarchical or basic (e.g.
SARAprog of Fig. 3 (c) that contains basic component instances of Fig. 1).
Whereas, a basic component directly encapsulates behavior (e.g., in Fig. 1,
BP-component is a basic passive component, and BA-component is a basic
active component);

– IP = {ip1, ip2, ..., ipn} is a set of input ports;
– OP = {op1, op2, ..., opn} is a set of output ports;
– LV is a set of local variables of this component type;
– Annotation is a time annotation of component body operations, e.g., see

lines 12-15 of Fig. 3 (a);
– CompBody defines the behavior of instances of component type. The body

can be written in any programming language. For example, we use the Ada
programming language, e.g., see Fig. 3 (b).

8 Marc Sango, Laurence Duchien, and Christophe Gransart

Definition 5 (CompConnect). A component connection is defined as a set
of four types of connection, CompConnect = {DC, IC, LC, OC}, where:

– DC is a set of direct connections between IP of component instances and OP
of component instances. It is defined as:
• DCn : InstNamei.opj → InstNamek.ipl,
• e.g., DC1 : Sensor Inst 1.op1 → Controller Inst 1.ip1 in Fig. 1;

– IC is a set of connections that connect input parameters ipj ∈ IP of SARA-
Prog to an input port ipl ∈ IP of kth component instance or to a program
local variable lvk ∈ LV . It is defined as:
• ICn: ProgName.ipj → InstNamek.ipl, or
• ICn: ProgName.ipj → ProgName.vlk,
• e.g., IC1 : dist→ Sensor Inst 1.ip1 in Fig. 1 or
• e.g.,: IC2 : init→ Sensor Inst 1.init in Fig. 1;

– LC is a set of connections that involves local variables of a program that do
not occur in IC. A local variable lvi ∈ LV of SARAProg may be connected
to an input port ipj ∈ IP of the kth component instance, an output port
opl ∈ OP of the kth component instance or an output parameters opm ∈ OP
of SARAProg. It is defined as:
• LCn: ProgName.lvi → InstNamek.ipj , or
• LCn: InstNamek.opl → ProgName.lvi, or
• LCn: ProgName.lvi → ProgName.opm
• e.g., LC1 : reset→ Controller Inst 1.set , or
• e.g., LC2: Controller Inst 1.op3 → emergency in Fig. 1;

– OC is a set of output connections between opi ∈ OP of the kth component
instance and output variables opj ∈ OP of SARAProg. It is defined as:
OCn : InstNamek.opi → ProgName.opj , e.g.: OC1 : Gate Inst 1.op1 → up
in Fig. 1.

4.2 Time annotations

In this section, we provide predefined time annotations, which are used to anno-
tate our component operations (e.g., lines 12-15 in Fig. 3.(a)). This predefinition
facilitates the expression of timing constraints commonly used. While analysing
various types of common temporal requirement classifications [7, 12], we found
out that most of requirements can be expressed either as a set of obligation rules
or as a set of interdiction rules. Table 1 shows some examples of timing response
obligation annotations and their descriptions. Generally, in common temporal
requirements, an event e, named here monitored event e should occur perma-
nently or temporarily in response to a stimulus event, named here referenced
event e’.

In this paper, we also give to users the possibility to express requirements
that refer not only to the timed interval relatively to a given event, but also to
the occurrence ith of this event appearance. For example, stating only the timed
obligation pattern (e.g., event e must occur after event e’) is ambiguous since
the assertion does not specify the response time limit within which e may occur

Component-Based Modeling and Observer-Based Verification 9

Table 1. Time annotations

Time annotations Descriptions

between(e, Tbegin, Tend, i, e
′) ensures that a monitored event e must occur within a

temporal interval [Tbegin, Tend] after the ith occurrence
of referenced event e′.

mindelay(e, Tmin, i, e
′) ensures that a monitored event e must occur after a min-

imum delay Tmin time unit after the ith occurrence of
referenced event e′

maxdelay(e, Tmax, i, e
′) ensures that a monitored event e must occur before a

maximum delay Tmax time unit after the ith occurrence
of event e’

exactdelay(e, T, i, e′) ensures that a monitored event e must occur exactly at
a delay T time unit after the ith occurrence of event e′

after e′. In addition, it does not specify if e may occur after the first or the
last occurrence of e′. However, affirming that event e must occur before a
maximum delay of 3 time units after the first occurrence of event e’
avoid confusion. In this example, the assertion obtained is identified in Table
1 as the maxdelay(e, Tmax, 1, e

′) annotation, where Tmax = 3 time units (e.g.,
seconds) and i = 1th, i.e., the first occurrence of e’.

The goal of these timed annotations is to guide users during the modeling
in order to produce a clear and accurate description, while manipulating simple
and precise concepts.

4.3 TA model

Timed Automata (TA) is one of the most popular models adapted to real-time
system [3]. First, TA models are well adapted for the verification of time proper-
ties for real-time components because temporal requirements are explicitly mod-
eled by using state invariants, transition guards and setting or resetting clock
variables. Second, a number of methods based on variants of the TA model (or
other similar models such as timed Petri nets) have been proposed [11, 13, 14].
In this paper, we use timed automata over input or output actions, called the
Timed Automata with Inputs and Outputs (TAIO) [13]. Finally, a number of
automatic model checker tools for TA have been efficiently developed, e.g., Up-
paal [14] and Kronos [24]. In this work, we use Uppaal as one of these tools for
the verification process. It offers a convenient graphical user interface for simu-
lation. In the following the TA system, based on Uppaal TA system, is defined
to facilitate the transformation process of the SARA model. This means that all
parts which are not used by the transformation process are not included in the
definitions.

Definition 6 (TASys). A TA verification system can be defined as a tuple
TA = (TAModels, TADeclarations), where:

– TAModels is a set of all TA models used in a system global model. In this
work, every TA model is defined according to TAIO (see definition 7);

10 Marc Sango, Laurence Duchien, and Christophe Gransart

– TADeclarations is the declaration part that contains all input/output vari-
ables of all component instances and all input/output/local variables of the
program (see definition 10).

Definition 7 (TAModel). A TA model is defined as a tuple TAModel =
(TAName, TASyntax, TASemantic), where:

– TAName is the name of the TA model which appears in the system decla-
rations part to arrange priorities on TAModels;

– TASyntax is the syntax of the state-transition description of TAIO extended
with boolean and integer variables (see definition 8);

– TASemantic is the semantic (see definition 9).

Definition 8 (TASyntax). TAIO is represented by the tuple A = (L, l0, V,
Act, Clock, Inv, T), where :

– L is a finite set of locations;
– l0 ∈ L is the initial location;
– V = Vbool ∪ Vint ∪ Vact ∪ Vconst ∪ Vclock is a finite set of variables (boolean,

bounded integer, channel, constant or clock) declared in the TADeclarations
part (see definition 10);

– Act = Vact × {!, ?} is a set of synchronization actions over channel variables
Vact. It is the partitioned set of input and output actions, Act = Actin ∪
Actout. Input actions are denoted a?, b?, etc, and output actions are denoted
a!, b!, etc;

– Clock is a finite set of real-valued clocks, {x1, x2, ..., xn};
– Inv is a function, that assigns an invariant to each location. Inv(Vclock, Vint)

is the set of invariants over clocks xj ∈ Clock and integer variables c ∈ Vint;
– T is a finite set of edges for transitions.

Each edge T is a tuple (l, g, r, a, l′), where:

– l, l′ ∈ L are respectively the source and destination locations;
– g is a set of time constraints of the form x • c, where x ∈ Clock is a clock

variable, c ∈ Vconst is an integer constant and • ∈ {<,≤,=,≥, >};
– r ∈ Clock is a set of clocks to reset to zero, (r := 0, where 0 is the initial

valuation of the clock);
– a ∈ Act is a set of actions to update (a := b, where b is another action).

Definition 9 (TASemantic). The semantic of A = (L, l0, V, Act, Clock, Inv,
T) is defined by the Timed Labeled Transition System (TLTS) [13]. TLTS is a
tuple (S, s0, Act, Td, Tt), where:

– S = L× RX
+ is a set of timed states associated to locations of A;

– s0 = (q0,~0) is the initial state. ~0 is the valuation assigning 0 to every clock
x ∈ Clock of A;

– Td is a set of discrete transitions of the form (s, a, s′) = (s′, v)
a−→ (s′, v′),

where a ∈ Act and there is an edge E = (l, g, r, a, l′,), such that v satisfies g
and v′ is obtained by resetting to zero all clocks in r and leaving the others
unchanged; where t ∈ R+. Tt must be deterministic.

Component-Based Modeling and Observer-Based Verification 11

Definition 10 (TADeclarations). In order to facilitate the transformation
process of SARA model to TA model, TADeclarations are partitioned to a
TA model declaration part (TAModelDecl) and to a system model declaration
part (TASysDecl). TAModelDecl = (dataType, variableName, value), where: -
dataType is a set of project-specific data types. In this work, we use the Uppaal
declaration types: constant, boolean, bounded integer, channels, array or clock;
- variableName represents the name of the variable and - value is considered
either the initial value or the constant according to the data type.

TASysDecl defines the execution order by assigning priority to TA models.
For example in the example of Fig. 1, input connections (e.g., IC1) have the
highest priority, followed by component instances (e.g., Controller Inst 1), fol-
lowed by other connection types according to the execution order defined (e.g.,
DC1) and finally followed by output connections (e.g., OC1).

4.4 Transformation rules

This sub-section presents the transformation rules developed to translate SARA
application models to TA models. They are based on the above SARA and TA
formal models.

Rule 1 (mapping of declarations). The objective of this rule is to transform
the input and output variables of each component instance (CompInst) and all
the variables declared in the SARA program (SARAProg) into TA declaration
parts (TADeclarations). It is composed of two parts:

– Rule 1.1 For each CompInst = (InstNamei, CompTypeName, Priority),
where CompType = (CompTypeName, IP, OP, LV, Annotation, Comp-
Body), insert ipj ∈ IPi and opj ∈ OPi in TADeclarations, where i =
1, 2, ..., n and n is the number of CompType instances, as shown in the left
hand of Fig. 4;

– Rule 1.2 For each ProgName of SARAProg, where ipm ∈ IP , opn ∈ OP
and lvp ∈ LV insert corresponding variables in TADeclarations, as shown in
the right hand of Fig. 4.

//Sensor Inst 1 of Fif. 1 TA declaration
Const int N = 2; // number of trains
typedef int[0,N-1] id; // bounded integer,
clock x1, x2, x3; // sensor clock variables
int ip 1 list for dist[N];
bool ip 2 list for init[N];
chan op 1 channel for approach[N];
chan op 2 channel for exit[N];

//Fig1. program TA declaration
int dist;
bool init;
bool reset;
...
...
bool up;
bool down;

Fig. 4. Example of Fig.1 TAdeclarations

Rule 2 (mapping of CompInsts). The objective of this rule is to trans-
form CompInsts to TAModels. For each CompInst = (InstName, CompType-
Name, Priority), where CompType = (CompTypeName, IP, OP, LV, Annota-
tion, CompBody), insert the corresponding TAModel to TASys with TAName

12 Marc Sango, Laurence Duchien, and Christophe Gransart

= InstName by using a user predefined TAModel library and by taking into ac-
count the annotations in order to add the suitable state invariants and transition
guards according to rule 4. For example, see Fig.7, which corresponds to our use
case TAModel corresponding to the three component instances of Fig. 1.

Rule 3 (Mapping of annotations). This rule is invoked from rule 3 when a
component type contains time annotations as shown in Table 1, and illustrated in
lines 12-15 of Fig. 3 (a). These annotations are translated into boolean conditions
in TASyst by respecting the TASemantic shown in Definition 8.

Rule 4 (mapping of connections). The objective of this rule is to trans-
form connections. For each connection in CompConnect = (DC, IC, LC, OC), a
TAModel in TASys is inserted by respecting the following rule parts:

– Rule 4.1 For each DCn : InstNamei.opj → InstNamek.ipl, insert a
TAModel (L, l0, V, Act, Clock, Inv, T) with name DCn, where L = {l0} =
{DCn}, V = {opj , ipl}, Inv = {}, and T = {(q, g, r, a, q′)}, with g = {opj ⊕
ipl}, where ⊕ or XOR represents the inequality function between the output
opj and the input ipl, r ∈ Clock ∧ r = {} and a ∈ Act ∧ a = {ipl := opj}
(e.g., DC3 in Fig. 5);

Fig. 5. Example of Fig.1 TA connections

– Rule 4.2 For each ICn : ProgName.ipj → InstNamek.ipl or ProgName.ipj
→ ProgName.vlk, insert a TAModel with name ICn (e.g., IC1 in Fig. 5);

– Rule 4.3 For each LCn : ProgName.vli → InstNamek.ipj , InstNamek.opl
→ ProgName.lvi or ProgName.lvi → ProgName.opm, insert a TAModel,
with name LCn (e.g., LC1 in Fig. 5);

– Rule 4.4 For each OCn : InstNamek.opi → Program.opj , insert a TA-
Model with name OCn, (e.g., OC1 in Fig. 5);

Rule 5 (Initial input mapping). The objective of this rule is to allow man-
ual validation by using TASys like Uppaal simulator. For this, input variables
IP of the SARA program are allowed to be changed by the user. For each
ProgName.ipj in IP, insert TAModel with name INITn, where L = {INITn},
V = {ipj} and T = {(q, g, r, a, q′)}, with a ∈ Act ∧ a = {ipj :=!ipj}, r ∈
Clock ∧ r = {} ∧ g = {}, (e.g., INIT1 in Fig. 5).

Rule 6 (mapping of execution flow). The objective of this rule is to define
the execution flow of the TASys by using priorities on TA models. Based on
priority defined in CompInst = (InstName, CompTypeName, Priority) shown in
Definition 3, assign priority to each TAName in TASysDecl (see definition 10).

The validation of these transformation rules are realized through their ap-
plication in some use case scenarios of SARA model. The preservation of syntax
and semantic information across the transformations was checked whenever the
TA output models are successful processed by the Uppaal simulation tool.

marcsango
Texte surligné

Component-Based Modeling and Observer-Based Verification 13

5 Proof of concept

In this section, a simulation scenario of a use case is translated into the TA
model for the verification of system-level requirements presented in Section 2.

5.1 Use case

The safety of rail-road Level Crossing (LC) has long been a major concern for
railway and road stakeholders since LC accidents often generate serious ma-
terial damage, traffic disruption and human losses. As a consequence, the LC
system has already been used as a benchmark in several previous verification
approaches [4, 15]. Fig. 6 shows the LC topography considered in this paper. It
is composed of the following features: (1) double-track railway lines (UpLine
and DownLine); (2) roads with traffic in both directions; (3) traffic lights to
manage the road traffic in the LC zone; (4) sound alarms to signal train arrival;
(5) two half-barriers used to prevent road users from crossing while trains are
passing; (6) three train sensors Ani, Api and Exi in both track lines. For exam-
ple, in DownLine, the An2 is the anticipation sensor, which allows the detection
of the approaching train speed, necessary to alert road users with sound alarm
and road lights. The sensor Ap2 is used to detect the arrival of trains in the
LC zone and the exit sensor Ex2 is used to announce the departure of trains
after exiting the LC zone. Since several trains with different speeds (passenger
or freight trains) can circulate on railway lines, the required durations between
sensors are expressed with intervals in Fig. 6. For example, d1 = [10, 15] second
(s) is a required interval of durations between Ani and Api. This interval and
the others must be respected by trains circulating in the railway track lines.

Fig. 6. Level crossing topography

5.2 Transformation of simulation scenario to TA model

In this step, the SARA model of a simulation scenario is translated into the TA
model. Fig. 1 and 3 present an architecture and an implementation of a simula-
tion example of our use case by using software components (Sensor, Controller,
Gate). These components are executed in parallel and are synchronized through
various events, e.g., appr, close, etc, in order to provide the automatic LC con-
trol system. This LC model is manually transformed to the Uppaal TA model

14 Marc Sango, Laurence Duchien, and Christophe Gransart

Fig. 7. The level crossing TA model: Controller model, Sensor model and Gate model

in oder to use its simulation tool for the verification of our requirements. Figure
7 shows the Uppaal TA model of a LC system scenario, presented as follows.

When a train arrives in the monitored area, it activates the first sensor in-
stance Ani, (i.e., An1 for the UpLine direction and An2 for the DownLine
direction) and it sends the appr event with its id (appr[id]! in Fig. 6) to the
controller. In the same way, when it approaches the crossing section, it activates
the second sensor Api and sends the close[id]! event to the controller. The train
spends at least 10 s and at most 15 s in this first section (between Ani and
Api, i.e., between appr sending and close sending). This timing requirement is
presented as an invariant of state Near1 (i.e., x1 >= 10 in Fig. 6) and the guard
of a transition to state Near1 to Near2 (i.e., x1 <= 15). The train leaves the
crossing section at least 30 s and at most 45 s after sending the close event.
When a train leaves the crossing section, it activates the third sensor instance
Exi, and the train sends an exit! signal to the controller. When the close? signal
(respectively exit?) is received, the controller immediately sends a down! signal
(respectively up!) to the gate. We assume that there is no overlap between trains
in the same direction, which means that the controller handles at most two trains
at the same time, i.e., at most one train in each direction. The controller model of
Fig. 7 is a simplified version of the controller behavioral model. It deals with the
case when the gate is closed and when there is a train approaching meanwhile,
the controller decides to open immediately the gate or to wait certain duration
before open the gate. The Gate responds to down? signal by moving down and
takes 10 s to be completely closed. Indeed, it takes 4 s to activate the light
warning the vehicles approaching the LC and 6 s to close the gate. Conversely,
it responds to up signal by moving up and it takes 6 s to be completely open.

5.3 Requirement validation using observer patterns

The verification consists in checking that the parallel composition of the appli-
cation model under test and its safety requirements observers never enters an
erroneous state. The system-level safety requirements stated in Section 2 are
checked based on the predefined observer patterns.

Requirement 1 validation. This requirement is a critical condition aiming
to avoid train-car collisions in the crossing zone. It states that “The gate is never
open when the train is inside”. This requirement will be expressed as an exclusion
pattern between open state and inside state. Firstly, this textual description of
the requirement, which is presented as an annotation in the SARA component

Component-Based Modeling and Observer-Based Verification 15

model (see Fig. 3 (a)), is intuitively presented as an exclusion observer pattern in
the TA model. Fig.8 (a) presents the graphical representation of this exclusion
pattern, which is used to check that a given situation (state S1 and S2 are
activated at the same time with event b1? and a1?) is never reached.

Fig. 8. (a) Exclusion observer pattern, (b) Forbidden before observer pattern, (c) Obli-
gation between observer pattern

Secondly, once identified, the patterns are instantiated with the appropri-
ate parameters. In our case, the exclusion pattern is instantiated with in[id],
exit[id], opening[id] and down[id] events, instead of a1, a0, b1 and b0, respec-
tively. Thirdly, once generated, the TA patterns are synchronized with the sys-
tem model to generate a global system. Finally, the verification of our use case
is carried out on the Uppaal model checker. The “KO” node in the TA observers
is never reached, which means that this requirement “the gate must be down
when the train is inside the crossing” is always evaluated to true.

Requirement 2 validation. In our scenario model shown in section 5.2, we
firstly supposed that the Gate should stay in the open state at least 15 s before
becoming closed again. According to the Gate model in Fig. 7, the Gate takes
4 s to signal when vehicles can traverse, and 6 s to be closed. So, the time that
separates the up and down detection is Tmin = 15 s - 4 s. This means that the
down detection should be done at least 11 s after the up detection. With the
Uppaal model checker, the “KO” node of Fig. 3 (b) observer pattern instantiation
(down[id] instead of a and up[id] instead of b) is reached. Indeed, the path
that violates the requirement can be expressed as follows: (1) the first train
leaves the critical section and sends exit[id1] signal. Exit detection triggers the
up[id1] sending. Consequently, the gate is open; (2) suppose that a second train
is simultaneously entering the LC section, an appr[id2] signal is detected; (3) the
second train takes 10 s to trigger the close signal, which triggers the down[id2]
sending; (4) As a result, 10 s is computed between up[id1] and down[id2], which
violates this requirement :“when the gate is opened to road traffic, it must stay
open at least Tmin time units, where Tmin = 11 s”. This verification result helps
the designer to search the accepted time parameter between open cycles.

Requirement 3 validation: “once closed and when there is no train ap-
proaching meanwhile, the gate must be kept closed at least Tbegin and at most
Tend.” For the validation of this requirement, we determine the different speed
intervals allowed in the track lines. In the beginning, the train speed interval
considered in our double-track railway lines of Fig. 6 is [14,45] m/s. The counter
examples given by Uppaal model checker, allow to identify new speed intervals

16 Marc Sango, Laurence Duchien, and Christophe Gransart

that validate the requirement, and so on. The obtained speed intervals that vali-
date this requirement an above requirements are: {[14, 15[, [15, 16[, [16, 18[, [18,
20[, [20, 22[, [22, 30[, [30, 45]}.

5.4 Proof of concept discussion

The first results obtained in the previous “proof in use” are encouraging and
show the correctness of the defined rules. However, the more formal validation
still need to be defined in order to formally verify that the syntax and specially
the semantic information are indeed preserved across the transformation.

Having said that, the strong goal of our approach is to express and verify
requirements relative to certain scenarios of use cases. The scenario-based de-
scription, rather the entire system description, allows a limitation of the explored
space search, and hence a first reduction in the combinatorial explosion, which
is an important limitation for the application of model checking techniques in
complex software projects [23]. For this reason, the strong assumptions we made
about the SARA model is that the designer is able to identify all possible in-
teractions between components of the system and between the system and its
environment. We justify this strong hypothesis, particularly in the field of em-
bedded systems, by the fact that the designer of a component needs to know
precisely and completely the context, i.e., constraints, conditions, of its system
for properly developing it. It would be necessary to study formally the validity
of this working assumption for scalability in the targeted applications. In this
paper, we do not address this aspect, which is planned for our future work.

6 Related work

Automating the verification process of applications increases development pro-
ductivity and quality [1]. There are several research works in this direction. These
works are mainly based on the transformation of the source models to the target
formal models, which are next used for verification purposes by exploiting verifi-
cation tools [18]. For example, Solimaan et al. transform function block diagram
to timed automata for the automated formal verification by using the Uppaal
model checker [19]. Textual safety requirements are converted to CTL properties
and are checked on the Uppaal TA system using the verifier tool. This verifi-
cation process requires significant knowledge of higher order logic and theorem
proving. This process has two main limitations. The first one is that users must
be familiar with the higher order logic in CTL. The second is the lack of patterns
for high-level system properties. In contrast, in our verification methodology, we
use observer-based verification by providing the timed annotation patterns which
promote reusability. As demonstrated in [4], the verification of safety properties
by using observer-based verification does not require learning another language
for the purpose of property specification. The verification task can be reduced
to a simple reachability analysis. Our method suggests using generic predefined
observation patterns [6] to check the temporal requirements of a given system.

Component-Based Modeling and Observer-Based Verification 17

In this work, we focus on the verification approach that takes advantage of
the flexibility of the source model and the analysis facilities offered by a target
formal model. In the same way, Mekki et al., based on the flexibility an the
expressiveness of UML State Machine (UML SM), transform this semi-formal
model to the TA model [15]. This method allows the automated verification of
temporal requirements, initially expressed in a semi-formal formalism, through
the model transformation. This work is focused on the validation of new func-
tional requirements that prevent several accidents at LCs with model-checking
techniques [15]. We use the suggested new LC topography as our use case. In
contrast, our work focuses on the integrated development approach. Indeed,
given a software requirement specification of safety-critical software, the pro-
posed development process is to guide developers at the first design stage for the
identification of requirement types, for the modeling of requirements and for the
verification of requirement models before implementation.

7 Conclusion

The main challenge we face in this paper is how to transform a source model of
safety-critical applications to a target model suitable for automatic formal verifi-
cation. In order to face this challenge, we formalize our SARA component model
and the TA model. Based on these formal models, transformation rules were then
defined. A component model of a simulation scenario is manually transformed to
the Uppaal TA model to validate some safety requirements. The counter exam-
ples discovered during the verification process can help the developer to identify
the software components that should be modified before the implementation and
the integration. After the verification phase, the scenario model is implemented
with the Ravenscar profile of Ada language, which is one of the recommended
languages in the development of railway safety-critical applications. The com-
plete process to validate the safety requirements shows the understanding of the
transformation process and the applicability of the proposed approach.

This is very encouraging to automate the transformation of our SARA model
to the TA model. We are currently working on the development of this automa-
tion. As a consequence, our future work targets the automation process for the
automatic verification of timing requirement annotations, which are not sup-
ported by the annotation checking tool [9], used in this paper. In addition, the
application of our approach to several use case scenarios is another direction to
demonstrate the efficiency and the scalability of our approach.

Acknowledgements This work is supported by IFSTTAR Institute and ANR
VEGAS Project.

References

1. R. Adler, I. Schaefer, M. Trapp, and A. Poetzsch-Heffter. Component-based mod-
eling and verification of dynamic adaptation in safety-critical embedded systems.
ACM Trans. Embed. Comput. Syst., 10(2):20:1–20:39, January 2011.

18 Marc Sango, Laurence Duchien, and Christophe Gransart

2. M. Akerholm, A. Moller, H. Hansson, and M. Nolin. Towards a dependable compo-
nent technology for embedded system applications. In 10th International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 320–328, Feb 2005.

3. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, April 1994.

4. Z. Bhatti, R. Sinha, and P. Roop. Observer based verification of iec 61499 function
blocks. In Industrial Informatics (INDIN), pages 609–614, July 2011.

5. I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron. A classification
framework for software component models. IEEE Trans. Software Eng., 37(5):593–
615, 2011.

6. J. S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi. Timed automata patterns. Software
Engineering, IEEE Transactions on, 34(6):844–859, Nov 2008.

7. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of ICSE’99, pages 411–420.

8. EN-50128. Railway applications - Communication, signalling and processing sys-
tems - Software for railway control and protection systems, January 2011.

9. Hi-lite. Simplifying the use of formal methods: verification by contract.
http://www.open-do.org/projects/hi-lite/.

10. IEC-61499. IEC 61499 function blocks for industrial-process measurement and
control systems. Geneva, Switzerland, 2005.

11. D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata. Morgan & Claypool Publishers, 2006.

12. S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proceedings
of the 27th ICSE, pages 372–381, 2005.

13. M. Krichen and S. Tripakis. Conformance testing for real-time systems. Form.
Methods Syst. Des., 34(3):238–304, June 2009.

14. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

15. A. Mekki, M. Ghazel, and A. Toguyeni. Validation of a new functional design of
automatic protection systems at level crossings with model-checking techniques.
IEEE Transactions on Intelligent Transportation Systems, 13(2):714–723, 2012.

16. M. Sango. Application of sara approach to ertms/etcs on-board train control
system. Technical Report, IFSTTAR, April 2013. http://urls.fr/sara.

17. M. Sango, C. Gransart, and L. Duchien. Safety component-based approach and
its application to ERTMS/ETCS on-board train control system. In TRA2014
Transport Research Arena 2014, Paris, France, April 2014.

18. S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Softw., 20(5):42–45, September 2003.

19. D. Soliman, K. Thramboulidis, and G. Frey. Transformation of function block
diagrams to uppaal timed automata for the verification of safety applications.
Annual Reviews in Control, 36(2):338 – 345, 2012.

20. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

21. G. Tamura, R. Casallas, A. Cleve, and L. Duchien. Qos contract-aware reconfigu-
ration of component architectures using e-graphs. In FACS’10, pages 34–52.

22. K. Taylor. Addressing road user behavioural changes at railway levelcrossings. In
ACRS-Travelsafe National Conference, pages 368–375, Brisbane, Australia, 2008.

23. J. Whittle. Specifying precise use cases with use case charts. In MoDELS Satellite
Events, pages 290–301, 2005.

24. S. Yovine. A verification tool for real-time systems. Springer International Journal
of Software Tools for Technology Transfer, 1(1-2):123–133, 1997.

