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Abstract. We define a call-by-value variant of Gödel’s System T with references, and equip it with
a linear dependent type and effect system, called d`T, that can estimate the complexity of programs,
as a function of the size of their inputs. We prove that the type system is intentionally sound, in the
sense that it over-approximates the complexity of executing the programs on a variant of the CEK
abstract machine. Moreover, we define a sound and complete type inference algorithm which critically
exploits the subrecursive nature of d`T. Finally, we demonstrate the usefulness of d`T for analyzing
the complexity of cryptographic reductions by providing an upper bound for the constructed adversary
of the Goldreich-Levin theorem.

1 Introduction

The goal of modern cryptography is to design primitives and protocols that are provably secure against
computationally bounded adversaries. Initially focused on the design of secure encryption schemes and
key exchange protocols, the scope of modern cryptography has expanded to consider a wide range of
primitives and protocols that achieve such goals as zero-knowledge proofs of knowledge, multi-party com-
putation, verifiable computation, group key exchange, etc. To meet such goals, cryptographic constructions
have become more complex, and this complexity is reflected in their security analysis. As a consequence,
these proofs are lengthy, error-prone, and cannot easily be subjected to independent verification. As a
consequence, a number of flaws have been discovered in published proofs. A plausible approach to elimi-
nate such flaws and to ensure independent verifiability of proofs is to use computer-aided tools [16]. This
approach has been explored with great success, leading to the development of several tools, like Cryp-
toVerif [11], CertiCrypt [8], EasyCrypt [9, 5], or RF* [6] that have been used to reason about the security
of several emblematic examples of cryptographic constructions. However, most of these tools only support
partial verification of cryptographic reductions. Specifically, cryptographic reductions are proved in three
steps: definition of a constructed adversary, proof of correctness of the reduction, and complexity analysis
of the constructed adversary4; however, most tools consider only the first and second steps.

Implicit Computational Complexity (ICC) is a thriving field which develops foundational methods for
estimating program complexity, often in the setting of pure higher-order languages. Many works in ICC
use sophisticated type systems to estimate the complexity of programs, and these systems have many simi-
larities with those used in computer-aided cryptography. In particular, there are close connections between
d`PCF [23, 24], an expressive type system for analyzing the complexity of PCF-expressions, and type sys-
tems for computer-aided cryptography, such as RF* [6], and its non-relational variant F* [28]. In particular,
these type systems use restricted forms of linear dependent types, and programs can be type-checked by
computing a set of verification conditions that can be discharged by SMT solvers. Thus, an integration
of ICC type systems into tools for computer-aided cryptography might sound unproblematic at first sight.
However, the match is less than ideal, even for closely related systems such as F*/RF* and d`PCF. Indeed,
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4 The goal of the complexity analysis is almost always to provide an upper bound on the execution time of the

adversary. Only in few cases the analysis is concerned with the expected execution time. In this paper, we only focus
on the first case.



the type inference algorithm of d`PCF outputs a so-called equational program, which must be proved ter-
minating, in order to guarantee the meaningfulness of the complexity bounds delivered by the algorithm.
Proving the termination of equational programs can be extremely difficult, even for relatively simple ex-
pressions, and is specially frustrating when the expressions from which the programs are generated are
clearly terminating. In particular, d`PCF is overly expressive for cryptographic reductions, as constructed
adversaries can be expressed in a subrecursive language, in the style of Gödel’s system T, without the
need to resort to the generality of fixpoint definitions. Because programs written in such a language are
necessarily terminating, one can hope to develop an automated method which does not suffer from the
drawback of d`PCF, i.e. does not require to prove termination of an equational program. More gener-
ally, existing systems for ICC suffer one or several of the following shortcomings: they do not support
stateful computations; they deliver asymptotic bounds, rather than concrete bounds which are useful for
practice-oriented provable security; they can only analyze hereditarily polytime programs, i.e. programs
whose sub-computations are also polytime; they lack sound and complete type inference algorithms—for
instance, some systems have conditionally sound and complete type inference algorithms, i.e. a complex
analysis of the output of the type inference algorithm is required to establish the validity of its results. As
a consequence, these type systems are not appropriate for being used for computer-aided cryptography.

Contributions The main contribution of this paper is a type-based complexity analysis for a call-by-value,
stateful, higher-order language with primitive recursion in the style of Gödel’s system T. The language is
sufficiently expressive to model constructed adversaries from the cryptographic literature, and yet suffi-
ciently constrained to define a sound and complete type inference algorithm. Technically, our contributions
are:

– we introduce in Section 2 a variant of Gödel’s system T—a paradigmatic higher-order language with
inductive types and higher-order primitive recursion—with references and use a variant of the CEK abstract
machine to characterize the complexity of programs;

– we define in Section 3 a type system d`T which conservatively approximates the cost of executing
a program, and then prove its intensional soundness w.r.t. the cost of its execution using our variant of the
CEK abstract machine. The key ingredients of our type system are: linear types, which we use to ensure
that higher-order subexpressions cannot be duplicated; indexed types, which we use to keep track of the
size of expressions—thus, our use of indexed types is somewhat different from other works on refinement
types, which support finer-grained assertions about expressions, e.g. assertions about their values; indexed
effects, which are used to track the size of references throughout computation;

– we show in Section 4 that d`T is intensionally sound, i.e. correctly overapproximates the complexity
of evaluating typable programs;

– we define in Section 5 a type inference algorithm and prove its soundness and completeness. Our
algorithm critically exploits the constrained form of programs, in which all recursive definitions are per-
formed through recursors, to deliver an equational program that is provably terminating;

– we demonstrate in Section 7 that d`T captures plaintext extractors that arise in reduction proofs of
padding-based encryption schemes, i.e. public-key encryption schemes built from one-way trapdoor per-
mutations and random oracles, and constructed adversaries in the Goldreich-Levin theorem, which proves
the existence of hardcore predicates. The latter example is particularly challenging, since it involves com-
putations that are not hereditiraly polytime.

From a theoretical perspective, our work provides an answer to the challenging question of achieving sound
and complete type inference algorithms for expressive ICC systems featuring both higher-order and refer-
ences. On the other hand, the system is kept simple enough to avoid the necessity of checking equational
programs for termination, as explained in Section 5.1. All this, in particular, means that d`T is not merely
a simplification on d`PCF [23, 24]. From a practical point of view, our work opens the perspective to build
tools that account for the correctness and complexity analysis of cryptographic reductions, without any
additional cost for the user, other than specifying the cost of primitive operations. Implementation of d`T
and its potential integration in F*/RF* (or a related system) is left for future work, but we briefly discuss
the principles of such an integration in Section 9.



2 Setting

We consider a simply typed λ-calculus with references and higher-order primitive recursion, with a call-
by-value evaluation strategy. For the sake of readability, we consider a minimalistic language with natural
numbers, booleans, and lists. For the sake of applicability, we allow the set of expressions to be parame-
terized by a set of function symbols; these functions can be used in cryptographic applications to model
random sampling, one-way trapdoor permutations, oracles, etc.

The semantics of programs is defined by an abstract machine, which we use to characterize the com-
plexity of programs. We assume that function symbols come equipped with a semantics, and with a cost;
thus, the abstract machine and the associated cost of programs are parametrized by the semantics and cost
functions. This is formalized through the notion of a function setting, which we defined below.

Note that it is also possible to define the semantics of programs using a reduction semantics; we define
such a reduction semantics and prove subject reduction w.r.t. our linear dependent type system in Sec-
tion 2.4.

2.1 Language

We assume given denumerable sets V of variables and L of locations, and a set F of function symbols.
Terms and values are defined as follows in Figure 1. The constructions map(V ) and map2(V ) are defined in
a standard way, using fold(X,Z) for suitable X,Z. The following constructions used in the examples are
also standard syntactic sugar: ifM then V elseW , λ〈x, y〉.M , let x = M in N , as well as M ;N .
The expression M stands for a sequence of terms.

M ::= V (Value)

| x (Variable)

| succ(M) (Succ)

| cons(M,N) (Cons)

| letM be 〈x, y〉 in N (Let)

| f(M) (Function)

| M N (Application)

| !r (Dereference)

| r:=M (Assign)

V ::= ∗ (Unit)

| zero (Zero)

| tt (True)

| ff (False)

| nil (Nil)

| succ(V ) (Succ)

| cons(V,W ) (Cons)

| 〈M,N〉 (Pair)

| λx.M (Abstraction)

| iter(V,W ) | fold(V,W ) (Iterators)

| if(V,W ) | ifz(V,W )

| ifn(V,W ) (Selectors)

Fig. 1. Terms and Values

2.2 Linear Type System

We first equip the language with a (non-dependent) linear type system. The sets of base types and types are
defined as follows:

T ::= unit | B | N | L(T ); A,B ::= T | A⊗A | A a
( A;

where a ranges over sets of locations. The types B, N and L(T ) stand respectively for booleans, integers,
and lists over the type T . If a is the empty set, we write A ( B for A

a
( B. First-order types are types

in which for any subformula A
a
( B, A does not contain any( connective. Each function symbol f is



assumed to have an input type Tf and an output type Sf. The set T (T ) of those values which can be given
type T can be easily defined by induction on the structure of T .

Variable contexts (resp. reference contexts) are denoted as Γ (resp. Θ) and are of the shape Γ = x1 :
A1, . . . , xn : An (resp. Θ = r1 : A1, . . . , rn : An). A ground variable context is a variable context in the
form {x1 : T1, . . . , xn : Tn}, and is denoted with metavariables like `Γ . Ground reference contexts are
defined similarly and are denoted with metavariables like `Θ.

Typing judgements are of the form Γ ;Θ ` M : A; a . This judgement means that when assigning to
free variables types as from Γ and to references types as from Θ, the term M can be given type A, and
during its evaluation the set of references that might be read is included in a. The union Γ ]∆ of variable
contexts is defined only if the variables in common are attributed the same base type. Similarly the union
a]b of sets of locations (in a judgement) is defined only if the locations in common are attributed the same
base type in the reference context Θ of the judgement.

The typing rules are displayed on Figure 2, and Figure 3. Let us just comment on a few rules:
– Assign and Dereference (Fig. 2): note that in the Dereference rule the reference r must belong to the

set a, while in the Assign rule there is no condition on a but r and M must have the same type.
– Pair (Fig. 2): note that the context Γ ]∆ implies that if M and N share a variable x, then this variable

must have a base type; similarly if they can both read a reference r, then this reference must be in a, b
and a ] b, and hence have a base type. The (Application) rule is similar, but one also needs to take into
account the set a of references that can be read when M is applied to an argument.

– Abstraction (Fig. 2): note how, reading the rule top-down, the set a is ”moved” from the judgement to
the type A

a
( B, and can in this way be used later in the derivation if λx.M is applied to an argument.

– Iteration (Fig. 3): in the rules for iter(V,W ) and fold(V,W ) the variable context `Γ and the refer-
ence context `Θ can only contain base types.

Γ, x : A;Θ ` x : A; a Γ ;Θ ` ∗ : unit; a
t ∈ T (T )

Γ ;Θ ` t : T ; a
Γ ;Θ `M : Tf; a

Γ ;Θ ` f(M) : Sf; a

Γ ;Θ `M : A; a ∆;Θ ` N : B; b

Γ ]∆;Θ ` 〈M,N〉 : A⊗B; a ] b
Γ ;Θ `M : A⊗B; a ∆, x : A, y : B;Θ ` N : C; b

Γ ]∆;Θ ` letM be 〈x, y〉 in N : C; a ] b
Γ, x : A;Θ `M : B; a

Γ : Θ ` λx.M : A
a
( B; b

Γ ;Ξ `M : A
a
( B; b ∆;Ξ ` N : A; c

Γ ]∆;Ξ `MN : B; a ] b ] c
r ∈ a

Γ ;Θ, r : A ` !r : A; a
Γ ;Θ, r : A `M : A; a

Γ ;Θ, r : A ` r:=M : unit; a

Fig. 2. Typing Rules, Part I

Consider the following two examples:

M = r:=zero; cons(!r, cons(!r,nil)); N = r:=λx.x;!r(!r∗).

Both terms read a reference r twice, but M is typable, while N is not. Indeed, in M the reference r is read
twice, but it is of base type N; we can derive:

∅; r : N `M : L(N); {r}

On the contrary an attempt to type N fails because of the rule for Application and the condition on the sets
of locations, since r does not have a base type.

Let us now give another example for computing addition and multiplication on natural numbers, in an
imperative style:

incrr = λx.r:=succ(!r) (increments the content of r)
addr,r1 = λx.iter(incrr, ∗)!r1 (adds the content of r1 to that of r)
multr,r1,r2 = λx.(r:=0; iter(addr,r1 , ∗)!r2) (multiplies the contents of r1 and r2 and

assigns the result to r)



Γ ;Θ ` tt : B; a Γ ;Θ ` ff : B; a Γ ;Θ ` zero : N; a Γ ;Θ ` nil : L(A); a

Γ ;Θ `M : N; a

Γ ;Θ ` succ(M) : N; a

Γ ;Θ `M : T ; a ∆;Θ ` N : L(T ); b

Γ ]∆;Θ ` cons(M,N) : L(T ); a ] b

Γ ;Θ `W : A; a Γ ;Θ ` V : A; a

Γ ;Θ ` if(V,W ) : B
a
( A; b

`Γ ; `Θ `W : A; a `Γ ; `Θ ` V : A
c
( A; a

`Γ ; `Θ ` iter(V,W ) : N
c
( A; b

Γ ;Θ `W : A; a Γ ;Θ ` V : N
c
( A; a

Γ ;Θ ` ifz(V,W ) : N
c
( A; b

`Γ ; `Θ `W : A; a `Γ ; `Θ ` V : T
c
( A

c
( A; a

`Γ ; `Θ ` fold(V,W ) : L(T )
c
( A; b

Γ ;Θ `W : A; a Γ ;Θ ` V : L(T )
c
( T

c
( A; a

Γ ;Θ ` ifn(V,W ) : L(T )
c
( A; b

Fig. 3. Typing Rules, Part II

The language we have just defined, then, can be seen as an affine variation on Gödel’s T with pairs, ref-
erences, and inductive types, called `T. The just introduced type system, however, does not provide any
guarantee as for the time complexity of typable program. Something much more refined is necessary.

2.3 Function Settings

The behavior of functions is not specified a priori, because such functions are meant to model calls to
oracles in cryptography. Everything in the following, then, will be parametrized by a so-called function
setting, which is a pair ({Sf}f, {Cf}f), where Sf is a relation between base type values matching f’s input
and output types and modeling its (possibly probabilistic) extensional behaviour, while Cf is a function
from N to N expressing a bound to the cost evaluating f on arguments of a given length. In the rest of this
paper, we assume that a function setting has been fixed, keeping in mind that type inference can be done
independently on a specific function setting, as we will explain in Section 5.

2.4 Reduction Semantics

The simplest way of specifying how terms evaluate is to give a small-step semantics. Evaluation takes place
in evaluation contexts, which are generated by the following grammar:

E ::= [·] | succ(E) | cons(E,M) | cons(V,E) | f(E)
| let E be 〈x, y〉 in N | let 〈E, N〉 be 〈x, y〉 in N
| let 〈V,E〉 be 〈x, y〉 in N | EN | V E | r:=E,

The language `T is not a purely functional language, due to the presence of assignments and references.
Evaluation thus involves a term and a store, which is a function S assigning a value V to any reference r.
The store which is equal to S except on r, to which it assigns V , is indicated with S{r/V }. A configuration
is a pair (S,M) where M is a closed term and S is a store. The evaluation relation is a binary relation
−→ on configurations defined following the rules in Figure 4, which are all standard except the third one,
which allows to replace a call to an undefined symbol f with anything which can be put in correspondence
with it by the semantics of f.

2.5 Abstract Machine

We consider a variant of Felleisen and Friedman’s CEK. As such, our machine will be given as a transition
system on configurations, each of them keeping track of both the term being evaluated and the values



(S,E[succ(t)]) −→ (S,E[succ(t)]);

(S,E[cons(t, s)]) −→ (S,E[cons(t, s)]);

(S,E[f(t)]) −→ (S,E[Sf(t)]);

(S,E[let 〈V,W 〉 be 〈x, y〉 inM ]) −→ (S,E[M{x, y/V,W}]);
(S,E[(λx.M)V ]) −→ (S,E[M{x/V }]);

(S,E[!r]) −→ (S,E[S(r)]);
(S,E[(r:=V )]) −→ (S{r/V },E[∗]);

(S,E[iter(M,N) succ(t)]) −→ (S,E[N (iter(M,N) t)]);

(S,E[iter(M,N) zero]) −→ (S,E[N ]);

(S,E[ifz(M,N) succ(t)]) −→ (S,E[N t]);

(S,E[ifz(M,N) zero]) −→ (S,E[M ]);

(S,E[if(M,N) tt]) −→ (S,E[M ]);

(S,E[if(M,N) ff ]) −→ (S,E[N ]);

(S,E[fold(M,N) cons(t, s)]) −→ (S,E[M (fold(M,N)s) t]);

(S,E[fold(M,N) nil]) −→ (S,E[N ]);

Fig. 4. Evaluation Rules.

locations map to. From now on, for the sake of simplicity, we consider natural numbers as the only base
type, keeping in mind that all the other base types can be treated similarly. Closures, environments, and
stacks are defined as follows, where M denotes a sequence of terms:

c ::= (M, ξ); ξ ::= ε | ξ · (x 7→ c); π ::= ε | δ · π;
where δ ranges over stack elements:

δ ::= lft(c) | rgt(c) | let(c, x, x) | letlft(c, c, x, x) | letrgt(c, c, x, x)
| fun(c) | arg(c) | succ | sel(c) | iter(c) | ufun(f) | :=(r).

Machine stores are finite, partial maps of locations to value closures, i.e., closures in the form (V, ξ). A
machine store S is said to be conformant with a reference context Θ if the value closure S(r) can be given
type A, where r : A is in Θ. Configurations are triples in the form C = (c, π,S), where c is a closure,
π is a stack and S is a machine store. Machine transitions are of the form C �n D , where n is a natural
number denoting the cost of the transition. This is always defined to be 1, except for function calls, which
are attributed a cost depending on the underlying function setting:

((t, ξ), ufun(f) · π,S) �Cf(|t|) ((Sf(t), ξ), π,S)

The other rules are given in Figure 5. The way we label machine transitions induces a cost model: the
amount of time a program takes when executed is precisely the sum of the costs of the transitions the
machine performs while evaluating it. This can be proved to be invariant, i.e. to correspond to the costs of
ordinary models of computation (TMs, RAMs, etc.), modulo a polynomial overhead.

3 Linear Dependent Types

There is nothing in `T types which allows to induce complexity bounds for the programs; in fact, `T
can express at least all the primitive recursive functions [22]. This is precisely the role played by linear



((letM be 〈x, y〉 in N, ξ), π,S) �1 ((M, ξ), let((N, ξ), x, y) · π,S)
((〈M,N〉, ξ), let(c, x, y) · π,S) �1 ((M, ξ), letlft((N, ξ), c, x, y) · π,S);
((V, ξ), letlft(c, d, x, y) · π,S) �1 (c, letrgt((V, ξ), d, x, y) · π,S);

((V, ξ), letrgt((W, θ), (N, υ), x, y) · π,S) �1 ((N, υ · (x 7→ (W, θ)) · (y 7→ (V, ξ))), π,S);
((MN, ξ), π,S) �1 ((N, ξ), fun(M, ξ) · π,S)

((V, ξ), fun(N, θ) · π,S) �1 ((N, θ), arg(V, ξ) · π,S)
((λx.M, ξ), arg(V, θ) · π,S) �1 ((M, ξ · (x 7→ (V, θ))), π,S);

((succ(M), ξ), π,S) �1 ((M, ξ), succ · π,S);
((t, ξ), succ · π,S) �1 ((succ(t), ξ), π,S);

((iter(M,N), ξ), fun(L, θ) · π,S) �1 ((L, θ), iter(M,N, ξ) · π,S);
((succ(t), θ), iter(M,N, ξ) · π,S) �1 ((t, θ), iter(M,N, ξ) · fun(M, ξ) · π,S);

((zero, θ), iter(M,N, ξ) · π,S) �1 ((N, ξ), π,S);
((f(M), ξ), π,S) �1 ((M, ξ), ufun(f) · π,S);

((t, ξ), ufun(f) · π,S) �Cf(|t|) ((Sf(t), ξ), π,S);
((!r, ξ), π,S) �1 (S(r), π,S);

((r:=M, ξ), π,S) �1 ((M, ξ),:=(r) · π,S);
((V, ξ),:=(r) · π,S) �1 ((∗, ξ), π,S{r/(V, ξ)});

Fig. 5. Transition Rules

dependency [23], whose underlying idea consists in decorating simple types with some information about
the identity of objects that programs manipulate. This takes the form of so-called index terms, following in
spirit Xi’s DML [29]. Differently from [23], what indices keep track of here is the length, rather than the
value, of ground-type objects. The fact that higher-order objects cannot be duplicated, on the other hand,
greatly simplifies the type system.

Given a set IV of index variables, and a set IF of index functions (each with an arity), index terms
over IV and IF are defined as follows I ::= a | f(I, . . . , I), where a ∈ IV and f ∈ IF . Index
functions are interpreted as total functions from (n-uples of) positive natural numbers to positive natural
numbers, by way of an equational program E , which can be specified as, e.g., an orthogonal, terminating,
term rewriting system or a primitive recursive Herbrand-Gödel scheme. We often write |=E I ≤ J , by
which we mean that the semantics E assigns to I is smaller or equal to the semantics E assigns to J , this
for every value of the index variables occurring in either I or J . We will assume that IF contains at least 0
(of arity 0), s (for the successor, of arity 1) and +, · (addition and multiplication, of arity 2, used with infix
notation), with adequate equations in E .

|=E I ≤ J
`E NI v NJ `E unit v unit

`E D v E `E F v G
`E D ⊗ F v E ⊗G

`E E v D `E F v G `E α v β

`E D
α
( F v E

β
( G

`E Υ v Θ `E Ξ v Φ `E Π v Λ
`E Θ ⇒ Ξ v Υ,Π, Ψ ⇒ Φ,Λ

`E D1 v E1, . . . ,`E Dn v En
`E {r1 : D1, . . . , rn : Dn} v {r1 : E1, . . . , rn : En}

Fig. 6. Subtyping Rules

We now define types and effects. Indexed base types U , indexed reference contexts Θ, indexed types D
and indexed effects α are defined, respectively, as follows:

U ::= unit | B | NI | LI(U); Θ ::= {r1 : D1, . . . , rn : Dn};
α ::= Θ ⇒ Θ; D ::= U | D ⊗D | D α

( D.



where I ranges over index terms. The empty effect ∅ ⇒ ∅ is denoted as 0. Given two effects α = Θ ⇒ Ξ
and β = Ξ ⇒ Υ , their composition α;β is Θ ⇒ Υ . An effect Θ ⇒ Ξ is meant to describe how references
are modified by terms: if the store is conformant to Θ before evaluation, it will be conformant to Ξ after
evaluation. So in particular an effect Θ ⇒ ∅ does not provide any information.

If D is an indexed type, [D] is the type obtained from D by: (i) forgetting all the index information
(ii) replacing on arrows

α
( the effect α by the set of locations that appear in it. E.g., if D = NI1

α
( NI2

where α = {r1 : D1, r2 : D2} ⇒ {r1 : D4, r3 : D3}, then [D] = N
{r1,r2,r3}
( N.

Given t ∈ T (T ), we write that |=E t ∈ U iff [U ] = T and the size of t is bounded by the index terms
in U , independently on the values of index variables. Similarly, |=E f ∈ U ( V stands for |=E s ∈ V
whenever |=E t ∈ U and (t, s) ∈ Sf. As an example, any lists t whose three elements are natural numbers
less or equal to 4 is such that |=E t ∈ L7(N4+a).

A subtyping relationv on indexed types and effects is defined in Figure 6. Note that we have `E 0 v α
iff α is of the shape α = Ξ1, Υ, Ξ2 ⇒ Π , where `E Υ v Π . Suppose that r is a reference and that D is an
indexed type. Then ER(r,D) is defined to be just {r : D} ⇒ {r : D} if D is an indexed base type, and
{r : D} ⇒ ∅ otherwise.

Typing contexts and terminology on them are the same as the one we used in the linear type system
(Section 2) where, of course, indexed types plays the role of types. A typing judgement has the form
Γ `E M : D;α. Let us denote α = Θ ⇒ Ξ . The intended meaning of the judgement is that if term
variables are assigned types in Γ , thenM can be typed withD, and if initially the contents of the references
are typed as in Θ, then after evaluation of M the contents of the references can be typed as in Ξ . So while
the former type system of Section 2 only provided information about which references might have been
read during evaluation, this new system will also provide information about how the contents of references
might have been modified, more specifically how the size of the contents might have changed.

Now, the typing rules are given in Figure 7 and Figure 8. A term M is dependently linearly typable if
there exists a derivation of a judgement Γ `E M : D;α. Before analyzing the type system, let us make a

`E D v E `E 0 v α
Γ, x : D `E x : E;α

|=E t ∈ U `E 0 v α
Γ `E t : U ;α

`E 0 v α
Γ `E ∗ : unit;α

|=E f ∈ U ( V Γ `E M : U ;α

Γ `E f(M) : V ;α

Γ `E M : D;α ∆ `E N : E;β

Γ ]∆ `E 〈M,N〉 : D ⊗ E;α;β

Γ `E M : D ⊗ E;α ∆, x : D, y : E `E N : F ;β

Γ ]∆ `E letM be 〈x, y〉 in N : F ;α;β

Γ, x : D `E M : E;α `E 0 v β

Γ `E λx.M : D
α
( E;β

Γ `E M : D
γ
( E;α ∆ `E N : D;β

Γ ]∆ `E MN : E;α;β; γ

`E ER(r,D) v α
Γ `E !r : D;α

Γ `E M : D;Θ ⇒ Ξ, {r : E}
Γ `E r:=M : unit;Θ ⇒ Ξ, {r : D}

Fig. 7. Typing Rules, Part I

few comments:
– As in the linear type system, all rules treat variables of ground types differently than variables of higher-

order types: the former can occur free an arbitrary number of times, while the latter can occur free at
most once. Similarly for references. As a consequence, if a term is dependently linearly typable, then
it is linearly typable.

– We should also take note of the fact that values can all be typed with the 0 effect. This is quite intuitive,
since values are meant to be terms which need not be further evaluated.



|=E I + 1 ≤ J Γ `E M : NI ;α

Γ `E succ(M) : NJ ;α

`Γ `E W : D{a/1};0 `Γ `E V :

(
D

Ξ⇒Ξ{a/a+1}
( D{a/a+ 1}

)
;0

`E 0 v α `E D v E `E E v E{a/a+ 1} `E E{a/I} v F
`E Θ v Ξ{a/1} `E Ξ v Π `E Π v Π{a/a+ 1} `E Π{a/I} v Φ

`Γ `E iter(V,W ) : NI Θ⇒Φ( F ;α

`Γ `E V : D{a/1};0 `Γ `E W :

(
Na

β{a/a+1}
( D{a/a+ 1}

)
;0

`E 0 v α `E D v D{a/a+ 1} `E D{a/I} v E
`E 0 v β{a/1} `E β v β{a/a+ 1} `E β{a/I} v γ

`Γ `E ifz(V,W ) : NI
γ
( E;α

Fig. 8. Typing Rules, Part II

– The rules typing assignments and location references (two bottom rules in Figure 7) show how higher-
order references are treated. While an assignment simply overwrites the type attributed to the assigned
location, a reference is typed with the location effect of the referenced location.

As an example, we can derive for the term M of Sect. 2:

`E M : La+3(Nb+1); r : Nc ⇒ r : Nb+1

As to the terms of Sect.2 for increment, addition and multiplication, we obtain:

`E incrr : unit
r:Na⇒r:Na+1

( unit;0 `E addr,r1 : unit
r:Na,r1:N

b⇒r:Na+b,r1:N
b

( unit;0

`E multr,r1,r2 : unit
α
( unit;0 where

α = (r : Nc, r1 : Na, r2 : Nb)⇒ (r : Na·b, r1 : Na, r2 : Nb)

4 Intensional Soundness

Once a term M has been typed by a derivation π, one can assign a weight W(π) to π (and thus indirectly
to M ) in the form of an index term I . It is meant to estimate the time complexity of M . W(π) is defined
by induction on the structure of π; interesting cases are those for iteration and function:

ρ . Γ `E M : NI ;α

π . Γ `E f(M) : U ;α
W(π) = W(ρ) + Cf(I)

ρ . `Γ `E W : D{a/1};0

σ . `Γ `E V :

(
D

Ξ⇒Ξ{a/a+1}
( D{a/a+ 1}

)
;0

π . `Γ `E iter(V,W ) : NI Θ⇒Φ( F ;α

W(π) = W(ρ) +
∑

1≤a<I W(σ) + I

It is important to note that the definition of W(π) in the case of iter(V,W ) involves a summation, but
W(σ) is computed only once and the summation itself is not evaluated. Other cases are defined in the
standard way, i.e. the weight of a derivation is the weight of the sum of its subderivations plus 1.

The full definition is displayed on Figure 9. Note that the weight W(π) can be easily computed from
π, i.e., in time linear in the size of π.

The weight W(π) of π does not necessarily decrease along reduction as defined in Section 2.4.
The weight of a derivation decreases along machine transition rules, as defined in Section 2. This can

be proved by generalizing d`T to a type system for machine configurations. This extension is in Figure 10.



π . Γ, x : D `E x : E;α W(π) = 1

π . Γ `E t : U ;α W(π) = 0

π . Γ `E ∗ : unit;α W(π) = 1

π .
ρ . Γ `E M : NI ;α

Γ `E f(M) : U ;α
W(π) = W(ρ) + Cf(I)

π .
ρ . Γ `E M : D;α σ . ∆ `E N : E;β

Γ ]∆ `E 〈M,N〉 : D ⊗ E;α;β
W(π) = W(ρ) +W(σ) + 1

π .
ρ . Γ `E M : D ⊗ E;α σ . ∆, x : D, y : E `E N : F ;β

Γ ]∆ `E letM be 〈x, y〉 in N : F ;α;β
W(π) = W(ρ) +W(σ) + 1

π .
ρ . Γ, x : D `E M : E;α `E 0 v β

Γ `E λx.M : D
α
( E;β

W(π) = W(ρ) + 1

π .
ρ . Γ `E M : D

γ
( E;α σ . ∆ `E N : D;β

Γ ]∆ `E MN : E;α;β; γ
W(π) = W(ρ) +W(σ) + 1

π . Γ `E !r : D;α W(π) = 1

π .
ρ . Γ `E M : D;Θ ⇒ Ξ, {r : E}
Γ `E r:=M : unit;Θ ⇒ Ξ, {r : D}

W(π) = 1

π .
Γ `E M : NI ;α

Γ `E succ(M) : NJ ;α
W(π) = W(ρ) + 1

π .

ρ . `Γ `E W : D{a/1};0

σ . `Γ `E V :

(
D

Ξ⇒Ξ{a/a+1}
( D{a/a+ 1}

)
;0

`Γ `E iter(V,W ) : NI Θ⇒Φ( F ;α

W(π) = W(ρ) +
∑

1≤a<I

W(σ) + I

π .

ρ . Γ `E V : D{a/1};0

σ . Γ `E W :

(
Na

β{a/a+1}
( D{a/a+ 1}

)
;0

Γ `E ifz(V,W ) : NI
γ
( E;α

W(π) = W(ρ) +W(σ) + 1

Fig. 9. The Weight of Type Derivations



Closures

π .


ρ . Γ,∆ `E M : D;α

σ. `E ξ : Γ
υ. `E θ : Ω

∆ `E (M, ξ · θ) : D;α

 W(π) = W(ρ) +W(σ)

Environments

π . `E ε : · W(π) = 0

π .
ρ. `E ξ : Γ σ. `E v : D

`E ξ · (x 7→ v) : Γ, x : D
W(π) = W(ρ) +W(σ)

Stacks

π . `E ε : D  D;0 W(π) = 0

π .
ρ. `E π : D  E;α σ . x : F, y : G `E c : D;β

`E let(c, x, y) · π : F ⊗G E;β;α
W(π) = W(ρ) +W(σ) + 1

π .


ρ. `E π : D  E;α

σ . x : F, y : G `E c : D;β
υ. `E d : G; γ

`E letlft(c, d, x, y) · π : F  E;β; γ;α

 W(π) = W(ρ) +W(σ) +W(υ) + 2

π .


ρ. `E π : D  E;α

σ . x : F, y : G `E c : D;β
υ. `E v : F

`E letrgt(c, v, x, y) · π : F  E;β;α

 W(π) = W(ρ) +W(σ) +W(υ) + 1

π .
ρ. `E π : D  E;α σ. `E d : F ;β

`E fun(c) · π : (F
γ
( D) E;β; γ;α

W(π) = W(ρ) +W(σ) + 1

π . ρ. `E π : D  E;α σ. `E v : F
β
( D

`E arg(v) · π : F  E;β; γ;α
W(π) = W(ρ) +W(σ) + 1

π .
ρ. `E π : NI  D;α |=E J ≤ I + 1

`E succ · π : NJ  D;α
W(π) = W(ρ) + 1

π .
ρ. `E π : unit D; {r : E} ∪Θ ⇒ Ξ

σ. `E :=(r) · π : E  D;Θ ⇒ Ξ
W(π) = W(ρ) + 1

Configurations

π .
ρ. `E c : D;α σ. `E π : D  E;β

`E (c, π) : E;α;β
W(π) = W(ρ) +W(σ)

Fig. 10. Typing and Weighting Configurations



Following the same ideas, one can also define the weight W(S) of any conformant store S (also on Fig. 10).
By a careful analysis of the reduction rules, one gets Subject Reduction for configurations:

Lemma 1. If `E (c, π) : U ;Θ ⇒ Ξ , the store S is conformant with Θ, and (c, π,S) �n (d, ρ,R), then
`E (d, ρ) : U ;Υ ⇒ Ξ , the storeR is conformant with Υ , and W(π) +W(S) ≥W(ρ) +W(R) + n.

Proof. One only needs to carefully analyze each of the machine transition rules from Figure 5. Indeed, the
way the type system has been extended to configurations and the way the weight of a type derivation has
been defined make the task easy. ut

As an easy consequence, we obtain intensional soundness.

Theorem 1 (Intensional Soundness). If π. `E M : U ;Θ ⇒ Ξ , the store S is conformant with Θ, and
(M, ε,S) �n C , then n ≤W(π) +W(S).

Proof. This is an induction on n, making essential use of Lemma 1.

So this theorem shows that the weight of a d`T program is indeed a bound on its evaluation time. But how
can we type an `T program so as to obtain a d`T type derivation? This is the subject of the next Section.

5 Type Inference

The type inference procedure is defined quite similarly to the one in [24], where the language at hand,
called d`PCF, is more general than the one described here (apart from effects). As a consequence, we will
only describe the general scheme of the algorithm, together with the most important cases (noticeably,
iteration). For simplification we will also omit the effects, as anyway they don’t present specific difficulties

A tree whose nodes are labelled by typing judgements, but which is not necessarily built according to
our type system is said to be a pseudo-derivation. This is to be contrasted with a proper type derivation.
Similarly, an incomplete set of rewrite rules which, contrarily to proper equational programs, does not
univocally define all the function symbols that occur in them is said to be a pseudo-program.

The type inference algorithm TI takes in input a linearly typable termM , together with a finite sequence
of index variables φ = a1, . . . , an, and returns:

– A pseudo-derivation π with conclusion Γ ` M : D;α where the types in Γ and D match the ones of
M .

– A pseudo-program E .
In other words, TI(MA, φ) = (π, E). The understanding here is that the undefinded function symbols in E
are those which occur in negative positions in the conclusion of π, and the termination of symbols in E is
necessary and sufficient for π to be a correct type derivation (once symbols not defined in E are properly
defined).

The algorithm TI is recursive, and proceeds by pattern matching on its first argument. The way we
define TI, and in particular the fact that the output program is only a pseudo-program and not a proper
equational program, has the consequence of allowing TI to be defineable by recursion.

Before describing the algorithm TI, it is necessary to give some preliminary definitions:
– An index term is said to be primitive iff it is in the form f(φ), where φ is a sequence of index variables.

An index type is primitive iff all index terms occurring in it are primitive. Similarly for typing contexts.
Two primitive index terms, types or contexts are said to be homogeneous iff all terms in them are on
the same sequence of index variables.

– Given two primitive index types D,E such that [D] = [E], the expression cut(D,E) is defined as the
unique equational program satisfying the following equations:

cut(Nf(φ),Ng(ψ)) = {g(ψ)→ f(φ); };
cut(D ⊗ E,F ⊗G) = cut(D,F ) ∪ cut(E,G);

cut(D( E,F ( G) = cut(F,D) ∪ cut(E,G).



– Given a type A and a sequence φ of index variables, fresh(A, φ) stands for the indexed type obtained
by “decorating” A with fresh primitive index terms on φ.

– Suppose that Γ and ∆ are two homogeneous primitive typing contexts that only share variables of
base type (to which they do not necessarily assign the same index term). Then merge(Γ,∆) is the pair
(Ω, E) where Ω, E are the smallest objects satisfying the following conditions:
– All type assignments from either Γ or ∆ (but not both), are in Ω;
– For all variables to which both Γ and ∆ assign types, say Nf(φ) and Ng(φ), the typing context Ω

contains x : Nj(φ) and E contains {f(φ)→ j(φ), g(φ)→ j(φ)}.
– Suppose that D,E, F are indexed types such that [D] = [E] = [F ]. Moreover, suppose that f is an

index function, and that p ∈ {+,−} is a polarity, then

itercutp(D,E, F, f) = (E , G,H)

where the following equations hold:

itercut+((N
g(φ,a,b),Nj(φ,a,b),Nh(φ,b), f)) = (E ,Nk(φ,b),Np(φ))

where E is
{g(φ, a, b+ 1)→ j(φ, a+ 1, b);

g(φ, a, 0)→ h(φ, a);

k(φ, b+ 1)→ j(φ, 0, b);

k(φ, 0)→ h(φ, a);

p(φ)→ max
c≤f(φ)

k(φ, c)}

itercut−((N
g(φ,a,b),Nj(φ,a,b),Nh(φ,b), f)) = (E ,Nk(φ,b),Np(φ))

where E is
{j(φ, a+ 1, b)→ g(φ, a, b+ 1);

j(φ, 0, b)→ h(φ, b);

h(φ, b+ 1)→ j(φ, 0, b);

h(φ, 0)→ k(φ, 0);

k(φ, b)→ p(φ); }
itercutp(DL ⊗DR, EL ⊗ ER, FL ⊗ FR, f) = (EL ∪ ER, GL ⊗GR, HL ⊗HR)

where
itercutp((DL, EL, FL, f)) = (EL, GL, HL)

itercutp((DR, ER, FR, f)) = (ER, GR, HR)

itercutp(DL( DR, EL( ER, FL( FR, f) = (EL ∪ ER, GL( GR, HL( HR)

where
itercut¬p((DL, EL, FL, f)) = (EL, GL, HL)

itercutp((DR, ER, FR, f)) = (ER, GR, HR)

Finally, we are now able to formally define the algorithm TI. It is given in Figure 11. What TI produces in
output, however, is not a type derivation but a pseudo-derivation: E does not give meaning to all function
symbols, and in particular not to the symbols occurring in negative position. Getting a proper type deriva-
tion, then, requires giving meaning to those symbols. This is the purpose of the algorithm CTI which, given
in input a term M , proceeds as follows:

– It calls TI(M,φ), where the variables in φ are in bijective correspondence to the negative occurrences
of base types in M .

– Once obtained (π, E) in output, it complements E with equations in the form fi(φ) = ai where ai is
the variable corresponding to fi.

– In the conclusion of π, replace fi(φ) by just ai.



TI(xA, φ) =
(
x : D `E x : E , cut(D,E)

)
where D = fresh(A, φ) ∧ E = fresh(A, φ);

TI(tN, φ) =
(
`E t : Nf(φ) , {f(φ)→ |t|}

)
where f is fresh;

TI(MA(BNA, φ) =

(
π . Γ `E M : D( E sty(ρ) . ∆ `E N : D

Ω `E MN : E
, E ∪ F ∪ G ∪H

)
where

TI(MA(B , φ) = (π, E) ∧ TI(NA, φ) = (ρ . ∆ `E N : F,F)∧
cut(D,F ) = G ∧ merge(Γ,∆) = (Ω,H).

TI(〈MA, NB〉, φ) =

(
π . Γ `E M : D ρ . ∆ `E N : E

Ω `E 〈M,N〉 : D ⊗ E
, E ∪ F ∪ G

)
where

TI(MA(B , φ) = (π, E) ∧ TI(NA, φ) = (ρ,F)∧
merge(Γ,∆) = (Ω,H).

TI(λxA.MB , φ) =

(
ρ . Γ, x : D `E M : E

Γ `E λx.M : D( E
, E ∪ F

)
where

TI(MA, φ) = (π, E) ∧ weak(π, x) = (ρ,F).

TI(letMA⊗B
be 〈x, y〉 in NC , φ) =

 π . Γ `E M : D ⊗ E
σ . ∆, x : F, y : G `E N : H

Ω `E 〈M,N〉 : D ⊗ E
, E ∪ F ∪ G ∪H ∪ J ∪ K


where

TI(MA⊗B , φ) = (π, E) ∧ TI(NC , φ) = (ρ,F)∧
weak(ρ, x, y) = (σ,G) ∧ cut(D,F ) = H∧
cut(E,G) = J ∧ merge(Γ,∆) = (Ω,H).

Fig. 11. The Type Inference Algorithm.



Soundness and Completeness. The way the type-inference algorithm CTI is defined makes its output cor-
rect mostly by definition.

Theorem 2 (Soundness). If CTI(M) = (π, E), then E is completely specified and π is a correct type
derivation, i.e., all proof obligations in π are true in E .

Proof. First of all, one can prove, by induction on M , that any completion of the equational program
obtained from TI(M,φ) turns the obtained pseudo-derivation into a correct type derivation. Then, one can
observe that CTI simply completes TI in the obvious way. ut

Since the CTI algorithm, contrarily to what happens traditionally in the context of type-inference, never
fails when fed with terms which can be linearly typed as from Section 2, it means that it is also complete
by design:

Theorem 3 (Completeness). The algorithm CTI is total.

5.1 Termination

We now prove that the equational program E produced in output by type inference (i.e. CTI(M) = (π, E))
is indeed terminating. Importantly, this cannot be proved directly, i.e. by induction onM , merely following
the way TI is defined. Indeed, a reducibility-like argument is needed, which goes as follows: given an
equational program E and an assignment ρ of natural numbers to some free index variables, we write
E , ρ |= D if for the value of variables as in ρ, E is reducible in D, where reducible is a concept defined by
induction on D. As an example, if D is just NI , then I is given a meaning by the equational program E
when the variables occurring free in I are given values according to ρ. Then, as usual, one proves that all
equational programs output by TI are reducible, but for all assignments ρ.

Theorem 4 (Termination). If CTI(M) = (π, E), then E is terminating.

Proof. The proof is structured as follows:
– On the one hand, one needs to prove that any equational program E that TI(M,φ) produces in output

is indeed reducible for every assignment ρ over φ. This property can indeed be proved by induction on
the structure of M .

– On the other hand, one also proves that all reducible programs, when completed like in CTI, are termi-
nating.

6 Application to Cryptographic Proofs

This section presents an application of d`T to cryptographic proofs. Typically, such proofs reduce the secu-
rity of a cryptographic construction to computational assumption(s), and consist of three steps. The first step
is the definition of an algorithm B, hereby called the constructed adversary, that breaks the computational
assumption(s), using as a subroutine the adversary A against the cryptographic construction. The second
step exhibits and formally justifies upper bounds on the winning probability of the constructed adversary
B, as an expression of the winning probability of the adversary A against the cryptographic construction.
This step can be carried out formally using tools such as e.g. CryptoVerif [11] or EasyCrypt [9]. Finally,
the third step formally justifies upper bounds for the execution time of the constructed adversary B as a
function of the execution time of the adversary A. We use d`T for the third step.

We consider two examples. Our first example deals with padding-based encryption schemes, i.e. public
key encryption schemes built from a one-way trapdoor permutation f and one or several hash functions,
modelled as random oracles. The constructed adversaries for such schemes are relatively easy to analyze,
as they typically search in the lists of adversarial calls to the random oracles for values that satisfy some
predicate. Our second example deals with hardcore predicates; such predicates characterize the information
leaked by a one-way function. We consider the constructed adversary from the Goldreich-Levin theorem,
which shows the existence of hardcore predicates for a class of one-way functions. This example is partic-
ularly challenging, because some of the intermediate computations are not polytime w.r.t. the size of their
inputs.



Notation In d`T we will freely use the combinators map and fold and map2 on lists. Combinators map
and fold are defined in the usual way, whereas map2 f l l

′ returns the list (f a1 a′1, . . . , f an a
′
n) where

n = min(|l|, |l′|) and | · | denotes the length operator. Moreover, we let app denote concatenation of lists,
and ∗k denote the list that repeats k times the constant ∗.

Furthermore, we model bits and bitstrings as booleans and lists of booleans, respectively. In order to
increase readability, we often use {0, 1} as a synonym for B and {0, 1}k to denote the set of bitstrings
of length k. Moreover, we use standard notations for bitstrings: we let ⊕ and ⊗ respectively denote the
exclusive or operator and multiplication operators (both of type {0, 1} → {0, 1} → {0, 1}), and 0k denote
the 0-bitstring of length k. Using operators on maps, one can define exclusive or on bitstrings, and scalar
multiplication of a bitstring by a bit. Moreover, we assume given a probabilistic operator flip : unit →
{0, 1} that samples a bit uniformly at random. Again using standard operators on maps, one can define an
operator flipk : unitk → {0, 1}k.

Finally, we can define an operator pow0 which takes as input a natural number k and outputs the list of
non-empty subsets of {1, . . . , k}—we model each subset as a list of bitstrings of length k.

6.1 Padding-based Encryption

The BR93 encryption scheme [10] is an example of a public-key encryption scheme built from a one-way
trapdoor permutation (K, f, f−1) and a random oracle H . A one-way trapdoor permutation is given by a
triple of algorithms (K, fpk, f−1sk ) consisting of an algorithm K that generates valid key pairs (sk, pk) and
of two indexed families of functions fpk, f

−1
sk : {0, 1}` → {0, 1}` such that for every pair of keys (sk, pk)

generated by K, the functions fpk and f−1sk are mutually inverse. The informal requirement for a one-way
trapdoor permutation is that fpk and f−1sk can be computed efficiently by parties that have knowledge of
the keys (in the first case, pk is assumed to be public and hence can be computed by all parties), but
f−1sk is infeasible to compute without knowledge of the key. Formally, the security of one-way trapdoor
permutation is measured by the probability ε that an inverter executing in time t can invert fpk on a randomly
sampled value from its input domain. A random oracle is a stateful procedure H that lazily computes a
random function: it takes as input a bitstring of size ` and returns as output a uniformly distributed bitstring
of size k, and maintains a table to return the same value when queried twice on the same input. The
encryption algorithm proceeds as follows: it first samples a bitstring r of length ` and computes fpk(r) and
h(r); finally, it masks the message m (a bitstring of length k) by xoring it with h(r) and concatenates the
resulting bitstring to fpk(r). The BR93 encryption scheme achieves indistinguishability against chosen-
plaintext attacks, or IND-CPA security for short, assuming that the hash function is modelled as a random
oracle, i.e. a stateful function that samples a uniformly distributed value on the output space when given a
fresh input—and returns consistent results in case of repeated inputs. Informally, IND-CPA security states
that an adversary has negligible probability to distinguish between two encrypted messages for plaintexts
of its choice.

In an asymptotic setting, the IND-CPA security of BR93 is captured by the following statement: for
every adversary A with a non-negligible advantage of guessing the bit b (the advantage of guessing is the
probability of guessing minus 1

2 ), there exists an inverter I with a non-negligible probability of inverting f
on a random input. In a concrete setting, the statement states that the advantage of the IND-CPA adversary
is upper bounded by the probability of I inverting f, and that the execution time of I is upper bounded by
tA + qH · Tf , where tA denotes the execution time of A, qH is the maximal number of adversarial queries
to the random oracleH, and Tf is an upper bound on the time to compute fpk on an input. In the remainder
of this paragraph, we define the inverter I and provide an informal analysis of its execution time.

Given as input a bitstring y of length `, the inverter I outputs another bistring x of length ` as fol-
lows:
1. the key generation algorithm is invoked to generate a valid pair of keys (sk, pk);
2. the first adversary A1 is invoked with pk, and returns a pair of messages (m0,m1);
3. it samples uniformly at random a bistring s of length k;
4. the second adversary A2 is invoked with input y ‖ s, and obtains in return a bit b;
5. it traverses the list of adversarial queries to the random oracle H, and tests for each input z whether it

satisfies the equality fpk(z) = y; if such a z is found, then it returns its value, else it returns a uniformly
sampled bitstring.



The formal definition of the inverter I is given in Figure 12. Here rL is the reference to the list of adversarial
queries to the random oracle. We use a function equal for testing equality of bitstrings. The complexity
of I can be derived readily from the complexity of each individual step. The key step here is the last, in
which the adversary does a list traversal. Loosely speaking, the cost of the traversal is the length of the list,
which is upper bounded by the maximal number qH of allowed adversarial queries to the random oracle,
and by the cost of the test, which is upper bounded by the time Tf to compute fpk on an input. Overall, the
execution time tI of I verifies tI ∼ tA+ qH ·Tf , where tA denotes the execution time of the adversaryA.

λy. argument of the inverter
let 〈sk, pk〉 = K(∗) in generation of the keys
let 〈m0,m1〉 = A1(pk) in A1 returns pair of messages
let s = map (flip) ∗k in sampling bitstring of length k
let b = A2(app y s) in A2 returns bit b
let 〈flag, x〉 = fold (step, 〈ff, 0`〉) !rL in traversal of list !rL
if flag then x else map (flip) ∗` return result

where :
step = λz.λ〈flag, temp〉.if flag then 〈tt, temp〉 else function for traversal, with

if equal(f(pk, z), y) then 〈tt, z〉 else 〈flag, temp〉 equality test updating flag

Fig. 12. Inverter for BR93

Discussion The BR93 encryption scheme is the simplest instance of so-called padding-based encryption
schemes, which include widely used schemes like OAEP. Many of these schemes either achieve chosen-
plaintext security or the stronger notion of chosen-ciphertext security, in which the adversary has access
to a decryption oracle; however, security is sometimes achieved at the cost of a stronger assumption on
the one-way function, such as partial-domain one-wayness. Irrespective of the security property and of the
assumption, the constructed inverter will traverse multiple lists of adversarial queries to oracles, testing for
each possible tuple of elements from the lists whether it satisfies some appropriate test. The cost of such
trasversals is upper bounded by (

∏
i∈I qi) · t, where qi is the maximal length of the different lists traversed,

and t is an upper bound for the cost of the test. In some cases, the inverter tests lists sequentially, in which
case the cost is upper bounded by (

∏
i∈I qi · ti), where ti is an upper bound for the cost of each test.

6.2 Hardcore Predicates for One-Way Functions

Recall that a one-way function is a function that is easy to compute but hard to invert. Although it seemingly
contradicts the definition, one-way functions can also leak information about their inputs. Thus, a natural
question is to characterize the amount of information that one-way functions hide from their inputs. This
hiding property is captured by the notion of hardcore predicate; informally, a predicate p is a hardcore
predicate for a function f if p can be computed efficiently and an efficient adversary with access to f x
has a small probability to guess correctly whether p x holds, where the value x is sampled uniformly over
the domain of f. The existence of a hardcore predicate for every one-way function is a long-standing open
problem in cryptography. However, the celebrated Goldreich-Levin theorem proves that for every one-way
function f over bitstrings of length n, there exists a hardcore predicate p for the one-way function g over
bitstrings of length 2n, where g is defined by the clause g(app x y) = app (f x) y, and p is defined by the
clause:

p(app x y) =
n⊕
i=1

xi ⊗ yi

where xi denotes the i-th bit of x and we recall that app is the concatenation of strings.
The theorem is proved by showing that for every adversary A with a non-negligible probability of

guessing the value of the hardcore predicate on a randomly chosen value x, there exists a probabilistic



polytime inverter I with a non-negligible probability of guessing the pre-image of f on a randomly sampled
value x. Informally, the inverter is given as input a bitstring y of length n, and outputs a bitstring x of length
n as follows:
1. it sets ` to dlog(n+ 1)e;
2. it defines zerobut as the function that takes as inputs a natural number i and a bitstring w of length n

and returns the bitstring z such that zj = 0 for j 6= i and zi = wi (note that z also has length n);
3. it samples uniformly at random ` bitstrings z1 . . . z` of length n, and ` bits r1 . . . r`;
4. for every non-empty subset X of {1 . . . `}, it computes the bitstrings zX and the bit rX , respectively as⊕

i∈X zi and ⊕i∈Xri;
5. for every non-empty subset X of {1 . . . `} and for every i ∈ {1 . . . n}, it computes the bit xXi =
rX ⊕ A(app y (zerobut i zX)), and sets xi = majority(xXi ), where X is drawn from the set of
non-empty subsets of {1 . . . `}.

The formal definition of the inverter I in `T is given in Figure 13. It uses two functions, both defined
recursively in the expected way: the majority function majority : L({0, 1}) → {0, 1} which returns the
most frequent bit from a list, and the function zerobut : N→ L({0, 1})→ L({0, 1}) which takes as input
a natural number n and a list l and zeroes all elements of l but the nth one.

We refer to e.g. [21, §6.3] for a proof of the validity of the reduction, and focus on analyzing the
complexity of the inverter I. Let us first carry an informal analysis. For each function zerobut(i, ·), the
inverter invokes the adversary 2` − 1 times, since the lists RP and ZP both have length 2` − 1. So the
inverter calls the adversary n · (2` − 1) times, i.e. tI ∼ n2 · tA. Hence I executes in polytime, assuming
that A does. This example is particularly interesting because it is not hereditarily polytime: the function
pow0 has an output of exponential size (and so is not polytime), but in the program I it is applied only to
a small input (`, of logarithmic size). It does not use references, but it illustrates how higher-order can be
used to write concise code.

λy. argument of the inverter
let ` = dlog(n+ 1)e in defines `
let P = pow0 ` in enumerates all non-empty subsets of {1, . . . , `}
let R = map (flip) ∗` in samples uniformly at random (r1, . . . , r`)

let Z = map (λ . map (flip) ∗n) ∗` in samples uniformly at random (z1, . . . , z`)
let RP = map (gr) P in computes the list (rX)X∈P
let ZP = map (gz) P in computes the list (zX)X∈P
map (G)(1, . . . , n)

where :⊗
= λx.map (⊗ x)⊕
= map2 (⊕)

gr = λX.fold (⊕, 0) (map2(⊗)X R)
gz = λX.fold (

⊕
, 0n) (map2 (

⊗
)X Z)

G = λi. majority (map2 (λr z. ⊕ r (A (app y (zerobut i z)))) RP ZP )

Fig. 13. Inverter I against hardcore predicate, with helper functions

Now let us sketch how we can type the inverter I. We need for that to extend IF with two new function
symbols log, e with the following equations in E :

log(1)→ 0, log(2 · a)→ s log(a), e(0)→ 1, e(sa)→ 2 · e(a).
As examples of types for subterms we obtain, where J = log(sn):

pow0 : Na( Le(a)(La(B)), P : Le(J)(LJ(B)), gr : L
J(B)( B

Finally the inverter I can be given a type derivation π of conclusion Ln(B) ( Ln(B). If we denote
as g the index function representing the time complexity of the adversary A, we obtain as weight for the
derivation: W(π) = O(n2g(1 + 2n) + n2 log(n+ 1)). As we can assume that log(n+ 1) is dominated by
g(1 + 2n), we finally obtain W(π) = O(n2g(1 + 2n)). By Theorem 1 this yields a bound for the running
time of I, so this result confirms the informal analysis carried out above.



7 Examples, Revisited

We now illustrate the use of d`T by typing the examples of Sect. 6. We consider that IF contains at least
0, a successor function s and binary functions + (addition) and · (multiplication), for which we will use an
infix notation. We write 1 for s(0). We will extend the set IF when needed.

Consider the BR93 inverter of Fig. 12. We will use an index function f of arity 2 (resp. g1, g2 of arity
1) for representing the computation time of the function f (resp. adversaries A1, A2). Here are some types
we can assign to intermediate terms of the program:

y : N`

K(∗) : Lm(B)⊗ Lm(B)

A1 : Lm(B)(

Ln(B)⊗ Ln(B)

map (flip) ∗k : Lk(B)

A2(app y s) : B

step : L`(B)(

B⊗ L`(B)( B⊗ L`(B)

!rL : Lp(L`(B))

fold (step, 〈ff, 0`〉) : Lp(L`(B))( B⊗ L`(B)

This leads to a type derivation π of conclusion L`(B)( L`(B). Observe on Fig. 9 that the only case where
W(ρ) actually depends on the typing information and not just on the term is the case of the iter(V,W )
(and similarly fold(V,W )) construction. By abuse of notation we will denote by W(M) the weight W(ρ)
of the subderivation ρ of π typing the term M . We can compute the following weights:

W(A1(pk)) = g1(m)

W(map (flip) ∗k) = 3k

W(A2(app y s)) = g2(k + l)

W(equal(f(pk, z), y) ) = f(m, `) + `

W(step) = cst+ f(m, `) + ` where

cst is a constant

W(fold (step, 〈ff, 0`〉)) = W(〈ff, 0`〉) + pW(step) + p

= cst+ `+ p · f(m, `) + p`+ p

W(map (flip) ∗`) = 3`

So we obtain W(π) = cst + g1(m) + 3k + g2(k + `) + ` + pf(m, `) + p` + p + 3`, where we
recall that ` is the length of the input bitstring, k is the length of the bistring sampled and p is the length
of the list rL of adversarial queries to the random oracle. So if we consider as parameters k and ` we get
W(π) = O(g2(k+ `)+ pf(m, `)+ (p+3)`). By Theorem 1 this gives us a complexity time bound on the
execution of this program on the abstract machine.

Let us now examine the program of Fig. 13. We use an index function f for the computation time of
the adversary A and extend IF with two new function symbols log, e and the following equations in E :

log(1)→ 0, log(2 · a)→ s log(a),
e(0)→ 1, e(sa)→ 2 · e(a)



We can assign the following types, where we use J = log(n+ 1):

` : NJ

pow0 : Na ( Le(a)(La(B))

P : Le(J)(LJ(B))

zerobut : Nn ( Ln(B)( Ln(B)

R : LJ(B)

Z : LJ(Ln(B))

map2 (⊗)X R : LJ(B)

gr : LJ(B)( B⊗
: B( Ln(B)( Ln(B)⊕
: Ln(B)(

Ln(B)( Ln(B)

map2 (
⊗

)X Z : LJ(Ln(B))

gz : LJ(B)( Ln(B)

RP : Le(J)(B)

ZP : Le(J)(Ln(B))

M = λr z. ⊕ r (A (app y (zerobut i z))))

: B( Ln(B))( B

map2 (M) : Ln(B)(

Ln(Ln(B))( Ln(B)

majority : Ln(B)( B

G : Nn ( B

map (G)(1, . . . , n) : Ln(B)

Call π the corresponding type derivation for the inverter I. We want to bound W(π). To improve readability
we will carry the following computations up to additive and multiplicative constants. So all statements of
the form W(M) = I will actually stand for W(M) = O(I).

Assume we know the following weights for helper functions:

W(dlog(n+ 1)e) = log(sn)

W(pow0) = e(a)

W(zerobut) = n

W(majority) = n

W(appM N) = W(M) + n, if N is

a list of type Ln(B)

W((1, . . . , n)) = n

Then we obtain the following weights for intermediary derivations (where J = log(n+ 1)):



W(P) = e(J)

W(map (flip) ∗`) = J

W(Z) = J + nJ

W(map2 (⊗)X R) = J

W(gr) = J

W(map2(
⊗

)X Z) = nJ

W(gz) = nJ

W(RP ) = nJ

W(ZP ) = n2J

W(M) = f(1 + 2n)

W(map2 (M)) = nf(1 + 2n)

W(G) = nf(1 + 2n)

W(map (G)(1, . . . , n)) = n2f(1 + 2n)

Finally we get W(π) = O(n2f(1 + 2n) + n2 log(n + 1)), and as we can assume that log(n + 1) is
dominated by f(1 + 2n), W(π) = O(n2f(1 + 2n)). By Theorem 1 we thus get a time complexity bound
for this inverter on the abstract machine, and we can observe that this bound is consistent with our informal
complexity analysis of sect. 6.2.

8 Related Work

In this section, we review existing works on complexity analysis, and existing tools for computer-aided
cryptography. For the latter, we mostly concentrate on aspects that are relevant to analyzing the complexity
of constructed adversaries.

8.1 Complexity Analysis

There exist many verification techniques for analysing the complexity of programs. What is specific about
our proposal is the presence of both higher-order functions and imperative features, which allows a reason-
able degree of flexibility, coupled with a nice way to accomodate probabilistic effects and oracles.

Type Systems. To our best knowledge, none of the (many) type systems characterizing polytime from
the literature (e.g. [25, 18, 2, 17]) are able to capture non-hereditarily polytime programs. Technically, our
type system can be seen as a variation and a simplification of linear dependent types [23, 24]. The main
novelty is the presence of effects, which allow to deal with imperative features. Duplication of higher-order
values is restricted, and this renders the type system simpler. Subrecursivity, in turn, enforces termination
of equational programs obtained through type inference. All these aspects were simply missing in previous
works on linear dependent types. Other related works are [12, 14], which however only deal with linear
bounds or with first-order definitions.

Static Analysis. Among the static analysis methodologies for complexity analysis, those based on abstract
interpretation [1, 15] deserve to be cited. These can be very effective on imperative programs, but are not
able to handle higher-order features. It is moreover not clear whether relatively complicated examples like
the ones we presented here could be handled. This is even more evident in, e.g., matrix-based calculi for
imperative programs [19].



8.2 Computer-aided Cryptography.

Most tools for computer-aided cryptography adhere to the code-based game-playing approach. In this ap-
proach, cryptographic reductions are decomposed into a series of “hops”, in which intermediate programs
are introduced and related to their adjacent programs in the sequence of hops. There are two points worth
noting about game-based proofs. First, constructed adversaries may be described explicitly or implicitly; of
course, our method only applies to proofs in which the constructed adversary is explicitly described. Sec-
ond, game-based proofs involve many constructed adversaries, typically one for each intermediate game in
the proof. In order to measure the strength of the reduction, it is sufficient to analyze the complexity of the
final constructed adversary, and there is no need to compare the complexity of adversaries in two adjacent
games; more technically, we do not need to carry relational reasoning about complexity.

CryptoVerif The earliest tool to support computer-aided cryptographic proof is CryptoVerif [11], which
can be used automatically or interactively for reasoning about the security of cryptographic constructions
written in a probabilistic process calculus. In order to prove relational properties between two processes,
CryptoVerif uses an approximate notion of probabilistic equivalence and a set of transformations that
preserve (up to some approximation factor) the semantics of processes. CryptoVerif does not explicitly
provide the constructed adversary.

EasyCrypt and CertiCrypt EasyCrypt [9] is an interactive framework which allows to reason about prob-
abilistic imperative programs with adversarial code, using a combination of probabilistic Hoare logic and
probablistic relational Hoare logic. EasyCrypt explicitly provides the constructed adversary, but its com-
plexity analysis has to be performed by hand. Its predecessor CertiCrypt [8] formalizes an instrumented
semantics that tracks the execution time of probabilistic program, and allows users to reason about the
complexity of programs directly at the level of the instrumented operational semantics. Such reasoning is
naturally cumbersome.

CIL Computational Indistinguishability Logic (CIL) [4] is a general framework to reason about crypto-
graphic reductions. Contrary to other tools, cryptographic constructions in CIL are written in the usual style
of mathematics, making it impossible to carry a type-based complexity analysis. Instead, CIL carries an
implicit complexity analysis in its judgments.

FCF Foundational Cryptographic Framework (FCF) [27] is a machine-checked framework for proving
the security of cryptographic constructions. Probabilistic computations are modelled in FCF using an em-
bedded domain-specific language. FCF does not use an instrumented semantics to model the cost of com-
putations; instead, the cost of computations is axiomatized. FCF provides an explicit characterization of
the constructed adversary, and hence its complexity can be analyzed using this axiomatization. It may be
possible to apply some of our techniques to FCF, using computational reflection as a bridge between our
type system and the shallow embedding used by FCF.

Higher-order languages F* [28] is a refinement type system for a stateful, higher-order λ-calculus with
a call-by-value strategy. F* has been used to verify implementations of cryptographic protocols and secu-
rity of JavaScript implementations. F* cannot model cryptographic reductions faithfully, because it lacks
support for relational reasoning. However, several works have considered extensions or variants of F* with
relational refinement types; in particular, RF* [6] is a relational refinement type system for a probabilistic
extension of F*; it has been used to verify simple examples of reductions. HoaRe2 [7] is a more general
system of relational refinements for a probabilistic higher-order language; it features refinements at higher
types and a polymonad for approximate relational properties of probabilistic computations, and can be used
to reason about cryptographic reductions—as well as for differential privacy, and mechanism design. None
of these tools offer direct support to reason about the complexity of computations.

9 Conclusion

We have introduced an expressive type and effect system d`T that can be used for analyzing the complexity
of many cryptographic reductions automatically. A natural step for future work is to implement d`T and



integrate it in a system for computer-aided cryptography, such as F*/RF* or a similar system such as
HoaRe2. Since the expressions of d`T can be construed as a sublanguage of these systems, which support
full recursion, it would be sufficient that the constructed adversary in game-based proofs is written in d`T.
It should also be possible to adapt the type system to other settings and implement it on top of systems like
EasyCrypt.

Another direction for future work is to develop automated approaches to reason about expected com-
plexity of programs. Several noteworthy reductions in cryptography are based on constructed adversaries
that execute in expected, rather than strict, probabilistic polynomial time; the main challenge here is not
only to come up with a type system for expected complexity, but also a definitional one; see [13] for a
recent account of the subtleties with existing definitions.

More generally, there are numerous opportunities to connect formalisms used for computer-aided cryp-
tography and formal systems for analyzing the complexity of programs. One important direction fur future
work is to certify the complexity of attacks. These attacks are generally quite intricate and therefore an-
alyzing their complexity is difficult and error-prone, making formal verification an appealing approach to
guarantee that the published bounds are indeed correct. Moreover, many of these attacks are infeasible, in
which case the sole measure of their strength is an upper bound on their complexity. One very ambitious
goal would be to verify formally the complexity of recent algorithms for computing the discrete logarithm
[20, 3].

In a different line of work, it would be interesting to apply d`T for verifying other examples from
algorithmic game theory and mechanism design [26], whose formal verification is performed in systems
that are closely related to the ones used for computer-aided cryptography.
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