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Safety Controller Synthesis for Incrementally Stable
Switched Systems using Multiscale Symbolic Models

Antoine Girard, Gregor Gössler and Sebti Mouelhi

Abstract—We propose an approach to the synthesis of safety controllers
for a class of switched systems, based on the use of multiscale symbolic
models that describe transitions of various durations and whose sets
of states are given by a sequence of embedded lattices approximating
the state-space, the finer lattices being accessible only by transitions
of shorter duration. We prove that these multiscale symbolic models
are approximately bisimilar to the original switched system provided it
enjoys an incremental stability property attested by the existence of a
common Lyapunov function or of multiple Lyapunov functions with a
minimal dwell-time. Then, for specifications given by a safety automaton,
we present a controller synthesis algorithm that exploits the specificities
of multiscale symbolic models. We formalize the notion of maximal lazy
safety controller which gives priority to transitions of longer durations;
the shorter transitions and thus the finer scales of the symbolic model are
effectively explored only when safety cannot be ensured at the coarser
level and fast switching is needed. We propose a synthesis algorithm where
symbolic models can be computed on the fly, this allows us to keep the
number of symbolic states as low as possible. We provide computational
evidence that shows drastic improvements of the complexity of controller
synthesis using multiscale symbolic models instead of uniform ones.

I. INTRODUCTION

Symbolic control approaches, based on the use of discrete abstrac-
tions, have become quite popular in the area of hybrid systems (see
e.g. [18] and the references therein). In symbolic control, continuous
behaviors are abstracted over a finite set of symbols, each symbol
representing infinitely many states. The main advantage of these
approaches is that they offer the possibility to leverage controller
synthesis techniques developed in the area of discrete-event dynamic
systems (see e.g. [8]). Also, these approaches allow one to address
specifications that are often different from traditional properties in
control theory (e.g. stability, controllability, observability...): such
specifications can for instance be given by some logic formula or
by an automaton describing the acceptable temporal behaviors of the
system.

A recent trend in symbolic control is to use discrete abstractions,
also called symbolic models, that are related to the original system
by some approximate equivalence relationship such as approximate
bisimulation [9]. It has been shown that such abstractions are com-
putable for several classes of control systems including incrementally
stable switched systems [10], nonlinear systems with or without
disturbances [14], [16], [20], time delay systems [15], networked
control systems [5] and stochastic systems [22]. These approaches are
based on sampling of time and space where the sampling parameters
must satisfy some relation in order to obtain abstractions of a
prescribed precision. Particularly, the faster the time sampling, the
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finer the lattice approximating the state-space has to be, resulting in
symbolic models with a large number of states.

In this paper, we present a class of multiscale symbolic models
for incrementally stable switched systems that allows us to deal
with fast time sampling while keeping the number of symbolic
states at a reasonable level. Following the self-triggered control
paradigm [21], [2], we assume that the controller has to decide the
control mode and the duration during which it will be applied. Then,
it is natural to consider discrete abstractions where transitions have
various durations. For transitions of longer duration, it is sufficient to
consider abstract states on a coarse lattice. For transitions of shorter
duration, it becomes necessary to use finer lattices. These finer lattices
are effectively used only on a restricted area of the state-space where
fast time sampling is needed. We prove that these multiscale symbolic
models are approximately bisimilar to the original incrementally
stable switched system under the existence of a common Lyapunov
function or of multiple Lyapunov functions with a minimal dwell-
time. Moreover, we show that any precision can be achieved. The
concept of approximately bisimilar multiscale abstractions has also
been explored in [19] where the multiscale feature is used for
accommodating locally the precision of the abstraction while the
time sampling period remains constant. On the contrary, our approach
seeks for a uniform precision but varying time sampling periods.

In the second part of the paper, we propose to use these mul-
tiscale symbolic models for the synthesis of safety controllers for
switched systems. For specifications given by safety automata, we
introduce the notion of maximal lazy safety controller which exploits
the specificities of multiscale symbolic models: it gives priority to
transitions of longer durations; the faster transitions and thus the
finer scales of the symbolic models are effectively explored only
when safety cannot be ensured at the coarser level and fast switching
is needed. We present an algorithm computing symbolic models
on the fly during controller synthesis, and therefore dynamics at
the finest scales are explored only when necessary. We provide
experimental results, obtained by the toolbox CoSyMA [12] that
show drastic improvements of the complexity of controller synthesis
using multiscale models instead of uniform ones defined in [10].
Symbolic controller synthesis algorithms using on the fly computation
of uniform symbolic models have also been considered in [13], for
specifications described by a target deterministic transition system
approximately simulating the observed behavior of the controlled
system.

The results presented in this paper appeared partially and in a
preliminary formulation in the conference papers [7], [6], [12]. We
provide in the following a coherent and improved presentation of the
main results of these papers with the following extensions. Firstly, the
output of the symbolic models are continuous-time functions instead
of sequences of states. While technically simple, this extension
allows us to address specifications on continuous-time signals and to
consider transitions of long duration without overlooking the behavior
of the system between two samples; as far as we know, this is
the first work on approximately bisimilar abstractions offering this
possibility. Secondly, we address the case of switched systems with
multiple Lyapunov functions and dwell-time when we previously
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focused on the case of systems with common Lyapunov functions.
Thirdly, instead of considering only simple safety specifications (i.e.
keep the state of the system within a safe set), we extend our approach
to handle more complex properties given by safety specification
automata. Finally, we present improved experimental results.

Notations: N and Z denote the sets of nonnegative integers
and of integers, respectively. R, R+

0 and R+ denote the sets of real,
of non-negative real and of positive real numbers, respectively. For
x ∈ Rn, x[i] denotes its i-th coordinate, i = 1, . . . , n; ‖x‖ =√∑n

i=1 x[i]2 denotes the Euclidean norm of x. Let I = [a, b] be a
compact interval of R with a < b, we say that f is continuous on I , if
it is continuous on (a, b), right-continous at a and left-continuous at
b. The set of continuous functions from I to Rn is denoted C(I,Rn).
For f ∈ C(I,Rn), we define ‖f‖ = sups∈I ‖f(s)‖. Given a function
f : R+

0 → Rn, and τ ∈ R+, we denote by f |τ the restriction of f
to the interval [0, τ ]. A continuous function γ : R+

0 → R+
0 is said to

belong to classK if it is strictly increasing, and γ(0) = 0. It is of class
K∞ if it is of class K and γ(r)→∞ when r →∞. A continuous
function β : R+

0 × R
+
0 → R+

0 is said to belong to class KL if for
all fixed s, the map r 7→ β(r, s) belongs to class K and for all fixed
r > 0, the map s 7→ β(r, s) is strictly decreasing and β(r, s) → 0
when s → ∞. Given two sets S1, S2 and a relation R ⊆ S1 × S2,
we denote R(s1) = {s2 ∈ S2|(s1, s2) ∈ R} and R−1(s2) =
{s1 ∈ S1|(s1, s2) ∈ R}; for S′1 ⊆ S1, R(S′1) =

⋃
s1∈S′1

R(s1)

and similarly for S′2 ⊆ S2, R−1(S′2) =
⋃
s2∈S′2

R−1(s2). Given a
set S and a relation �⊆ S × S, � is a total preorder if and only if:
(i) for all s1, s2, s3 ∈ S, s1 � s2 and s2 � s3 implies s1 � s3; (ii)
for all s1, s2 ∈ S, s1 � s2 or s2 � s1. We can define the associated
equivalence relation ' and strict weak order ≺ given by s1 ' s2 if
and only if s1 � s2 and s2 � s1; s1 ≺ s2 if and only if s2 � s1.
Given a finite set S, |S| denotes its cardinality.

II. PRELIMINARIES

A. Incrementally stable switched systems

We briefly introduce the class of systems that we consider in this
paper:

Definition 2.1: A switched system is a quadruple Σ =
(Rn, P,P, F ), where Rn is the state space; P = {1, . . . ,m} is
the finite set of modes; P is a subset of S(R+

0 , P ) which denotes the
set of piecewise constant functions from R+

0 to P , continuous from
the right and with a finite number of discontinuities on every bounded
interval of R+

0 ; F = {f1, . . . , fm} is a collection of smooth vector
fields indexed by P .

A switching signal of Σ is a function p ∈ P , the discontinuities of
p are called switching times. A continuous function x : R+

0 → Rn is
said to be a trajectory of Σ if there exists a switching signal p ∈ P
such that, at each t ∈ R+

0 where the function p is continuous, x is
continuously differentiable and satisfies:

ẋ(t) = fp(t)(x(t)). (1)

We make the assumption that the vector fields fp are such that for
all initial conditions x ∈ Rn, for all switching signals p ∈ P , there
exists a unique trajectory of Σ, denoted x(., x,p) or by x(., x, p) if
p is constantly equal to p ∈ P . Necessary and sufficient conditions
to be satisfied by fp can be found in [1].

The results presented in this paper apply to switched systems
satisfying the incremental stability property (i.e. δ-GUAS [10]):

Definition 2.2: A switched system Σ is incrementally globally
uniformly asymptotically stable (δ-GUAS) if there exists a KL
function β such that for all t ∈ R+

0 , for all x1, x2 ∈ Rn, for all
switching signals p ∈ P , the following condition is satisfied:

‖x(t, x1,p)− x(t, x2,p)‖ ≤ β(‖x1 − x2‖, t).

Essentially, a switched system is incrementally stable if the
distance between trajectories associated with the same switching
signal converge asymptotically to zero independently of their initial
condition. It implies global uniform asymptotic stability if and only if
all vector fields share a common equilibrium (i.e. there exists x ∈ Rn
such that for all p ∈ P , fp(x) = 0).

As shown in [10], incremental stability of a switched system can
be characterized using Lyapunov functions:

Definition 2.3: A smooth function V : Rn × Rn → R+
0 is a

common δ-GUAS Lyapunov function for Σ if there exist K∞ functions
α, α and κ ∈ R+ such that for all x1, x2 ∈ Rn, and for all p ∈ P :

α(‖x1 − x2‖) ≤ V (x1, x2) ≤ α(‖x1 − x2‖); (2)
∂V
∂x1

(x1, x2)fp(x1) + ∂V
∂x2

(x1, x2)fp(x2) ≤ −κV (x1, x2). (3)

Theorem 1: [10] Consider a switched system Σ = (Rn, P,P, F )
with a common δ-GUAS Lyapunov function, then Σ is δ-GUAS.

The previous result establishes incremental stability for all sets of
switching signal P ⊆ S(R+

0 , P ). Sometimes, incremental stability
only holds for a restricted set of switching signals, e.g. satisfying
a minimum dwell-time assumption. p ∈ S(R+

0 , P ) has minimum
dwell time τd ∈ R+ if the switching times t1, t2, . . . satisfy t1 ≥ τd
and ti − ti−1 ≥ τd, for all i ≥ 2. Let Sτd(R+

0 , P ) denote the set
of switching signals with minimum dwell time τd ∈ R+. For such
switching signals, incremental stability can be characterized using
multiple Lyapunov functions:

Definition 2.4: Smooth functions Vp : Rn × Rn → R+
0 , p ∈ P

are multiple δ-GUAS Lyapunov functions for Σ if there exist K∞
functions α, α, κ, µ ∈ R+ with µ ≥ 1 such that for all x1, x2 ∈ Rn,
for all p, p′ ∈ P :

α(‖x1 − x2‖) ≤ Vp(x1, x2) ≤ α(‖x1 − x2‖); (4)
∂Vp

∂x1
(x1, x2)fp(x1) +

∂Vp

∂x2
(x1, x2)fp(x2) ≤ −κVp(x1, x2); (5)

Vp(x1, x2) ≤ µVp′(x1, x2). (6)

Theorem 2: [10] Let τd ∈ R+ and consider a switched system
Σ = (Rn, P,P, F ) with P ⊆ Sτd(R+

0 , P ) and multiple δ-GUAS
Lyapunov functions. If τd > log µ

κ
, then Σ is δ-GUAS.

We would like to point out that in Definitions 2.3 and 2.4, V and
Vp, p ∈ P actually need to be differentiable only at (x1, x2) ∈
Rn ×Rn with x1 6= x2. Similarly, (3) and (5) need to hold only for
x1 6= x2. In the following sections, we will make the supplementary
assumption on the δ-GUAS Lyapunov functions that there exists a
K∞ function γ such that for all x1, x2, x3 ∈ Rn

|V (x1, x2)− V (x1, x3)| ≤ γ(‖x2 − x3‖); (7)

|Vp(x1, x2)− Vp(x1, x3)| ≤ γ(‖x2 − x3‖), ∀p ∈ P ; (8)

for the case of common or multiple δ-GUAS Lyapunov functions,
respectively. As shown in [10], this assumption is not restrictive
provided we are interested in the dynamics of Σ on a bounded subset
of Rn, which is often the case in practice.

B. Approximate bisimulation

We present the notion of approximate equivalence which will relate
a switched system to the symbolic models that we construct. We
start by introducing transition systems, which allow us to describe
switched systems and symbolic models in a common mathematical
framework.

Definition 2.5: A transition system is a tuple T =
(X,U, Y,∆, X0) consisting of a set of states X; a set of inputs
U ; a set of outputs Y ; a transition relation ∆ ⊆ X × U ×X × Y ;
a set of initial states X0 ⊆ X . T is said to be metric if the set of
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outputs Y is equipped with a metric d, symbolic if X and U are
finite or countable sets.

The transition (x, u, x′, y) ∈ ∆ will be denoted (x′, y) ∈ ∆(x, u);
this means that the system can evolve from state x to state x′ under
the input u, while producing output y. An input u ∈ U belongs to the
set of enabled inputs at state x, denoted enab(x), if ∆(x, u) 6= ∅. If
enab(x) = ∅, then x is said to be blocking, otherwise it is said to be
non-blocking. The transition system is said to be deterministic if for
all x ∈ X and u ∈ enab(x), ∆(x, u) has only one element; in that
case, we shall write with a slight abuse of notation (x′, y) = ∆(x, u).

A trajectory of the transition system is a finite or infinite sequence
of transitions σ = (x0, u0, y0)(x1, u1, y1)(x2, u2, y2) . . . where
(xi+1, yi) ∈ ∆(xi, ui), for all i ≥ 0. It is initialized if x0 ∈ X0,
it is maximal if it is infinite or it is finite and ends in a blocking
state. A state x ∈ X is reachable if there exists an initialized
trajectory reaching x. The transition system is said to be non-blocking
if all initialized maximal trajectories are infinite or equivalently if all
reachable states are non-blocking. The output behavior associated to
the trajectory σ is the sequence of outputs y0y1y2 . . .

In the following, we will consider approximation relationships be-
tween transition systems in the sense of approximate bisimulation [9].

Definition 2.6: Let Ti = (Xi, U, Y,∆i, X
0
i ), with i = 1, 2 be

metric transition systems with the same sets of inputs U and outputs
Y equipped with the metric d. Let ε ∈ R+

0 , R ⊆ X1×X2 is said to
be an ε-approximate bisimulation relation between T1 and T2 if for
all (x1, x2) ∈ R, u ∈ U :

∀(x′1, y1) ∈ ∆1(x1, u), ∃(x′2, y2) ∈ ∆2(x2, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R; (9)

∀(x′2, y2) ∈ ∆2(x2, u), ∃(x′1, y1) ∈ ∆1(x1, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R. (10)

The transition systems T1 and T2 are said to be ε-approximately
bisimilar, denoted T1 ∼ε T2, if X0

1 ⊆ R−1(X0
2 ) and X0

2 ⊆ R(X0
1 ).

Let us give the following result characterizing approximate bisim-
ulation for deterministic systems. It is a simple particularization
of the previous definition to the deterministic case; the proof is
straightforward and therefore omitted.

Lemma 2.7: If T1 and T2 are deterministic, R ⊆ X1×X2 is an ε-
approximate bisimulation relation if and only if for all (x1, x2) ∈ R,
enab(x1) = enab(x2) and for all u ∈ enab(x1),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R,

where (x′1, y1) = ∆1(x1, u), (x′2, y2) = ∆2(x2, u). (11)

If T1 and T2 are ε-approximately bisimilar, it can be shown that the
distance between output behaviors of T1 and those of T2 is bounded
by ε:

Theorem 3: [9] If T1 ∼ε T2, then, for any initialized trajectory of
T1 (respectively T2), (x0

1, u
0, y0

1)(x1
1, u

1, y1
1)(x2

1, u
2, y2

1) . . . , there
exists an initialized trajectory of T2 (respectively T1) with the same
sequence of inputs, (x0

2, u
0, y0

2)(x1
2, u

1, y1
2)(x2

2, u
2, y2

2) . . . , such that
d(yi1, y

i
2) ≤ ε, for all i ≥ 0.

Remark 2.8: The definitions of transition systems and approximate
bisimulation relations introduced in this section slightly differ from
those given in [9] where outputs are only related to states by an
output map. In the current work, the outputs are related to transitions
and the output map is implicitly encoded in the transition relation.
The definitions used in [9] can be shown to be particular cases
of Definitions 2.5 and 2.6. The current generalization allows us, in
the following, to define transition systems describing the dynamics
of switched systems where the outputs are continuous-time signals

whereas the approaches presented in [10], [7], [6] are based on the
framework [9] and output sequences of states. ◦

III. MULTISCALE SYMBOLIC MODELS FOR SWITCHED SYSTEMS

In this section, we establish some results on the existence of
approximately bisimilar symbolic models for incrementally stable
switched systems. They extend the results of [10] in two ways.
Firstly, the output of our symbolic models are continuous-time signals
instead of sequences; thus they are more suitable for use in controller
synthesis with continuous-time specifications. Moreover, they allow
us to consider transitions of long duration without ignoring the
behavior of the system on the time interval between the beginning
and the end of the transition. Secondly, the symbolic models we
consider here are defined in a multiscale setting. The approach
presented in [10] is based on a uniform discretization of time and
space with sampling parameters τ ∈ R+ and η ∈ R+, respectively.
It has been established that the resulting symbolic models are ε-
approximately bisimilar to incrementally stable switched systems
where the precision ε ∈ R+ is related to the values of τ and η.
In particular, the smaller τ , the smaller η must be to guarantee a
given precision ε. In practice, for a small time sampling parameter,
symbolic models with an acceptable precision may have a very
large number of states. There are number of applications where
the switching has to be fast though this fast switching is generally
necessary only on a restricted part of the state space. For instance, for
safety controllers, fast switching is needed only when approaching
the unsafe set. In order to enable fast switching while dealing with
abstractions with a reasonable number of states, one may consider
symbolic models enabling transitions of different durations. For
transitions of long duration, it is sufficient to consider abstract states
on a coarse lattice to meet the desired precision ε. As we consider
transitions of shorter durations, it becomes necessary to use finer
lattices for the abstract state-space. These finer lattices are effectively
used only on a restricted area of the state space, where the fast
switching is necessary. This allows us to keep the number of states
in the symbolic model at a reasonable level and results naturally in a
notion of multiscale symbolic models presented in the following. Let
us remark that uniform symbolic models coincide with our framework
when considering only one scale.

A. Switched systems without dwell-time

Let Σ = (Rn, P,P, F ) be a switched system where P =
S(R+

0 , P ). Let us assume that the switching in Σ is determined by
a self-triggered controller (see e.g. [21], [2]), which not only selects
the mode of the switched system but also the duration during which
the mode remains active. We assume that the controller can choose
durations from a finite set

ΘN
τ = {θs = 2−sτ | s = 0, . . . , N} (12)

consisting of dyadic fractions of a time sampling parameter τ ∈ R+

up to some scale parameter N ∈ N. Let us remark that the shortest
control cycle is 2−Nτ while the longest one is τ .

The dynamics of the switched system Σ is then naturally described
by the transition system TNτ (Σ) = (X,U, Y,∆, X0) where
• the set of states is X = Rn;
• the set of inputs consists of pairs of mode and duration U =
P ×ΘN

τ ;
• the set of outputs is the set of continuous functions Y =⋃s=N

s=0 C([0, θs],R
n);

• the transition relation is given for x ∈ X and u = (p, θs) ∈ U
by (x′, y) = ∆(x, u) if and only if

x′ = x(θs, x, p) and y = x|θs(., x, p)
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i.e. the switched system moves from state x to state x′ by
applying the constant mode p for a duration θs; y is the
continuous-time trajectory of the switched system connecting
x to x′;

• the set of initial states is X0 = Rn.

TNτ (Σ) is deterministic and metric when the set of outputs Y is
equipped with the following metric d: for y ∈ C([0, θs],Rn), y′ ∈
C([0, θs′ ],Rn)

d(y, y′) =

{
‖y − y′‖ if θs = θs′

+∞ if θs 6= θs′
(13)

Note that the state space of TNτ (Σ) is uncountable. Let us remark that
an output behavior of TNτ (Σ) is a sequence of continuous functions
y0y1y2 . . . The concatenation of these functions is itself a continuous
function which is a trajectory of switched system Σ.

The computation of a multiscale symbolic model approximating
TNτ (Σ) can be done using the following approach. We approximate
the set of states Rn by a sequence of embedded multiscale lattices
Xs
η = [Rn]2−sη , s = 0, . . . , N where

[Rn]2−sη =

{
q ∈ Rn

∣∣∣∣ q[i] = ki
2−s+1η√

n
, ki ∈ Z, i = 1, ..., n

}
where η ∈ R+ is a state space sampling parameter. Let us remark
that we have X0

η ⊆ X1
η ⊆ · · · ⊆ XN

η . We associate a multiscale
quantizer Qsη : Rn → [Rn]2−sη such that Qsη(x) = q if and only if

q[i]− 2−sη√
n
≤ x[i] < q[i] +

2−sη√
n
, i = 1, . . . , n.

By simple geometrical considerations, we can check that for all x ∈
Rn and s = 0, . . . , N , ‖x−Qsη(x)‖ ≤ 2−sη.

Then, let us define the transition system TNτ,η(Σ) =
(XN

η , U, Y,∆η, X
0
η), where

• the set of states is XN
η = [Rn]2−Nη;

• the set of inputs consists of pairs of mode and duration U =
P ×ΘN

τ ;
• the set of outputs is the set of continuous functions Y =⋃s=N

s=0 C([0, θs],R
n);

• the transition relation is given for q ∈ XN
η and u = (p, θs) ∈ U

by (q′, y) = ∆η(q, u) if and only if

q′ = Qsη (x(θs, q, p)) and y = x|θs(., q, p);

• the set of initial states is X0
η = [Rn]η .

TNτ,η(Σ) is deterministic and metric when the set of outputs Y
is equipped with metric defined in (13). Note that it is symbolic
since its sets of states and inputs are respectively countable and
finite. An output behavior of TNτ,η(Σ) is a sequence of continuous
functions y0y1y2 . . . It should be noted that the concatenation
of these functions may not be a continuous function. Hence, the
trajectories of Σ are approximated by piecewise continuous functions.

The approximation principle is illustrated in Figure 1. It is impor-
tant to remark that all the transitions of duration θs end in states
belonging to Xs

η . This means that the states on the finer lattices are
only accessible by transitions of shorter duration. Also, if we only
consider transitions of duration τ , that is if N = 0, TNτ,η(Σ) is similar
to the uniform abstraction defined in [10].

Remark 3.1: In [10], the proposed abstraction approach may pro-
duce non-deterministic symbolic models. In this paper, the transition
relation is defined using the quantizers Qsη , s = 0, . . . , N that
ensure determinism of the symbolic model. This is important as the
controller synthesis algorithm presented in the next section assumes
determinism of the transition system. ◦

q′

q

q′′

x(τ/2, q, p)

x(τ, q, p)

Fig. 1. Principle of the computation of the transition relation of multiscale
symbolic models: q′ = ∆η(q, (p, θ1)) = Q1

η(x(θ1, q, p)) and q′′ =
∆η(q, (p, θ0)) = Q0

η(x(θ0, q, p)). The curves in blue represent the outputs
associated with these transitions.

Remark 3.2: The computation of the transition relation of the sym-
bolic models involves the resolution of the differential equation (1).
The exact computation of the solutions may not be possible but
these can be approached arbitrarily close using standard numerical
algorithms. In the following, we omit the error due to numerical
computations for the sake of simplicity; though, these could be easily
taken into account. ◦

Theorem 4: Let us assume that the switched system Σ admits
a common δ-GUAS Lyapunov function V satisfying (7). Let us
consider time and state space sampling parameters τ, η ∈ R+, scale
parameter N ∈ N, and a desired precision ε ∈ R+. If

η ≤ min

{
s=N

min
s=0

[
2sγ−1

(
(1− e−κθs)α(ε)

)]
, α−1 (α(ε))

}
(14)

then TNτ (Σ) ∼ε TNτ,η(Σ).

Proof: We start by showing that the relation R defined by

R =
{

(x, q) ∈ X ×XN
η | V (x, q) ≤ α(ε)

}
is an ε-approximate bisimulation relation between TNτ (Σ) and
TNτ,η(Σ). We start by remarking that the transition systems are
deterministic. Therefore Lemma 2.7 applies. Let (x, q) ∈ R, we
have enab(x) = enab(q) = U ; then let u = (p, θs) ∈ U ,
(x′, y) = ∆(x, u) and (q′, z) = ∆η(q, u). From (3), it holds for
all t ∈ [0, θs],

V (x(t, x, p),x(t, q, p)) ≤ e−κtV (x, q) ≤ V (x, q) ≤ α(ε).

Then, (2) gives for all t ∈ [0, θs],

‖y(t)− z(t)‖ = ‖x(t, x, p)− x(t, q, p)‖
≤ α−1 (V (x(t, x, p),x(t, q, p))) ≤ ε.

It follows that d(y, z) ≤ ε. Since q′ = Qsη (x(θs, q, p)), equation (7)
yields

|V (x′, q′)−V (x′,x(θs, q, p))| ≤ γ(‖q′−x(θs, q, p))‖) ≤ γ(2−sη).

Then, it holds

V (x′, q′) ≤ V (x′,x(θs, q, p)) + γ(2−sη)

≤ V (x(θs, x, p),x(θs, q, p)) + γ(2−sη)

≤ e−κθsV (x, q) + γ(2−sη).

Then,
V (x′, q′) ≤ e−κθsα(ε) + γ(2−sη) ≤ α(ε)
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because of equation (14). Hence, (x′, q′) ∈ R and R is an ε-
approximate bisimulation relation between TNτ (Σ) and TNτ,η(Σ).

For all x ∈ X0 = Rn, q = Q0
η(x) ∈ X0

η satisfies ‖x − q‖ ≤ η.
Then,

V (x, q) ≤ α(‖x− q‖) ≤ α(η) ≤ α(ε)

because of equation (14). Hence, X0 ⊆ R−1(X0
η). Conversely, for all

q ∈ X0
η , x = q ∈ X0 satisfies V (x, q) = 0. Hence, X0

η ⊆ R(X0).
Therefore, TNτ (Σ) and TNτ,η(Σ) are ε-approximately bisimilar.

It is interesting to note that given a time sampling parameter τ > 0
and a scale parameter N ∈ N, for any desired precision ε > 0, there
always exists η > 0 such that equation (14) holds. This essentially
means that approximately bisimilar multiscale symbolic models of
arbitrary precision can be computed for TNτ (Σ). Let us remark that
for N = 0 we obtain a result that is similar to that in [10] with
the difference that the symbolic models here have continuous-time
outputs.

B. Switched systems with dwell-time

We now consider the case of switched systems with minimum
dwell-time. Let Στd = (Rn, P,P, F ) be a switched system where
P = Sτd(R+

0 , P ). Let ΘN
τ be given as before by (12) where the

time sampling parameter τ ∈ R+ and the scale parameter N ∈
N. For simplicity, we make the assumption that there exists Nd ∈
{0, . . . , N} such that the minimum dwell-time τd = θNd = 2−Ndτ .
Then, let Θ

Nd
τ be defined as in (12); we have Θ

Nd
τ ⊆ ΘN

τ .
The dynamics of the switched system Στd can then be described

by the transition system TNτ (Στd) = (X,U, Y,∆, X0) where

• the set of states is X = Rn × P , for z = (x, p) ∈ X , x ∈
Rn and p ∈ P represent the state and the active mode of the
switched system respectively;

• the set of inputs consists of pairs of mode and duration U =
P ×ΘN

τ ;
• the set of outputs is the set of continuous functions Y =⋃s=N

s=0 C([0, θs],R
n);

• the transition relation is given for z = (x, p) ∈ X and u =
(p′, θs) ∈ enab(z) by (z′, y) = ∆(x, u) if and only if

z′ = (x′, p′) and x′ = x(θs, x, p
′) and y = x|θs(., x, p′).

The set of enabled inputs is enab(z) = {p}×ΘN
τ ∪ (P \{p})×

Θ
Nd
τ , i.e. if the current mode is p and a mode p′ 6= p is applied,

it needs to be held for a period of at least θNd = τd;
• the set of initial states is X0 = Rn × P .

TNτ (Στd) is deterministic and metric when the set of outputs Y is
equipped with the metric given by (13). Note that the state space of
TNτ (Στd) is uncountable.

The construction of the approximating symbolic model follows the
same line as before and is given by the transition system TNτ,η(Στd) =
(XN

η , U, Y,∆η, X
0
η), where

• the set of states is XN
η = [Rn]2−Nη × P ;

• the set of inputs consists of pairs of mode and duration U =
P ×ΘN

τ ;
• the set of outputs is the set of continuous functions Y =⋃s=N

s=0 C([0, θs],R
n);

• the transition relation is given for r = (q, p) ∈ XN
η and u =

(p′, θs) ∈ enab(r) by (r′, y) = ∆η(x, u) if and only if

r′ = (q′, p′) and q′ = Qsη
(
x(θs, q, p

′)
)

and y = x|θs(., q, p′).

The set of enabled inputs is enab(r) = {p}×ΘN
τ ∪ (P \{p})×

Θ
Nd
τ ;

• the set of initial states is X0
η = [Rn]η × P .

TNτ,η(Στd) is deterministic and metric when the set of outputs Y is
equipped with the metric defined in (13). It is symbolic since its sets
of states and inputs are respectively countable and finite.

Theorem 5: Let us assume that the switched system Στd admits
multiple δ-GUAS Lyapunov functions Vp, p ∈ P , satisfying (8). Let us
consider time and state space sampling parameters τ, η ∈ R+, scale
parameter N ∈ N, and a desired precision ε ∈ R+. If τd > log µ

κ

and

η ≤ min

{
s=Nd

min
s=0

[
2sγ−1

((
1

µ
− e−κθs

)
α(ε)

)]
,

s=N

min
s=0

[
2sγ−1

(
1− e−κθs

µ
α(ε)

)]
, α−1

(
1

µ
α(ε)

)}
(15)

then TNτ (Στd) ∼ε TNτ,η(Στd).

Proof: We start by showing that the relation R defined by

R =

{
(z, r) ∈ X ×XN

η

∣∣∣∣ z = (x, p), r = (q, p)
Vp(x, q) ≤ 1

µ
α(ε)

}
is an ε-approximate bisimulation relation between TNτ (Στd) and
TNτ,η(Στd). The transition systems are deterministic, therefore
Lemma 2.7 applies. Let (z, r) ∈ R, z = (x, p), r = (q, p), we
have enab(z) = enab(r) = {p} × ΘN

τ ∪ (P \ {p}) × Θ
Nd
τ . Let

u = (p′, θs) ∈ enab(z), (z′, y) = ∆(z, u), z′ = (x′, p′) and
(r′, z) = ∆η(r, u), r′ = (q′, p′). If p′ = p, from (5) and since
µ ≥ 1, it holds for all t ∈ [0, θs],

Vp(x(t, x, p),x(t, q, p)) ≤ e−κtVp(x, q) ≤ Vp(x, q)

≤ 1

µ
α(ε) ≤ α(ε).

Then, (4) gives for all t ∈ [0, θs],

‖y(t)− z(t)‖ = ‖x(t, x, p)− x(t, q, p)‖
≤ α−1 (Vp(x(t, x, p),x(t, q, p))) ≤ ε.

It follows that d(y, z) ≤ ε. Also, similar to the proof of Theorem 4,
we can show that

Vp(x
′, q′) ≤ e−κθsVp(x, q) + γ(2−sη)

Then, (15) yields

Vp(x
′, q′) ≤ e−κθs 1

µ
α(ε) + γ(2−sη) ≤ 1

µ
α(ε)

and (z′, r′) ∈ R. If p′ 6= p, then θs ∈ Θ
Nd
τ and from (5) and (6), it

holds for all t ∈ [0, θs],

Vp′(x(t, x, p′),x(t, q, p′)) ≤ e−κtVp′(x, q) ≤ e−κtµVp(x, q)
≤ µVp(x, q) ≤ α(ε).

Then, we can show as above that d(y, z) ≤ ε. Also, similar to the
proof of Theorem 4, we can show that

Vp′(x
′, q′) ≤ e−κθsVp′(x, q) + γ(2−sη).

Then, from (6) and (15)

Vp′(x
′, q′) ≤ e−κθsµVp(x, q) + γ(2−sη)

≤ e−κθsα(ε) + γ(2−sη) ≤ 1

µ
α(ε).

Therefore, (z′, r′) ∈ R and R is an ε-approximate bisimulation
relation between TNτ (Στd) and TNτ,η(Στd).

Let us point out that the dwell-time condition τd >
log µ
κ

guar-
antees that for all s = 0, . . . , Nd, e−κθs ≤ 1

µ
. Then, it follows

that given a time sampling parameter τ > 0 and a scale parameter
N ∈ N, for any desired precision ε > 0, there always exists
η > 0 such that equation (15) holds. Thus, approximately bisimilar
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multiscale symbolic models of arbitrary precision can be computed
for TNτ (Στd).

IV. SAFETY CONTROLLER SYNTHESIS USING MULTISCALE

SYMBOLIC MODELS

In this section, we present controller synthesis techniques based
on the use of the multiscale symbolic models defined in the previous
section. We focus on a class of safety specifications. The principle of
the proposed solution is to exploit the specific properties of multiscale
abstractions: i.e. we give higher priority to transitions of longer
duration in order to keep the state of the system as much as possible
at the coarser scale. Then, the finer scales are explored only when
the specification cannot be met at the coarser level. The symbolic
models need not be computed prior to controller synthesis. Their
computation can be handled on the fly, thus keeping the effective
number of symbolic states at a reasonable level.

In the following, let us consider a transition system T =
(X,U, Y,∆, X0) which can be, for instance, one of the multiscale
symbolic models defined in the previous section.

A. Safety controllers

In this section, we formalize the problem of safety controller
synthesis. We make the following assumption on T :

Assumption 1: We assume that T is symbolic and deterministic.
We assume that the set of outputs Y consists of continuous functions
y ∈ C([0, θy],Rn) for some θy ∈ R+.

Assumption 1 is satisfied by the multiscale symbolic models
defined in the previous section.

Definition 4.1: A safety specification automaton is a tuple S =
(Q,E, I,G,Q0) consisting of a finite set of states Q; a transition
relation E ⊆ Q × Q; a set of invariants I = {Iq ⊆ Rn, q ∈ Q};
a set of guards G = {Ge ⊆ Rn, e ∈ E}; a set of initial states
Q0 ⊆ Q.

We shall make the following assumptions on the specification
automaton:

Assumption 2: There is a minimum separation between guards
of succesive transitions: there exists ε > 0 such that, for all e =
(q, q′), e′ = (q′, q′′) ∈ E,

inf{‖x− x′‖ |x ∈ Ge, x′ ∈ Ge′} ≥ ε.

We now define the composition of a transition system with a safety
specification automaton:

Definition 4.2: Under Assumptions 1 and 2, the composition
of the transition system T = (X,U, Y,∆, X0) with the safety
automaton S = (Q,E, I,G,Q0) is the transition system T ||S =
(XS , US , Y,∆S , X

0
S) where the set of states XS = Q × X; the

set of inputs is US = Q × U ; the set of outputs is Y ; the set of
initial states is X0

S = Q0 ×X0; the transition relation is given for
z = (q, x), z′ = (q′, x′) ∈ XS , v = (q′′, u) ∈ US , y ∈ Y by
(z′, y) ∈ ∆S(z, v) if and only if u ∈ enab(x), (x′, y) = ∆(x, u),
q′ = q′′, and one of the following conditions holds:
• q = q′ and ∀t ∈ [0, θy], y(t) ∈ Iq;
• there exists 0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1 = θy and
ei = (qi, qi+1) ∈ E, i = 0, . . . , N − 1 with q0 = q, qN = q′

and {
∀t ∈ [ti, ti+1], y(t) ∈ Iqi , i = 0, . . . , N ;
y(ti+1) ∈ Gei , i = 0, . . . , N − 1.

If u ∈ enab(x), but none of the previous conditions hold with
(x′, y) = ∆(x, u) and q′ = q′′, or if u /∈ enab(x), then
∆S(z, v) = ∅.

Remark 4.3: For the second type of transitions defined above,
we would like to point out that y is continuous on the compact set
[0, θy], therefore it is uniformly continuous, then Assumption 2 on
minimum separation of guards of successive transitions implies that
there exists h > 0 such that ti+1 − ti ≥ h, for i = 1, . . . , N − 1.
Hence, N is bounded above by 1 + θy/h thus ruling out potential
Zeno behaviors (see e.g. [23]). ◦

Remark 4.4: The specification formalism of safety specification
automata is derived from the classical notion of hybrid automata [11],
also used as a specification formalism in [3]. It can be shown that
any regular safety property over state predicates (i.e. whose set of bad
prefixes is recognized by a finite state automaton, as defined in [4])
can be written under the form of a safety specification automaton. ◦

We claim the following properties of the transition system T ||S:
Lemma 4.5: T ||S is a symbolic and deterministic transition

system.

Proof: The fact that T ||S is symbolic is a consequence of T
being symbolic and Q finite. To show that it is deterministic, let
z = (q, x), v = (q′′, u) ∈ US such that ∆S(z, v) 6= ∅ then let
(z′, y) ∈ ∆S(z, v) with z′ = (q′, x′). From the Definition 4.2, it
follows that q′ = q′′ and (x′, y) = ∆(x, u). Thus, (z′, y) is uniquely
determined and T ||S is deterministic.

A trajectory of T , σ = (x0, u0, y0), (x1, u1, y1), (x2, u2, y2) . . .
is safe according to the safety specification automaton S if
it is infinite and there exists a trajectory of T ||S, σS =
(z0, v0, y0), (z1, v1, y1), (z2, v2, y2) . . . with zi = (qi, xi), vi =
(q′i, ui), for all i ≥ 0. A safety controller is then a controller that
prevents T ||S from reaching a blocking state.

Definition 4.6: A safety controller for T ||S =
(XS , US , Y,∆S , X

0
S) is a relation C ⊆ XS × US such that

for all z ∈ XS:

• C(z) ⊆ enab(z);
• if C(z) 6= ∅, then for all v ∈ C(z) with ∆S(z, v) = (z′, y), it

holds that C(z′) 6= ∅.
We denote the domain of C as dom(C) = {z ∈ XS | C(z) 6= ∅}.
The controlled system is given by the transition system T ||S/C =
(XS , US , Y,∆S/C , X

0
S/C) where the transition relation is given for

z ∈ XS , v ∈ US by (z′, y) ∈ ∆S/C(z, v) if and only if v ∈ C(z) and
(z′, y) = ∆S(z, v); the set of initial states is X0

S/C = X0
S∩dom(C).

Lemma 4.7: T ||S/C is a symbolic, deterministic, and non-
blocking transition system.

Proof: The fact that it is symbolic and deterministic comes
directly from Lemma 4.5. From the first point of Definition 4.6 and
by definition of ∆S/C , a state z ∈ XS of T ||S/C is non-blocking if
and only if C(z) 6= ∅. Then, by definition of X0

S/C , all inital states of
T ||S/C are non-blocking. Also, by the second point of Definition 4.6
and by definition of the transition relation ∆S/C , all reachable states
of T ||S/C are non-blocking.

Thus, the previous lemma shows that all maximal trajectories of
T ||S/C are infinite trajectories of T ||S and thus generates safe
trajectories of the transition system T . There are in general several
safety controllers, however, one can show that there exists one that
is maximal:

Lemma 4.8: There exists a unique maximal safety controller C∗ ⊆
XS × US such that for all safety controllers C, C ⊆ C∗.

Proof: We can check from Definition 4.6 that the union of safety
controllers is again a safety controller. Then, the union of all safety
controllers is a safety controller which contains all the others, it is
clearly unique.

The previous result justifies the following notion of controllability:
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Definition 4.9: A state z ∈ XS of T ||S is safety controllable if
and only if z ∈ dom(C∗). The set of safety controllable states is
denoted cont(T ||S).

Of course from the previous definition, it follows that
cont(T ||S) = dom(C∗). Also, it can be easily established (see
e.g. [18]) that for all z ∈ XS :

C∗(z) =

{
v ∈ enab(z)

∣∣∣∣ z′ ∈ cont(T ||S)
with (z′, y) = ∆S(z, v)

}
. (16)

Remark 4.10: A classical safety specification consists in keeping
the output values of T in a given set IS ⊆ Rn. This is a special case
of Definition 4.1 corresponding to the safety specification automaton
S = (Q,E, I,G,Q0) with a single state Q = {q}, no transitions
E = ∅, the invariant I = {Iq = IS}, G = ∅, and Q0 = Q. ◦

Remark 4.11: Continuous-time outputs do not play a role in the
characterization of a safety controller given by Definition 4.6. Then,
as far as controller synthesis is concerned, the transition system T ||S
can be considered as a purely discrete transition system (without
outputs) and any discrete controller synthesis technique can be used.
In the following, we propose an approach exploiting the properties
of multi-scale symbolic models. ◦

B. Maximal lazy safety controller

Let us remark that the maximal safety controller C∗ is computable
using a simple fixed point algorithm (see e.g.[17], [18]). Termination
of the algorithm is guaranteed if the number of non-blocking states
of T ||S is finite. This is the case for the symbolic models defined
in Section III provided that invariants and guards of the safety
specification automaton are bounded sets. However, the larger the
number of states in the symbolic models, the more expensive the
computation.

For that reason, we want to exploit multiscale symbolic models
to propose a more efficient algorithm for the synthesis of safety
controllers. The lazy safety synthesis problem consists in controlling
the system T ||S so as to prevent trajectories from reaching a blocking
state, while applying at each step a transition of the longest duration
for which safety can be guaranteed.

Assumption 3: We assume that the set of inputs U is finite and
equipped with a priority relation given by a total preorder �⊆ U×U .

For the multiscale symbolic models where U = P × ΘN
τ , for

u = (p, θs), u
′ = (p′, θ′s) ∈ U , we give priority to transitions of

longer duration by defining u � u′ if and only if θs ≤ θ′s. The
associated equivalence relation ' and strict weak order ≺ are then
given by u ' u′ if and only if θs = θ′s and u ≺ u′ if and only if
θs < θ′s.

We lift the preorder �⊆ U×U to the set US = Q×U as follows,
for v = (q, u), v′ = (q′, u′) ∈ US , v � v′ if and only if u � u′. The
associated equivalence relation ' and strict weak order ≺ are lifted
similarly. Since US is finite, we can define for any subset V ⊆ US ,

max�(V ) = {v ∈ V | ∀v′ ∈ V, v′ � v}.

We can now formalize the notion of maximal lazy safety controller:
Definition 4.12: A maximal lazy safety (MLS) controller for

T ||S = (XS , U, Y,∆S , X
0
S) is a safety controller C ⊆ XS × US

such that:

• all safety controllable initial states are in dom(C):

X0
S ∩ cont(T ||S) ⊆ dom(C);

• all states z ∈ dom(C) are reachable in T ||S/C;
• for all states z ∈ dom(C):

1) if v ∈ C(z), then for all v′ ∈ enab(z) with v ' v′,
(z′, y) = ∆S(z, v′), it holds that v′ ∈ C(z) if and only if
z′ ∈ cont(T ||S);

2) if v ∈ C(z), then for all v′ ∈ enab(z) with v ≺ v′,
(z′, y) = ∆S(z, v′), it holds that z′ /∈ cont(T ||S).

The term maximal comes from the fact that all safety controllable
initial states are in dom(C), and if the controller enables an input,
it also enables all inputs with the same priority and which preserve
safety. The term lazy refers to the fact that when several inputs can
preserve safety, the controller enables only inputs with highest pri-
ority (i.e. with longer duration for our multiscale symbolic models).
Hence, the maximal lazy safety controller C represents a trade-off
between maximal permissiveness and efficiency.

Theorem 6: There exists a unique MLS controller for T ||S.

Proof: We first prove existence and then uniqueness.
Existence : Let C∗ be the maximal (non-lazy) safety controller

for T ||S. Let C̄∗ be the controller defined from C∗ as follows: for
all z ∈ XS , C̄∗(z) = max� C

∗(z). Then, we have dom(C̄∗) =
dom(C∗) = cont(T ||S).

Let us show that C̄∗ is a safety controller for T ||S. Let z ∈ XS ,
we have C̄∗(z) ⊆ C∗(z) ⊆ enab(z); hence the first condition
of Definition 4.6 holds. If C̄∗(z) 6= ∅, then for all v ∈ C̄∗(z),
we also have v ∈ C∗(z) and therefore for (z′, y) = ∆S(z, v)
it holds C∗(z′) 6= ∅ which yields C̄∗(z′) 6= ∅; hence the second
condition of Definition 4.6 holds as well. Now let us show that C̄∗

satisfies conditions (1) and (2) of Definition 4.12. Let z ∈ dom(C̄∗),
v ∈ C̄∗(z), and v′ ∈ enab(z) with v ' v′, (z′, y) = ∆S(z, v′).
If v′ ∈ C̄∗(z) then since C̄∗ is a safety controller, we have
z′ ∈ dom(C̄∗) = cont(T ||S). If z′ ∈ cont(T ||S), it follows from
(16) that v′ ∈ C∗(z). Since v ∈ max� C

∗(z) and v ' v′, it
follows that v′ ∈ max� C

∗(z). Hence, v′ ∈ C̄∗(z) and condition
(1) of Definition 4.12 holds. Let z ∈ dom(C̄∗), v ∈ C̄∗(z),
and v′ ∈ enab(z) with v ≺ v′, (z′, y) = ∆S(z, v′). Since
C̄∗(z) = max� C

∗(z), it follows from v ≺ v′ that v′ /∈ C∗(z).
From (16), we have z′ /∈ cont(T ||S). Hence, condition (2) of
Definition 4.12 holds as well.

Now let C be the controller defined from C̄∗ by C(z) = C̄∗(z) if
z is reachable in T ||S/C̄∗ and C(z) = ∅ otherwise. It is clear that
the reachable states in T ||S/C̄∗ and T ||S/C are the same. Hence,
for all z ∈ dom(C), z is reachable in T ||S/C. Moreover, it follows
from the properties of C̄∗ that C is a safety controller for T ||S,
and that C satisfies conditions (1) and (2) of Definition 4.12. Let
z ∈ X0

S ∩ cont(T ||S) = X0
S ∩ dom(C̄∗) = X0

S/C̄∗ . Since any initial
state is reachable, z is reachable in T ||S/C̄∗. Therefore, we have
C(z) = C̄∗(z) 6= ∅ and z ∈ dom(C).

Uniqueness : Let C1 and C2 be two MLS controllers and assume
that there exists z ∈ XS such that C1(z) 6= C2(z).

If both C1(z) and C2(z) are not empty, we can assume without
loss of generality that there exists v1 ∈ C1(z) such that v1 /∈ C2(z).
Then, let v2 ∈ C2(z). If v1 ≺ v2 then condition (2) of Definition 4.12
does not hold for C1 since ∆S(z, v2) ∈ dom(C2) ⊆ cont(T ||S).
If v2 ≺ v1 then condition (2) of Definition 4.12 does not hold
for C2 since ∆S(z, v1) ∈ dom(C1) ⊆ cont(T ||S). If v1 ' v2,
then condition (1) of Definition 4.12 does not hold for C2 since
∆S(z, v1) ∈ dom(C1) ⊆ cont(T ||S). In all the cases one of the
controllers is not a MLS controller.

If one of C1(z) and C2(z) is empty, we can assume with-
out loss a generality that C1(z) 6= ∅ and C2(z) = ∅. z ∈
dom(C1) ⊆ cont(T ||S) therefore z cannot be in X0

S otherwise
we would have C2(z) 6= ∅. Since z ∈ dom(C1), z is reach-
able in T ||S/C1. Let us consider the initialized trajectory of
T ||S/C1, (z0, v0, y0)(z1, v1, y1) . . . (zN , vN , yN ) with zN = z.
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Algorithm 1: MLS controller synthesis

Input: Transition system T ||S = (XS , US , Y,∆S , X
0
S), priority

relation � ⊆ US × US
Output: MLS controller C ⊆ XS × US

1 Global variables: controllable states Xc ⊆ XS , uncontrollable
states Xu ⊆ XS

2 begin
3 (Xc, Xu, C) := (∅, ∅, ∅) ;
4 for z ∈ X0

S do
5 explore (z, ∅) ;

6 return C

z0 ∈ dom(C1) is a controllable initial states and therefore C2(z0) 6=
∅. Then, there exists i ∈ {0, . . . , N − 1} such that C2(zi) 6= ∅ and
vi /∈ C2(zi) (otherwise we would have C2(z) 6= ∅). Therefore, there
exists zi ∈ XS , such that C1(zi) 6= C2(zi) and both C1(zi) and
C2(zi) are not empty. We have already proved that in this case one
of the controllers is not a MLS controller.

In the proof of Theorem 6, we give a construction of the MLS
controller. Intuitively, the MLS controller for T ||S can be obtained
from the maximal safety controller by selecting the enabled inputs
of higher priority and by removing the states that are not reachable.
Of course, this construction does not lead to an efficient algorithm
for the computation of the MLS since it needs first to compute the
maximal safety controller. In the following section, we address the
problem of computing effectively the MLS controller.

C. Controller synthesis

In this section, we present an algorithm for synthesizing the
maximal lazy safety controller. It is based on a depth first search
exploration of the trajectories, starting from initial states and explor-
ing transitions of higher priority first.

More precisely, the MLS controller is computed by Algorithm 1
which calls the function explore(z, ∅) on each initial state z ∈ X0

S ;
the second argument Xv of the function explore is the set of states
already visited by the current trajectory. The global variables are Xc,
Xu, and C for the sets of controllable and uncontrollable states and
the controller, respectively. Function explore(z,Xv) returns whether
z is controllable. This is done by recursively exploring the paths
starting from z until either a controllable or an uncontrollable state is
reached; or a state already visited by the current trajectory is reached,
which means that a circular path containing z has been found, and
therefore the state z is controllable. The outer loop explores inputs
of decreasing priority as long as no controllable successor of z has
been found.

Theorem 7: Let C be computed by Algorithm 1. Then, C is the
MLS controller for T ||S.

Proof: The set of visited states Xv contains, at each call to
explore, the set of states visited along one path from some initial
state z0 in X0

S to (excluding) the current state z. A state z is
determined controllable if it:
• has one immediate controllable successor (line 19), in that case
z and all states in Xv are added recursively to the set of
controllable states Xc;

• has already been visited along the current path Xv (i.e. z ∈ Xv)
(line 8) — hence, lying on a cyclic path of safe states, in that
case all states in Xv (including z) are added recursively to the
set of controllable states Xc.

In contrast, z is determined controllable if all its successors are
uncontrollable (line 22), in that case z is added to the set of uncon-

Algorithm 2: explore(z, Xv)
Input: state z ∈ XS , visited states Xv ⊆ XS
Output: true if and only if z is safety controllable

1 Local variables: unexplored inputs Vu ⊆ US
2 begin
3 if z ∈ Xu then
4 return false

5 if z ∈ Xc then
6 return true

7 if z ∈ Xv then
8 return true

9 Vu := enab(z) ;
10 while Vu 6= ∅ do
11 foundSucc := false;
12 for v ∈ max�(Vu) do
13 (z′, y) := ∆S(z, v) ;
14 if explore (z′, Xv ∪ {z}) then
15 C := C ∪ {(z, v)} ;
16 foundSucc := true;

17 if foundSucc then
18 Xc := Xc ∪ {z} ;
19 return true

20 Vu := Vu \max�(Vu) ;

21 Xu := Xu ∪ {z} ;
22 return false

trollable states Xu. Hence, Xc and Xu contains all the controllable
and uncontrollable states that have been explored, respectively. Let
us also remark that C(z) 6= ∅ if and only if z ∈ Xc.

Let us verify that C is a safety controller. By construction (line 9),
we have C(z) ⊆ enab(z). Then, assume C(z) 6= ∅, and let v ∈ C(z),
(z′, y) = ∆S(z, v), then it holds that z′ is controllable (line 14). Thus
z′ ∈ Xc and C(z′) 6= ∅.

We now prove that C is the MLS controller. In Algorithm 1,
the function explore is called for all initial states in X0

S . Then, it
follows that all controllable initial states are in X0

S , the first point of
Definition 4.12 holds. Since Algorithm 1 explores trajectories starting
from initial states, all states in dom(C) = Xc are reachable in
T ||S/C, the second point of Definition 4.12 holds. As for the third
point, let z ∈ dom(C) and v ∈ C(z). The outer loop of the function
explore (lines 10 to 20) explores trajectories using inputs of higher
priority first. Hence, if v ∈ C(z) then all inputs v′ ∈ enab(z) with
v ≺ v′ have been explored and none of them leads to a controllable
state. Hence, 2) in the third point of Definition 4.12 holds. The inner
loop of the function explore (lines 12 to 16) explores trajectories
using all inputs with the same level of priority. Hence, if v ∈ C(z)
then all inputs v′ ∈ enab(z) with v ' v′ have been explored and
v′ ∈ C(z) if an only if it leads to a controllable state. Hence, 1) in the
third point of Definition 4.12 holds. Thus, C is the MLS controller
for T ||S.

In Algorithm 1, each transition initiating from a non-blocking
state is explored at most once. Hence, termination of Algorithm 1
is guaranteed if the sets of inputs US , and of non-blocking states are
finite: note that this is the case for our multiscale symbolic models
when invariants and guards of the safety specification automaton are
bounded sets. In the worst case, (when all non-blocking states are
reachable but none is controllable), all the transitions initiating from
a non-blocking state need to be explored. This provides us with a
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worst-case (time and space) complexity given by |X ′S |× |US | where
X ′S denote the set of non-blocking states. However, in practice this
upper-bound is not attained.

V. COMPUTATIONAL RESULTS

In this section, we show some computational results of our
approach obtained using CoSyMA [12], a tool for automatic con-
troller synthesis for incrementally stable switched systems based on
multiscale symbolic models. It is written in OCaml and provides
an implementation of Algorithm 1 for symbolic models of switched
systems (with or without dwell time) and simple safety specifications
(see Remark 4.10). The results reported in the following have been
obtained on a laptop with i7 processor and 4 GB RAM.

A. DC-DC Converter

As a first case study, we apply our approach to a boost DC-
DC converter. It is a switched system with two modes, the two
dimensional dynamics associated with both modes are affine of
the form ẋ(t) = Ap(t)x(t) + b for p(t) ∈ {1, 2} (see [10] for
numerical values). It can be shown that it has a common δ-GUAS
Lyapunov function and thus approximately bisimilar symbolic models
can be computed. We consider the problem of keeping the state of
the system in a desired region of operation given by the safe set
IS = [1.15, 1.55]× [5.45, 5.85].

We use approximately bisimilar symbolic models to synthesize
MLS controllers for the DC-DC converter. We compare the cost of
controller synthesis for the uniform symbolic model T 0

τ1,η1(Σ) for
parameters τ1 = 0.5 and η1 = 3× 10−4 (containing only transitions
of duration 0.5s) and the multi-scale symbolic model T 6

τ2,η2(Σ) for
parameters τ2 = 64τ1 and η2 = 64η1 (containing transitions of
durations in Θ6

τ = {32, 16, 8, 4, 2, 1, 0.5}). The set of states of
T 6
τ2,η2(Σ) consists of a set of 7 embedded lattices whose finest one

coincides with the set of states of T 0
τ1,η1(Σ). These two symbolic

models have the same precision ε = 0.05, according to Theorem 4.
Table I details the experimental results obtained for the synthesis

of the T 0
τ1,η1(Σ) and T 6

τ2,η2(Σ). We can see that there is a note-
worthy reduction of the time used to compute the controller using a
multiscale symbolic model instead of using a uniform one (up to a
93% improvement between T 0

τ1,η1(Σ) and T 6
τ2,η2(Σ)). This is due to

the fact that the size of uniform symbolic models grows exponentially
with higher resolutions, whereas multiscale symbolic models are
refined only when we get closer to unsafe regions (size reduced by
more than 99% between T 0

τ1,η1(Σ) and T 6
τ2,η2(Σ)). Interestingly,

this reduction in computation time and size does not affect the
performance of the multi-scale controllers, which yield a ratio of
controllable initial states (defined as |dom(C) ∩ X0

S |/|X0
S ∩ IS |)

comparable to that of their its uniform counterparts. Figure 2 depicts
the maximal lazy safety controller for T 6

τ2,η2(Σ) and a trajectory of
the controlled switched system.

Uniform symbolic model Multiscale symbolic model
N = 0, τ = 0.5 N = 6, τ = 32

η = 0.0003, ε = 0.05 η = 0.018, ε = 0.05

Time 9.2s 0.6s
Size (103) 936 6
Durations 0.5 (100%) 4 (33%)

2 (9%)
1 (50%

0.5 (8%)
Cont. Ratio 93% 92%

TABLE I
EXPERIMENTAL RESULTS FOR THE MLS CONTROLLER SYNTHESIS FOR

THE BOOST DC-DC CONVERTER

1.15 1.25 1.35 1.45 1.551.55

5.45

5.55

5.65

5.75

5.85

1.15 1.25 1.35 1.45 1.551.55

5.45

5.55

5.65

5.75

5.85

Fig. 2. The MLS controller for T 6
τ2,η2

(Σ) and IS . Top: mode 1 is enabled
(light gray); mode 2 is enabled (dark gray); modes 1 and 2 are enabled
(medium gray); and a trajectory. Bottom: duration 4 (light gray), 2 (medium
gray), 1 (dark gray), 0.5 (black) are enabled.

B. Temperature regulation in an n-room building

The second case study deals with temperature regulation in a
circular building with n rooms. Each room is equipped with a
heater and at a given instant at most one heater is switched on. The
temperature Ti(t) of the room i, 1 ≤ i ≤ n, is defined by the
differential equation

Ṫi(t) = α(Ti+1(t) + Ti−1(t)− 2Ti(t))

+β(te −Ti(t)) + γ(th −Ti(t))ui(t)

where Ti−1(t) is the temperature of the room i − 1; Ti+1(t) the
temperature of the room i + 1 (with the convention that T0(t) =
Tn(t) and Tn+1(t) = T1(t)); te is the temperature of the external
environment of the building; th is the temperature of the heater; α
is the conduction factor between the rooms i ± 1 and the room i;
β is the conduction factor between the external environment and the
room i; γ is the conduction factor between the heater and the room
i; ui(t) equals to 1 if the room i is heated, or 0 otherwise.

Given a number n ≥ 2 of rooms, we distinguish n+ 1 switching
modes. For 1 ≤ i ≤ n, the mode pi represents the mode of activating
the heater of room i. The mode pn+1 represents that no heater
is activated. The values of α, β, γ, te, and th are respectively
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Multiscale symbolic models
N = 4, τ = 80, η = 0.28, ε = 0.4
n = 3 n = 4 n = 5

Time 0.2s 6s 312s
Size (103) 2 45 1 077
Durations 40 (1%) 20 (25%) 20 (6%)

20 (37%) 10 (73%) 10 (92%)
10 (62%) 5 (2%) 5 (2%)

Cont. Ratio 99.99% 99.89% 99.79%
TABLE II

EXPERIMENTAL RESULTS FOR THE SYNTHESIS OF THE MLS CONTROLLER
FOR TEMPERATURE REGULATION IN A BUILDING OF THREE, FOUR, AND

FIVE ROOMS.

19.0 19.5 20.0 20.5 21.0 21.521.5

19.0

19.5

20.0

20.5

21.0

21.521.5

19.0 19.5 20.0 20.5 21.0 21.521.5

19.0

19.5

20.0

20.5

21.0

21.521.5

Fig. 3. Partial view of the MLS controller for T 4
τ,η(Σ) and IS for the 4 room

building in the plane (T1, T2) with T3 = T4 = 19. Left: mode 1 is enabled
(light gray); mode 2 is enabled (black); modes 1 and 2 are enabled (gray);
other modes are not displayed. Right: duration 20 (light gray), 10 (gray), 5
(black) are enabled.

1/20, 1/200, 1/100, 10, and 50. The resulting switched system
has a common δ-GUAS Lyapunov function and thus approximately
bisimilar symbolic models exist.

We increase the system dimension to test the limits of the tool
in terms of memory usage and computation time. Given the safety
specification IS = [19.0, 21.5]n for n ∈ {3, 4, 5}, we synthesize
safety controllers for buildings of three, four, and five rooms. The
values of N , τ , η and ε are given in Table II. By looking at
the results, we can see multiscale symbolic models do not prevent
the combinatorial explosion of the complexity when increasing the
system dimension from 3 to 5. They allow us, however, to handle
dimensions that are out of reach using uniform symbolic models.
Figure 3 gives a partial view of the MLS controller for the transition
system T 4

τ,η(Σ) for the 4 room building.

C. Switched system with dwell-time

The third case study is taken from [10] and illustrates the case
of switched systems without a common δ-GUAS Lyapunov function.
The system has two modes and the state space is R2. The dynamics
associated with both modes are affine of the form ẋ(t) = Ap(t)x(t)+
bp(t) for p(t) ∈ {1, 2} with

A1 =
[−0.25 1
−2 −0.25

]
, A2 =

[−0.25 2
−1 −0.25

]
,

b1 = [−0.25 −2 ]> , b2 = [ 0.25 1 ]>. The system does not have a
common δ-GUAS Lyapunov function but admits multiple δ-GUAS
Lyapunov functions (see [10] for details). Then, restricting the set of
switching signals to those having dwell time τd = 2, the switched
system is incrementally stable and admits approximately bisimilar
uniform and multiscale symbolic models. We consider the same
safety specification as in [10] which consists in keeping the state
in IS = [−6, 6]× [−4, 4] while avoiding IU = [−1.5, 1.5]× [−1, 1].

Fig. 4. Mode map of the MLS controller for T 3
τ2,η2

(Στd ) and IS \ IU for
a switched system with dwell-time. Top: mode 1 is active. Bottom: mode 2
is active. Mode 1 is enabled (black), mode 2 is enabled (light gray), modes
1 and 2 are enabled (gray).

Following the approach in [10] (extended to deal with continuous-
time outputs), a controller is computed using a uniform symbolic
model with dwell-time for time and state sampling parameters τ1 =
0.5 and η1 = 1/(100

√
2). Let us remark that the uniform abstraction

with dwell time can not be defined as described in Section III-B since
we have τd > τ1. The computation of the controller using a Matlab
script takes 160 seconds. The resulting controller contains 5228091
states.

We computed the MLS controller for the multiscale symbolic
model T 3

τ2,η2(Στd) for parameters τ2 = 8τ1, η2 = 8η1 (containing
transitions of durations in Θ3

τ2 = {4, 2, 1, 0.5}). The set of states of
T 3
τ2,η2(Στd) consists of a set of 4 embedded lattices whose finest

one coincides with the set of states of the uniform abstraction.
The two symbolic models have the same precision ε = 0.4. The
computation of the MLS controller took 7.3 seconds. The resulting
controller contains 33826 states, a notable reduction compared to the
uniform symbolic model. The controllability ratio is 79.38% and the
proportion of transitions of duration 4, 2, 1 and 0.5 are 26%, 54%,
11% and 9% respectively. Figure 4 shows the mode map of the MLS
controller. A controlled trajectory of the switched system is shown
on Figure 5.

VI. CONCLUSION

In this paper we have proposed the use of multiscale symbolic
models for the computation of controllers for switched systems, by
applying them to the specific case of safety problems. We have
proposed a construction of multiscale symbolic models and proved
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Fig. 5. Trajectory of the switched system with dwell-time controlled using
the MLS controller shown in Figure 4.

that they are approximately bisimilar to the original switched systems
under the existence of (common or multiple) δ-GUAS Lyapunov
functions. We have considered the use of these models for synthe-
sizing controllers enforcing properties given by safety specification
automata. An appropriate formulation of the synthesis problem and
an algorithm have been proposed, exploiting the characteristics of
the multiscale symbolic models. Experimental results show a major
improvement of computational complexity when using multiscale
symbolic models instead of uniform ones.
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sité Joseph Fourier, Grenoble, France, both in 2001
and the Ph.D. degree in applied mathematics from
the Institut National Polytechnique de Grenoble,
France, in September 2004. From October 2004 to
December 2005, he was a postdoctoral researcher at
the Department of Electrical and Systems Engineer-
ing of the University of Pennsylvania, Philadelphia

and from January to August 2006, he was a postdoctoral researcher at the
Verimag laboratory, Grenoble, France. Since September 2006, he has been an
Associate Professor at the Université Joseph Fourier, Grenoble, France.
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