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Abstract—This paper considers bit-loading algorithms to maxi-
mize throughput under total power and spectral mask constraints
in interference-free OFDM systems. The contribution is twofold.
First, we propose a simple criterion to switch between two well-
known algorithms of the literature: the conventional Greedy
and Greedy-based bit-removing (with maximum allowable bit
loading initialization) algorithms. Second, we present a new low-
complexity loading algorithm that exploits the bit vector obtained
by rounding the water-filling algorithm solution to the associated
continuous-input rate maximization problem as an efficientinitial
bit vector of the Greedy algorithm. We theoretically prove that
this bit vector has two interesting properties. The first onestates
that it is an efficient bit vector, i.e., there is no movement of a
bit from one subcarrier to another that reduces the total used
power. The second one states that the optimized throughput,
starting from this initial bit vector, is achieved by adding or
removing bits on each subcarrier at most once. Simulation
results show the efficiency of the proposed algorithm, i.e.,the
achievable throughput is maximized with significant reduction
of computation cost as compared to many algorithms in the
literature.

Index Terms—Bit-loading, OFDM, Greedy Algorithm, Rate-
adaptive, Low-complexity algorithm.

I. I NTRODUCTION

OFDM has been adopted in many wireless communication
systems such as IEEE 802.11a/g (WLAN), IEEE 802.16
WiMax and recent long-term evolution (LTE) standard [1], [2],
[3]. It is also exploited in wired systems such as asymmetric
digital subscriber line (ADSL) or IEEE P1901 power line com-
munication (PLC) [4]. In OFDM systems, with channel state
information available at the transmitter, a loading algorithm
can be used to allocate power and bits to the subcarriers under
given constraints.

In the wired communication systems such as ADSL and
PLC, a spectral mask constraint (i.e., peak-power constraint)
must be taken into account to ensure the compatibility with
other radio systems [4], [5]. Several optimal discrete bit-
loading algorithms have been proposed in the literature e.g.
[6], [7], [8], [9], [10], [11]. Many other works such as [12],
[13], [14] proposed a sub-optimal solution byrounding off the
continuous solution of an optimization problem and claimed
complexity advantages over the conventional Greedy algorithm
[15] with minimum performance difference with respect to the
optimal discrete solution. While all these algorithms provide
different performance to complexity trade-off possibilities for
discrete bit allocation, the problem of peak-power constraint

has not been exclusively addressed. Major contributions re-
lated to discrete bit allocation under the peak-power constraint
were done by Baccarelliet al. in [16] for the continuous
bit-loading and in [15] for the discrete bit-loading and by
Papandreouet al. in [11]. In [16], a solution for the discrete
rate maximization is given by compensating the solution of the
continuous rate maximization. It introduces a variableα so that
the total power use corresponding to the integer bit-loading
after compensation is as close as possible to the total allowable
power. However, in [16], the algorithm optimality was not
proved and the final bit allocation depends on the number of
iterations used to fixα. In [15], it is demonstrated that the
conventional Greedy algorithm yields the global optimum for
the discrete bit-loading problem. Unfortunately, its complexity
is a non-decreasing function of the total allowable power.
In [11], it is claimed that the bit-removing algorithm should
be used to solve the discrete rate maximization under the
total power and peak-power constraints. Its performance in
terms of computation cost is a non-increasing function of the
total allowable power. The first contribution of this paper is a
criterion to switch between the conventional Greedy algorithm
and bit-removing algorithm to reduce the global computation
cost.

Our second contribution is a new low-complexity bit loading
algorithm for the throughput maximization problem under total
power and peak-power constraints. To this end, instead of us-
ing a zero bit loading initialization in the conventional Greedy
algorithm or the maximum allowable bit loading initialization
in the bit-removing algorithm in [11], we propose a novel
initial bit vector resulting from the rounding of the Water-
filling (WF) solution of the continuous bit loading problem.
This approach has been used in [17] for the rate maximization
in OFDM systems with the presence of interference resulting
from an insufficient cyclic prefix and its efficiency has been
shown through simulation results. However, for the problem
in [17], the optimality of this approach has not been demon-
strated. In this work, for the discrete bit-loading problemin
interference-free OFDM systems, we prove that the use of the
proposed initial bit vector in the Greedy procedure can achieve
the global optimum solution. In addition, starting from this
proposed initial bit vector, we also prove that to obtain the
global optimum bit-loading, the number of bits per subcarrier
needs to be increased or removed at most once. The compu-
tation cost as well as the run-time are theoretically analyzed
and compared through simulations for the proposed algorithm,
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the conventional Greedy algorithm [15], the Greedy-based
bit-removing algorithm with maximum allowable bit loading
initialization [11] and the sub-optimal algorithm in [16].

The paper is organized as follows. The throughput max-
imization problem under the total power and peak-power
constraints and some well-known algorithms of the literature
to solve it are given in Section II. Section III analyzes the
hybrid approach between the conventional Greedy algorithm
and bit-removing algorithm. The new low-complexity load-
ing algorithm is given in Section IV. Simulation results are
reported in Section V. Finally, Section VI is dedicated to
conclusions and perspectives.

II. D ISCRETE BIT-LOADING PROBLEM AND EXISTING

ALGORITHMS

A. Discrete bit-loading problem

The discrete bit-loading problem in interference-free OFDM
systems, i.e., zero-Doppler (no ICI) and cyclic prefix longer
than the channel response (no ISI), under the total power and
peak-power constraints is given in (1),

maximize
∑

n

bn

s.t. bn ≤ Amax | bn ∈ N

bn ≤ cn = log2

(

1 +
gnPn

Γ

)

(1)
∑

n

Pn ≤ Ptot

Pn ≤ Pmax
n

where bn and Pn are the number of bits and the power
allocated to the subcarriern; Amax is the maximum number
of bits defined by the maximum order constellation;gn is
the channel gain to noise ratio;Γ ≥ 1 is the ”SNR gap”
that effectively estimates the gap (in terms of signal to noise
ratio) between subcarrier capacity and actual rate conveyable
(bits/symbol). It depends on the desired target error probability
PE , coding gainγC and required marginγM [18], [19]:
Γ = 1

3

[
Q−1(PE

4K )
]2 γM

γC
, whereQ−1(x) is the inverse tail

probability of the standard normal distribution andK is
an edge-effect correction factor fast approaching unity for
medium and large-size QAM constellations. This SNR gap
has been used in many bit loading algorithms to calculate the
number of bits allocated on a subcarrier [11], [12], [15], [16],
[20], [21]. Interested readers can find more details about this
”SNR gap” in [18], [22].

Let us denote by

bmax(n) = ⌊log2
(
1 +

gnP
max
n

Γ

)
⌋,

brmax(n) = min(Amax, bmax(n)), (2)

P r
max(n) =

(2b
r
max(n) − 1)Γ

gn
≤ Pmax

n

(where ⌊ ⌋ is the floor function) the maximal number of
bits limited by the peak-power constraint on subcarriern, the
maximal effective number of bits and the maximal effective
power allocated on subcarriern.

Problem (1) can be rewritten as

maximize
∑

n

bn

s.t. bn ≤ cn = log2

(

1 +
gnPn

Γ

)

, bn ∈ N (3)
∑

n

Pn ≤ Ptot

Pn ≤ P r
max(n)

B. Existing algorithms in the literature

1) Conventional Greedy or Greedy-based bit-adding with
zero bit loading initialization (Z-GBA) algorithm:A well-
known optimal solution of problem (1) is obtained from
the Z-GBA algorithm. The bit vector is initialized to the
null vector. At every iteration, a subcarrier with minimum
required incremental power is allocated an additional bit if
the power constraints remain fulfilled. In [15], it is proved
that this algorithm yields the global optimum solution of (1).
Its performance in terms of computation cost depends on the
total allowable power: it requires a higher computation cost
when the total allowable power is high and vice versa.

2) Greedy-based bit-removing with maximum allowable bit
loading initialization (M-GBR) algorithm:This algorithm has
been used in [11] to solve the problem (1). The initial number
of bits allocated on all subcarriers is set to their maximal
allowable number of bits, i.e.,br

max. Then, at every iteration,
one bit is removed on a given subcarrier if its power gain is
the maximum one. The iterative procedure is stopped when
the total power constraint is fulfilled. Its performance in terms
of computation cost depends on the total allowable power: it
is lower when the total allowable power is high.

3) Sub-optimal algorithm (BFB):This algorithm was pro-
posed by E. Baccarelli, A. Fasano and M. Biagi in [16]. Hence,
in the remainder of the paper, we will refer to it as BFB
algorithm. Its principle consists in two steps. Firstly, itsolves
the associated continuous optimization problem (3) as follows

maximize
∑

n

cn

s.t.
∑

n

Pn ≤ Ptot (4)

Pn ≤ P r
max(n)

The solution of (4) is found by solving the following equation

f(S1) =
∑

n

[

S1 −
Γ

gn

]P r
max(n)

0
− Ptot = 0 (5)

with

[x]p0 =







p x ≥ p

x 0 < x < p

0 x ≤ 0

(6)

In [16], two methods have been proposed to solve (5).
First, an ”Iterative Water-filling” (IWF) is proposed to find
the exact solution with a complexity that is in the order of
the square of the number of subcarriers. Second, a secant-
based loading algorithm is used to find a reliable root of (5)
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with a complexity that grows only linearly with the number
of subcarriers.

The capacity corresponding to subcarriern is

cn = log2

(

1 +
[
S1 −

Γ

gn

]P r
max(n)

0

)

(7)

In the second step, the bi-section method is applied to find
the maximum value ofα defined hereinafter in (8) so that the
total power constraint is fulfilled. The number of bits allocated
to subcarriern is given by

bn = [⌊cn + α⌋]
brmax(n)
0 (8)

III. H YBRID APPROACH BETWEEN THEZ-GBA AND

M-GBR ALGORITHMS

In Section II, we have reminded that the complexity of
the Z-GBA algorithm and of the M-GBR algorithm are a
non-decreasing function and a non-increasing function of the
total allowable power, respectively. Thus, in the region of
high values ofPtot, the M-GBR algorithm should be used
instead of the Z-GBA algorithm and vice versa. In this section,
we propose a simple threshold to switch between the two
algorithms. In fact, the complexity of both algorithms is
dominated by a product of the number of iterations to obtain
the optimum bit and power allocation vectors (bop and Pop)
and the complexity per iteration. Moreover, the complexityper
iteration of both algorithms is almost the same, i.e., we find
the subcarrier that requires minimum power to add one bit or
find the subcarrier for which the power gain when removing
one bit is maximal and then adjust the number of bits on
this subcarrier. Let us denote byℓBA and ℓBR the number
of iterations to obtainbop in the Z-GBA and the M-GBR
algorithms andN denotes the number of used subcarriers. In
Table I, the total number of operations for the Z-GBA and
for the M-GBR algorithms are provided. They are dominated
by ℓBAN and ℓBRN . Note that in these algorithms, only
one bit is added or removed at each iteration. Then we have
ℓBA = ‖bop‖1, ℓBR = ‖br

max‖1 − ‖bop‖1.
Let us define∆PBR and∆PBA by

∆PBR = ‖Pr
max‖1 − ‖Pop‖1, (9)

∆PBA = ‖Pop‖1. (10)

The proposed criterion relies on the following theorems.

Theorem 1. There existν > µ > 1 so that if
∆PBR

∆PBA

≤ µ then

ℓBR < ℓBA and if
∆PBR

∆PBA

≥ ν thenℓBR > ℓBA.
Proof: See Appendix A.

This theorem gives us a way to determine the regions where
the M-GBR or the Z-GBA algorithm should be preferred.
However, due to the ignorance ofPop, we cannot calculate
∆PBR and∆PBA directly.

Theorem 2. If ‖Pr
max‖1 > Ptot and Ptot >> P r

max(n), ∀n,
we have‖Pop‖1 ≈ Ptot.

Proof: See Appendix B.
In practice, the condition ofPtot >> P r

max(n), ∀n is
generally fulfilled since the number of active subcarriers is
high. Then,∆PBR and∆PBA can be approximated as

∆PBR ≈ ‖Pr
max‖1 − Ptot ; ∆PBA ≈ Ptot. (11)
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Fig. 1: µ, ν values and switch between Z-GBA and M-GBR
algorithms.

An illustration of the switch between both algorithms is
illustrated in Fig. 1. We checked that the values ofµ and ν
vary little with respect toPtot for a given channel realiza-
tion. However, we also checked that the value ofν highly
depends on the channel realization. In contrast,µ can be
considered constant (µ ≈ 1) w.r.t. channel realization. To
reduce the complexity, we only take into account the criterion
∆PBR

∆PBA

≤ µ, whereµ = 1, to determine the switch between
the Z-GBA and the M-GBR algorithms. We refer to it as
hybrid algorithm. This approach is based on the criterion
∆PBR

∆PBA

≤ µ. If the criterion is fulfilled, the M-GBR algorithm

is used sinceℓBR < ℓBA. Otherwise, the Z-GBA algorithm is
used. Obviously, this simple criterion can only yield a sub-
optimal switch between the two algorithms as we will see in
the simulation section.

IV. A NEW LOW-COMPLEXITY LOADING ALGORITHM :
THEORETICAL ANALYSIS AND IMPLEMENTATION

A. Theoretical analysis

The WF algorithm provides an optimal loading solution to
problem (4), denoted by{cWF

n }. We define the rounding of
the WF solution asbWFR

n = round(cWF
n ), where

round(x) = n ⇔ −
1

2
≤ x− n <

1

2
, n ∈ N (12)

We denote bybWFR the bit vector resulting from the rounding
of the WF solution and byPWFR the corresponding power
allocation calculated by

PWFR
n =

(2b
WFR
n − 1)Γ

gn
(13)

In [23], Campello has defined an efficient bit vector for
the bit/power loading. A bit vector is said efficient if there
is no pair of subcarriers so that the power gain obtained by
removing one bit from one subcarrier can be used to add one
bit to another subcarrier. We recall that in the optimum Z-
GBA algorithm, at every step in the bit-adding procedure, the
bit vector is always efficient [15].
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Theorem 3. bWFR is an efficient bit vector.

Proof: See Appendix C.
In the following, we prove that the power use corresponding

to bWFR is the most efficient.

Theorem 4. For any bit vector b 6= bWFR if ‖b‖1 =
‖bWFR‖1, then‖PWFR‖1 < ‖P‖1 with P the power vector
associated withb and ‖.‖1 the l1 vector norm.

Proof: See Appendix D.

B. Proposed WFR-GBL algorithm

Based on the analysis above, we propose the following
simple and optimal algorithm for the discrete bit-loading
problem in (1). Its principle consists in exploiting the bit
vector obtained by rounding the water-filling algorithm so-
lution of problem (4) as an efficient initial bit vector of the
Greedy algorithm. Then, we calculate the current power use
Puse =

∑

n P
WFR
n . If Puse ≤ Ptot, the Greedy-based bit-

adding is used. Else, the Greedy-based bit-removing is applied
to yield the final bit allocation frombWFR. We named it the
Water-filling rounding Greedy-based bit loading (WFR-GBL)
algorithm.

Pseudocode of the WFR-GBL algorithm

1: Calculatebmax, br
max, Pr

max as in (2).
2: CalculateP r

tot =
∑

n

P r
max(n).

3: if P r
tot ≤ Ptot then

4: b(n) = brmax(n)
5: P (n) = P r

max(n)
6: else
7: Solve Eq. (5) to findS1 by using Iterative Water-Filling

or secant-based loading algorithm in [16].

8: Calculate bWFR
n = round

([

(

log2(gn) + S2

)

]brmax(n)

0

)

,

PWFR
n =

(2b
WFR
n − 1)Γ

gn
andPuse =

∑

n

PWFR
n .

9: if Puse ≤ Ptot then
10: Use Greedy-based bit-adding as in [15] to add the

number of bits on the subcarriers that have not
reached yet their effective maximal number of bits
br
max.

11: else
12: Use Greedy-based bit-removing as in [16] to remove

the number of bits on the subcarriers that have not
reached yet 0.

13: end if
14: end if

To prove that the WFR-GBL algorithm converges to the
global optimum solution, we first derived the following result.

Theorem 5. Let be and bf be two efficient bit vectors and
Pe and Pf be the corresponding power allocation vectors,
respectively. Then,

‖Pe‖1 ≥ ‖Pf‖1 ⇔ be ≥ bf (component-wise) (14)

Proof: See Appendix E.

Pseudocode of the modified secant-based algorithm

1: Set ǫ to a desired tolerance value.
2: Setcount = 0, Sold

1 = 0.

3: Setx0 = min
n

1

gn
, x1 = max

n
{P r

max(n) +
1

gn
}.

4: Setf0 = −Ptot, x1 =
∑

n

P r
max(n)− Ptot.

5: while count < 5 do

6: S1 =
1
2f1x1 − f0x0

1
2f1 − f0

7: f =
∑

n

[

S1 −
Γ

gn

]P r
max(n)

0
− Ptot

8: if f > 0 then
9: x1 = S1

10: f1 = f
11: else
12: x0 = S1

13: f0 = f
14: end if
15: if S1−Sold

1

S1
< ǫ then

16: count = count+ 1
17: end if
18: Sold

1 = S1

19: end while

20: Pn =
[

S1 −
Γ

gn

]P r
max(n)

0

Theorem 6. The WFR-GBL algorithm converges to the glob-
ally optimal bit allocation.

Proof: See Appendix F.
Note that in Step 7 of the pseudocode implementation of the

WFR-GBL algorithm, the secant-based loading should be used
to find S1 for two reasons. First, note that the ”efficiency” of
bWFR is independent ofS1, so that we can use an approximate
version of the root of Eq. (5) instead of the exact one.
Second, its complexity grows only linearly with the number of
subcarriers. However, its main drawback is that in many cases,
the same end-point is retained twice in a row. To avoid it, we
use a modified secant-based (also called Illinois) algorithm
[24] whose pseudocode implementation is given above. In the
following, starting frombWFR, we prove that the optimized
bit-loading is achieved by adding or removing the number of
bits per subcarrier at most once.

Theorem 7. To achieve the optimized throughput frombWFR,
the number of bits on every subcarrier needs to be increased
or removed at most once.

Proof: See Appendix G.

C. Complexity analysis

Let us denote byLs the number of iterations to findS1

in the secant-based loading procedure andLr the number of
iterations to findα in the BFB algorithm. In [15], it is shown
that Ls andLr are independent ofN . To find the optimum
(i.e., maximum or minimum) of an array of sizeN , it requires
aboutN operations. The calculations ofbmax (and ofbWFR),
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TABLE I: Number of operations for the algorithms.

Z-GBA (7 + ℓBA)N + 3ℓBA

M-GBR (11 + ℓBR)N + 3ℓBR

BFB (2Ls + 7Lr + 17)N
WFR-GBL (2Ls + ℓWFR + 22)N + 3ℓWFR

br
max from bmax (and ofPuse) andPr

max from br
max (and of

PWFR) require5N , N and4N operations.
Let us denote byℓWFR the number of iterations to obtain

bop in the WFR-GBL algorithm. Note that in WFR-GBL
algorithm, only one bit is added or removed at each iteration.
Then we have

ℓWFR =
∣
∣
∣‖bop‖1 − ‖bWFR‖1

∣
∣
∣ (15)

In the following, we summarize the main steps for each
algorithm.
• Z-GBA algorithm: calculatebmax, br

max and required
powers to add one bit to zero for every subcarrier +
Greedy-based iteration to add the number of bits on
subcarriers. In [15], it is shown that every iteration
requiresN + 3 operations.

• M-GBR algorithm: calculatebmax, br
max, Pr

max and
required power to remove one bit frombrmax(n) for every
subcarrier + Greedy-based iteration to remove the number
of bits on subcarriers.

• BFB algorithm: calculatebmax, br
max, Pr

max + Secant-
based algorithm (Illinois algorithm) + ’alpha’ compen-
sation procedure. In [15], the number of iterations of
the secant-based loading procedure to findS1 and the
bi-section method to findα is about(2Ls + 1)N and
(7Lr + 6)N , respectively.

• WFR-GBL algorithm: calculatebmax, br
max, Pr

max +
Secant-based algorithm (Illinois algorithm) + calculate
bWFR, PWFR, Puse and the power required (power gain)
for every subcarrier to add (remove) one bit frombWFR

n

+ either Greedy-based bit-removing or bit-adding.
The total number of operations required for each algorithm

is summarized in Table I.

V. SIMULATION RESULTS

To validate the proposed algorithm, we use the multi-path
PLC channels whose transfer function can be modeled as [25]:

H(f) = A

Np∑

n=1

(wn + znf
K2)e−(a0+a1f

K1 )lne−j2πfln/νc

(16)
whereνc is the speed of electromagnetic waves in the copper
medium,Np is the number of propagation paths, andln is the
length of then-th path. ParametersA andwn relate to the path
amplitude, while parametersa0, a1, K1, K2 andzn govern the
frequency dependence of the channel transfer function. The
values of the parameters for each of the nine classes can be
found in [25].

For the noise, we only take into account the background
noise, which can be modeled as a colored Gaussian noise with
power spectral density [26] defined as

AN (f) = b0 + b1|f |
b2 . (17)
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We also suppose that there is zero-Doppler and the guard inter-
val is chosen so that there is neither inter-carrier interference
nor inter-symbol interference. Simulation results are obtained
with the following parameters:
• Number of used subcarriersN = 917.
• Allowable set of number of bits on a subcarrierA =
{0, 1, 2, 3, 4, 5..., 11, 12}.

• Pmax
n = 1, ∀n ∈ {1, 2, ..., N} (normalized toP0∆f

where P0 = −55 dBm (1 Hz) is the spectral mask
value defined by the IEEE P1901 standard and∆f is the
subcarrier spacing between two consecutive subcarriers).

• Ptot (normalized toP0∆f ) varies from 10 to 900.
• Γ = 7, for a target SER value of10−5 [27].
• ǫ = 0.01 andLr = 10.
• Number of channel realizations: 1000.

A. Hybrid approach between the Z-GBA and M-GBR algo-
rithms

The number of iterations and the run-time of the Z-GBA,
M-GBR and hybrid algorithms are illustrated in Figs. 2 and 3
(with PLC class 2 channels). We can observe that the simple
criterion exploited in the hybrid algorithm gives us a judicious
switch between the two algorithms. Its performance is the
same as the M-GBR algorithm in the region of highPtot and
is the same as the Z-GBA algorithm in the region of small
Ptot.

B. WFR-GBL algorithm performance

We test the following algorithms: the WFR-GBL, the Z-
GBA, the M-GBR and the BFB algorithms.
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Figs. 4 and 5 show the achieved throughput and the total
power use obtained with the four algorithms. We can check
that the throughput achieved with the WFR-GBL algorithm is
the same as the optimal one (obtained with the Z-GBA and
the M-GBR algorithms). In addition, we have also checked
that both bit/power allocations obtained by the Z-GBA, the
WFR-GBL and the M-GBR algorithms are always the same.
This confirms the optimality of the WFR-GBL algorithm.
The throughput achieved with the BFB algorithm is slightly
degraded but it seems to converge to the optimal one asLr

increases.
The total required number of operations per subcarrier and

the total run-time comparisons are illustrated in Figs. 6 and
7. We can see that both performance indicators of the Z-
GBA algorithm and the M-GBR algorithm are non-decreasing
and non-increasing function ofPtot, respectively. Moreover,
the total number of operations as well as the run-time of
the BFB algorithm and the WFR-GBL algorithm little vary
w.r.t. Ptot. It is also shown that the complexity of the WFR-
GBL algorithm is less than the one of the BFB algorithm and
strongly reduced as compared to the Z-GBA algorithm or the
M-GBR algorithm. The number of operations per subcarrier,
calculated by dividing the total number of iterations givenin
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Fig. 6: Number of operations per subcarrier comparison.
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Fig. 7: Total run-time comparison.

TABLE II: Average number of operations per subcarrier and
average total run-time comparisons between the algorithms

over variousPtot ∈ [10, 900].

Number of Total run-time Total run-time
operations (ms) (relative)

Z-GBA 962.25 11.60 16.8
M-GBR 331.37 3.85 5.6
BFB 126.35 1.32 1.9
WFR-GBL 70.76 0.69 1

Table I byN , and the total run-time are shown in Table II.
Both of them are results averaged over the range ofPtot.

We have also tested the WFR-GBL algorithm for all 9
classes of PLC channels. We recall that every class has
a particular average channel attenuation [25]. In all cases,
we have checked that the WFR-GBL algorithm can always
achieve the same bit/power allocation as the ones obtained by
the Z-GBA and M-GBR algorithms, i.e., the optimum one.
The relative total run-time (in average overPtot) w.r.t. the
channel class is shown in Fig. 8. We can observe that the
relative run-time of the Z-GBA algorithm as well as the run-
time of the M-GBR algorithm is an increasing function of the
channel class. This can be explained by the fact that the higher
the channel class, the less variable and attenuated the channel
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Fig. 8: Relative total run-time (averaged over various
Ptot ∈ [10, 900]) vs channel class.

frequency response [25]. Thus,‖bop‖1 and‖br
max‖1 increase

with the index of the channel class. This explains an increasing
behavior of the relative run-time of the Z-GBA algorithm as
well as the M-GBR algorithm. However, for channel classes
7, 8 and 9, we observe a decrease of the relative run-time
of the M-GBR algorithm. This is explained by the fact that
for these classes of channel,‖bop‖1 increases with the index
of the channel class while most entries ofbr

max are equal
to Amax and thus do not depend on the channel frequency
response. Hence, the number of iterations used in the M-GBR
algorithm, that is equal to‖br

max‖1 - ‖bop‖1, is a decreasing
function of the channel class (for classes 7, 8 and 9).

The WFR-GBL algorithm strongly reduces the run-time
as compared to the Z-GBA or the M-GBR algorithms. In
addition, its run-time is about half of the BFB algorithm run-
time. Note that while the WFR-GBL algorithm yields the
global optimum solution for problem (1), the BFB algorithm
is only sub-optimal.

Figs. 9 and 10 illustrate the total number of operations and
the run-time of the algorithms when we change the number
of subcarrier, i.e.,N = 256, 512 and 917, withPtot fixed to
100 (normalized toP0∆f ). We observe that the WFR-GBL
algorithm always outperforms the Z-GBA, the M-GBR and the
BFB algorithms. In addition, the higher the number of active
subcarriers, the higher the complexity reduction.

VI. CONCLUSION

In this paper, we have firstly introduced a simple criterion
to switch between two well-known algorithms to solve the
discrete bit-loading in interference-free OFDM systems: the
conventional Greedy (Z-GBA) and the Greedy-based bit-
removing with maximum allowable bit loading initialization
(M-GBR) algorithms. Secondly, we have proposed a novel
low-complexity optimal WFR-GBL algorithm. Its optimality

200 400 600 800 1,000
0

200

400

600

Number of subcarriers

T
o
ta
l
n
u
m
b
er

o
f
o
p
er
a
ti
o
n
s
(x
1
0
3
)

Z-GBA

M-GBR

WFR-GBL

BFB

Fig. 9: Total number of operations vs number of subcarriers.
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Fig. 10: Total run-time vs number of subcarriers.

has been theoretically proved. Its principle consists in first
exploiting the bit vector obtained by rounding the Water-filling
solution to the associated continuous bit allocation problem as
an initial bit-vector in the Greedy algorithm and secondly to
load up or to remove bits on the subcarriers to be loaded up
or be removed at most once. We have compared the proposed
WFR-GBL algorithm with the Z-GBA, the M-GBR and the
BFB algorithms. The advantage in terms of computation cost
has been theoretically analyzed. Simulation results have shown
the efficiency of the proposed WFR-GBL algorithm in terms
of achieved throughput and run-time with different config-
urations, such as different numbers of subcarriers, different
PLC channel classes and different total power constraints.In
all cases, the proposed algorithm outperforms the reference
algorithms.

APPENDIX A
PROOF OFTHEOREM 1

Let us denote byεfBR and εlBR the power obtained when
removing one bit in the first and last iterations of the M-GBR
algorithm to obtainbop from br

max; εfBA and εlBA the power
required to load up one bit in the first and last iterations of
the Z-GBA algorithm to obtainbop from a null bit vector.
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Note that at every iteration in the M-GBR algorithm, one bit
is removed so that the power gain is maximum and in the Z-
GBA algorithm, one bit is loaded up so that the power required
is minimum. Thus,εfBR > εlBR, εfBA < εlBA and we have

{

ℓBR εlBR < ∆PBR < ℓBR εfBR

ℓBA εfBA < ∆PBA < ℓBA εlBA

(18)

⇒
ℓBR εlBR

ℓBA εlBA

<
∆PBR

∆PBA

<
ℓBR εfBR

ℓBA εfBA

(19)

Let us noteν =
εfBR

εfBA

andµ =
εlBR

εlBA

. Clearly, ν > µ and from

(19),
∆PBR

∆PBA

1

ν
<

ℓBR

ℓBA

<
∆PBR

∆PBA

1

µ
(20)

Moreover,εlBR andεlBA are also the power required to load up
one bit and the power obtained when removing one bit from
bop, respectively. Becausebop is an efficient bit vector then
εlBR > εlBA thusµ > 1 (see Appendix C).

From (20), if ∆PBR/∆PBA ≥ ν, then ℓBR/ℓBA > 1

and the number of iterations used in the M-GBR algorithm
is higher than that used in the Z-GBA algorithm and the
Z-GBA algorithm should be chosen. On the other side, if
∆PBR/∆PBA ≤ µ, then ℓBR/ℓBA < 1 and the M-GBR
algorithm should be chosen.

APPENDIX B
PROOF OFTHEOREM 2

When ‖Pr
max‖1 > Ptot, there is always an allowable sub-

carrier that cannot be allocated one additional bit due to the
total power constraint at the end of the Z-GBA algorithm.
Let us denote byn0 such an allowable subcarrier. Thus,

∆Pn0
↑=

2b
op
n0Γ

gn0

is the required power to add one bit on

this subcarrier (bopn0
→ bopn0

+ 1). Then, we have

‖Pop‖1 ≤ Ptot < ‖Pop‖1 +∆Pn0
↑ (21)

⇒1−
∆Pn0

↑

Ptot
<

‖Pop‖1
Ptot

≤ 1 (22)

Becausen0 is an allowable subcarrier, we have

brmax(n0) = log2

(

1 +
P r
max(n0)gn0

Γ

)

≥ 1 (23)

⇒
Γ

gn0

≤ P r
max(n0) (24)

andbop(n0) < brmax(n0)

⇒ P op(n0) =
(2b

op(n0)−1)Γ

gn0

< P r
max(n0) (25)

Let us assume thatP r
max(n) << Ptot, ∀n. Let us consider

two cases:bopn0
6= 0 andbopn0

= 0. In the first case, we have:

∆Pn0
↑=

(2b
op
n0 − 1)Γ

gn0

+
Γ

gn0

< 2P r
max(n0) << Ptot (26)

In the second case, we obtain

∆Pn0
↑=

Γ

gn0

≤ P r
max(n0) << Ptot (27)

In both cases,∆Pn0
↑<< Ptot.

Let us denoteǫ =
∆Pn0

↑

Ptot
<< 1. Using (22), we have

1− ǫ <
‖Pop‖1
Ptot

≤ 1 ⇒
‖Pop‖1
Ptot

≈ 1 (28)

APPENDIX C
PROOF OFTHEOREM 3

We prove thatbWFR = round(cWF ), is an efficient bit
vector. The allocated power and continuous capacity for sub-
carriern after using WF algorithm for problem (4) are given
by [16]











PWF
n =

[

(

S1 −
Γ

gn

)

]Pr
max(n)

0

cWF
n = log2

(

1 +
Pngn
Γ

)

=
[

(

log2(gn) + S2

)

]brmax(n)

0
(29)

whereS1 is the root of (5) andS2 = log2(S1/Γ).
The number of bits after the rounding and their corresponding
power are







bWFR
n = round(cWF

n )

PWFR
n =

(2b
WFR
n − 1)Γ

gn

(30)

Let us denote bybWFR
1 , bWFR

2 the number of bits obtained
by WF + rounding on any pair of distinct subcarriers. Without
loss of generality, we suppose that∆b = bWFR

1 − bWFR
2 ≥

0. Then,
Case 1: 0< bWFR

k ≤ brmax(k)−1, k = 1, 2⇒ cWF
k < brmax(k).

By usingm = round(x) ⇔ m− 1/2 ≤ x < m+ 1/2, then

⇒ bWFR
1 − 1/2− (bWFR

2 + 1/2) < cWF
1 − cWF

2

< bWFR
1 + 1/2− (bWFR

2 − 1/2) (31)

⇒ ∆b− 1 < log2(g1) + S2 − (log2(g2) + S2) < ∆b+ 1 (32)

⇒ 2∆b−1 <
g1
g2

< 2∆b+1 (33)

• The required power to add one bit to subcarrier 1 and
the power gain by removing one bit from subcarrier 2

are ∆PWFR
1 ↑=

2b
WFR
1 Γ

g1
and ∆PWFR

2 ↓=
2b

WFR
2

−1Γ

g2
.

Using (33),
g1
g2

< 2∆b+1 ⇒ ∆PWFR
1 ↑ > ∆PWFR

2 ↓.

• By following the same reasoning and using
g1
g2

> 2∆b−1

given by (33), we also have∆PWFR
2 ↑ > ∆PWFR

1 ↓.

Case 2: bWFR
1 = brmax(1), 0 < bWFR

2 < brmax(2). In this case
log2(g1) + S2 ≥ brmax(1)− 1/2, then

log2(g1) + S2 − (log2(g2) + S2) > brmax(1)− bWFR
2 − 1 (34)

⇒ log2(g1)− log2(g2) > ∆b− 1 ⇒
g1
g2

> 2∆b−1 (35)

Then,∆PWFR
2 ↑ > ∆PWFR

1 ↓.

Case 3: 0 < bWFR
1 ≤ brmax(1), bWFR

2 = 0. In this case,
log2(g2) + S2 < 1/2.

⇒ log2(g1) + S2 − log2(g2)− S2 > bWFR
1 − bWFR

2 − 1 (36)

⇒ log2(g1)− log2(g2) > ∆b− 1 (37)

⇒
g1
g2

> 2∆b−1 (38)

Then, as in case 2,⇒ ∆PWFR
2 ↑ > ∆PWFR

1 ↓.
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In all cases, there is no movement of a bit from one
subcarrier to another that reduces the total required power.
Thus,bWFR is an efficient bit vector.

APPENDIX D
PROOF OFTHEOREM 4

Let us denote by∆PWFR
n ↑ and ∆PWFR

n ↓ the required
power to add one bit to subcarriern and the power gain by
removing one bit from subcarriern. Then,

∆PWFR
n ↑=

(2b
WFR
n )Γ

gn
; ∆PWFR

n ↓=
(2b

WFR
n −1)Γ

gn
(39)

Let I stand for the subset of subcarriers such thatbWFR
n

< bn and J the subset of subcarriers such thatbWFR
m >

bm. As ‖bWFR‖1 = ‖b‖1, we have
∑

n∈I
(bn − bWFR

n ) =
∑

m∈J
(bWFR

m − bm).
Let us considerbWFR. We denote by∆P ↑ the total increase

of power required to load up each subcarriern of I such that
it bearsbn bits and∆P ↓ the total power gain from removing
bits from each subcarrierm of J such that it bearsbm bits.
The required total power associated with this new bit loading
is equal to

‖P‖1 = ‖PWFR‖1 +∆P ↑ −∆P ↓ (40)

∆P ↑=
∑

n∈I

(2bn − 2b
WFR
n )

Γ

gn
=

∑

n∈I

(2bn−bWFR
n − 1) ∆PWFR

n ↑

≥
∑

n∈I

(bn − bWFR
n ) ∆PWFR

n ↑> εImin

∑

n∈I

(bn − bWFR
n ) (41)

whereεImin = min
n∈I

∆PWFR
n ↑ and since2q −1 ≥ q, ∀q ∈ N

+.

∆P ↓ =
∑

m∈J

(2b
WFR
m − 2bm )

Γ

gm
(42)

=
∑

m∈J

2(1− 2bm−bWFR
m ) ∆PWFR

m ↓

≤
∑

m∈J

(bWFR
m − bm) ∆PWFR

m ↓< εJmax

∑

m∈J

(bWFR
m − bm)

whereεJmax = max
m∈J

∆PWFR
m ↓ and1− 2−q ≤ q/2, ∀q ∈ N

+.

In the proof of the efficiency ofbWFR, we have proved that
for any pair of subcarriersi and j, ∆PWFR

i ↑> ∆PWFR
j ↓.

Thus,εImin > εJmax and then∆P ↑> ∆P ↓. Finally,

‖P‖1 = ‖PWFR‖1 +∆P ↑ −∆P ↓> ‖PWFR‖1 (43)

The equality‖P‖1 = ‖PWFR‖1 holds only whenb = bWFR.

APPENDIX E
PROOF OFTHEOREM 5

The sufficient condition, i.e.,be ≥ bf ⇒ ‖Pe‖1 ≥ ‖Pf‖1,
is easily demonstrated by the fact that the power allocated on
a subcarrier is an increasing function of allocated number of
bits, i.e.,be ≥ bf (component-wise)⇒ Pe ≥ Pf (component-
wise) and thus‖Pe‖1 ≥ ‖Pf‖1.

To demonstrate the necessary condition, i.e.,be andbf are
two efficient bit vectors, if‖Pe‖1 ≥ ‖Pf‖1 thenbe ≥ bf , we
use the counter-evidence approach.

Suppose that‖Pe‖1 ≥ ‖Pf‖1 and ∃n0 : ben0
< bfn0

. If
∀n 6= n0, ben ≤ bfn, then ‖Pe‖1 < ‖Pf‖1, which contradicts
the hypothesis. Thus,∃n1: ben1

> bfn1
. Then, we have

ben0
< bfn0

⇒ ben0
≤ bfn0

− 1 (44)

⇒∆P ↑

ben0
→ben0

+1 =
2b

e
n0Γ

gn0

≤
2b

f
n0

−1Γ

gn0

= ∆P ↓

bfn0
→bfn0

−1

(45)

and

ben1
> bfn1

⇒ ben1
≥ bfn1

+ 1 (46)

⇒∆P ↓

ben1
→ben1

−1 =
2b

e
n1

−1Γ

gn1

≥
2b

f
n1Γ

gn1

= ∆P ↑

bfn1
→bfn1

+1

(47)

Since bf is an efficient bit vector,∆P ↑

bfn1
+1→bfn1

>

∆P ↓

bfn0
→bfn0

−1
. Then using (45) and (47), we deduced that

∆P ↑

ben0
→ben0

+1 < ∆P ↓

ben1
→ben1

−1 which contradicts the hypoth-
esis ”be is an efficient bit vector”.

Thus,ben ≥ bfn, ∀n, i.e., be ≥ bf (component-wise).

APPENDIX F
PROOF OFTHEOREM 6

We consider two cases: a)P r
tot ≤ Ptot and b)P r

tot > Ptot.
In the first case, the total power constraint is always fulfilled.

Thus, Pn = P r
max(n) and bn = brmax(n) is the globally

optimal allocation.
If P r

tot > Ptot, we have to consider two cases: i)
‖PWFR‖1 ≤ Ptot and ii) ‖PWFR‖1 > Ptot.

In the case i), the Greedy-based bit-adding algorithm is
applied and its solutionbop satisfies0 < bWFR ≤ bop. In
the following, we prove thatbWFR must be an intermediate
bit vector in the Z-GBA algorithm and thusbop is the globally
optimal solution.

Let us denote bybI
BA the intermediate bit vector obtained

in the Z-GBA algorithm such that‖bI
BA‖1 = ‖bWFR‖1. Let

PI
BA stand for the corresponding power allocation. According

to [15], the bit vector at any step always yields the minimum
total power use. So,‖PI

BA‖1 ≤ ‖PWFR‖1. On the other hand,
by applying Theorem 2, we have‖PI

BA‖1 ≥ ‖PWFR‖1. We
thus deduce that‖PI

BA‖1 = ‖PWFR‖1 andbI
BA = bWFR.

Consequently, the WFR-GBL algorithm in case i) converges
to the same solution as the Z-GBA algorithm, i.e., to the global
optimum one.

In the case ii),‖Pr
max‖1 ≥ ‖PWFR‖1 ≥ Ptot ≥ ‖Pop‖1 and

according to Theorem 6, we havebr
max ≥ bWFR ≥ bop. Note

that the M-GBR algorithm yields at every step an efficient bit
vector. Using the same reasoning as before, we deduce that
bWFR is an intermediate bit vector of the M-GBR algorithm.

Consequently, the WFR-GBL algorithm in case ii) conveys
to the same solution as the M-GBR algorithm, i.e., to the
global optimum one.

We have proved that in all cases, the WFR-GBL algorithm
yields the global optimum solution for problem (1).



10

APPENDIX G
PROOF OFTHEOREM 7

In this appendix, we aim to prove that, after the initialization
step, a given subcarrier state (allocated bit number and power)
is modified at most once. To this end, we consider two cases:
a) P r

tot ≤ Ptot and b)P r
tot > Ptot.

In the first case,P r
tot ≤ Ptot and the algorithm consists of

a single iteration. All subcarriers are allocated their maximum
number of bits with maximum power level, i.e., subcarriern
will be allocatedbrmax(n) bits and a power equal toP r

max(n).
This allocation obviously achieves the global optimum from
the initialization state.

In the second case,P r
tot > Ptot and we have to distinguish

between the bit-adding and the bit-removing procedures de-
pending on whetherPuse = ‖PWFR‖1 after initialization be
less or greater thanPtot. Our reasoning relies on two lemmas
introduced hereinafter.

The first lemma states that the subcarriers selected for
update within first successive iterations of the algorithm WFR-
GBL are necessarily different. Then, in the second lemma,
we prove that the number of bits added or removed by the
WFR-GBL algorithm is upper-bounded by Card(U), where
U denotes the set of subcarriers that can be added (case
‖PWFR‖1 ≤ Ptot) or removed (case‖PWFR‖1 > Ptot) at
least one bit in the Greedy-based procedure and Card(U) is
the cardinality ofU .

In the following, we denote byj the current iteration index
and byij the index of the subcarrier selected for update.

Lemma 7.1. Given k ≤ Card(U), k successive iterations
of the WFR-GBL algorithm necessarily updatek different
subcarriers, i.e.,ij 6= iℓ for all 1 ≤ ℓ < j ≤ k.

Proof: We prove the lemma only for the case
‖PWFR‖1 ≤ Ptot as the same reasoning holds for the another
case. Then, the algorithm applies the bit-adding procedurewith
the initialization state(bWFR,PWFR).

We first prove thati2 6= i1. The required powers to add one
bit on both subcarriers at second iteration are:

∆P ↑

bi1→bi1+1 =
2bi1Γ

gi1
(48)

∆P ↑

bi2→bi2+1 =
2bi2Γ

gi2
(49)

wherebi1 = bWFR
i1

+ 1 andbi2 = bWFR
i2

.

SincebWFR is an efficient bit vector, we have
2b

WFR
i1 Γ

gi1
>

2b
WFR
i2

−1Γ

gi2
, which implies that

∆P ↑
bi1→bi1+1 > ∆P ↑

bi2→bi2+1 (50)

This means thati2 is necessarily different fromi1. We can
easily generalize the result and deduce thatik 6= iℓ for
1 ≤ ℓ < k ≤ Card(U), which states the first lemma. An
equivalent reasoning can be applied to prove the lemma when
‖PWFR‖1 > Ptot.

Lemma 7.2. ℓWFR =
∣
∣
∣‖bop‖1 − ‖bWFR‖1

∣
∣
∣ ≤ Card(U).

Proof: Let us assume that‖PWFR‖1 ≤ Ptot. Then, the
final bits vectorbop is componentwise higher than the initial
onebWFR.

The Greedy-based bit-adding procedure is applied and
U = {n|cWF

n < brmax(n)}. Let us denote byUC the
complementary set ofU . Note that cWF

n ≤ brmax(n), ∀n.
ThusUC = {n|cWF

n = bWFR
n = brmax(n)}. Obviously, the

optimized throughput is always less than the sum capacity
obtained by the Water-filling. Then, we have

bWFR
n = round(cWF

n ) > cWF
n − 1/2, ∀n (51)

∑

n

bopn <
∑

n

cWF
n (52)

Thus,

ℓWFR =
∑

n

(bopn − bWFR
n ) ≤

∑

n

(
cWF
n − bWFR

n

)
(53)

=
∑

n∈U

(
cWF
n − bWFR

n

)

︸ ︷︷ ︸

<1/2

+
∑

n∈UC

(
cWF
n − bWFR

n

)

︸ ︷︷ ︸

0

(54)

<
Card(U)

2
< Card(U) (55)

Let us now assume that‖PWFR‖1 > Ptot. Then, the
final bits vectorbop is componentwise less than the initial
one bWFR: bop ≤ bWFR ≤ br

max. The Greedy-based bit-
removing procedure is applied,U = {n|bWFR

n ≤ 1} and
UC = {n|bWFR

n = bopn = 0}. Let us definebWFD
n = ⌊cWF

n ⌋,
we have

bWFR
n = round(cWF

n ) ≤ bWFD
n + 1, ∀n (56)

bopn ≥ bWFD
n , ∀n (57)

The second inequality results from the fact thatbWFD is also
an efficient bit vector and the total power use corresponding
to bWFD is less thanPtot (and thus less than or equal to
‖Pop‖1 since ‖Pop‖1 ≈ Ptot). Using Theorem 5, we obtain
bop ≥ bWFD. The proof of the efficiency ofbWFD relies
on an equivalent reasoning as used in Appendix C and uses
⌊x⌋ = m ⇒ m ≤ x < m+ 1.

Then, we have

ℓWFR =
∑

n

(bWFR
n − bopn ) (58)

=
∑

n∈U

(
bWFR
n − bopn

)
+

∑

n∈UC

(
bWFR
n − bopn

)

︸ ︷︷ ︸

0

(59)

=
∑

n∈U

(
bWFR
n − bopn

)
≤

∑

n∈U

(
bWFD
n + 1− bWFD

n

)

(60)

≤ Card(U) (61)

Finally, we have proved for both cases,

ℓWFR =
∣
∣
∣‖bop‖1 − ‖bWFR‖1

∣
∣
∣ ≤ Card(U). (62)
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On one hand, Lemma 7.1. states that the firstk iterations,
wherek is upper-bounded by the cardinality ofU , updatek
different subcarriers. On the other hand, Lemma 7.2. states
that the variation of the number of bits between initialization
and optimum convergence states is upper-bounded by the
cardinality ofU . From both lemmas, we deduce that to obtain
bop, starting frombWFR, the number of bits allocated to a
given subcarrier will be increased or decreased by at most
one bit.
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