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Local waves in heterogeneous media and their control

At the interface between two different elastic media, a local concentration of energy can appear. In fact the energy is mainly confined inside the softest medium. It therefore corresponds to the slowest velocity wave. Our goal in this paper is to suggest a mathematical characterization of these waves and to give some energetical characterization. These enables us to define a problem which aims at suppressing these local waves through an active control. Finally a coupling between active and passive damping is discussed. (authors 1 )

Introduction

Let us consider a bimaterial as shown on figure 1. It occupies the open set Ω and its boundary is Γ 0 . On a part of it denoted by Ω + , the wave velocity is c + and it is c -in the complementary denoted Ω -. The boundary between Ω + and Ω -is named Γ i . A simple antiplane model is considered. It can be formulated as follows (the upper dot stands for the time derivative):

                  
find a function y(x, t), where (x, t) ∈ Ω×]0, T [, ÿ -div(c 2 ∇y) = 0 in Ω×]0, T [, y = 0 on Γ 0 ×]0, T [, y(x, 0) = y 0 (x) and ẏ(x, 0) = y 1 (x) on Ω.

(1)

The existence and uniqueness of a solution is a classical result. More precisely this result can be obtained using a spectral decomposition of the stationary operator corresponding to the preceding wave equation. The eigenmodes (w k , λ k ), k = 1, ∞ and such that 0 < λ 1 ≤ λ 2 ≤ ... ≤ λ k ≤ λ k+1 ≤ ..., are solution of the following eigenvalue problem:

               w k ∈ H 1 0 (Ω), λ k ∈ R + , λ k w k = -div(c 2 ∇w k ) in Ω,
w k = 0 on Γ 0 and

Ω |w k | 2 (x)dx = 1. (2) 
It is wellknown that the family w k is an hilbert basis in the space L 2 (Ω) and

1 √ λ k w k
is an hilbert basis in the space H 1 0 (Ω) equiped with the norm:

v ∈ H 1 0 (Ω), → Ω c 2 |∇w k | 2 (x)dx.
But the interesting point in this discussion is that there exists two sub-family of eigenvectors. The first one represents the global solutions of (1); the elements of which are denoted by w G k . The second one contains the so-called local eigenmodes and are denoted by w L k (here again ordered by increasing values of the corresponding eigenvalues). The functional space spanned by the eigenvectors w G k (respectively w L k ) is V G (respectively V L ). More precisely the solution y can be written:

y(x, t) = k=1,∞ α G k (t)w G k (x) + k=1,∞ α L k (t)w L k (x) = y G (x, t) + y L (x, t). ( 3 
)
Our goal is first, to characterize the local eigenvectors which are an extension of the progressive eigenmodes described by A.E. Love [START_REF] Love | Some problems of geodynamics[END_REF] for the antiplane model (and by Lamb [START_REF] Lamb | On Waves in an Elastic Plate[END_REF] for plane strain models) and to suggest a new method for computing the energy of the local waves (represented by y L in the formula (3)). A first possibility is to use the eigenvector decomposition explicited above. Unfortunately, this is not a reliable method because it is not possible to compute a sufficient number of these terms with an acceptable accuracy. This is the reason why we use the so-called energy release rate in dynamics. This is similar to the derivative of the energy with respect to the position of the interface Γ i . It is an extension to dynamical problems of the energetical methods used in fracture mechanics [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF]. The main point is that the dynamical energy release rate is a bilinear form which enables to separate the global mode and the local one for an observation time T large enough. Several numerical results are explicited and confirms this theoretical result. Let us underline that these local waves could be characterized experimentally using piezo-devices as it's explained in [START_REF] Holnicki-Szulc | Damage identification method based on analysis of perturbation of elastic waves propagation, Structural Control and Health Monitoring[END_REF]. The local waves can induce very important stresses (normal derivative of y along Γ i ).

Hence in order to restrict the possibility of a damage mechanism near the interface Γ i , a health monitoring strategy is to control the these local waves using an active system
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The basic geometry. located near Γ i and which uses only the sensor informations picked up in the same neighborhood. This method can be defined using the dynamical energy release rate and the numerical results confirm here again the reliability of the strategy. But the practical implementation of the regulation loop is not obvious because of the complexity of the algorithm used (optimal control which degenerates into HUM method [START_REF] Lions | Contrôlabilité exacte perturbation et stabilisation de systèmes distribués[END_REF]). Therefore, a new control strategy is suggested. It rests upon the idea of a stationnary Riccati regulation which appears here, to be the limit of HUM algorithm when the observation time T tends to the infinity. Several numerical simulations confirm that the method works quite well and can be suggested for an experimental implementation.

Analysis of a generic model for local waves

Let us consider the geometrical configuration shown on figure 1. Because of the particular geometry, one can solve the eigenvalue model using a separation of the coordinates. The notations are explicited on the figure 1. Hence let us set (the family

2 L sin( nπx 1 L ) is an Hilbert basis in the space L 2 (]0, L[)): w(x) = n=1,∞ q n (x 2 ) sin( nπx 1 L ). (4) 
From the model (1), one can deduce the model that q n should satisfy:

                 λq n + [ ∂ ∂x 2 (c 2 ∂q n ∂x 2 ) -( nπc L ) 2 q n ] = 0 for -a < x 2 < H, q n (-a) = q n (H) = 0, q n (0 + ) = q n (0 -), dq n dx 2 (0 + ) = dq n dx 2 (0 -). (5) 
The solutions can be explicited with respect to the numbers K + n and K - n defined by:

K + n = nπ c + L λL 2 n 2 π 2 -(c + ) 2 and K - n = nπ c -L λL 2 n 2 π 2 -(c -) 2 .
The solutions q n can be explicited as follows (A n ∈ C):

           q n (x 2 ) = -A n sinh(K + n (x 2 -H)) sinh(K + n H) , x 2 ≥ 0, q n (x 2 ) = A n sinh(K - n (x 2 + a)) sinh(K - n a) , x 2 ≤ 0. (6) 
The continuity of the normal stress along the interface Γ i can be written:

- tanh(K + n H) K + n H = ac + Hc - tanh(K - n a) K - n a . ( 7 
)
There are a priori four possibilities (i = √ -1):

1 K + n ∈ R, K - n ∈ R, 3 K + n ∈ iR, K - n ∈ R, 2 K + n ∈ R, K - n ∈ iR, 4 K + n ∈ iR, K - n ∈ iR. (8) 
In fact, the first and the third possibilities can't happen. Because on the one hand

form c -< c + one deduces that: λ -( nπc - L ) 2 > λ -( nπc + L
) 2 which eliminates the case 3 and on the other hand, from the equation 5 one obtains:

λ H -a q 2 n (x 2 )dx 2 + H -a c 2 | ∂q n ∂x 2 | 2 (x 2 )dx 2 = 0. (9) 
Thus, if q n ∈ R this implies that q n = 0 which eliminates the case 1. Let us discuss the solutions to the characteristic equation (7) for the two remaining cases 2 and 4.

Local modes (case 2)

Let us consider the case 2 in (8). Let us set:

K - n = iJ - n .
The characteristic equation becomes:

( c - c + ) 2 J - n K + n tanh(K + n H) = -tan(J - n a), (10) 
This equation can be discussed graphically using the variable ξ = √ λL nπ which varies between c -and c + in the case treated in this section. But it is possible to count the number of solution with respect to n; see [START_REF] Ph | Ondes locales dans les milieux hétérogènes: Aspects numériques[END_REF].

Global modes (case 4)

Let us set:

K ± n = iJ ± n .
One obtains the following equation in ξ which has an infinite number of solutions for each value of n:

- tan(J + n H) J + n H = ac + Hc - tan(J - n a) J - n a . ( 11 
)
The two families of eigenvectors w L k and w G k span the functional space H 1 0 (Ω).

General case

For more complicated geometry the previous result is still valid. It can be established by using a localisation method near the interface between the two media [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF]. The basic point in our analysis is to suggest an energy method which enable to extract the energy of the local modes without using the expression of the corresponding eigenvectors which are expensive and difficult to be computed because they are numerous and concerns mainly high frequencies.

Energy and local waves

The energy release rate in dynamics can be define as the weak derivative of global energy with respect to the position of the interface between the two media with different wave velocities. Let us just give the result which is given in details in [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF]. Let us consider a virtual movement of the boundary Γ i which is represented by a vector field θ. It can be prolongated inside the open set Ω. One can define the domain derivative of the Maupertuis action in the direction θ which is equal to (see [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF]):

G θ = 1 2T T 0 Ω [| ẏ| 2 + c 2 |∇y| 2 ]div(θ) -2c 2 (Dθ∇y.∇y) + 1 T [ Ω ẏ∇y.θ] T 0 ( 12 
)
where ∇u.θ is the scalar product between ∇u and θ. The matrix Dθ is the Jacobian of θ. From Stokes formula one can also obtain the following statement.

Theorem 1. Let y be the solution of (1) and θ an arbitrary vector field on Ω the components of which are assumed to be at least W 1,∞ ( Ω). Let us denote by ν the unit outwards normal to the boundary Γ 0 of Ω but also the one to Γ i oriented from Ω - towards Ω + . One has:

G θ = Λ θ = c 2 2T T 0 Γ 0 | ∂y ∂ν | 2 θ.ν + [c 2 + -c 2 -] 2T T 0 Γ i [ c 4 c 2 + c 2 - | ∂y ∂ν | 2 + | ∂y ∂s | 2 ]θ.ν
the letter s denoting the abscissa along Γ i and let us point out that

c 4 | ∂y ∂ν | 2 is contin- uous across Γ i .
This result contains three interesting informations. First of all, Λ θ only depends on θ.ν on Γ 0 and Γ i . Hence this is also true for G θ . Secondly, when T → ∞ the asymptotic behavior of G θ can be very close to the energy for an ad'hoc choice of θ on Γ 0 ∪ Γ i . This is proved as follows. Let us set θ = x -x 0 where x 0 is an arbitrary point. Hence div(θ) = 2 and Dθ = I d (identity in R 2 ). This leads to the new expression:

G θ = 1 T T 0 Ω | ẏ| 2 + 1 T [ Ω ẏ∇y.θ] T 0 , (13) 
But by multiplying (1) by y 2 and integrating on Ω×]0, T [ one obtains: For a soft little square media in a hard square, excitation in the soft part 

[ 1 2 Ω ẏy] T 0 - 1 2 T 0 Ω | ẏ| 2 + c 2 2 T 0 Ω |∇y| 2 = 0, (14) 
E + 1 T [ Ω ẏ(∇y.θ + y 2 )] T 0 = Λ θ = G θ . (15) 
But ẏ and ∇y are bounded C 0 ([0, T ]; L 2 (Ω)). Therefore ∀θ such that θ.ν = (x-x 0 ).ν on ∂Ω, one has: lim

T →∞ Λ θ = Λ θ∞ = lim T →∞ G θ = G θ∞ = E. ( 16 
)
The third information is a consequence of the former one. Because G θ∞ and Λ θ∞ are two bilinear forms equivalent to the one of the energy, the eigenvectors are also orthogonal with respect to them. Coupled with the exponential decay of the local eigenmodes from the interface Γ i , one can prove the following basic result [START_REF] Ph | Ondes locales dans les milieux hétérogènes: Aspects numériques[END_REF]:

Theorem 2.
Let us denote by θ Γ i a vector field on Ω such that θ.ν = (x -x 0 ).ν on Γ i which is the boundary of Ω -, assumed to be strictly interior to Ω. Furthermore the support of θ Γ i is a neighborhood of Γ i . The energy of the local mode can be evaluated by G θ Γ i .

The approximation of the energies are plotted on figure 2. One can observe the accurate approximation by G θ for T large enough (in fact twice the time necessary to a wave for travelling in the largest dimension of the structure).

The control method

Let us consider that active actuators have been displayed in the soft media and aim at reducing the energy of the local eigenmodes which can be responsible of a damage mechanism because they imply large stresses near the interface Γ i . Let us denote by u = (u i , u 0 ) a control function which acts on Γ i and Γ 0 respectively, such that the the new wave equation is:

                   find a function y(x, t), where (x, t) ∈ Ω×]0, T [, ÿ -div(c 2 ∇y) = u i δ Γ i in Ω×]0, T [, y = u 0 on Γ 0 ×]0, T [, y(x, 0) = y 0 (x) and ẏ(x, 0) = y 1 (x) in Ω, (17) 
where δ Γ i is the Dirac distribution connected to Γ i . In otherwords, the interface conditions on Γ i ×]0, T [ are ([ . ] is the jump across Γ i ):

[y] = 0 and [c 2 ∂y ∂ν ] = u i .

Let us set for any ε > 0:

J ε (u) = G θ + ε 2 [ T 0 Γ i u 2 i + T 0 Γ 0 u 2 0 ] T → ∞ E + ε 2 [ T 0 Γ i u 2 i + T 0 Γ 0 u 2 0 ]. (18) 
where Λ θ is computed from y solution of (17). The optimality condition can be written using the adjoint state function p solution of:

                                   find p(x, t), where (x, t) ∈ Ω×]0, T [, p -div(c 2 ∇p) = - 1 T {ÿdiv(θ) + div[c 2 ∇ydiv(θ)] -2c 2 div(Dθ s .∇y) +2[c 2 + -c 2 -](Dθ s τ, ν) ∂y ∂s δ Γ i } in Ω×]0, T [, p = 0 on Γ 0 ×]0, T [, p(x, T ) = 1 T ∇y(T ).θ and ṗ(x, T ) = 1 T ∇ ẏ(T ).θ in Ω. (19) 
The condition is then:

εu i + p = 0 on Γ i ×]0, T [ and εu 0 -c 2 + ∂p ∂ν = 0 on Γ 0 ×]0, T [. (20) 
A first strategy consists in solving the linear system (20)-( 17)-( 19). The best way is certainly to use a conjugate gradient algorithm based on a minimization of J ε the gradient of which with respect to u being:

(εu i + p, εu 0 -c 2 + ∂p ∂ν
). But this method can be expensive as far as complex structures are considered and some simplifications can be very interesting in order to derive a simple and cheap method. First of all, let us note that for T large enough, the expression of Λ θ can be replaced by the energy (as far as there is no other excitation than the initial conditions). Hence, one can set the following control model:

min v J ε E (v) = 1 2 { Ω ẏ(T ) 2 + Ω c 2 |∇y(T )| 2 + ε T 0 [ Γ 0 u 2 0 + Γ i u 2 i ]}. (21) 
The gradient of J θ E can be formulated using the adjoint state p solution of: 

           find p(x,
∀t ∈]0, T [: εu 0 -c 2 + ∂p ∂ν = 0 on Γ i , εu i + p = 0 on Γ 0 . ( 23 
)
But here again the system to be solved is complex and some simplifications are required in order to obtain an operational method.

4.1 The asymptotic method based on ε → 0 in (22)

Let set a priori:    y = y 0 + εy 1 + ε 2 y 2 + . . . , p = p 0 + εp 1 + ε 2 p 2 + . . . , u = u 0 + εu 1 + ε 2 u 2 + . . . .

Introducing these expressions in ( 23)-( 17)-( 22) and by identifying the terms of same power in ε, one obtains [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF], that p 0 = 0, then that y 0 (T ) = ẏ0 (T ) = 0 and the limit control u 0 is defined as follows. Let us set Φ = (Φ 0 , Φ 1 ) (respectively δΦ = (δΦ 0 , δΦ 1 )) a couple of functions defined on the open set Ω. Let us define p 1 (respectively δp 1 ) as the solution of:

                   find p 1 (x, t), where (x, t) ∈ Ω×]0, T [, p1 -div(c 2 ∇p 1 ) = 0, p 1 = 0 on Γ 0 ×]0, T [, p 1 (x, 0) = Φ 0 (x)(resp.δΦ 0 ) and ṗ1 (x, 0) = Φ 1 (x)(resp.δΦ 1 ) in Ω. (25) 
Let us set also:

           Λ T (Φ, δΦ) = 1 T T 0 [ Γ 0 c 4 + ∂p 1 ∂ν ∂δp 1 ∂ν + Γ i p 1 δp 1 ] L T (δΦ) = 1 T Ω y 1 δΦ 0 -y 0 δΦ 1 (26) 
The following variational model has a unique solution Φ in an ad'hoc functional space

V * [2]: ∀δΦ ∈ V * , Λ T (Φ, δΦ) = L T (δΦ). (27) 
The control u 0 is then defined by:

∀t ∈]0, T [:

u 0 = c 2 + ∂p 1 ∂ν on Γ 0 and u 0 i = -p 1 on Γ i . (28) 
But even this model is not easy to implement in a real time plant. Hence another simplification can be used which is based on the assumption that T is large enough.

Asymptotic behavior of (28) when T → ∞

The corner stone of the simplification is that Λ T E when T → ∞. Thus one can replace ( 27) by (see [START_REF] Ph | Analysis and control of local waves arising in heterogeneous media[END_REF]):

Φ 1 = - y 0 T and -div(c 2 ∇Φ 0 ) = y 1 T on Ω, Φ 0 = 0 on Γ 0 . (29) 
The solution method is therefore much quicker than in (27). Furthermore, the algorithm can be applied in different ways. Let us focus on the one which seems to be the most efficient in the simulation. At the instant t n = n∆t, we measure (y 0 , y 1 ) in a close neighborhood of the interface Γ i (as far as only the control on Γ i is used). One obtains p 1 (t n ) by solving (29) and from a one step integration of (22), one gets p 1 (t n+1 ). Finally, the control at t n+1 is computed by a gradient algorithm (minimization of J ε E ):

u 0 i (t n+1 ) k+1 = u 0 i (t n+1 ) k -(u 0 i (t n+1 ) k + p 1 (t n+1 ) k ), > 0, on Γ i , (30) 
with only one iteration and u 0 i (t n+1 ) 0 = 0 ( is sized to minimize the local energy of the interface). The same thing can be done for u 0 0 if the control on Γ 0 is used (but it is not necessary for controlling the local waves). 

A numerical test

Conclusion

This paper is devoted to the analysis, the energetical characterization and the control of local waves. The situation considered occurs in multimaterials and can be at the origin of a damage mechanisms for instance in an adhesive bonded joint. Two main results have been obtained: first of all the local waves can be estimated from an energy formulation which doesn't require the explicit knowledge of these local waves. Furthermore, it involves only local informations which are energy-stable (not The evolution of the energies (asymptotic optimal control (30))

Figure 3: Evolution of the energies during the control.

pointwise quantities). The second point concerns the control of the local waves using actuators located in the vicinity of the interface between two different materials. It has been possible to derive a simple and efficient regulation loop based on a doubly asymptotic approximation (the cost of the control and the time delay at which the control should be effective). Even if more complicated structures should be analyzed, the results obtained seem to be very promising in the spirit of health monitoring of flexible structures.

Figure 2 :

 2 Figure 2: Approximation of the various energy using the G θ .

  t), where (x, t) ∈ Ω×]0, T [, p -div(c 2 ∇p) = 0 p(x, T ) = ẏ(T ) and ṗ(x, T ) = div(c 2 ∇y(T )) on Ω. i + p) and the optimality condition is:

A simple example is shown on figure 3 .

 3 It represents the evolution of the energy (local and global) measured with the true expression and with the G θ .
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