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Abstract. For an action of a group G on a set Ω, preserving a ring B of
subsets of Ω, the commutative monoid freely generated by elements [X], for

X ∈ B, subjected to the relations [∅] = 0, [gX] = [X] (for g ∈ G), and

[X t Y ] = [X] + [Y ] (where t denotes disjoint union), is called the monoid of
equidecomposability types of elements of B, with respect to G, and denoted by

Z+〈B〉//G. It is well known that Z+〈B〉//G is a conical refinement monoid. We

observe, as an easy consequence of known results, that every countable coni-
cal refinement monoid appears as Z+〈B〉//G, and we develop the underlying

algebraic theory, discussing in detail the quotients of refinement monoids by

special sorts of congruences called V-congruences.
Having in mind representation problems in nonstable K-theory of rings

and operator algebras, we are naturally led to type monoids of Boolean inverse

semigroups. Observing that those monoids are identical to monoids of equi-
decomposability types, and formally similar to those appearing in nonstable

K-theory of von Neumann regular rings, we investigate various similarities and
differences between those theories.

In the process, we prove that Boolean inverse semigroups form a congru-

ence-permutable variety in the sense of universal algebra. We deduce from this
that they encode a large number of embedding problems of (not necessarily

Boolean) inverse semigroups into involutary rings and C*-algebras.
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CHAPTER 1

Background

1-1. Introduction

The present work is an outgrowth of a few lines scribbled by the author on a
result, obtained in Ara and Exel (cf. [7, Theorem 7.11]), about monoids of equi-
decomposability types. Due to many ramifications to other topics, more came out
than originally expected.

1-1.1. First short motivation. Let G be a group acting on a set Ω, and let B
be a ring of subsets of Ω (viz., a nonempty set of subsets of Ω, closed under finite
union and set difference). The monoid of G-equidecomposability types of elements
of B, denoted by Z+〈B〉//G (explanations about that notation will follow), is defined
as the commutative monoid defined by generators [a]G, where a ∈ B, and relations
[∅]G = 0, [ga]G = [a]G, and [a t b]G = [a]G + [b]G, where t denotes disjoint union.

A large part of the present work arises from the question asking which monoids
can be represented as monoids of equidecomposability types, see for example Kerr
[64, Question 3.10], Kerr and Nowak [65], Rørdam and Sierakowski [93, p. 285].
A partial result in that direction, due to Ara and Exel (cf. [7, Theorem 7.11]),
states that every finitely generated conical commutative monoid embeds into the
equidecomposability types monoid of a Boolean algebra under a free group action.
We prove a stronger result, namely:

Every countable1 conical refinement monoid is isomorphic to
some Z+〈B〉//G.

(The requirements, that G is free and its action is free, both come for free: just
replace G by any free group preimage F of G, and let any element of F act as its
image in G; then replace Ω by Ω×F , so the action of F becomes free.) This result,
which we state in Theorem 4-8.9 (in a different, but equivalent, form), turns out to
be an easy consequence of known results, mostly by Hans Dobbertin. Nonetheless,
this turns out to be only the tip of the iceberg. The present work is mostly devoted
to show what lies underneath.

1-1.2. Second short motivation. It is known since Tarski [103] that in the
context of Section 1-1.1 above, the assumption, that G be exponentially bounded,
implies that the monoid Z+〈B〉//G satisfies the monoid implication2 x + z = y + 2z
⇒ x = y + z (such commutative monoids are nowadays called strongly separative).

Alexander Pruss raised on http://mathoverflow.net/questions/140693 the
question whether the supramenability of G was sufficient, and this in the context

1Throughout this work, “countable” will always mean “at most countable”.
2We will always write (syntactical) objects in sans serif fonts, such as x, y, z, p, . . . while keep-

ing the notation x, y, z, p, . . . for the objects that they interpret, denizens of a given mathematical

structure.
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6 1. BACKGROUND

where B is a powerset algebra. By invoking a measure-theoretical result established
in Armstrong [15, Proposition 1.7], Pruss obtained there a positive answer.

However, a direct attempt at extending Pruss’ argument to arbitrary Boolean
rings B (and using the results of Moreira Dos Santos [78] instead of Armstrong’s)
could not lead us further than proving that a+ c = b+ 2c implies that a and b+ c
are equivalent modulo the least congruence of Z+〈B〉//G with separative quotient.

In this work we solve completely the extended form of Pruss’ question (cf.
Theorem 5-3.8). Once again, this is only the tip of the iceberg.

In view of Wagon’s question, whether every supramenable group is exponen-
tially bounded, Theorem 5-3.8 seems to be in danger of getting some day stripped of
its content by Theorem 5-3.6 (or even Tarski’s [103, Theorem 16.10]). On the other
hand, the general belief seeming to be currently in favor of a negative solution to
Wagon’s question (see, in particular, Examples 71 and 74 in Ceccherini-Silberstein,
Grigorchuk, and de la Harpe [25]), it is plausible that the inclusion in the present
work of Theorem 5-3.8 is a reasonable anticipation.

1-1.3. Third (not so short) motivation. The Murray - von Neumann
equivalence classes of square matrices over a ring R form a commutative mon-
oid V(R), encoding the nonstable K-theory of R (cf. Subsection 1-2.4). The prob-
lem of which monoids appear as V(R), for various types of rings R, has been, for
decades, an active field of research. For example, every conical commutative mon-
oid with order-unit is isomorphic to V(R) for some unital hereditary ring R: this is
proved in Theorems 6.2 and 6.4 of Bergman [19] for the finitely generated, unital
case, and in Bergman and Dicks [20, page 315] for the general, unital case. The
general, non-unital case is proved in Ara and Goodearl [9, Proposition 4.4].

The problem above, restricted to various classes of rings, yields fascinating open
problems, especially for rings that are either regular (in von Neumann’s sense3),
or exchange rings, or C*-algebras of real rank zero. The problem, as to whether
every conical conical refinement monoid appears as V(R) for a regular ring R, first
appeared in print in Goodearl [48]. Counterexamples, in any cardinality beyond ℵ2,
were constructed in Wehrung [117]. The cases of cardinality either countable or ℵ1

are still open. For an interesting survey about the regular case, see Ara [6].
The intuition underlying the arguments involved in the above-mentioned paper

was very much relying on the concept of equidecomposability briefly discussed in
Subsections 1-1.1 and 1-1.2 above, laced with some basic infinite combinatorics. A
crucial concept used there was the one of a measure. Here, measures are finitely
additive measures, defined on Boolean algebras, with values in commutative mon-
oids.

The class of measures relevant to our matters, introduced in Dobbertin [32], are
called V-measures. Elements of a countable Boolean algebra, with the same mea-
sure, are related by a measure-preserving partial automorphism. The semigroups
of partial automorphisms thus considered are inverse semigroups, as opposed to
groups. In addition, those inverse semigroups are closed under finite orthogonal
join (which, for partial functions, coincides with the least common extension). Such
semigroups, called Boolean inverse semigroups, have been over the last few decades
an active topic of research, see for example Exel [39], Lawson [69, 70], Lawson
and Lenz [71]. By definition, an inverse semigroup S with zero is Boolean, if its

3A ring R is regular if its multiplicative semigroup is regular, that is, for all x ∈ R there
exists y ∈ R such that x = xyx.
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semilattice of idempotents is (generalized) Boolean and if S has finite orthogonal
joins.

1-1.4. A statement of purpose. Various experiments, about the questions
raised in Subsections 1-1.1–1-1.3, suggested that a number of problems, pertain-
ing to those questions, could be successfully handled via an appropriate blend of
Tarski’s ideas (about monoids of equidecomposability types), Dobbertin’s ideas
(about V-measures), and a more ring-theoretical / universal algebraic approach to
Boolean inverse semigroups, thus giving rise to an algebraic theory of equidecom-
posability types semigroups.

The purpose of the present work is to consolidate that framework. We are
dealing with refinement monoids, that is, commutative monoids satisfying the re-
finement axiom, stating that any equation of the form a0+a1 = b0+b1 has a common
refinement (cf. Section 1-4). A congruence relation Γ on a refinement monoid is a
V-congruence (cf. Section 2-6) if for any relation of the form a0 + a1 Γ b, there is a
decomposition b = b0 + b1 with each ai Γ bi.

The main focus of attention, of the present work, is the study of commutative
monoids of the form M/Γ, where M and Γ are easily described.

Two fundamental examples, of that situation, are the following:

(1) Every ring B of subsets of a set Ω, closed under the action of a group G, gives
rise to a commutative monoid Z+〈B〉, which turns out to be the positive cone
of an Abelian lattice-ordered group (cf. Example 2-2.7), and to a V-congru-
ence 'G on Z+〈B〉 (cf. Section 2-8). The monoid of equidecomposability types
Z+〈B〉//G, alluded to in Subsection 1-1.1, is then just the quotient monoid
Z+〈B〉/'G.

(2) Every Boolean inverse semigroup S gives rise to a conical refinement monoid,
called the type monoid of S and denoted by TypS (cf. Definition 4-1.3), see
Kudryavtseva et al. [66]. If B denotes the generalized Boolean algebra of all
idempotents of S, then TypS = Z+〈B〉/D+, where D+ denotes the monoid
congruence on Z+〈B〉 generated by the restriction to B of Green’s relation D .

It will turn out that the two classes of monoids, described in (1) and (2)
above, are identical. This will be stated formally in Proposition 4-8.5. These
monoids are all conical refinement monoids (this is an important difference with
the monoids, constructed from separated graphs, introduced in Ara and Good-
earl [9]). The converse fails: by a series of counterexamples, of cardinality ℵ2,
originating in Wehrung [117], not every conical refinement monoid is isomorphic
to some Z+〈B〉//G (equivalently, TypS).

1-1.5. Levels of non-commutativity. In a scale measuring levels of non-
commutativity, of various existing mathematical theories, the position of Boolean
inverse semigroups is quite modest. Such semigroups are not necessarily commu-
tative, so they definitely stand above Boolean algebras. On the other hand, all
idempotents of an inverse semigroup commute, thus inverse semigroups stand be-
low rings in the above-mentioned hierarchy.

Nonetheless, the idea that many idempotents commute is implicit in various
works on the problematic raised in Subsection 1-1.3. This idea makes Boolean
inverse semigroups a potentially fruitful paradigm, for studying even less commu-
tative ring-theoretical questions. More specifically: we are given a ring-theoretical
question (e.g., the representation problem of countable conical refinement monoids
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as V(R) for a regular ring R); could one first get a hint, by solving a related question
for Boolean inverse semigroups?

For the example given above, the answer turns out to be yes (cf. Subsection
1-1.1).

1-1.6. A new link with universal algebra: biases. The environments of
objects, such as semigroups (inverse or not) or Boolean algebras, are traditionally
quite friendly to universal algebra and model theory. While the axioms defining
Boolean inverse semigroups are originally stated in the language of inverse semi-
groups (a binary operation for the multiplication, a unary operation for the inver-
sion, and a constant for the zero) enriched by a symbol for the binary orthogonal
join ⊕, which is a partial operation, we find in Section 3-2 an alternate axiomatiza-
tion of Boolean inverse semigroups, obtained via the introduction of two new (full)
binary operations, that we call the skew difference � and the skew addition O. We
thus obtain a variety of algebras (in the sense of universal algebra), that is, the
class of all structures satisfying a given set of identities. We call those structures
biases. Hence, Boolean inverse semigroups are definitionally equivalent to biases.
Bias homomorphisms are identical to what the existing literature often calls tight
maps. This enables us to apply directly tools of universal algebra, notably free
algebras, to Boolean inverse semigroups.

An unexpected byproduct of that study is the following: The class of all
Boolean inverse semigroups is congruence-permutable (cf. Theorem 3-4.11). This
means that any two bias congruences, of a given Boolean inverse semigroup, per-
mute. Hence, The lattice of all bias congruences, of a given Boolean inverse semi-
group, is modular4. As should be expected by the readers more familiar with uni-
versal algebra, congruence-permutability is achieved via a so-called Mal ′cev term.
This term is written out in (3-4.5). It involves the inverse semigroup operations,
together with the two new operations � and O.

The congruence-permutability result, for Boolean inverse semigroups (biases),
says that those structures are much closer to rings than to semigroups.

1-1.7. Why should our inverse semigroups be Boolean? A few experi-
ments suggest that the introduction of the type monoid, that we give in Definition
4-1.3, makes the most sense for those inverse semigroups that are, in addition,
Boolean.

Nevertheless, the real reason, why the present work insists on Booleanity, lies
in the link with ring theory. Given a ring R, endowed with an involutary anti-
automorphism x 7→ x∗ (then we say that R is an involutary ring), we are often
dealing with multiplicative subsemigroups S of R, that are also inverse semigroups,
satisfying that x∗ = x−1 for any x ∈ S. Then we say that S is an inverse semigroup
in R (Definition 6-1.4). It turns out that in such a case, S is always contained in a
larger inverse subsemigroup S in R, which turns out to be Boolean (cf. Theorem
6-1.7). This is illustrated on Figure 1-1.1. Hence, the embedding problem of an in-
verse semigroup S, in an involutary ring R, is essentially the same when considering
only Boolean inverse semigroups.

For a Boolean inverse semigroup S and a unital ring K, the tight enveloping
K-algebra K〈S〉 can be defined as the universal K-algebra, containing a copy of S

4Recall that a lattice (L,∨,∧) is modular if x ∧ (y ∨ z) = (x ∧ y) ∨ z whenever x, y, z ∈ L
with z ≤ x.
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Figure 1-1.1. Embedding an inverse semigroup into an involu-
tary ring

centralizing K, such that finite orthogonal joins in S are turned to finite sums
in K〈S〉.

We prove in Theorem 6-5.2 that for any unital involutary ring K, any (not nec-
essarily Boolean) inverse semigroup S, and any equation system Σ consisting of (for-
mal) equations of the form

⊕m
i=1 xi =

⊕n
j=1 yj , the involutary K-algebra K(S,Σ)

defined by generators S, centralizing K, and satisfying Σ, has the form K〈SΣ〉
for a suitable Boolean inverse semigroup SΣ (independent of K). This applies, in
particular, to the Leavitt path algebras LK(E), or, more generally, to the algebras
Lab
K (E,C) introduced in Ara and Exel [7]. Analogues of those results also hold for

C*-algebras (see, in particular, Theorem 6-4.11).
Unlike the methods chosen in works such as Exel, Gonçalves, and Starling [40],

Renault [91], Duncan and Paterson [35], Paterson [87], Steinberg [99, 100], we
will handle the tight enveloping algebras K〈S〉 without much mention to topology,
choosing instead to emphasize the use of the refinement property. In particular,
we will describe K〈S〉 as a quotient, defined in terms of finite subrings of the
idempotents, of the contracted semigroup algebra K[S]0 (see, in particular, Lemma
6-4.6).

1-1.8. Short descriptions of the chapters. Chapter 1 is devoted to intro-
ducing the present work, as well for motivation as for notation and terminology. We
also survey some known basic results, mainly about Boolean rings and refinement
monoids, that will be needed later.

Chapter 2 serves partly as a survey, partly as a gentle introduction to some
new results, the latter about tensor products of refinement monoids (Sections 2-5
and 2-6) and the quotient M//G of a refinement monoid M by the monoid con-
gruence generated by the action of a group G (Sections 2-8–2-10). Based on ideas
originating in Tarski [103], we give the relevant definition of a partial commutative
monoid. For those structures, the relevant morphisms will be called V-homomor-
phisms and the relevant relations V-relations. Every partial commutative monoid P
has an enveloping (full) commutative monoid Umon(P ), which behaves well with re-
spect to V-homomorphisms and V-relations. The behavior of the quotient monoid
M//G is discussed in detail, with many positive and negative results.

Boolean inverse semigroups come into play in Chapter 3. In Section 3-2, we
establish the above-mentioned identity between Boolean inverse semigroups and
the variety of all biases. In further sections, we prove that homomorphisms, con-
gruences, and ideals of biases, are identical to tight maps, tight congruences, and
tight ideals, respectively. We establish further results for known structures such as
generalized rook matrices and Exel’s regular representation, and we introduce the
crossed product of a Boolean inverse semigroup by a group action.
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Type monoids of Boolean inverse semigroups come into play in Chapter 4. We
establish that the type monoid functor preserves finite direct products and directed
colimits, and that it turns any crossed product to a quotient of the form M//G
(cf. Section 2-8). We also establish that the o-ideals of a type monoid of a Boolean
inverse semigroup S are in one-to-one correspondence with the tight ideals of S, and
that the type monoid functor behaves well with respect to quotients. Moreover, we
prove the identity between equidecomposability types monoids Z+〈B〉//G and type
monoids of Boolean inverse semigroups TypS, and we prove that every countable
conical refinement monoid has this form (Theorem 4-8.9).

In Chapter 5 we investigate type monoids of special classes of Boolean inverse
semigroups. We show, in Section 5-1, how arguments, very similar to those already
known for rings and operator algebras, make it possible to represent the positive
cone of every dimension group, of cardinality at most ℵ1, as the type monoid of a
directed colimit of finite products of finite symmetric inverse semigroups (Theorem
5-1.10). In Section 5-2, we introduce a different argument, that enables us to
represent the positive cone of every Abelian lattice-ordered group. In Section 5-3,
we introduce an inverse semigroup version of supramenability, which we call fork-
nilpotence and which implies supramenability of the type monoid. In Section 5-4,
we investigate (and, mostly, survey) the effect of various completeness assumptions
on the type monoid.

It is in Chapter 6 that we start relating Boolean inverse semigroups and
involutary (semi)rings. Any Boolean inverse semigroup S is a partial refinement
monoid, which, by virtue of the results of Section 2-1, gives rise to the enveloping
monoid Umon(S). This commutative monoid turns out to be cancellative, and it is
in fact the positive cone of a dimension group. This dimension group is, in turn,
endowed with a natural structure of involutary ring, which we denote by Z〈S〉.
Tensoring with any unital ring K, we obtain the above-mentioned tight enveloping
K-algebra K〈S〉. Leavitt path algebras, and in fact much more general types of
algebras, are a particular case of the K〈S〉 construction (Theorem 6-5.2). The tight
enveloping K-algebra functor S 7→ K〈S〉 does not turn tight embedding to ring
embeddings, but it does so in a number of significant cases. Further constructions,
arising from either involutary semirings or involutary rings, are also discussed, such
as the Boolean unitization construction (Section 6-6) and the tensor product (of
Boolean inverse semigroups) construction (Sections 6-8 and 6-9).

More detailed summaries will be given at the beginning of each chapter.
We illustrate this work with a large number of examples and counterexamples,

often showing the optimality of our results’ assumptions, sometimes solving known
open problems.

1-2. Basic concepts

1-2.1. Sets, functions, relations. We denote disjoint unions by writing t
instead of ∪. “Countable” will always mean “at most countable”. We set [n] =
{1, 2, . . . , n}, for any nonnegative integer n.

We denote by dom f (resp., rng f) the domain (resp., the range) of a function f .
Furthermore, we denote by f [X] the image under f of X ∩ dom f , and by f−1[X]
the inverse image under f of X ∩ rng f , for any set X. We also denote by f�X the
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restriction of f to X ∩ dom f . The kernel of f is

Ker f = {(x, y) ∈ (dom f)× (dom f) | f(x) = f(y)} .

We denote by Pow Ω the powerset of any set Ω. A subset B of Pow Ω is a ring of
subsets of Ω if B is closed under finite union and set-theoretical difference.

For a binary relation Γ on a set Ω, the statement (x, y) ∈ Γ, for x, y ∈ Ω, will
often be abbreviated x Γ y. If, in addition, Γ is an equivalence relation, we will
sometimes write this statement x ≡Γ y or x ≡ y (mod Γ)..

The composition of two binary relations Γ0 and Γ1 is denoted by

Γ0 ◦ Γ1 =
{

(x, z) | (∃y)
(
(x, y) ∈ Γ0 and (y, z) ∈ Γ1

)}
;

We also set Γ−1 = {(y, x) | (x, y) ∈ Γ}. For an equivalence relation Γ on a set Ω,
we will usually denote by x/Γ the equivalence class of x with respect to Γ.

Following a convention in use notably in Goodearl [46], a binary relation � on
a set E and elements a1, . . . , am, b1, . . . , bn of E, the conjunction of all relations
ai � bj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, will often be written in the form

a1

a2

...
am

�

b1
b2
...
bn

Likewise, for X,Y ⊆ E, the notation X�Y means that x�y for all (x, y) ∈ X×Y .
We write a�X (resp., X � a) instead of {a}�X (resp., X � {a}).

1-2.2. Partially ordered sets (posets). For subsets X and Y in a partially
preordered set (P,≤), we will write

X ↓ Y = {x ∈ X | (∃y ∈ Y )(x ≤ y)} ,
X ↑ Y = {x ∈ X | (∃y ∈ Y )(x ≥ y)} ,

and we will say that X is a lower subset of P (resp., an upper subset of P ) if
X = P ↓ X (resp., X = P ↑ X). We will also write ↓X (resp., ↑X) instead of
P ↓X (resp., P ↑X) in case P is understood, and X ↓ a (resp., X ↑ a) instead of
X ↓ {a} (resp., X ↑ {a}) for a ∈ P . The least element (resp., largest element) of P
will usually be denoted by 0P (resp., 1P ) if it exists. An atom of P is a minimal
element of P \ {0P }. We denote by AtP the set of all atoms of P .

For posets P and Q, a map f : P → Q is isotone (resp., antitone) if x ≤ y
implies that f(x) ≤ f(y) (resp., f(y) ≤ f(x)) for all x, y ∈ P .

A poset P is σ-complete (resp., conditionally σ-complete) if every nonempty
countable subset of P (resp., every bounded nonempty countable subset of P ) has
a join and a meet.

1-2.3. Equidecomposability, supramenability. For an action α : G×Ω→ Ω
of a group G on a set Ω, we will often denote by αg : Ω → Ω, x 7→ gx the left
translation by an element g ∈ G. We say that two subsets X and Y of Ω are
α-equidecomposable, in symbol X 'α Y , if there are finite partitions X =

⊔n
i=1Xi

and Y =
⊔n
i=1 Yi, together with g1, . . . , gn ∈ G, such that each Yi = giXi. We say

that a subset X of Ω is α-paradoxical (cf. Wagon [108, Definition 1.1]) if there are
disjoint subsets X0 and X1 of Ω such that each Xi 'α X. Equivalently (cf. Wagon
[108, Corollary 3.6]), there is a partition X = X0 tX1 such that each Xi 'α X.
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In case the action of G is understood, we will often say “G-equidecomposa-
ble”, “G-paradoxical”, and write X 'G Y instead of “α-equidecomposable”, “α-
paradoxical”, and X 'α Y , respectively.

It will often be the case that the pieces Xi and Yi will be kept inside a given
Boolean ring B of subsets of Ω, closed under the action of G, in which case we will
say that X and Y are G-equidecomposable with pieces from B. For a commuta-
tive monoid M , a map µ : B → M is a premeasure if µ(∅) = 0 and µ(X ∪ Y ) =
µ(X) + µ(Y ) whenever X and Y are disjoint elements of B. We say that µ is
G-invariant if µ(gX) = µ(X) for all g ∈ G and all X ∈ B.

The group G is supramenable (cf. Wagon [108, Definition 12.1]) if for every
nonempty A ⊆ G, there is a G-invariant premeasure µ : PowG → [0,∞] such
that µ(A) = 1. This is equivalent to saying that no nonempty subset A of G is
paradoxical with respect to the natural left action of G on itself (cf. Wagon [108,
Chapter 12]).

For a subset S in a group G and a positive integer n, we denote by S(n) the set
of all products of n elements of S, and we define γS(n) as the cardinality of S(n).
Observing that γS(n) ≥ 1 and γS(mn) ≤ γS(m)γS(n), it follows from Fekete’s
Lemma (cf. Fekete [41, p. 233]) that the real number λ(S) = limn→∞ γS(n)1/n

exists, and 1 ≤ λ(S) ≤ cardS. Observing that λ(S) ≤ λ(S(m)) ≤ λ(S)m for every
positive integer m, it follows that if λ(S) = 1 for some finite generating subset S
of G, then λ(S) = 1 for every finite generating subset S of G.

The groupG is exponentially bounded (cf. Rosenblatt [94], see also Wagon [108,
Chapter 12]) if λ(S) = 1 for every nonempty finite subset S of G. Equivalently, for
any nonempty finite subset S of G and any real number b > 1, γS(n) < bn for all
large enough n.

Every nilpotent group is exponentially bounded, and every exponentially bound-
ed group is supramenable. There are exponentially bounded groups that are not
nilpotent, and not even with polynomial growth (cf. Grigorchuk [52]), but it is
still unknown whether every supramenable group is exponentially bounded (cf.
Wagon [108, Problem 12]). If the free semigroup with two generators embeds into
a group G, then G is not supramenable. The converse fails (cf. Ol′shanskĭı [84]).

1-2.4. Nonstable K-theory of rings. All our rings will be associative, but
not necessarily commutative or unital.

Two idempotent elements a, b in a ring R are Murray - von Neumann equiv-
alent , in symbol a ∼ b (or a ∼R b in case R needs to be specified), if there are
x, y ∈ R such that a = yx and b = xy. In that case, x and y may be taken in such
a way that x = xyx and y = yxy.

We denote by Mn(R) the ring of all n×n matrices over R, and we embed Mn(R)

into Mn+1(R) via x 7→
(
x 0
0 0

)
. Then we denote by M∞(R) the union of all Mn(R),

for n a natural number.
We denote by V(R) the set of all Murray - von Neumann equivalence classes of

idempotent elements of M∞(R) (cf. Goodearl [48, § 4] for the unital case, Ara [5,
§ 3] for the general case). We denote by [a], or [a]R in case R needs to be specified,
the Murray - von Neumann equivalence class of a matrix a. Those equivalence
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classes can be added, by setting

[a] + [b] = [a+ b] , whenever a and b are idempotent elements of M∞(R)

with ab = ba = 0 .

This addition endows V(R) with a structure of commutative monoid, which encodes
the nonstable K-theory of R.

1-3. Distributive lattices and Boolean rings

In this section we shall recall a few basic facts about the topological represen-
tation of distributive5 lattices, Boolean algebras, and Boolean rings. The material
of this section originates in Birkhoff [22], Stone [101] (notably Theorem 67 of that
paper), and Stone [102] (notably Theorem 4 of that paper). It can be found in
Grätzer [50, § 2.5].

A filter (resp., ideal) of a distributive lattice D is a nonempty upper subset
(resp., lower subset) of (D,≤) closed under nonempty finite meets (resp., joins). A
filter p of D, with p 6= D (we say that p is a proper filter), is prime if x ∨ y ∈ p
implies that either x ∈ p or y ∈ p, for all x, y ∈ D.

Denoting by Ω the set of all prime filters of D, we set Ω(a) = {p ∈ Ω | a ∈ p},
for each a ∈ D.

Proposition 1-3.1. Let D be a distributive lattice with zero. Then the assign-
ment a 7→ Ω(a) defines a zero-preserving lattice embedding from D into the powerset
algebra of Ω.

It is interesting to describe the range of the map a 7→ Ω(a) in topological terms.
Since Ω(a) ∩ Ω(b) = Ω(a ∧ b) whenever a, b ∈ D, the subsets Ω(a), where a ∈ D,
form the basis of a topology on Ω. The set Ω of all prime filters of D, endowed
with that topology, is often called the prime spectrum of D.

Theorem 1-3.2. Let D be a distributive lattice with zero. Then the prime
spectrum Ω of D is a locally compact topological space. In fact, the subsets Ω(a),
where a ∈ D, are exactly the compact open subsets of Ω.

A (not necessarily unital) ring B is Boolean if x2 = x for all x ∈ B. It follows
that B is commutative and 2x = 0 for all x ∈ B. A generalized Boolean algebra
is defined as a distributive lattice with zero, endowed with a binary operation r,
called the difference operation, satisfying the identities

0 = y ∧ (xr y) and x = (x ∧ y) ∨ (xr y) .

Generalized Boolean algebras can be identified with Boolean rings (cf. Stone [101,
Theorem 4]). The meet, the join, and the difference are then given by the rules

x ∧ y = x · y , x ∨ y = x + y + x · y , xr y = x + x · y ,

and conversely, those operations define in turn the addition and the multiplication,
via the formulas

x · y = x ∧ y , x + y = (x ∨ y)r (x ∧ y) .

5A lattice (L,∨,∧) is distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.
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While Boolean rings can be defined by the identities defining rings, together with
the single idempotent identity x2 = x, generalized Boolean algebras can be defined
by the following set of identities:

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∨ y = y ∨ x

x ∨ x = x

x ∨ 0 = x

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ y = y ∧ x

x ∧ x = x

x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x = (xr y) ∨ (x ∧ y)

0 = y ∧ (xr y) .

(1-3.1)

The natural ordering on a Boolean ring is defined by x ≤ y⇔ xy = x. A Boolean
algebra is a generalized Boolean algebra with a largest element. Boolean algebras
correspond, via the correspondence described above, to unital Boolean rings.

Remark 1-3.3. We shall mention here a point about terminology. In many
references, generalized Boolean algebras are simply called Boolean algebras, which
means that Boolean algebras are not assumed to be unital. This occurs, in particu-
lar, in the abundant already existing literature about Boolean inverse semigroups,
a topic that we will handle from Chapter 3 on. In order to allay that confusion, we
shall often use the ring terminology, thus dealing with Boolean rings (generalized
Boolean algebras) and unital Boolean rings (Boolean algebras).

A ultrafilter of a distributive lattice is a maximal proper filter. The following
result relates prime filters of a Boolean ring B with ultrafilters of the principal
ideals of B.

Lemma 1-3.4 (folklore). Let p be a filter of a Boolean ring B and let a ∈ p.
Then p is prime iff p ↓ a is a ultrafilter of B ↓ a.

The following result specializes Theorem 1-3.2 to Boolean rings.

Theorem 1-3.5. The prime spectrum of any Boolean ring is a locally compact,
Hausdorff, and zero-dimensional6 topological space.

1-4. Commutative monoids, refinement monoids

A partially preordered commutative monoid is a structure (M,+, 0,≤), where
(M,+, 0) is a commutative monoid and ≤ is a preordering on M (i.e., a reflexive,
transitive binary relation) which is compatible with the addition (i.e., x ≤ y implies
that x+ z ≤ y + z, for all x, y, z ∈M). We say that M is

6A topological space is zero-dimensional if it has a basis of clopen (i.e., simultaneously closed
and open) sets.
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• cancellative if x + z = y + z (resp., x + z ≤ y + z) implies that x = y
(resp., x ≤ y), for all x, y, z ∈M .

• m-power cancellative if mx = my implies that x = y, for all x, y ∈M .
• m-unperforated , where m is a positive integer, if mx ≤ my implies that
x ≤ y, for all x, y ∈M .

• directed if the preordered set (M,≤) is (upward) directed, that is, for all

x, y ∈M there exists z ∈M such that
x
y
≤ z.

We also say that M is power cancellative (resp., unperforated) if it is m-power
cancellative (resp., m-unperforated) for every positive integer m.

The positive cone (resp., strict positive cone) of M is M+ = {x ∈M | 0 ≤ x}
(resp., M++ = {x ∈M+ | x � 0}). We denote by Z (Q, R, C, respectively) the set
of all integers (rationals, reals, complex numbers, respectively), endowed with the
structure appropriate to the context, and we set N = Z++.

In any partially preordered commutative monoid,

a ∝ b if there is n ∈ N such that a ≤ nb ; (1-4.1)

a � b if a ∝ b and b ∝ a . (1-4.2)

An element e in a partially ordered commutative monoid M is an order-unit if
0 ≤ e and x ∝ e for every x ∈ M . We say that M is simple7 if M+ 6= {0} and
every element of M+ \ {0} is an order-unit of M .

In any commutative monoid M ,

x ≤+ y if there exists z such that y = x+ z ; (1-4.3)

x <+ y if there exists z 6= 0 such that y = x+ z . (1-4.4)

The binary relation ≤+ is a preordering on M , compatible with the addition on M .
It is usually called the algebraic preordering on M . The structure (M,+, 0,≤+)
is of course a partially preordered commutative monoid. The binary relation <+

is transitive iff M is conical , that is, x + y = 0 implies that x = y = 0, for all
x, y ∈ M . For example, the monoid V(R) (cf. Subsection 1-2.4) is conical for any
ring R.

A nonempty subset I of M is an o-ideal of M if x + y ∈ I iff {x, y} ⊆ I,
for all x, y ∈ M . We denote by M |e the o-ideal of M generated by e: that is,
M |e = {x ∈M | x ∝ e} (cf. (1-4.1)). Observe that M is simple iff it has exactly
two o-ideals, namely {0} and M .

For a submonoid N of a commutative monoid M , the binary relation ≈N
defined by

x ≈N y if (∃u, v ∈ N)(x+ u = y + v)

is a monoid congruence of M (cf. Wehrung [114, Lemma 2.8]). We write M/N
instead of M/≈N .

A pointed commutative monoid is a pair (M,u), where M is a commutative
monoid and u ∈ M . We say that u is directly finite in M , or, alternatively, that
(M,u) is directly finite, if x + u = u implies that x = 0, for all x ∈ M . We say
that M is stably finite if every element of M is directly finite.

The monoid M satisfies the refinement property, or, equivalently, M is a refine-
ment monoid , if for all positive integers m and n and all elements a1, . . . , am, b1,

7This definition is tailored to accommodate both cases of simple commutative monoids and
simple partially ordered Abelian groups.



16 1. BACKGROUND

. . . , bn of M , if
∑m
i=1 ai =

∑n
j=1 bn, then there are elements ci,j ∈M , for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, such that

ai =

n∑
j=1

ci,j whenever 1 ≤ i ≤ m, and bj =

m∑
i=1

ci,j whenever 1 ≤ j ≤ n . (1-4.5)

It is well known that it is sufficient to verify that property for m = n = 2. The
relations (1-4.5) are often recorded in the format of a refinement matrix ,

b1 b2 . . . bn

a1 c1,1 c1,2 . . . c1,n

a21 c2,1 c2,2 . . . c2,n
...

...
...

. . .
...

am cm,1 cm,2 . . . cm,n

or sometimes
bj (1 ≤ j ≤ n)

ai (1 ≤ i ≤ m) ci,j

Every refinement monoid satisfies the Riesz decomposition property , that is, when-
ever a ≤+ b1 + b2, there are a1 ≤+ b1 and a2 ≤+ b2 such that a = a1 + a2. A
classical example of a commutative monoid with Riesz decomposition but without
refinement is M = {0, 1,∞}, with 1 + 1 = 1 +∞ =∞.

The class of all ringsR such that V(R) (cf. Subsection 1-2.4) satisfies refinement
includes the so-called exchange rings (cf. Ara [5, Proposition 1.5]), thus the smaller
class of regular rings. The result for unital regular rings is stated in Goodearl [47,
Theorem 2.8].

Refinement monoids were formally introduced, independently, in Dobbertin [31]
and Grillet [53], and probably in other places as well. Their origin can be traced
back to Tarski [103].

Definition 1-4.1. For a semigroup S, we denote by St0 the semigroup ob-
tained from S by adding a new zero element 0 (i.e., x · 0 = 0 · x = 0 for all
x ∈ S ∪ {0}).

A commutative monoid M is regular if 2x ≤+ x for every x ∈M .

Whenever G is an Abelian group, both commutative monoids G and Gt0 are
refinement monoids. Moreover, the commutative monoids of the form Gt0 are
exactly the conical simple regular ones.

Example 1-4.2. A (∨, 0)-semilattice is a commutative monoid in which every
element is idempotent, endowed with its algebraic preordering, which can then be
defined by x ≤+ y iff x + y = y, and which is then a partial ordering. The binary
addition + is then the binary join with respect to the partial ordering ≤+, so we
usually denote it by ∨.

A (∨, 0)-semilattice S is distributive if the ideal lattice of S is distributive (cf.
Grätzer [50, Section II.5.1]). Equivalently, for all a, b, c ∈ S such that c ≤+ a ∨ b,
there are x ≤+ a and y ≤+ b in S such that z = x ∨ y. It is well known (and easy
to verify) that A (∨, 0)-semilattice is a refinement monoid iff it is distributive. In
particular, A lattice with zero is a refinement monoid under join iff it is distributive.

Example 1-4.3. For any partially ordered Abelian groupG, the positive coneG+

of G is a refinement monoid iff G is an interpolation group, that is, whenever ai ≤ bj
in G for all i, j ∈ {0, 1}, there exists x ∈ G such that ai ≤ x ≤ bj for all i, j ∈ {0, 1}
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(cf. Goodearl [46, Proposition 2.1]). Directed interpolation groups that are unper-
forated (i.e., mx ≥ 0 implies x ≥ 0, whenever n ∈ N) are called dimension groups
(cf. Goodearl [46, Chapter 3]). Every Abelian lattice-ordered group is a dimension
group. A partially ordered Abelian group is simplicial it is it isomorphic to Zn,
endowed with its componentwise ordering, for some n ∈ Z+. A simplicial monoid
is the positive cone of a simplicial group. It is well known (cf. Grillet [54] or Effros,
Handelman, and Shen [37]) that the dimension groups are exactly the directed
colimits of simplicial groups.

A partially ordered Abelian group G is discrete if G+ = {0}.
For elements a and b in a partially ordered Abelian group G, we define

a� b if b− a is an order-unit of G , (1-4.6)

a� b if either a = b or a� b . (1-4.7)

The binary relation� is a partial ordering on G, and it endows G with a structure
of partially ordered Abelian group. We will denote Gs = (G,�). This partially
ordered Abelian group is either discrete or simple. In fact, (G,≤) is either discrete
or simple iff G = Gs, that is, the orderings ≤ and � are identical. Hence, the
simple partially ordered Abelian groups are exactly the non-discrete ones of the
form (G,�).

Lemma 1-4.4. Let M be a refinement monoid. Then the set of all order-units
of M is downward directed.

Proof. Let a and b be order-units of M . Since a � b and M is a refine-
ment monoid, it follows from Wehrung [115, Corollary 3.2] that there are finite
sets I and J , together with elements ai (i ∈ I) and bj (j ∈ J) of M such that
a =

∑
i∈I ai, b =

∑
j∈J bj , and {ai | i ∈ I} = {bj | j ∈ J}. Fix a repetition-free

enumeration (ck | k < n) of that set, and set c =
∑
k<n ck. Then c ≤+ a

b
. Since

every ai is equal to some ck, we get a ∝ c, so c is an order-unit of M . �

Proposition 1-4.5. The following statements hold, for any interpolation group G:

(1) Gs is an interpolation group iff either G ∼= Z or every order-unit of G is the
sum of two order-units of G.

(2) If G is a dimension group and every order-unit of G is the sum of two order-
units of G, then Gs is a dimension group.

Proof. (1). First observe that Zs = Z is a dimension group. Suppose now that
every order-unit of G is the sum of two order-units of G and let a0, a1, b0, b1 ∈ (Gs)+

such that a0 + a1 = b0 + b1. We must find a refinement for that equation. Suppose
first that one of the ai or bj is zero. We may assume that a0 = 0. A refinement is
then provided by the matrix

b0 b1

a0 = 0 0 0

a1 b0 b1

Suppose now that all ai, bj are order-units. By applying Lemma 1-4.4 to the re-
finement monoid G+, we get an order-unit e such that e ≤ ai and e ≤ bi for all
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i ∈ {0, 1}. By assumption, e = e0 + e1 for order-units e0 and e1 of G. Since G+ is
a refinement monoid, there is a refinement matrix of the form

b0 − e b1 − e

a0 − e c0,0 c0,1

a1 − e c1,0 c1,1

in G+ .

Therefore, we get the following refinement matrix, whose entries are all order-units:

b0 b1

a0 c0,0 + e0 c0,1 + e1

a1 c1,0 + e1 c1,1 + e0

in (Gs)+ .

Hence Gs is an interpolation group.
Suppose, conversely, that Gs is an interpolation group and G 6∼= Z. We must

prove that any order-unit e ofG is a sum of two order-units. SinceG is noncyclic and
by Goodearl [46, Lemma 14.5], there are a, b ∈ G++ such that e = a+ b. Suppose,
towards a contradiction, that e is not a sum of two-order-units of G. Since (Gs)+ has
refinement and e, e+a, and e+b are all order-units with (e+a)+(e+b) = e+e+e,
there is a refinement matrix of the form

e e e

e+ a a0 a1 a2

e+ b b0 b1 b2

in (Gs)+ .

For each i < 3, since e = ai+bi with 0�ai
bi

and e is not the sum of two order-units,

we obtain that either ai = 0 or bi = 0. It follows that there are distinct indices i
and j such that either ai = aj = 0 or bi = bj = 0. We may thus assume that
a0 = a1 = 0. It follows that b0 = b1 = e, so e+ b = b0 + b1 + b2 = 2e+ b2, and so
b = e+ b2 ≥ e. Since b ≤ e, it follows that b = e, thus a = 0, a contradiction.

(2). By (1), it suffices to prove that Gs is unperforated. This follows trivially
from the unperforation of G. �

1-5. Weak comparability and strict unperforation

Weak comparability is a monoid-theoretical concept, introduced in Ara and
Pardo [14]. Although it seems rather weak at the first sight, it turns out that
under certain conditions, it implies cancellativity.

Definition 1-5.1. For a commutative monoid M , we set

comp(a : b) =
{
k ∈ N | (∀x ∈M)(kx ≤+ b⇒ x ≤+ a

}
, for all a, b ∈M .

(Observe that comp(a : b) is either empty, or of the form N ↑ k for some k ∈ N.)
The weak comparability set of M is defined as

I = {e ∈M | (∀y ∈M \ {0})(comp(y : e) 6= ∅)} .

An element e ∈ M has finite index if there is k ∈ Z+ such that (k + 1)x ≤+ e ⇒
x ≤+ 0 for every x ∈M . Such an integer k is called an index of e.
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The notation comp(a : b) is designed in such a way that the assignment (a, b) 7→
comp(a : b) is isotone in a and antitone in b.

Lemma 1-5.2. Let M be a commutative monoid. If M is not conical, then
the weak comparability set of M consists exactly of those elements of M with finite
index.

Proof. There are nonzero a, b ∈M such that 0 = a+ b. Let e be an element
in the weak comparability set of M . From a 6= 0 it follows that comp(a : e) is
nonempty; pick k in that set. Every x ∈ M such that kx ≤+ e satisfies x ≤+ a,
thus x ≤+ 0. Hence e has finite index. The converse statement, that every element
with finite index belongs to the weak comparability set, is trivial. �

Lemma 1-5.3. Let M be a refinement monoid. Then the set F of all elements
of M with finite index is an o-ideal of M .

Proof. It is trivial that F is a lower subset of M . Now let a, b ∈ F and
let k − 1 be a common index of both a and b. Let x ∈M such that 2kx ≤+ a+ b.
By Wehrung [112, Lemma 2.3], there is a decomposition x = u + v such that
ku ≤+ a and kv ≤+ b. It follows that u, v ≤+ 0, so x ≤+ 0. Therefore, 2k− 1 is an
index of a+ b. �

Lemma 1-5.4. Let M be a refinement monoid. Then the weak comparability
set C of M is an o-ideal of M .

Proof. It is trivial that C is a lower subset of M , so it suffices to prove that
a + b ∈ C whenever a, b ∈ C. Let y ∈ M \ {0}, we must prove that the set
comp(y : a+ b) is nonempty. We separate cases.

Case 1. 2t ≤+ y for some t ∈M \ {0}. Pick k ∈ comp(t : a) ∩ comp(t : b) and let
x ∈ M such that 2kx ≤+ a + b. By Wehrung [112, Lemma 2.3], there
is a decomposition x = u + v such that ku ≤+ a and kv ≤+ b. From
k ∈ comp(t : a) and k ∈ comp(t : b) it follows that u ≤+ t and v ≤+ t,
respectively. Hence, x ≤+ 2t ≤+ y. Therefore, 2k ∈ comp(y : a+ b).

Case 2. 2t ≤+ y implies that t = 0, for all t ∈ M . Let k be an element of
comp(y : a) ∩ comp(y : b) and let x ∈ M such that 4kx ≤+ a + b. By
Wehrung [112, Lemma 2.3], there is a decomposition x = u+v such that
2ku ≤+ a and 2kv ≤+ b. From k ∈ comp(y : a) and k ∈ comp(y : b)
it follows that 2u ≤+ y and 2v ≤+ y, respectively. By assumption, it
follows that u = v = 0, whence x = 0. Therefore, 4k ∈ comp(y : a+ b).

In any case, comp(y : a+ b) is nonempty. �

By virtue of Lemma 1-5.3, the weak comparability set of a refinement monoid
will often be called its weak comparability ideal.

Accordingly, we set the following definition.

Definition 1-5.5. A commutative monoid M satisfies weak comparability if
its weak comparability set is M itself.

The definition of weak comparability of a pointed monoid (M,u) introduced in
Ara and Pardo [14] is equivalent to saying that u belongs to the weak comparability
set of M . Hence, by virtue of Lemma 1-5.4, if M is a simple refinement monoid and
u ∈M \ {0}, then M satisfies weak comparability (in the sense of Definition 1-5.5)
iff (M,u) satisfies weak comparability (in the sense of Ara and Pardo [14]).
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Simple commutative monoids are particularly interesting in the conical, stably
finite case. The other cases are taken care of by the following easy description.

Proposition 1-5.6. The following statements hold, for any simple commuta-
tive monoid M :

(1) If M is not conical, then M is an Abelian group.
(2) If M is not stably finite, then M is regular. In particular, 0 is the only directly

finite element of M .

Proof. (1). Let a, b ∈M such that 0 = a+b. Since M is simple, every x ∈M
satisfies x ∝ a, thus x ≤+ 0, that is, x has an additive inverse.

(2). Let a, b ∈M with a+ b = b and a 6= 0. Since M is simple, there is m ∈ N
such that b ≤+ ma. Hence 2b ≤+ ma + b = b, so there exists h ∈ M such that
b = 2b + h. It follows that the element e = b + h is idempotent. Since a + b = b
and b ≤+ e, we get a+ e = e. In particular, e 6= 0, thus M is not a group. By (1),
it follows that M is conical. Since M is simple, x � e for all x ∈ M \ {0}, thus,
since e = 2e, we get 2x ≤+ x. �

The following definition is stated, in the language of nonstable K-theory of
rings, in Blackadar [23]. Our statement involves the binary relation <+ introduced
in (1-4.4).

Definition 1-5.7. Let M be a commutative monoid and let m be a positive
integer. We say that M is strictly m-unperforated if mx <+ my implies that
x <+ y, for all x, y ∈M .

Proposition 1-5.8. Let M be a simple conical refinement monoid and let m
be an integer with m ≥ 2. Then M satisfies weak comparability iff it is strictly
m-unperforated.

Proof. If M is not stably finite, then, since M is conical and by Proposition
1-5.6, M = Gt0 for some Abelian group G. It follows easily that M has weak
comparability and is strictly unperforated.

Suppose from now on that M is both conical and stably finite. If M satisfies
weak comparability, then, by Ara and Pardo [14, Corollary 1.8], it is cancellative, so
it is the positive cone of some interpolation group. By Ara et al. [12, Theorem 4.2],
it follows that M is strictly unperforated.

Suppose, conversely, that M is strictly m-unperforated. We argue as in the
proof of Ara et al. [12, Theorem 4.2]. Given e, y ∈ M \ {0}, we must prove that
comp(y : e) 6= ∅. Since M is simple, there is k ∈ N such that e ≤+ (mk − 1)y. Let
x ∈ M such that mkx ≤+ e. Then mkx ≤+ (mk − 1)y <+ mky, thus, since M is
conical, mkx <+ mky. Since M is strictly m-unperforated, it follows that x <+ y.
Therefore, mk ∈ comp(y : e), so e belongs to the weak comparability ideal of M . �



CHAPTER 2

Partial commutative monoids

Many constructions of commutative monoids start with a set P , endowed with
a partial addition ⊕. The partial structure (P,⊕) is then extended to a full com-
mutative monoid, which works then as the “enveloping monoid of P”. Although
this process has been mostly studied in case P satisfies the refinement axiom (this
originates in Tarski [103]), the initial part of the work does not require that axiom.

Section 2-1 deals mainly with the extension process of a partial commutative
monoid P to its enveloping (full) commutative monoid, denoted by Umon(P ). This
subject is pursued in Section 2-2, which deals with the special case of refinement
monoids. Section 2-3 states some material about so-called multiple-free partial
refinement monoids. Section 2-4 establishes some material about the important
concept of V-relation.

We claim no originality for most results of Sections 2-1–2-4, which are often
known in some form. However, in the few cases where well-defined bibliographical
sources could be found, those were not necessarily easily applicable to our context,
so we felt that precise formulations were required.

Section 2-5 introduces some material about tensor products of commutative
monoids, extending some of the work of Wehrung [114]. Section 2-6 deals with
tensor products of V-relations. The material about tensor products of commuta-
tive monoids will be applied to Boolean inverse semigroups in Chapter 6.

Section 2-7 gives a few sufficient conditions, for certain cancellativity properties
of partial commutative monoids, to be transferrable from a given conical partial re-
finement monoid P to its enveloping monoid Umon(P ).

Section 2-8 introduces, for a group G acting by automorphisms on a com-
mutative monoid M , the range M//G of the universal G-invariant measure on M .
Section 2-9 initiates the study of the cancellativity properties that can be transferred
from M to M//G. Section 2-10 illustrates the difficulties of such “cancellativity
transfer” results, notably with a class of counterexamples.

Highlights of Chapter 2.

• Every partial commutative monoid P is a lower interval in its enveloping
monoid Umon(P ) (Proposition 2-1.8).
• The enveloping monoid of a partial refinement monoid is a refinement

monoid (Theorem 2-2.3).
• Umon(P )/Umon(Γ) ∼= Umon(P/Γ), whenever Γ is an additive V-equivalence

on a partial refinement monoid P (Theorem 2-4.6).
• The tensor product of two conical V-congruences, on conical commuta-

tive monoids, is a conical V-congruence (Corollary 2-6.4).

21
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• If a finite group G acts on an Abelian lattice-ordered group M , then
M+//G is the positive cone of an Abelian lattice-ordered group (Theorem
2-9.4).

• A dimension group M , together with an involutive automorphism σ, such
that the monoid M+//σ is not cancellative (Example 2-10.8).

• A dimension group with an involutive automorphism whose fixpoint set
is not an interpolation group (Example 2-10.12). This solves Problem 31
in Goodearl [46].

2-1. The enveloping monoid of a partial commutative monoid

In this section we shall describe how to universally embed a partial com-
mutative monoid (as introduced shortly) (P,⊕, 0), into a full commutative mon-
oid Umon(P,⊕, 0), in such a way that the partial monoid is a lower subset of the
full monoid. None of the results of this section requires any refinement assumption
on P .

Definition 2-1.1. A partial commutative monoid is a structure (P,⊕, 0), where P
is a set, 0 ∈ P , and ⊕ is a partial binary operation on P satisfying the following
properties, for all x, y, z ∈ P :

(PC1) Associativity : x ⊕ (y ⊕ z) is defined iff (x ⊕ y) ⊕ z is defined, and then
the two values are equal.

(PC2) Commutativity : x ⊕ y is defined iff y ⊕ x is defined, and then the two
values are equal.

(PC3) Zero element : x⊕ 0 is defined with value x.

The algebraic preordering on P is defined by

x ≤⊕ y if (∃z)(y = x⊕ z) , for all x, y ∈ P . (2-1.1)

Recall from Section 1-4 that if P is a full monoid (as opposed to a partial monoid),
then we emphasize this point by writing ≤+ instead of ≤⊕.

Observe that if we assume the commutativity, then the associativity amounts
to verifying that u = (x⊕ y)⊕ z implies u = x⊕ (y ⊕ z).

It follows immediately from (PC1) and (PC3) that the binary relation ≤⊕ is
indeed a preordering.

Definition 2-1.2. Let M be a partial commutative monoid.

(1) Whenever X ⊆ M , we define X⊕ as the set of all elements of M of the
form

⊕
i<n xi, where n is a nonnegative integer and all xi ∈ P . We say

that X is
– ⊕-closed , or a partial submonoid of M , if X = X⊕,
– an o-ideal of M if it is both a partial submonoid of M and a lower

subset of P with respect to the algebraic preordering of P (this
extends the definition given in Section 1-4 for full monoids),

– a generating subset of M if M = X⊕.
(2) For partial commutative monoids P and Q, a map f : P → Q is

— conical if f−1 {0Q} = {0P };
— a homomorphism (of partial monoids) if f(0P ) = 0Q and x = x0⊕x1

implies that f(x) = f(x0)⊕ f(x1), for all x, x0, x1 ∈ P ;
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— a V-homomorphism if it is a homomorphism and for all x ∈ P and
all y0, y1 ∈ Q, if f(x) = y0 ⊕ y1, then there are x0, x1 ∈ P such that
x = x0 ⊕ x1 and each f(xi) = yi;

— a V-embedding if it is a one-to-one V-homomorphism.
(3) A lower interval of M is a nonempty lower subset P of (M,≤⊕), endowed

with the partial addition defined by

z = x⊕P y if z = x⊕M y , for all x, y, z ∈ P . (2-1.2)

(it is then straightforward to verify that (P,⊕P , 0) is also a partial com-
mutative monoid.) Equivalently, P ⊆ M and the inclusion map from P
into M is a V-embedding.

Here and at many other places, the “V” in “V-homomorphism”, “V-embed-
ding”, and so on, stands as the initial letter of “Vaught”, having in mind his the-
sis [107].

We emphasize that while lower subsets are defined for partially preordered sets,
lower intervals are defined for partial commutative monoids.

From now on, until the end of this section, let (P,⊕, 0) be a partial commutative
monoid.

Definition 2-1.3. The one point completion of P consists of the set Pt∞ =
P ∪ {∞} (for a new element ∞), endowed with the binary operation + defined by

x+∞ =∞+ x =∞ , for all x ∈ Pt∞ ,

x+ y =

{
z , if z = x⊕ y in P

∞ , otherwise
, for all x, y ∈ P .

The proof of the following result is straightforward.

Proposition 2-1.4. The one point completion Pt∞ is a commutative mon-
oid, for every partial commutative monoid P . Furthermore, P is a lower interval
of Pt∞.

Proposition 2-1.4 makes it possible to translate problems about partial monoids
to problems about full monoids. In particular, dealing with finite sums in P becomes
a triviality. Formally, finite sums can be defined as follows.

Definition 2-1.5. For a finite set I, a family (xi | i ∈ I) of elements in a partial
commutative monoid P , and x ∈ P , let x =

⊕
i∈I xi hold, if x =

∑
i∈I xi within

the one point completion Pt∞.
We say that

⊕
i∈I xi is defined if there exists x ∈ P , called the value of the

finite sum, such that x =
⊕

i∈I xi.

Note that by definition, the value of the finite sum
⊕

i∈I xi, if it exists, is
the unique value of the sum

∑
i∈I xi in the full monoid Pt∞. For example, x =⊕

i∈{0,1} xi iff x = x0 ⊕ x1. For the sake of readability, we shall often write finite

sums as x⊕ y,
⊕

i∈I xi in partial monoids, and x+ y,
∑
i∈I xi in full monoids.

As a further immediate application of Proposition 2-1.4, we get the following.

Lemma 2-1.6. The following statements hold, for every element x and every
finite family (xi | i ∈ I) of elements in a partial commutative monoid P .

(1) If
⊕

i∈I xi is defined, then
⊕

i∈J xi is defined for every J ⊆ I, and the inequality⊕
i∈J xi ≤⊕

⊕
i∈I xi holds.
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(2) Let I =
⊔
j∈J Ij. Then x =

⊕
i∈I xi iff yj =

⊕
i∈Ij xi is defined for every j ∈ J

and x =
⊕

j∈J yj.

(3) Let J be a set and let σ : J → I be a bijection. Then
⊕

i∈I xi is defined iff⊕
j∈J xσ(j) is defined, and then the two values are equal.

Denote by Fmon(X) the free commutative monoid on the set X, for any set X.
It can be realized as the additive monoid of all maps from X to Z+ with finite
support. Identifying every element x ∈ X with the characteristic function ẋ of {x},
we obtain that the elements of Fmon(X) are the finite sums of elements of X.

We shall realize the enveloping monoid of the partial commutative monoid P
as the quotient of Fmon(P ) by a certain monoid congruence. We define binary
relations $, →, and ∼ on Fmon(P ) as follows. For u, v ∈ Fmon(P ),

u $ v if u�P\{0} = v�P\{0} ,

u→ v if there are w ∈ Fmon(P ) and x, y, z ∈ P such that

z = x⊕ y , u $ w + ż , and v $ w + ẋ+ ẏ ,

u ∼ v if either u→ v or v → u .

Furthermore, we denote by ≡ the transitive closure of ∼. From u $ u+0̇ $ u+2 · 0̇
it follows that ∼ is reflexive (take x = y = 0 in the definition of →); in fact,
∼ contains $. Since ∼ is trivially symmetric, it follows that ≡ is an equivalence
relation on Fmon(P ). Moreover, → is compatible with the addition on Fmon(P )
(i.e., u → v implies u + w → v + w), hence so are ∼ and ≡. In particular, ≡ is
a monoid congruence of Fmon(P ). We denote by [u] the ≡-equivalence class of an
element u ∈ Fmon(P ) and we set εP (x) = [ẋ], for all x ∈ P . The quotient monoid
Umon(P ) = Fmon(P )/≡ is a commutative monoid, and εP is a homomorphism of
partial monoids from P to Umon(P ) (indeed, z = x ⊕ y implies that ż → ẋ + ẏ,
thus εP (z) = εP (x) + εP (y)). Since every element of Fmon(P ) is a sum of elements
of the form ẋ, the range of εP generates Umon(P ) as a monoid.

Proposition 2-1.7. The monoid Umon(P ), endowed with the homomorphism
εP : P → Umon(P ) of partial monoids, is the free commutative monoid on the partial
commutative monoid P .

Proof. We must prove that for every commutative monoid N and every ho-
momorphism f : P → N of partial monoids, there exists a unique monoid homomor-
phism f : Umon(P )→ N such that f = f ◦εP . The uniqueness follows from the fact
that the range of εP generates Umon(P ). For the existence, let ϕ : Fmon(P )→ N the
unique monoid homomorphism such that ϕ(ẋ) = f(x) for each x ∈ P . It is straight-
forward to verify that u ≡ v implies that ϕ(u) = ϕ(v), for all u, v ∈ Fmon(P ). Define
f([u]) = ϕ(u). �

By virtue of Proposition 2-1.7, we shall call Umon(P ) the enveloping monoid
of P .

The description of the enveloping monoid Umon(P ) via $, →, and ∼, given by
Proposition 2-1.7, will be applied in Example 2-7.15.

The following result shows that the map εP identifies P with a lower interval
of the enveloping monoid Umon(P ). We say that P is conical if 0 = x ⊕ y implies
x = 0, for all x, y ∈ P .

Proposition 2-1.8. The homomorphism εP is a V-embedding from P into Umon(P ).
Furthermore, if P is conical, then so is Umon(P ).
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Proof. By Proposition 2-1.7, there is a unique monoid homomorphism
ψ : Umon(P ) → Pt∞ such that ψ ◦ εP is the inclusion map from P into Pt∞.
In particular, εP is one-to-one.

Claim. εP [P ] = ψ−1[P ].

Proof of Claim. For each x ∈ P , ψ(εP (x)) = x ∈ P . Conversely, let
x ∈ ψ−1[P ]. Write x =

∑
i<n εP (xi), where n ∈ Z+ and each xi ∈ P , and set

x = ψ(x). Since x =
∑
i<n xi (within Pt∞) belongs to P , we get x =

⊕
i<n xi

(within P ). Hence, x = εP
(⊕

i<n xi
)

= εP (x) belongs to εP [P ]. � Claim.

Now let z ∈ P and let x,y ∈ Umon(P ) such that εP (z) = x + y. Setting
x = ψ(x) and y = ψ(y), it follows that z = x+ y (within Pt∞), thus, since P is a
lower subset of Pt∞, x and y both belong to P . By the Claim above, x = εP (x′)
and y = εP (y′) for some x′, y′ ∈ P . Moreover, x′ = (ψ ◦ εP )(x′) = ψ(x) = x, and,
similarly, y′ = y, thus x = εP (x) and y = εP (y). This completes the proof that εP
is a V-embedding.

By the above, any x,y ∈ Umon(P ) such that x+y = 0 have the form x = εP (x)
and y = εP (y), where x, y ∈ P with x + y = 0. Hence, if P is conical, then so
is Umon(P ). �

2-2. Partial refinement monoids

The construction of the enveloping monoid Umon(P ) takes a special significance
in case P satisfies the extension, introduced in Definition 2-2.1, of the refinement
axiom originally defined for full commutative monoids in Section 1-4. In particular,
this leads to another perspective on the enveloping monoid Z+〈B〉 of a generalized
Boolean algebra B (cf. Example 2-2.7).

Definition 2-2.1. A partial commutative monoid (P,⊕, 0) is a partial refine-
ment monoid if it satisfies the refinement property, that is, for all a0, a1, b0, b1 ∈ P
with a0 ⊕ a1 = b0 ⊕ b1, there are elements ci,j ∈ P , for i, j ∈ {0, 1}, such that
ai = ci,0 ⊕ ci,1 and bi = c0,i ⊕ c1,i for every i ∈ {0, 1}. If P is a full monoid, then
we say that P is a refinement monoid.

It is an easy exercise to prove, by induction, that the statement of the definition
of a partial refinement monoid extends to finite sums of elements.

Proposition 2-2.2. Let (P,⊕, 0) be a partial refinement monoid, let m, n
be positive integers (resp., if P is conical, nonnegative integers), and let a0, . . . ,
am−1, b0, . . . , bn−1 be elements of P such that

⊕
i<m ai =

⊕
j<n bj. Then there

are elements ci,j ∈ P , for i < m and j < n, such that ai =
⊕

j<n ci,j for all i < m

and bj =
⊕

i<m ci,j for all j < n.

We keep for partial refinement monoids the refinement matrix notation intro-
duced in Section 1-4.

Although Proposition 2-1.4 is generally helpful in proofs of statements like
Proposition 2-2.2, this help cannot be pushed too far. For example, for the partial
commutative monoid P = {0, 1}, with 1 ⊕ 1 undefined, the one point completion
Pt∞ = {0, 1,∞} does not satisfy refinement (e.g., there is no refinement for the
equation 1 + 1 = 1 +∞). As we shall see shortly, this problem does not occur with
the enveloping monoid construction Umon(P ).
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For a partial commutative monoid P , it follows from Proposition 2-1.8 that
the canonical homomorphism εP : P → Umon(P ) identifies P with a lower interval
of Umon(P ). Since Umon(P ) is generated by the range of εP , it follows that the
elements of Umon(P ) are exactly the finite sums of elements of P . Furthermore, it
follows from Proposition 2-1.7 that for finite sequences (ai | i < m) and (bj | j < n)
of elements of P ,∑

i<m

ai =
∑
j<n

bj in Umon(P ) ⇐⇒
∑
i<m

ȧi ≡
∑
j<n

ḃj in Fmon(P ) ,

where ≡ is the monoid congruence of Fmon(P ) introduced in Section 2-1. Our next
result gives a convenient description of ≡ in case P is a partial refinement monoid.
The techniques underlying the proof of that result originate in Tarski [103], and
they are nowadays well understood. They are pursued, in particular, in Wehrung
[115, Chapter 4].

Theorem 2-2.3. Let (P,⊕, 0) be a partial refinement monoid and let (ai | i < m)
and (bj | j < n) be finite sequences of elements of P , with m,n > 0 (or just m,n ≥ 0
in case P is conical). Then

∑
i<m ai =

∑
j<n bj in Umon(P ) iff there are ele-

ments ci,j ∈ P , for i < m and j < n, such that ai =
⊕

j<n ci,j for each i < m and

bj =
⊕

i<m ci,j for each j < n. Furthermore, Umon(P ) is a refinement monoid.

Proof. Denote by S the set of all nonempty finite sequences of elements of P .

For ~a = (ai | i < p) and ~b = (bj | j < q) in S, say that ~a ≈ ~b if there are xi,j ∈ P ,
for i < p and j < q, such that ai =

⊕
j<q xi,j for all i < p and bj =

⊕
i<p xi,j for all

j < q. Now let ~c = (ck | k < r) in S and suppose that ~a ≈ ~b, via elements xi,j ∈ P ,

and ~b ≈ ~c, via elements yj,k ∈ P . For each j < q, since bj =
⊕

i<p xi,j =
⊕

k<r yj,k
and by Proposition 2-2.2, there are vi,j,k ∈ P , for i < p and k < r, such that
xi,j =

⊕
k<r vi,j,k for each i < p and yj,k =

⊕
i<p vi,j,k for each k < r. Therefore, we

obtain that ai =
⊕

k<r zi,k for each i < p and ck =
⊕

i<p zi,k for each k < r, where

zi,k =
⊕

j<q vi,j,k, and so ~a ≈ ~c. It is obvious that ≈ is reflexive and symmetric,
thus it is an equivalence relation on S. Further, it is obvious that ≈ is compatible

with concatenation of finite sequences, and that ~a ≈ ~b whenever ~a and~b are obtained
from one another by a permutation. Therefore, ≈ is a semigroup congruence of S,

with commutative quotient M . Actually, ~a ≈ ~b whenever ~b is obtained from ~a by
concatenating the one-element sequence (0), hence the ≈-equivalence class of (0) is
the neutral element of M , which is thus a commutative monoid.

The map f : P → M that sends every x ∈ P to the ≈-equivalence class of (x)
is a homomorphism of partial monoids, thus, by Proposition 2-1.7, f extends to a
unique monoid homomorphism g : Umon(P ) → M . Now let ~a = (ai | i < m) and
~b = (bj | j < n) in S. It is trivial that ~a ≈ ~b implies that

∑
i<m ai =

∑
j<n bj

in Umon(P ). Conversely, if
∑
i<m ai =

∑
j<n bj in Umon(P ), then, applying the

homomorphism g, we obtain that
∑
i<m f(ai) =

∑
j<n f(bj) in M , that is, by

definition of the equality in M , ~a ≈ ~b. This establishes the characterization of the
equality between elements of Umon(P ).

Now let a(0), a(1), b(0), b(1) ∈ Umon(P ) such that a(0) + a(1) = b(0) + b(1). There
are nonempty finite sets I0, I1, J0, J1 such that I0 ∩ I1 = J0 ∩ J1 = ∅, together
with elements ai ∈ P , for i ∈ I0 ∪ I1, and bj ∈ P , for j ∈ J0 ∪ J1, such that
a(p) =

∑
i∈Ip ai for each p ∈ {0, 1} and b(q) =

∑
j∈Jq bj for each q ∈ {0, 1}. The
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equality a(0)+a(1) = b(0)+b(1) means that
∑
i∈I0∪I1 ai =

∑
j∈J0∪J1

bj , hence, by the
paragraph above, there are elements ci,j ∈ P , for i ∈ I0∪I1 and j ∈ J0∪J1, such that
ai =

⊕
j ci,j for each i and bj =

⊕
i ci,j for each j. Setting c(p,q) =

∑
(i,j)∈Ip×Jq ci,j ,

we obtain that a(i) = c(i,0) + c(i,1) and b(j) = c(0,j) + c(1,j), thus completing the
proof that Umon(P ) is a refinement monoid. �

Easy examples show that a partial commutative monoid P may generate more
than one full commutative monoid. However, if we require the full monoid be a
refinement monoid (which requires P be a partial refinement monoid), we are led
to the following uniqueness result.

Proposition 2-2.4. Let P be a partial refinement monoid and let M be a
refinement monoid. Let f : P → M be a homomorphism of partial monoids, and
denote by f̃ : Umon(P )→M the unique extension of f to a monoid homomorphism.

If f is a V-homomorphism (resp., a V-embedding), then so is f̃ . Furthermore, if f

is a V-embedding and the range of f generates M , then f̃ is an isomorphism.

Proof. Let f̃(c) = a+b, where c ∈ Umon(P ) and a, b ∈M . Write c =
∑
i<n ci,

where each ci ∈ P . By applying refinement to the equation
∑
i<n f(ci) = a+ b, we

obtain a refinement matrix

a b

f(ci) ai bi
within M .

Let i < n. Since f is a V-homomorphism and f(ci) = ai + bi, there is a decompo-
sition ci = xi ⊕ yi such that f(xi) = ai and f(yi) = bi. Setting x =

∑
i<n xi and

y =
∑
i<n yi, it follows that f(x) = a, f(y) = b, and c = x + y. Therefore, f̃ is a

V-homomorphism.
Suppose from now on that f is a V-embedding, and let a, b ∈ Umon(P ) such that

f(a) = f(b). Write a =
∑
i<m ai and b =

∑
j<n bj , where m,n ∈ N and all ai, bj

belong to P . Since
∑
i<m f(ai) =

∑
j<n f(bj) and M is a refinement monoid, there

are elements ci,j ∈ M , for i < m and j < n, such that each f(ai) =
∑
j<n ci,j and

each f(bj) =
∑
i<m ci,j . Since f is a V-homomorphism, there are decompositions

ai =
⊕

j<n ai,j and b =
⊕

i<m bi,j in P such that each ci,j = f(ai,j) = f(bi,j).

Since f is one-to-one, ai,j = bi,j for all i, j, so a =
∑
i,j ai,j = b, thus completing

the proof that f̃ is one-to-one.
The final statement of Proposition 2-2.4 follows trivially. �

Part of Proposition 2-2.4 can be paraphrased by stating that For every partial
refinement monoid P , the full monoid Umon(P ) is the unique refinement monoid
in which P is a generating lower interval.

Because of the universal property defining Umon(P ), every homomorphism
f : P → Q of partial commutative monoids extends, with respect to the canoni-
cal embeddings εP : P ↪→ Umon(P ) and εQ : Q ↪→ Umon(Q), to a unique monoid
homomorphism Umon(f) : Umon(P )→ Umon(Q) (i.e., Umon(f) ◦ εP = εQ ◦ f). If P
and Q both satisfy refinement and f is a V-homomorphism, more can be said.

Proposition 2-2.5. Let P and Q be partial refinement monoids and let
f : P → Q be a V-homomorphism (resp., V-embedding). Then Umon(f) is a V-
homomorphism (resp., V-embedding) from Umon(P ) into Umon(Q). Furthermore,
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if f is a V-embedding and the range of f generates Q, then Umon(f) is an isomor-
phism.

Proof. Since f and εQ are both V-homomorphisms, so is the map εQ ◦
f = Umon(f) ◦ εP . Since Umon(Q) is a refinement monoid (cf. Theorem 2-2.3)
and by Proposition 2-2.4, Umon(f) ◦ εP extends to a unique V-homomorphism
from Umon(P ) into Umon(Q), which is necessarily equal to Umon(f). If f is a
V-embedding, then so is εQ ◦ f , thus, again by Proposition 2-2.4, Umon(f) is a
V-embedding.

Suppose, finally, that the range of f generatesQ. Since εQ[Q] generates Umon(Q),
the range of εQ◦f generates Umon(Q). It follows that Umon(f) it surjective. In par-
ticular, if f is a V-embedding, then, by the above, so is Umon(f), and thus Umon(f)
is an isomorphism. �

The following easy example shows that “V-embedding” cannot be weakened to
“embedding” in the statement of Proposition 2-2.4.

Example 2-2.6. The commutative monoid M = (Z+)4 is a conical refine-
ment monoid. Setting a0 = (1, 1, 0, 0), a1 = (0, 0, 1, 1), b0 = (1, 0, 1, 0), and
b1 = (0, 1, 0, 1), the subset P = {0, a0, a1, b0, b1} is a lower subset of M . The corre-
sponding lower interval is a conical partial refinement monoid, with no non-trivial
sums (i.e., x⊕y is defined iff 0 ∈ {x, y}). By the universal property of Umon(P ) (cf.
Proposition 2-1.7), the inclusion map from P into M extends to a unique homo-
morphism f : Umon(P )→M of commutative monoids. Since P has no non-trivial
sums, a0 +Umon(P ) a1 6= b0 +Umon(P ) b1 (e.g., use Theorem 2-2.3). Nevertheless,
a0 +M a1 = b0 +M b1, that is, f(a0 +Umon(P ) a1) = f(b0 +Umon(P ) b1). Therefore,
the map f is not one-to-one.

For an analogue of Example 2-2.6 for the so-called Boolean inverse semigroups
(cf. Definition 3-1.6), see Example 6-4.1.

The following class of examples, based on Boolean rings, will be crucial.

Example 2-2.7. Let B be a Boolean ring (cf. Section 1-3). Instead of endow-
ing B with its join operation ∨ (cf. Example 1-4.2), let us endow it with its disjoint
sum operation, given by

z = x⊕ y if z = x ∨ y and x ∧ y = 0 , for all x, y, z ∈ B .

If
⊕

i<m ai =
⊕

j<n bj in B, then we get a refinement (ci,j | i < m and j < n) by

setting ci,j = ai ∧ bj . Hence, (B,⊕, 0) is a conical partial refinement monoid.
By Theorem 2-2.1, the enveloping monoid Z+〈B〉 = Umon(B,⊕, 0) is a conical

refinement monoid. We shall now outline a convenient description of that monoid,
given in Wehrung [115, Section 2.3]. Denoting by Ω the Stone space of B (cf.
Section 1-3), B can be identified with the algebra of all compact open subsets of Ω.
Then Z+〈B〉 can be represented as the additive monoid of all maps x : Ω → Z+

with finite range such that x−1 {n} ∈ B for every n > 0. The canonical map from B
into Z+〈B〉 assigns to every element of B its characteristic function.

While the description of Z+〈B〉 stated above depends on the given representa-
tion of B as an algebra of subsets, it is easy to make this representation intrinsic.
Indeed, Z+〈B〉 can be defined as the commutative monoid freely generated by gen-
erators 1a (thought of as the “characteristic function” of a), for a ∈ B, subjected
to the relations 10 = 0 and 1a∨b + 1a∧b = 1a + 1b for a, b ∈ B. It is the positive
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cone of a lattice-ordered group (cf. Example 1-4.3), that we shall naturally denote
by Z〈B〉. If B is represented as an algebra of subsets of a set Ω, then Z〈B〉 is the
additive group of all maps x : Ω → Z with finite range such that x−1 {n} ∈ B for
every n 6= 0 (we say that x is B-measurable), ordered componentwise.

Example 2-2.8. An MV-algebra (cf. Chang [26], Cignoli, d’Ottaviano, and
Mundici [28]) can be defined as a cancellative conical partial refinement monoid
with largest element e, lattice-ordered under ≤⊕, in which x⊕1 is defined iff x = 0,
for every element x. Mundici proves, in Theorems 2.5 and 3.8 of [80], that MV-
algebras are exactly the lower intervals, of positive cones of Abelian lattice-ordered
groups, with a largest element.

Hence every MV-algebra A is isomorphic to the interval [0, u], for some ele-
ment u in the positive cone of an Abelian lattice-ordered group G. It follows from
Proposition 2-2.4 that if we add the condition that u be an order-unit, then G is
unique: namely, G is the universal group of the commutative monoid Umon(A).

2-3. Disjunctive addition in a partial conical refinement monoid

For technical reasons, we will need to put some emphasis on partial commuta-
tive monoids in which all finite sums are meet-orthogonal, in the sense given by the
following definition.

Definition 2-3.1. Two elements a and b in a partial conical commutative
monoid P are meet-orthogonal , in notation a ∧ b = 0, if 0 is the only minorant of
{a, b} with respect to ≤⊕. Observe that (P,≤⊕) need not be a meet-semilattice.
For a, b, c ∈ P , let c = a � b hold if c = a ⊕ b and a ∧ b = 0. After Tarski [103,
Definition 8.16], we shall call � the disjunctive addition of P .

Proposition 2-3.2. For all elements a, b, c in a conical partial refinement
monoid P , if a∧c = b∧c = 0 and a⊕b is defined, then (a⊕b)∧c = 0. Furthermore,
(P,�, 0) is a conical partial refinement monoid.

Proof. Suppose that a ∧ c = b ∧ c = 0 and that a ⊕ b is defined, and let

x ≤⊕ a⊕ b
c

in P . By Riesz decomposition, there are u ≤⊕ a and v ≤⊕ b such that

x = u ⊕ v. From u ≤⊕ a
c

and a ∧ c = 0 it follows that u = 0. Likewise, v = 0, so

x = 0, thus proving that (a⊕ b) ∧ c = 0.
Now let a, b, c ∈ P such that the element e = (a � b) � c is defined in P . In

particular, e = (a ⊕ b) ⊕ c, thus e = a ⊕ (b ⊕ c). From (a ⊕ b) ∧ c = 0 it follows
that b ∧ c = 0, thus b ⊕ c = b � c. Furthermore, a ∧ b = a ∧ c = 0, thus, since
b ⊕ c = b � c and by the paragraph above, a ∧ (b � c) = 0, so e = a � (b � c).
Therefore, (P,�, 0) is a partial commutative monoid. It is trivially conical. Let
a0 � a1 = b0 � b1 in P . Since a0 ⊕ a1 = b0 ⊕ b1 and since P is a partial refinement
monoid, there is a refinement matrix of the form

b0 b1

a0 c0,0 c0,1

a1 c1,0 c1,1

within (P,⊕) .
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Since b0 ∧ b1 = 0, it follows from c0,0 ≤⊕ b0 and c0,1 ≤⊕ b1 that c0,0 ∧ c0,1 = 0;
whence a0 = c0,0�c0,1. Likewise, a1 = c1,0�c1,1, b0 = c0,0�c1,0, and b1 = c1,0�c1,1,
thus completing the proof that (P,�, 0) is a partial refinement monoid. �

Definition 2-3.3. We shall call (P,�, 0) the multiple-free part of (P,⊕, 0).
Furthermore, we shall say that a partial conical commutative monoid P is multiple-
free1 if c = a ⊕ b implies that a ∧ b = 0, for all a, b, c ∈ P . This means that the
partial operations ⊕ and � are identical.

The definition of the index of an element in a commutative monoid (cf. Defi-
nition 1-5.1) also applies to partial commutative monoids:

Definition 2-3.4. Let P be a partial commutative monoid. The index of an
element a ∈ P is defined as the largest n ∈ Z+ for which there is x ∈ P such that
nx ≤⊕ a and x �⊕ 0, if it exists; and ∞, otherwise. We say that a is cancellable if
a⊕ x = a⊕ y implies that x = y, for all x, y ∈ P .

The proof of the following lemma is a straightforward exercise.

Lemma 2-3.5. A partial conical commutative monoid is multiple-free iff every
element of P has index at most 1 in P .

The main connection between index and cancellativity is given by the following
lemma.

Lemma 2-3.6. Let P be a conical partial refinement monoid. Then every ele-
ment of P with finite index is cancellable.

Proof. Let a ∈ P with finite index n, and let x, y ∈ P such that a⊕x = a⊕y.
Since the proof of Wehrung [111, Lemma 1.11] obviously extends from full re-
finement monoids to partial refinement monoids, there are u, v, z ∈ P such that

x = u⊕ z, y = v ⊕ z, and
(n+ 1)u
(n+ 1)v

≤⊕ a. Since a has index n and P is conical, it

follows that u = v = 0, so x = z = y. �

As the following example shows, the assumption of conicality cannot be dropped
from the statement of Lemma 2-3.6.

Example 2-3.7. A refinement monoid M , with nonzero elements a, b ∈ M
such that a ≤+ 0, b has index 1, a+b = b, and every element of M has finite index.

Proof. Let M be the commutative monoid defined by the generators a, a′, b
subjected to the relations a + a′ = 0 and a + b = b. Then M can be realized as
Z t {mb | m ∈ N}, with a = 1 and a′ = −1, and n+mb = mb whenever n ∈ Z and
m ∈ N. It is straightforward to verify that M is a refinement monoid. Set ι(n) = 0
whenever n ∈ Z, and ι(mb) = m for each m ∈ N. Then ι is a homomorphism
from M onto Z+. In fact, ι(x) is the index of x, for any x ∈M . In particular, the
index of b is 1. �

We will need later the following lemma about elements of index at most 1.

Lemma 2-3.8. Let a and b be elements in a conical partial refinement monoid P ,
with a� b defined. If a and b are both of index at most 1, then so is a� b.

1The terminology “multiple-free” is borrowed from Tarski [103].
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Proof. Let c ∈ P such that 2c ≤⊕ a ⊕ b. Since P has refinement, there are
a′ ≤⊕ a and b′ ≤⊕ b such that 2c = a′ ⊕ b′. By Wehrung [111, Lemma 1.9] (whose
proof remains valid in partial refinement monoids), there are u, v, w ∈ P such that
a′ = 2u ⊕ w, b′ = 2v ⊕ w, and c = u ⊕ v ⊕ w. Since a′ and b′ both have index
at most 1 and P is conical, u = v = 0. From a′ ∧ b′ = 0 it follows that w = 0.
Therefore, c = 0. �

Lemma 2-3.9. The following statements hold, for any pairwise meet-orthogonal
elements a, b, c in a conical partial refinement monoid P :

(1) If a⊕ c and b⊕ c both exist, then the minorants of {a⊕ c, b⊕ c} are exactly the
minorants of c.

(2) If a⊕c and b⊕c both exist, then {a⊕ c, b⊕ c} has a majorant iff a⊕b⊕c exists,
and then the majorants of {a⊕ c, b⊕ c} are exactly the majorants of a⊕ b⊕ c.

Proof. We prove only the non-trivial containments.

(1). Let x ∈ P such that x ≤⊕ a⊕ c
b⊕ c. By Riesz decomposition in P , there are

decompositions x = u ⊕ x0 = v ⊕ x1 in P , with u ≤⊕ a, v ≤⊕ b, and
x0

x1
≤⊕ c.

By refinement and since a, b, c are pairwise meet-orthogonal, there is a refinement
matrix of the following form:

v x1

u 0 0

x0 0 y

within (P,⊕) .

Therefore, x = y ≤⊕ c.
(2). First observe that if a ⊕ b ⊕ c is defined, then it majorizes {a⊕ c, b⊕ c}.

Now let x ∈ P such that
a⊕ c
b⊕ c ≤

⊕ x. There are x0, x1 ∈ P such that x = a⊕c⊕x0 =

b ⊕ x ⊕ x1. Since a, b, c are pairwise meet-orthogonal and by Proposition 2-2.2,
there is a refinement matrix of the form

b c x1

a 0 0 a

c 0 c′ y1

x0 b y0 z

within (P,⊕) .

In particular, b ≤⊕ x0, thus, since x = a⊕ c⊕ x0, the element a⊕ b⊕ c is defined
and below x. �

The following result is, essentially, a reformulation of Tarski [103, Theorem 15.16].
We include a proof for convenience.

Proposition 2-3.10. The algebraic preordering ≤⊕ on any multiple-free coni-
cal partial commutative monoid P is antisymmetric. Furthermore, if P has refine-
ment and ≤⊕ is upward directed, then it endows P with a structure of generalized
Boolean algebra, in such a way that for any a, b ∈ P , a⊕ b exists iff a ∧ b = 0, and
then a⊕ b is the join of {a, b} in P .
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Proof. Let a, b ∈ P such that a ≤⊕ b ≤⊕ a. There are x, y ∈ P such that
b = a⊕x and a = b⊕y. It follows that a = a⊕x⊕y, thus a = a⊕2x⊕2y. Since P
is both conical and multiple-free, x = y = 0, thus a = b. This proves that ≤⊕ is
antisymmetric.

Suppose from now on that (P,≤⊕) is upward directed.

Claim 1. For any a, b ∈ P , a⊕ b exists iff a∧ b = 0, and then a⊕ b is the join
of {a, b} in P .

Proof of Claim. Since P is multiple-free, if a ⊕ b exists, then a ∧ b = 0.
Suppose, conversely, that a ∧ b = 0. Since (P,≤⊕) is upward directed, {a, b} has
a majorant in P . By Lemma 2-3.9, a ⊕ b is defined and it is the join of {a, b}
in P . � Claim 1.

Claim 2. (P,≤⊕) is a lattice with zero.

Proof of Claim. Let a, b ∈ P . Since P is upward directed, there are e ∈ P
and a′, b′ ∈ P such that e = a⊕a′ = b⊕b′. By our assumption, there is a refinement
matrix of the following form:

b b′

a c0,0 c0,1

a′ c1,0 c1,1

within (P,⊕) .

Since P is multiple-free, the ci,j are pairwise meet-orthogonal. Since ≤⊕ is an-
tisymmetric and by Lemma 2-3.9, it follows that a ∨ b = c0,0 ⊕ c0,1 ⊕ c1,0 and
a ∧ b = c0,0. � Claim 2.

For all a ≤⊕ b in P , there exists, by the definition of ≤⊕, an element c ∈ P
such that b = a ⊕ c. By Claim 1, this means that 0 = a ∧ c and b = a ∨ c. In
other words, the lattice (P,≤⊕) is sectionally complemented. Hence, in order to
conclude the proof, it suffices to prove that this lattice is distributive. We must
prove that a∧ (b∨ c) ≤ (a∧ b)∨ (a∧ c), for all a, b, c ∈ P . (The converse inequality
is trivial.) Since b ∧ c ≤⊕ b, there is b′ ∈ P such that b = (b ∧ c) ⊕ b′. Observe
that b′ ∧ c = b′ ∧ (b ∧ c) = 0 while b′ ⊕ c = b ∨ c, so we must prove the inequality
a ∧ (b′ ⊕ c) ≤ (a ∧ b′) ⊕ (a ∧ c). Since P has refinement, the left hand side x of
that inequality can be written x = v ⊕ w, for some v ≤⊕ b′ and w ≤⊕ c. Since
v ≤⊕ a ∧ b′ and w ≤⊕ a ∧ c, the desired inequality follows. �

2-4. V-relations on partial commutative monoids

Vaught relations originate in Vaught’s thesis [107], and have been much studied
since, notably by Dobbertin. Essentially, a Vaught relation is a binary relation Γ
such that any relation of the form x Γ

∑
i<n yi occurs “for a good reason”. The

following more precise definition extends Dobbertin [31, Definition 1.2] from full
commutative monoids to partial commutative monoids.

Definition 2-4.1. Let P and Q be partial commutative monoids. A binary
relation Γ ⊆ P ×Q is

— left conical if 0P Γ y implies that y = 0Q, for all y ∈ Q;
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— a left V-relation if whenever n is a positive integer, x =
⊕

i<n xi in P ,
y ∈ Q, and x Γ y, there are y0, . . . , yn−1 ∈ Q such that y =

⊕
i<n yi and

xi Γ yi for each i < n (it is sufficient to verify this for n = 2);
— right conical if Γ−1 is left conical;
— conical if it is simultaneously left and right conical;
— a right V-relation if Γ−1 is a left V-relation;
— a V-relation if it is simultaneously a left V-relation and a right V-relation;
– a V-equivalence if it is both an equivalence relation and a V-relation;

— additive if it is a partial submonoid of P × Q; that is, whenever n is a
nonnegative integer, x =

⊕
i<n xi in P , y =

⊕
i<n yi in Q, and xiΓyi for

each i < n, then xΓ y (it is sufficient to verify this for n = 0 and n = 2).

Observe that the partial submonoid Γ⊕ (cf. Definition 2-1.2) is the least ad-
ditive relation on P ×Q containing Γ. We will sometimes refer to that relation as
the additive closure of Γ in P ×Q. It is the set of all pairs (x, y) ∈ P ×Q for which
there are decompositions x =

⊕
i<n xi, y =

⊕
i<n yi, and xi Γ yi for each i < n.

Note that the V-homomorphisms, considered for full commutative monoids in
Dobbertin [31], are identical to our conical V-homomorphisms.

The proof of the following two lemmas are straightforward exercices.

Lemma 2-4.2.

(1) Any composition of V-relations is a V-relation.
(2) Any union of V-relations is a V-relation.
(3) Let P be a partial commutative monoid and let Γ ⊆ P × P . If Γ is a V-rela-

tion, then so is the equivalence closure of Γ (i.e., the least equivalence relation
containing Γ).

(4) The set of all V-equivalences on P is a complete lattice under set inclusion.

The join and the meet, of a collection (Γi | i ∈ I) of V-equivalences, in the poset
of all V-equivalences, can be evaluated as follows:

∨
i∈I Γi is the equivalence closure

of
⋃
i∈I Γi, and

∧
i∈I Γi is the join of all V-equivalences contained in all Γi (there

is always one such equivalence, namely the identity).

Lemma 2-4.3. The following statements hold, for all partial refinement mon-
oids P and Q and any Γ ⊆ P ×Q.

(1) If Γ is a V-relation, then so is the additive closure of Γ in P ×Q.
(2) If P = Q and Γ is a V-equivalence, then so is the additive closure Γ⊕ of Γ in

P × P .
(3) The set of all additive V-equivalences on P is a complete lattice under set

inclusion.

The join and the meet, of a collection (Γi | i ∈ I) of additive V-equivalences, in
the lattice of all additive V-equivalences on P , can be evaluated as follows:

∨
i∈I Γi

is the equivalence generated by
(⋃

i∈I Γi
)⊕

, and
∧
i∈I Γi is the join of all additive

V-equivalences contained in all Γi.
The following lemma says that every additive V-equivalence, on a partial com-

mutative monoid, yields a structure of partial commutative monoid on the quotient.

Lemma 2-4.4. Let P be a partial commutative monoid and let Γ ⊆ P × P be
an additive V-equivalence. Then the quotient P/Γ can be endowed with a structure
of a partial commutative monoid, with addition defined by

z = x⊕ y if (∃x ∈ x)(∃y ∈ y)(∃z ∈ z)(z = x⊕ y) . (2-4.1)
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Furthermore, the following statements hold:

(1) The canonical projection π : P � P/Γ is a V-homomorphism.
(2) If P and Γ are both conical, then so is P/Γ.
(3) If P satisfies refinement, then so does P/Γ.

Proof. We first prove that (2-4.1) defines, indeed, a partial operation on P/Γ.
We must prove that if the statements intended to mean that u = x⊕y and v = x⊕y
both hold in P/Γ, then u = v. By assumption, there are u ∈ u, v ∈ v, x0, x1 ∈ x,
and y0, y1 ∈ y such that u = x0 ⊕ y0 and v = x1 ⊕ y1. Since x0 Γ x1, y0 Γ y1, and
since Γ is additive, it follows that u Γ v; whence u = v.

Let x,y ∈ P/Γ and let z ∈ P such that π(z) = x⊕ y. Since x⊕ y is defined,
there are x′ ∈ x, y′ ∈ y, and z′ ∈ z such that z′ = x′ ⊕ y′. Since z Γ z′ = x′ ⊕ y′
and Γ is a V-relation, there is a decomposition z = x⊕ y in P such that x Γ x′ and
y Γ y′. Observe that x = π(x) and y = π(y). Once we will have proved that P/Γ
is a partial commutative monoid, this will ensure that π is a V-homomorphism.

Let x,y, z,u ∈ P/Γ and suppose that u = (x ⊕ y) ⊕ z. There are u ∈ u,
z′ ∈ x ⊕ y, and z ∈ z such that u = z′ ⊕ z. By the paragraph above, there are
x ∈ x and y ∈ y such that z′ = x⊕ y. Hence u = (x⊕ y)⊕ z. Since P is a partial
commutative monoid, it follows that u = x ⊕ (y ⊕ z). Hence u = x ⊕ (y ⊕ z).
Therefore, P/Γ is a partial commutative monoid. Item (1) follows.

The verification of (2) is straightforward.
Towards (3), suppose that P is a refinement monoid and let u = x0 ⊕ x1 =

y0 ⊕ y1 in P/Γ. Pick u ∈ u. By (1) above, there are xi ∈ xi and yi ∈ yi,
for i ∈ {0, 1}, such that u = x0 ⊕ x1 = y0 ⊕ y1. Since P satisfies refinement,
there are zi,j ∈ P , for i, j ∈ {0, 1}, such that each xi = zi,0 ⊕ zi,1 and each
yi = z0,i ⊕ z1,i. Setting zi,j = zi,j/Γ, we obtain that each xi = zi,0 ⊕ zi,1 and each
yi = z0,i ⊕ z1,i. �

The following result is a version of the First Isomorphism Theorem for V-ho-
momorphisms.

Lemma 2-4.5. Let P and Q be partial commutative monoids. Then every V-
homomorphism ϕ : P → Q induces a V-embedding from P/Kerϕ, endowed with its
canonical structure of partial commutative monoid (cf. Lemma 2-4.4), into Q.

Proof. Set θ = Kerϕ. The canonical map ψ : P/θ ↪→ Q is obviously a
one-to-one homomorphism of partial commutative monoids. Let x ∈ P/θ and let
y0, y1 ∈ Q such that ψ(x) = y0⊕y1. Picking x ∈ x, this means that ϕ(x) = y0⊕y1,
thus, since ϕ is a V-homomorphism, there is a decomposition x = x0 ⊕ x1 in P
such that each ϕ(xi) = yi. Setting xi = xi/θ, it follows that x = x0⊕x1 and each
ψ(xi) = yi. Therefore, ψ is a V-embedding. �

The following result says that the additive V-equivalences on a conical partial
refinement monoid P are essentially the same as the additive V-equivalences on
the enveloping monoid of P , and that this identification extends to the quotient
monoids.

Theorem 2-4.6. Let P be a partial refinement monoid and let Γ be an ad-
ditive V-relation on P . Then there exists a unique additive V-relation Umon(Γ)
on Umon(P ) such that Γ = Umon(Γ)∩(P ×P ). Furthermore, if Γ is a V-equivalence
on P , then the following statements hold:
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(1) Γ and Umon(Γ) are both V-equivalences on Umon(P ).
(2) Denote by π : P � P/Γ and π : Umon(P ) � Umon(P )/Umon(Γ) the canonical

projections and by εP : P ↪→ Umon(P ) the canonical V-embedding. Then there
is a unique map η : P/Γ → Umon(P )/Umon(Γ) such that η ◦ π = π ◦ εP , and
this map is a V-embedding with generating range.

(3) P/Γ and Umon(P )/Umon(Γ) both satisfy refinement. Furthermore the V-em-
bedding η induces an isomorphism Umon(P )/Umon(Γ) ∼= Umon(P/Γ).

The conclusion of Theorem 2-4.6(2) is illustrated on Figure 2-4.1.

P
π // //� _

εP

��

P/Γ
_�

η

��
Umon(P )

π
// // Umon(P )/Umon(Γ)

Figure 2-4.1. The canonical lower embedding η : P/Γ ↪→ Umon(P )/Umon(Γ)

Proof. In order to ease notation, we set M = Umon(P ). We may assume
that εP is the inclusion map from P into M .

The first part of (1) is obvious: since P is a lower interval of M and Γ is
a V-relation on P , it is also a V-relation on M . Furthermore, by Lemma 2-4.3,
the additive closure Umon(Γ) = Γ+ of Γ in M is an additive V-relation on M .
(Consistently with an earlier convention, we emphasize the fact that the addition
on M is defined everywhere, by writing Γ+ instead of Γ⊕.) Still by Lemma 2-
4.3, if Γ is a V-equivalence (on P ), then so is Γ+ (on M). It is obvious that
Γ ⊆ Γ⊕ ∩ (P × P ). Conversely, let (x, y) ∈ Γ+ ∩ (P × P ). By the definition of Γ+,
there are decompositions x =

∑
i<n xi and y =

∑
i<n yi (both within M) such that

each xi Γ yi. Since P is a lower interval of M , both relations x =
⊕

i<n xi and
y =

⊕
i<n yi hold in P . Since Γ is additive in P , it follows that x Γ y. Therefore,

Γ = Γ+ ∩ (P × P ).

Now let Γ̃ be an additive V-relation on M such that Γ = Γ̃ ∩ (P × P ). From

Γ ⊆ Γ̃ and by the additivity of Γ̃ it follows that Γ+ ⊆ Γ̃. Conversely, let (x, y) ∈ Γ̃.
Since P generates M , there exists a decomposition x =

⊕
i∈I xi where I is finite and

all xi ∈ P . Since Γ̃ is a V-relation, there exists a decomposition y =
⊕

i∈I yi where

all xiΓ̃yi. Since P generates M , each yi can be written as a sum yi =
⊕

j∈Ji yi,j ,

with Ji finite and all yi,j ∈ P . Since Γ̃ is a V-relation, each xi can be written as

a sum xi =
⊕

j∈Ji xi,j where each xi,jΓ̃yi,j . From xi ∈ P it follows that xi,j ∈ P .

Since Γ̃ ∩ (P × P ) = Γ, it follows that xi,j Γ yi,j , for all possible values of i and j.
Since x =

⊕
i∈I, j∈Ji xi,j and y =

⊕
i∈I, j∈Ji yi,j , it follows that xΓ+ y. Therefore,

Γ+ = Γ̃, thus proving the uniqueness statement on Γ+.
Suppose from now on that Γ is an additive V-equivalence on P . The homomor-

phism ϕ : P → M/Γ+, x 7→ x/Γ+ is the composite of the V-embedding P ↪→ M
and the V-homomorphism M �M/Γ+, thus it is a V-homomorphism. The state-
ment Γ = Γ+ ∩ (P × P ), proved above, means exactly that Γ is the kernel of ϕ.
By Lemma 2-4.5, ϕ induces a V-embedding η : P/Γ ↪→M/Γ+. It is trivial that the
range of η generates M/Γ+.
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Item (3) follows from Lemma 2-4.4. The conclusion that M/Γ+ ∼= Umon(P/Γ)
follows then from Proposition 2-2.4. �

Observe that in Theorem 2-4.6, for every additive V-equivalence Γ on P , the
binary relation Umon(Γ) is the unique additive V-equivalence on Umon(P ) such
that Γ = Umon(Γ) ∩ (P × P ). Hence, The assignment Γ 7→ Umon(Γ) defines an
isomorphism from the lattice of all additive V-equivalences on P onto the lattice of
all additive V-equivalences on Umon(P ).

Proposition 2-4.7. Let P be a lower interval in a partial refinement monoid Q
and let Γ be an additive V-equivalence on Q. Then the relation ΓP = Γ ∩ (P × P )
is an additive V-equivalence on P , and the assignment ϕ : x/ΓP 7→ x/Γ defines a
V-embedding from P/ΓP into Q/Γ.

Proof. It is obvious that ΓP is an additive V-equivalence on P . The map
P → Q/Γ, x 7→ x/Γ is the composite of the V-embedding P ↪→ Q and the V-homo-
morphism Q� Q/Γ, thus it is a V-homomorphism. By Lemma 2-4.5, the induced
map ϕ : x/ΓP 7→ x/Γ is a V-embedding. �

2-5. Tensor products of commutative monoids

Tensor products of commutative monoids are defined the same way as tensor
products of modules, via an obvious reformulation of the definition of a bimorphism.
Following the terminology in use in Wehrung [114], we say that for commuta-
tive monoids M , N , P , a map f : M × N → P is a bimorphism if f(x,−) is a
monoid homomorphism from N to P for each x ∈ M , and f(−, y) is a monoid
homomorphism from M to P for each y ∈ N . We say that the bimorphism f is
universal if for every commutative monoid Z and every bimorphism g : M×N → Z,
there is a unique monoid homomorphism g : P → Z such that g(x, y) = g(f(x, y))
for all (x, y) ∈M×N . For all commutative monoids M and N , there are a commu-
tative monoid P and a universal bimorphism from M ×N to P . Then P is unique
up to isomorphism, and we denote it by M⊗N . Further, the universal bimorphism
is denoted by (x, y) 7→ x⊗y (cf. Wehrung [114, § 1]). The monoid M ⊗N is called
the tensor product of M and N . This monoid is, in [114], denoted by M ⊗cm N .
We will call pure tensors the elements of the form x⊗ y, where (x, y) ∈M ×N .

Lemma 2-5.1. Let M and N be commutative monoids. If M and N are both
conical, then so is M ⊗ N . Furthermore, x ⊗ y 6= 0 whenever x ∈ M \ {0} and
y ∈ N \ {0}.

Proof. Denoting by 2 = {0, 1} the two-element semilattice, let the map
νM : M � 2 be defined by ν(x) = 0 iff x = 0. Define νN similarly. Since M
and N are both conical, νM and νN are both monoid homomorphisms. It fol-
lows that the assignment M × N → 2, (x, y) 7→ νM (x)νN (y) is a monoid bimor-
phism. Hence, there is a unique monoid homomorphism ν : M ⊗ N → 2 such
that ν(x ⊗ y) = νM (x)νN (y) for all (x, y) ∈ M × N . If

∑
i<n(xi ⊗ yi) = 0, then

ν
(∑

i<n(xi ⊗ yi)
)

= 0, thus each νM (xi)νN (yi) = 0, that is, either xi = 0 or yi = 0.
This implies that xi ⊗ yi = 0. �

We introduced, in our paper [114], a few tools designed for the study of tensor
products of refinement monoids. In particular, the tensor product of two refinement
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monoids (resp., of two conical refinement monoids) is a refinement monoid (resp.,
a conical refinement monoid), see Theorems 2.7 and 2.9 in [114].

We shall fix, until the end of this section, conical refinement monoids M and N .
We will use modifications2 of the objects denoted by C,→0,→,→∗, and ≡ in [114,
§ 2].

Denote by Fmon(M ×N) the free commutative monoid on the set M ×N . For
(x, y) ∈M×N , we shall denote by x•y the corresponding element of Fmon(M×N).
This notation change is introduced in order not to confuse the sum (x0, y0)+(x1, y1)
in M ×N (which has value (x0 + x1, y0 + y1)) and the sum x0 • y0 + x1 • y1 (which
is the sum of two elements of the canonical basis of Fmon(M ×N)).

We define binary relations →, →∗, and � on Fmon(M ×N) as follows:

• u→ v if there are decompositions u =
∑
k∈K(ak • bk) in Fmon(M ×N),

each ak =
∑
i∈Ik ak,i in M , each bk =

∑
j∈Jk bk,j in N , with I and all Ik,

Jk finite (possibly empty), such that, setting

K = {(k, i, j) | k ∈ K , i ∈ Ik , and j ∈ Jk}

the equation v =
∑

(k,i,j)∈K(ak,i • bk,j) holds.

• The binary relation →∗ is the transitive closure of →.
• For any u, v ∈ Fmon(M ×N), u � v if there is w ∈ Fmon(M ×N) such

that u→∗ w and v →∗ w.

The following lemma is the analogue, for our newly defined relations→ and→∗,
of [114, Lemma 2.1]. We omit the proof, which is straightforward (observe that the
proof of (1) in that lemma arises from the possibility to use empty sums within the
definition of →). Recall that additive relations (resp., V-relations) are introduced
in Definition 2-4.1.

Lemma 2-5.2. The following statements hold:

(1) x • 0→ 0 for all x ∈M , and 0 • y → 0 for all y ∈ N .
(2) Both relations → and →∗ are reflexive, additive left V-relations.

The following lemma is an analogue of [114, Lemma 2.3]. The proof is similar,
only noticeably easier, because we do not need to worry about which elements are
nonzero.

Lemma 2-5.3. The relation → is confluent, that is, for all elements u, v, v′ ∈
Fmon(M × N), if u → v and u → v′, then there is w ∈ Fmon(M × N) such that
v → w and v′ → w . Further, the relation →∗ is confluent.

Proof. Since →∗ is the transitive closure of →, it suffices to prove that → is
confluent (this is often expressed as “local confluence implies confluence”). Further,
since→ is an additive left V-relation, it suffices to consider the case where u = a•b
for some (a, b) ∈ M × N . In that case, there are decompositions a =

∑
i∈I ai =∑

i′∈I′ a
′
i′ in M and b =

∑
j∈J bj =

∑
j′∈J′ bj′ in N , with I, I ′, J , J ′ finite (possibly

empty), such that v =
∑

(i,j)∈I×J(ai •bj) and v′ =
∑

(i′,j′)∈I′×J′(ai′ •bj′). Since M

2Although those modifications might not be, strictly speaking, necessary, I feel that they

provide a slightly better presentation than the one of my earlier paper [114], while at the same
time gently introducing the reader to those concepts about tensor products of commutative mon-

oids necessary to follow all parts of the present work.
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and N are conical refinement monoids, there are refinement matrices as follows:

a′i′ (i′ ∈ I ′)

ai (i ∈ I) ai,i′
in M , and

b′j′ (j′ ∈ J ′)

bj (j ∈ J) bj,j′
in N .

Setting w =
∑

((i,i′),(j,j′))∈(I×I′)×(J×J′)(ai,i′ • bj,j′), it follows easily that v → w

and v′ → w. �

As an easy consequence of Lemmas 2-5.2 and 2-5.3, we obtain the following
analogue of [114, Lemma 2.4].

Lemma 2-5.4. The binary relation� is a monoid congruence on Fmon(M×N).

Proposition 2-5.5. The tensor product of M and N is Fmon(M×N)/�, with
x⊗ y defined as x • y/�, for each (x, y) ∈M ×N .

Proof. Setting P = Fmon(M × N)/� and, temporarily, x � y = x • y/�
whenever (x, y) ∈M ×N , it suffices to prove that � is a universal bimorphism.

First observe that x • 0 → 0 for each x ∈ M (cf. Lemma 2-5.2); whence
x� 0 = 0. Likewise 0� y = 0 whenever y ∈ N . For all x0, x1 ∈ M and all y ∈ N ,
(x0 + x1) • y → x0 • y + x1 • y, thus (x0 + x1)� y = (x0 � y) + (x1 � y). Likewise,
x � (y0 + y1) = (x � y0) + (x � y1), for all x ∈ M and all y0, y1 ∈ N . Therefore,
� is a bimorphism. By the universal property of the tensor product, there is a
unique monoid homomorphism ϕ : M ⊗N → P such that ϕ(x⊗ y) = x� y for each
(x, y) ∈M ×N .

Conversely, the unique monoid homomorphism Φ: Fmon(M × N) → M ⊗ N ,
sending each x • y to x ⊗ y, satisfies the implication (u → v) ⇒ Φ(u) = Φ(v), for
all u, v ∈ Fmon(M × N). Hence, Φ is constant on all �-equivalence classes, so it
factors, through�, to a monoid homomorphism ψ : P →M ⊗N . By construction,
ϕ and ψ are mutually inverse isomorphisms. �

A similar construction is used to prove, in Wehrung [114, Theorem 2.7], that
M ⊗N is a conical refinement monoid.

The following lemma will be used in Section 6-8.

Lemma 2-5.6. Let M and N be conical refinement monoids and let (a, b) ∈
M ×N . If a has index at most 1 in M and b has index at most 1 in N , then a⊗ b
has index at most 1 in M ⊗N .

Proof. Denote by M(1) (resp., N(1)) the set of all elements of M (resp., N)
with index at most 1. Denote by I the set of elements of Fmon(M ×N) of the form∑
i<n(ai•bi), where n ∈ Z+ and the ai⊗bi, for i < n, are pairwise meet-orthogonal

within M ⊗N .

Claim. Whenever u ∈ I and v ∈ Fmon(M ×N), if u→∗ v, then v ∈ I.

Proof of Claim. Since →∗ is the transitive closure of →, it suffices to con-
sider the case where u → v. Write u =

∑
k∈K(ak • bk), for a finite set K and

(ak, bk) ∈ M(1) × N(1), with the ak ⊗ bk pairwise meet-orthogonal within M ⊗ N .
By the definition of →, for each k ∈ K, there are decompositions ak =

∑
i∈Ik ak,i

in M and bk =
∑
j∈Jk bk,j in N , such that v =

∑
k∈K

∑
(i,j)∈Ik×Jk(ak,i • bk,j). Let

k, k′ ∈ K, (i, j) ∈ Ik×Jk, and (i′, j′) ∈ Ik′ ×Jk′ , with (k, i, j) 6= (k′, i′, j′); we must
prove that ak,i⊗ bk,j and ak′,i′ ⊗ bk′,j′ are meet-orthogonal within M ⊗N . Suppose
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first that k 6= k′. Since ak,i⊗ bk,j ≤+ ak⊗ bk, ak′,i′ ⊗ bk′,j′ ≤+ ak′ ⊗ bk′ , and ak⊗ bk
and ak′ ⊗ bk′ are meet-orthogonal within M ⊗ N , the desired conclusion follows.
Suppose now that k = k′. Then (i, j) 6= (i′, j′), say i 6= i′. Since ak has index at
most 1 in M and ak,i + ak,i′ ≤+ ak, it follows that ak,i and ak,i′ are orthogonal
within M . Therefore, the desired conclusion follows from Wehrung [114, Corol-
lary 2.11]. Since each (ak,i, bk,j) ∈M(1) ×N(1), it follows that v ∈ I. � Claim.

Now let a and b be elements of M(1) and N(1), respectively, and let u ∈M ⊗N
such that 2u ≤ a ⊗ b. Write u = u/≡, with u ∈ Fmon(M × N). By Proposition
2-5.5, there are v, w ∈ Fmon(M ×N) such that a • b →∗ w and 2u + v →∗ w. By
Lemma 2-5.2, there is a decomposition w = u0 +u1 + v′ in Fmon(M ×N) such that
u→∗ u0, u→∗ u1, and v →∗ v′. By Lemma 2-5.3, there is u′ ∈ Fmon(M ×N) such
that u0 →∗ u′ and u1 →∗ u′. By Lemma 2-5.2 again, it follows that w →∗ 2u′+ v′.
Therefore, a•b→∗ 2u′+v′, thus, since a•b ∈ I and by the Claim above, 2u′+v′ ∈ I.
Writing u′ =

∑
i<n(xi • yi), with each xi ∈ M \ {0} and yi ∈ N \ {0}, it follows

that xi ⊗ yi is meet-orthogonal from itself, for each i < n; a contradiction unless
n = 0. It follows that u′ = 0, thus u = u′/≡ = 0. �

2-6. Tensor products of conical V-homomorphisms and V-equivalences

While the tensor product of o-ideals in commutative monoids behaves, in its
basic aspects, like the tensor product of ideals in modules, we will need to focus
attention on a matter far more specific to refinement monoids, with no obvious
module-theoretical analogue. For conical refinement monoids M and N , instead of
tensoring o-ideals of M and N , we will need to tensor monoid congruences of M
and N .

A V-congruence of a commutative monoid M is defined as a V-equivalence
on M (cf. Definition 2-4.1) which is also a monoid congruence of M .

Obviously, the kernel Ker f of any V-homomorphism f , with domain M , is a
V-congruence of M . Conversely, for every V-congruence α of M , the canonical
projection α : M � M/α is a V-homomorphism, with kernel α. Furthermore, the
congruence α is conical (as a binary relation) iff the homomorphism α is conical.

For commutative monoids M , M ′, N , N ′, a standard application of the uni-
versal property of the tensor product yields that any pair of monoid homomor-
phisms f : M →M ′ and g : N → N ′ gives rise to a unique monoid homomorphism
f⊗g : M⊗N →M ′⊗N ′ such that (f⊗g)(x⊗y) = f(x)⊗g(y) for all (x, y) ∈M×N .

In that context, for each u =
∑
i∈I(xi • yi) in Fmon(M ×N), we set

(f • g)(u) =
∑
i∈I

(
f(xi) • g(yi)

)
.

Observe that f•g is a monoid homomorphism from Fmon(M×N) to Fmon(M ′×N ′).
Furthermore, it is obvious that f • g is a conical V-homomorphism.

Lemma 2-6.1. Let M , M ′, N , N ′ be conical refinement monoids, let
f : M → M ′ and g : N → N ′ be conical V-homomorphisms. Then for all ele-
ments u ∈ Fmon(M × N) and v ∈ Fmon(M ′ × N ′), if (f • g)(u) → v, then there
exists u′ ∈ Fmon(M ×N) such that u→ u′ and (f •g)(u′) = v. A similar statement
holds for →∗.

Proof. It suffices to prove the statement about →. Furthermore, by Lemma
2-5.2, it suffices to consider the case where u = x • y, where (x, y) ∈ M × N .
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By the definition of →, there are decompositions f(x) =
∑
i∈I xi , in M ′, and

g(y) =
∑
j∈J yj , in N ′, with I and J finite, such that v =

∑
(i,j)∈I×J(xi • yj).

Since f and g are both conical V-homomorphisms (the conicality assumption on f
and g is included in order to take care of the case where either I or J is empty),
there are decompositions x =

∑
i∈I x

′
i and y =

∑
j∈J y

′
j such that each f(x′i) = xi

and each g(y′j) = yj . The element u′ =
∑

(i,j)∈I×J(x′i • y′j) is as required. �

Theorem 2-6.2. Let M , M ′, N , N ′ be conical refinement monoids, let
f : M → M ′ and g : N → N ′ be conical V-homomorphisms. Then f ⊗ g is a
conical V-homomorphism from M ⊗N to M ′ ⊗N ′.

Proof. For each x ∈ M \ {0} and y ∈ N \ {0}, it follows from the conicality
of both f and g that f(x) 6= 0 and g(y) 6= 0. It follows (cf. Lemma 2-5.1) that
f(x)⊗ g(y) 6= 0. Since M ′ ⊗N ′ is conical, f ⊗ g is conical.

Now we prove that f ⊗ g is a V-homomorphism. To ease the notation, we use
the same symbols to denote the binary relations →∗ and �, on Fmon(M ×N) and
Fmon(M ′ × N ′), respectively. Let u ∈ M ⊗ N and v0,v1 ∈ M ′ ⊗ N ′ such that
(f ⊗ g)(u) = v0 + v1. Pick u ∈ Fmon(M × N) and v0, v1 ∈ Fmon(M ′ × N ′) such
that u = u/� and vi = vi/� whenever i ∈ {0, 1}. Since (f • g)(u) � v0 + v1,
there is w ∈ Fmon(M ′ ⊗ N ′) such that (f • g)(u) →∗ w and v0 + v1 →∗ w. The
latter relation, together with Lemma 2-5.2, implies that there is a decomposition
w = w0 + w1 such that each vi →∗ wi. Since (f • g)(u) →∗ w and by Lemma
2-6.1, there is u′ ∈ Fmon(M × N) such that u →∗ u′ and (f • g)(u′) = w. Since
w = w0 +w1 and f •g is a V-homomorphism, there is a decomposition u′ = u0 +u1

in Fmon(M × N) such that each (f • g)(ui) = wi. Setting ui = ui/� whenever
i ∈ {0, 1}, we get u = (u/�) = (u′/�) = u0 + u1. Further, (f ⊗ g)(ui) =(
(f • g)(ui)/�

)
= (wi/�) = (vi/�) = vi, for each i ∈ {0, 1}. �

Notation 2-6.3. Let M and N be commutative monoids and let α (resp., β)
be a congruence of M (resp., N). We denote by α⊗ β the kernel of the canonical
homomorphism α⊗ β : M ⊗N � (M/α)⊗ (N/β).

We obtain easily, from Theorem 2-6.2, the following corollary.

Corollary 2-6.4. Let M and N be conical refinement monoids and let α
(resp., β) be a conical V-congruence on M (resp., N). Then α ⊗ β is a conical
V-congruence on M ⊗N .

2-7. Refinement-spreading properties in partial refinement monoids

In a number of cases, various cancellativity properties of a refinement mon-
oid M can be directly verified on a generating lower interval of M . In this section,
we shall record some properties for which this transfer principle works, and some
other properties for which it does not.

Definition 2-7.1. A property (Φ), formulated in the language of partial com-
mutative monoids, is refinement-spreading if for every partial refinement monoid P
satisfying (Φ), the enveloping monoid Umon(P ) also satisfies (Φ).

For a partial refinement monoid P , it follows from Proposition 2-2.4 that Umon(P )
is the unique refinement monoid in which P is a generating interval. Hence, the
property (Φ) is refinement-spreading iff for every generating lower interval P in a
refinement monoid M , P satisfies (Φ) implies that M satisfies (Φ).
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2-7.1. Conicality. A trivial prototype of a refinement-spreading property is
given by conicality. Indeed, whenever P is a lower interval in a commutative mon-
oid M , then all x, y ∈ M such that x + y = 0 already belong to P . Hence we
get:

Proposition 2-7.2. Conicality is refinement-spreading.

2-7.2. Cancellativity. A partial commutative monoid P is cancellative if
x ⊕ z = y ⊕ z implies that x = y, for all x, y, z ∈ P . It is trivial that every lower
interval in a cancellative partial commutative monoid is cancellative.

Lemma 2-7.3. Let M be a refinement monoid and let I and J be the subsets
of M defined as

I = {e ∈M | (∀a, b, c ∈M)(a+ c = b+ c = e⇒ a = b} ,
J = {c ∈M | (∀a, b ∈M)(a+ c = b+ c⇒ a = b)} .

Then I = J and this set is an o-ideal of M .

Proof. It is obvious that J ⊆ I and that J is an o-ideal of M . Now let c ∈ I,
and let a, b ∈M such that a+ c = b+ c. Since M is a refinement monoid, there is
a refinement matrix of the following form:

b c

a d a′

c b′ c′

(2-7.1)

Since c = a′ + c′ = b′ + c′ and c ∈ I, we get a′ = b′, thus a = d + a′ = d + b′ = b,
thus completing the proof that c ∈ J . �

The following corollary is immediate.

Corollary 2-7.4. Cancellativity is refinement-spreading.

The result of Corollary 2-7.4 is partly contained in Dvurečenskij and Pulman-
nová [36, Theorem 1.7.12] (the latter result is formulated in the language of effect
algebras).

As witnessed by Example 2-3.7, the weaker form of cancellativity x+ z = y+ z
⇒ x ≤+ y does not imply cancellativity, even for refinement monoids.

2-7.3. Strong separativity. A partial commutative monoid P is strongly
separative if x ⊕ z = y ⊕ 2z implies that x = y ⊕ z, for all x, y, z ∈ P . If P is a
full commutative monoid, then this is easily seen to be equivalent to saying that
x+ z = 2z implies x = z, for all x, z ∈ P (cf. Brookfield [24, Proposition 8.12]).

Lemma 2-7.5. Let M be a refinement monoid and let a, b, c ∈ M . If a + c =
b + 2c, then there are d, a, b, c ∈ M such that a = d + a, b + c = d + b + c, and
c = a+ c = b+ 2c.

Proof. Since a+ c = b+ 2c, there exists a refinement matrix of the form

b c c

a a′ c1 c2

c b′ c3 c4

(2-7.2)
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Since c = c1 + c3 = c2 + c4, there exists a refinement matrix of the form

c2 c4

c1 d1 d2

c3 d3 c

(2-7.3)

Set a = d1 + d2 + d3, b = b′ + d2 + d3, and d = a′ + d1. Now c = c1 + c3 =
b′ + c3 + c4 yields, using (2-7.2) and (2-7.3), that c = d1 + d2 + d3 + c = a+ c and
c = b′+d2+d3+2c = b+2c. Furthermore, a = a′+c1+c2 = a′+2d1+d2+d3 = d+a
and b+ c = a′ + b′ + d1 + d2 + d3 + c = d+ b+ c. �

Lemma 2-7.6. Let M be a refinement monoid and let I and J be the subsets
of M defined as

I =
{
e ∈M | (∀a, b, c ∈M)(a+ c = b+ 2c ≤+ e⇒ b+ c ≤+ a)

}
,

J =
{
e ∈M | (∀a, b, c ∈M)

(
(a+ c = b+ 2c and c ≤+ e)⇒ a = b+ c

)}
.

Then I = J and this set is an o-ideal of M .

Proof. It is trivial that J ⊆ I and that I and J are both lower subsets of M .
Now let a, b, c ∈M and e ∈ I such that a+ c = b+ 2c and c ≤+ e. Let d, a, b, c be
elements satisfying the conclusion of Lemma 2-7.5. Since a + c = b + 2c = c ≤+ e
and e ∈ I, there exists h ∈M such that

a = b+ c+ h .

In particular, c+ h = b+ 2c+ h = a+ c = c. Therefore,

a = d+ a

= d+ b+ c+ h

= b+ c+ h

= b+ c .

Therefore, e ∈ J , so we have proved that I = J .
Let e0, e1 ∈ J and let a, b, c ∈ M with a + c = b + 2c and c ≤+ e0 + e1.

By Riesz decomposition, c = c0 + c1 for some c0 ≤+ e0 and c1 ≤+ e1. Since
a + c0 + c1 = b + 2c0 + 2c1 and c1 ∈ J , we get that a + c0 = b + 2c0 + c1. Since
c0 ∈ J , it follows that a = b + c0 + c1, that is, a = b + c; whence e0 + e1 ∈ J .
Therefore, J is a submonoid of M . �

Hence we get the following.

Corollary 2-7.7. Let P be a generating lower interval in a refinement mon-
oid M . Then M is strongly separative iff x+z = y+2z ∈ P implies that y+z ≤+ x,
for all x, y, z ∈ P . In particular, strong separativity is refinement-spreading.

Proof. It is trivial that the strong separativity of M implies the given con-
dition. Suppose, conversely, that this condition holds. By keeping the notation of
Lemma 2-7.6, this means that P ⊆ I. By that lemma, it follows that P ⊆ J , hence,
since P generates M and J is an o-ideal, we get J = M , which means that M is
strongly separative. �
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2-7.4. Order-separativity. A partial commutative monoid P is order-sepa-
rative if x ⊕ z = y ⊕ 2z implies that x ≤⊕ y ⊕ z, for all x, y, z ∈ P . This is easily
seen to be equivalent to: whenever x⊕ z = y ⊕ z and z ≤⊕ y, then x ≤⊕ y. If P is
a full commutative monoid, then this is also equivalent to saying that x + z = 2z
implies x ≤+ z, for all x, z ∈ P .

Lemma 2-7.8. Let M be a refinement monoid and let I and J be the subsets
of M defined as

I =
{
e ∈M | (∀a, b, c ∈M)(a+ c = b+ 2c ≤+ e⇒ a ≤+ b+ c)

}
,

J =
{
e ∈M | (∀a, b, c ∈M)

(
(a+ c = b+ 2c and c ≤+ e)⇒ a ≤+ b+ c

)}
.

Then I = J and this set is an o-ideal of M .

Proof. It is trivial that J ⊆ I and that I and J are both lower subsets of M .
Now let a, b, c ∈ M and e ∈ I such that a + c = b + 2c and c ≤+ e. Let d, a, b, c
be elements of M satisfying the conclusion of Lemma 2-7.5. Since a+ c = b+ 2c =
c ≤+ e and e ∈ I, we get a ≤+ b + c, hence a = d + a ≤+ d + b + c = b + c, thus
completing the proof that e ∈ J .

Let e0, e1 ∈ J and let a, b, c ∈ M with a + c = b + 2c and c ≤+ e0 + e1.
By Riesz decomposition, c = c0 + c1 for some c0 ≤+ e0 and c1 ≤+ e1. Since
a + c0 + c1 = b + 2c0 + 2c1 and c1 ∈ J , we get that a + c0 ≤+ b + 2c0 + c1,
so a + c0 + h = b + 2c0 + c1 for some h ∈ M . Since c0 ∈ J , it follows that
a + h ≤+ b + c0 + c1, that is, a + h ≤+ b + c, so a ≤+ b + c; whence e0 + e1 ∈ J .
Therefore, J is a submonoid of M . �

In a similar manner as for Corollary 2-7.7, we get the following.

Corollary 2-7.9. Let P be a generating lower interval in a refinement mon-
oid M . Then M is order-separative iff x+ z = y + 2z implies that x ≤+ y + z, for
all x, y, z ∈ P . In particular, order-separativity is refinement-spreading.

2-7.5. Separativity. A partial refinement monoid P is separative if x⊕2z =
y ⊕ 2z implies that x ⊕ z = y ⊕ z, for all x, y, z ∈ P . This is easily seen to be
equivalent to saying that whenever x⊕ z = y⊕ z, z ≤⊕ x, and z ≤⊕ y, then x = y.

We do not state the definition above for arbitrary, non-refinement partial com-
mutative monoids. The reason for this is that even for full commutative monoids,
the classical concept of separativity due to Hewitt and Zuckerman [56, § 4] (viz.,
2x = 2y = x + y ⇒ x = y) is stronger than the concept of separativity defined
above (e.g., the commutative monoid freely generated by a, b subjected to the
relations 2a = 2b = a+ b satisfies the former definition of separativity, but not the
latter). Nevertheless, it is well known (cf. Ara et al. [11, Lemma 2.1]) that the
two concepts are equivalent for (full) refinement monoids, which will be sufficient
for our purposes.

Lemma 2-7.10. Let M be a refinement monoid and let I and J be the subsets
of M defined as

I =
{
e ∈M | (∀a, b, c ∈M)

(
(a+ c = b+ c ≤+ e and c ≤+ a, b)⇒ a ≤+ b)

)}
,

J =
{
e ∈M | (∀a, b, c ∈M)

(
(a+ c = b+ c and c ≤+ a, b, e)⇒ a = b

)}
.

Then I = J and this set is an o-ideal of M .
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Proof. It is trivial that J ⊆ I and that I and J are both lower subsets of M .
Now let e ∈ I and a, b, c ∈ M such that a + c = b + c and c ≤+ a, b, e. By Ara et
al. [11, Lemma 2.7], there is a refinement matrix of the form

b c

a d a′

b b′ c′

(2-7.4)

with c′ ≤+ a′, b′. Since c = a′ + c′ = b′ + c′ ≤+ e, it follows from the assumption
e ∈ I that a′ ≤+ b′, so b′ = a′ + h for some h ∈M . It follows that

a+ h = d+ a′ + h = d+ b′ = b ,

c+ h = a′ + c′ + h = b′ + c′ = c .

Further, from c + h = c and c ≤+ a it follows that a + h = a; whence a = b, thus
completing the proof that e ∈ J . Therefore, I = J .

Let e0, e1 ∈ J and let a, b, c ∈ M with a + c = b + c and c ≤+ a, b, e0 + e1.
By Riesz decomposition, c = c0 + c1 for some c0 ≤+ e0 and c1 ≤+ e1. Since
a + c0 + c1 = b + c0 + c1 and c1 ≤+ a + c0, b + c0, e1, it follows from e1 ∈ J that
a + c0 = b + c0. A similar argument, involving the assumption that e0 ∈ J , yields
a = b. Hence e0 + e1 ∈ J , so J is an o-ideal of M . �

In a similar manner as Corollary 2-7.7, we obtain the following corollary, con-
tained in Chen [27, Theorem 1].

Corollary 2-7.11. Let P be a generating lower interval in a refinement mon-
oid M . Then M is separative iff x + z = y + z ∈ P and z ≤+ x, y implies that
x ≤+ y, for all x, y, z ∈ P . In particular, separativity is refinement-spreading.

Observe the obvious implications

cancellative⇒ strongly separative⇒ order-separative⇒ separative ,

holding for all partial refinement monoids. Recall that none of those implications
can be reversed, even for conical refinement monoids.

For arbitrary commutative monoids, order-separativity (i.e., a+ b = 2b implies
a ≤+ b) does not imply separativity (i.e., 2a = a+ b = 2b implies a = b). However,
the implication holds, non-trivially, for refinement monoids: this fact is contained
in Corollary 2-7.11.

The following section shows that not every natural-looking cancellation prop-
erty of commutative monoids is refinement-spreading.

2-7.6. Antisymmetry and stable finiteness. A partial commutative mon-
oid P is

— antisymmetric if its algebraic preordering ≤⊕ is antisymmetric (i.e., if ≤⊕
is a partial ordering);

— stably finite if y = x⊕ y implies that x = 0, for all x, y ∈ P (see Section
1-4 for the case of full monoids).

It is clear that every stably finite commutative monoid is antisymmetric. The
converse already fails for the two-element semilattice.
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+ 0 1 2 3
0 0 1 2 3
1 1 2 3 2
2 2 3 2 3
3 3 2 3 2

Table 2-7.1. A non-antisymmetric commutative monoid with di-
rectly finite order-unit

Denote by A the commutative monoid with underlying set {0, 1, 2, 3}, with
addition defined by its zero element 0 together with the relations

1 + 1 = 2 , 1 + 2 = 3 , and 1 + 3 = 2 .

The table of A is represented in Table 2-7.1. Observe that A is conical. Setting
a = 1, the monoid A satisfies the relations 4a = 2a and 3a 6= 2a. In particular,
3a ≤+ 2a ≤+ 3a and 3a 6= 2a, thus A is not antisymmetric. Furthermore, a is a
directly finite order-unit of A (i.e., x+ a = a implies x = 0, for any x ∈ A).

By Proposition 1.5 and Theorem 1.8 in Wehrung [116], A has a unitary embed-
ding into a conical refinement monoid M . “Unitary” means that {u, u+ x} ⊆ A
implies that x ∈ A, for all u, x ∈M . In particular, a is directly finite in M , because
a+ x = a implies x ∈ A (we are using a ∈ A and the unitarity), thus, by the direct
finiteness of a in A, we get x = 0. We may replace M by M ↓ A, which ensures
that a is an order-unit of M . Nevertheless, M is not antisymmetric, because A is
not. In particular, we get the following.

Proposition 2-7.12. Neither antisymmetry nor stable finiteness is refinement-
spreading.

Those observations bear an intriguing connection with a well known open prob-
lem in the nonstable K-theory of (von Neumann) regular rings.

A unital ring R is directly finite if xy = 1 implies yx = 1, for all x, y ∈ R.
We say that R is stably finite if all matrix rings over R are directly finite. These
concepts can be read on the conical commutative monoid V(R) (cf. Subsection
1-2.4) and its partial submonoid P = {[x] | x ∈ R idempotent}, where [x] denotes
the Murray - von Neumann equivalence class of the 1× 1 matrix with entry x (cf.
Goodearl [47, § 5]). Namely, R is stably finite iff V(R) is stably finite, and directly
finite iff the partial commutative monoid P is stably finite (i.e., [x] + [1] = [1] iff
x = 0, for every idempotent x ∈ R).

It is not known whether every directly finite unital regular ring is stably finite,
see Goodearl [47, Problem 1]. This means that it is not known whether the stable
finiteness of the partial refinement monoid

{
[x] | x2 = x ∈ R

}
always carries over

to the full refinement monoid V(R).
In the following series of observations, we show that without the refinement

property, even cancellativity may not spread from partial monoids to full monoids.

Example 2-7.13. A finite, conical, cancellative partial commutative monoid P
which cannot be embedded into any cancellative full commutative monoid.
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Proof. If a partial commutative monoid P can be embedded into a cancella-
tive full commutative monoid M , then it satisfies the following implication:[

ai ⊕ bi = ci ⊕ di (∀i ∈ {1, 2}) & b1 ⊕ b2 = d1 ⊕ d2 & a = a1 ⊕ a2 & c = c1 ⊕ c2
]

⇒ a = c , (2-7.5)

for all a, c, a1, a2, b1, b2, c1, c2, d1, d2 ∈ P . Indeed, arguing within M and adding
together the first two equations in (2-7.5), we get a+(b1 + b2) = c+(d1 +d2), thus,
since b1 + b2 = d1 + d2 and M is cancellative, we get a = c.

A computer search, based on the Mace4 component of McCune’s Prover9 -

Mace4 software (cf. McCune [75]), yields the cancellative partial commutative
monoid P , with universe {0, 1, 2, 3, 4, 5, 6, 7, 8}, whose table is represented in Table
2-7.2. The empty entries of the table correspond to the places where ⊕ is undefined.
This partial commutative monoid is an effect algebra, that is, a cancellative partial
commutative monoid with a largest element e such that x⊕ e is defined iff x = 0,
for every element x (here, e = 8); see, for example, Foulis and Bennett [44] for
more information about effect algebras.

⊕ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 8 3
2 2 3 1 8 6 5
3 3 8
4 4 6 5 8 3
5 5 8
6 6 8
7 7 5 3 8 6
8 8

Table 2-7.2. A cancellative effect algebra

Take a1 = a2 = d1 = 2, b1 = b2 = c1 = 4, c2 = d2 = 7. Then a1 ⊕ b1 =
c1⊕ d1 = a2⊕ b2 = c2⊕ d2 = 6, b1⊕ b2 = d1⊕ d2 = 5, a1⊕ a2 = 1, and c1⊕ c2 = 3.
Hence P does not satisfy (2-7.5). �

Remark 2-7.14. Example 2-7.13 does not fit the intuition assigning to the
symbol ⊕ the direct sum of (say) subspaces in a vector space. For example, in that
example, x⊕ x may be defined without x being zero (e.g., take x = 1).

An occurrence of the context of direct sums is given by the theory of ortho-
modular lattices. By definition, an orthomodular lattice (cf. Kalmbach [61]) is a
lattice L, with a least element 0 and a largest element 1, endowed with an antitone,
involutive unary operation x 7→ x⊥ such that x ∧ x⊥ = 0 and x ∨ x⊥ = 1 for all
x ∈ L (we say that x 7→ x⊥ is an orthocomplementation on L), and y = x∨ (x⊥∧y)
for all x, y ∈ L with x ≤ y. Then L can also be endowed a structure of partial
commutative monoid, by letting z = x⊕ y hold if z = x ∨ y and y ≤ x⊥.

Elaborating on Greechie’s construction of a finite orthomodular lattice with no
non-trivial state (cf. Greechie [51]), Navara [83] and Weber [110] independently
constructed finite orthomodular lattices with no non-trivial group-valued premea-
sure (a premeasure on L, with values in an Abelian groupG, is just a homomorphism
of partial commutative monoids from (L,⊕, 0) to (G,+, 0)).
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Letting L be any orthomodular lattice with no non-trivial group-valued pre-
measure, we obtain that (L,⊕, 0) cannot be embedded into any cancellative com-
mutative monoid (otherwise it could also be embedded into an Abelian group, and
the corresponding embedding would be a group-valued premeasure).

This peculiar behavior of Navara’s and Weber’s orthomodular counterexam-
ples is to be put in contrast with the following example, which, despite its apparent
simplicity, is not devoid of further mysteries (see, in particular, Chapter 7, Prob-
lem 10).

Example 2-7.15. For any real or complex Hilbert space H, we endow the
set SubH of all closed subspaces of H with a structure of a partial commuta-
tive monoid, by letting X ⊕ Y denote the direct sum of X and Y whenever it is
defined. We claim that (SubH,⊕, {0}) embeds into an Abelian group. Recall that
a projection of H is an idempotent, self-adjoint operator. The set ProjH of all
projections of H can be endowed with a structure of partial commutative monoid,
by letting r = p ⊕ q if r = p + q and pq = 0 (thus also qp = 0). The assignment
that sends any projection p to its range defines an isomorphism of partial commu-
tative monoids from ProjH onto SubH. The inverse isomorphism sends any closed
subspace X to the orthogonal projection on X.

The inclusion map defines a premeasure from ProjH with values in the additive
group sAdjH of all self-adjoint operators of H. Hence, (ProjH,⊕, 0) has a one-
to-one embedding into the Abelian group (sAdjH,+, 0). The submonoid Proj+H
generated by the range of that embedding consists exactly of the finite sums of
projections of H. In particular, every element of Proj+H is a positive self-adjoint
operator of H. The study of those operators (finite sums of projections) was initi-
ated in Fillmore [42].

Certainly, Proj+H is a monoid quotient of the enveloping monoid Umon(ProjH)
of ProjH. It turns out that Proj+H is a proper quotient of Umon(ProjH), when-
ever dimH ≥ 2. To see this, we may assume that dimH = 2 and then we use the
following expression of (3/2)idH as a sum of three projections, given in matrix form
in Rabanovich and Samŏılenko [89, 2.6]:

(3/2)idH = p0 + p1 + p2 , where

p0 =

(
0 0
0 1

)
, p1 =

(
3/4

√
3/4√

3/4 1/4

)
, p2 =

(
3/4 −

√
3/4

−
√

3/4 1/4

)
. (2-7.6)

An important observation about (2-7.6) is that the projections pi are pairwise non-
commuting. In particular, they are pairwise non-orthogonal.

Now we abbreviate idH by 1 and we write (2-7.6) in the form

2p0 + 2p1 + 2p2 = 3 · 1 . (2-7.7)

We claim that the equation (2-7.7) does not hold in the enveloping monoid
Umon(ProjH) (although we just observed that it holds in Proj+H). In order to
prove this, it suffices to prove that u 6≡ v, where u = 2ṗ0 +2ṗ1 +2ṗ2, v = 3·1̇, and ≡
is the equivalence relation on the free commutative monoid Fmon(ProjH) intro-
duced just before Proposition 2-1.7, satisfying Umon(ProjH) = Fmon(ProjH)/≡.
Now observe that for each i ∈ {0, 1, 2}, pi is a projection of rank one, thus the
equality pi = x ⊕ y in ProjH implies that either x = 0 or y = 0. Hence, as
the pi are pairwise non-orthogonal, it is easy to verify that u ≡ w iff u $ w, for
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all w ∈ Fmon(ProjH). Since u and v are not equivalent modulo $, it follows that
u 6≡ v, that is, (2-7.7) does not hold in Umon(ProjH). Therefore, the canonical
homomorphism from Umon(ProjH) onto Proj+H is not one-to-one.

For dimH = 2, the lattice SubH is infinite of length two. Denote by ∆ the
set of all atoms of SubH, that is, the one-dimensional subspaces of H. Hence,
Umon(SubH) is the commutative monoid defined by the generators e and mX , for
X ∈ ∆, and the relations mX + mX⊥ = e for X ∈ ∆. It can be verified that this
monoid is cancellative. We do not know whether the latter result extends to the
case where dimH ≥ 3 (cf. Chapter 7, Problem 10).

2-8. Quotient of a commutative monoid under a group action

Let us begin this section with some motivation. For a left action (g, x) 7→ g(x)
of a group G on a ring R, the crossed product R o G consists of all formal linear
combinations

∑
i<n xi ·gi, where all xi ∈ R and all gi ∈ G, where the multiplication

is determined by (x · g)(y · h) = xg(y) · gh, for all x, y ∈ R and all g, h ∈ G.
In particular, if the action of G is trivial, then R o G becomes the group

ring R[G].
The construction M//G, that we shall introduce now, intervenes at various

places, which we will not attempt to enumerate. (For an example where M is the
positive cone of K0(A), for a C*-algebra A, see Rainone [90, Definition 4.6].) We
intend it here mainly to describe the effect of the crossed product on the nonstable
K-theory. A more detailed form of that statement will be given in Proposition
2-8.4. Later on, we will examine that statement again in the context of Boolean
inverse semigroups (cf. Theorem 4-1.10).

Definition 2-8.1. Let α be an action of a group G, by automorphisms, on a
commutative monoid M . We set

x ∼α y if (∃g ∈ G)(y = αg(x)) , for all x, y ∈M . (2-8.1)

We denote by 'α the monoid congruence generated by ∼α, and we denote the
quotient monoid by M//α = M/'α. We say that elements x, y ∈ M are α-equide-
composable if x 'α y.

For any x ∈ M , we shall denote by [x]α the equivalence class of x modulo 'α
and we let µα : M �M//α, x 7→ [x]α.

Notation 2-8.2. In the context of Definition 2-8.1, we shall write ∼G, 'G,
[x]G, µG, M//G, and “G-equidecomposable”, instead of ∼α, 'α, [x]α, µα, M//α,
and “α-equidecomposable” whenever this does not arise confusion.

Moreover, if G ∼= Z/2Z and σ = α1 ∈ AutM (this will be the case for all
counterexamples of this section), then we shall identify the group action α with the
involution σ, and thus we shall write ∼σ, 'σ, [x]σ, µσ, M//σ instead of ∼α, 'α,
[x]α, µα, M//α.

The structure M//G should not be confused with the orbit space M/G: for one
thing, the former is a monoid, while the latter is just a set.

For a commutative monoid N , a monoid homomorphism µ : M → N is G-
invariant if µ(gx) = µ(x) for every (g, x) ∈ G ×M . In such a case, µ is also an
invariant for G-equidecomposability, that is, x 'G y implies µ(x) = µ(y), for all
x, y ∈M . Moreover, we will say that µ is a complete invariant for G-equidecompo-
sability if µ(x) = µ(y) implies x 'G y, for all x, y ∈M .
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By definition, the monoid homomorphism µG : M � M//G is a complete in-
variant for G-equidecomposability.

The following lemma is essentially a reformulation of Definition 2-8.1, with a
straightforward proof.

Lemma 2-8.3. The map µG is universal for the G-invariant monoid homo-
morphisms from M to a commutative monoid. That is, for every commutative
monoid N and every G-invariant monoid homomorphism ϕ : M → N , there exists
a unique monoid homomorphism ψ : M//G→ N such that ϕ = ψ ◦ µG.

Of course, ψ is defined by the rule ψ([x]G) = ϕ(x).
The connection between the crossed product construction for rings (i.e., RoG)

and the construction M//G (for monoids) is given by the following result.

Proposition 2-8.4. Let a group G act by automorphisms on a ring R. We en-
dow the commutative monoid V(R) with the induced group action, that is,
g · [x]R = [g(x)]R, for every idempotent matrix x over R. Then there is a unique
monoid homomorphism τ : V(R)//G→ V(RoG) such that τ([[x]R]G) = [x]RoG for
every idempotent matrix x over R.

Proof. The canonical map R ↪→ R o G, x 7→ x · 1 induces a monoid homo-
morphism ϕ : V(R)→ V(RoG). By Lemma 2-8.3, it suffices to prove that ϕ is G-
invariant. Let a be an idempotent matrix over R and let g ∈ G. Setting x = g(a) ·g
and y = a · g−1, we get g(a) · 1 = xy and a · 1 = yx; whence a · 1 ∼ g(a) · 1 (Murray
- von Neumann equivalence) within RoG. �

The homomorphism τ of Proposition 2-8.4 may not be an isomorphism. For ex-
ample, in the conditions of Proposition 6-7.1, the canonical homomorphism
τ : V(k)//G→ V(k[G]) is one-to-one, but not surjective, for any division ring k.

Nonetheless, we will see in Theorem 4-1.10 that the analogue of Proposition
2-8.4, for so-called Boolean inverse semigroups (cf. Section 3-1), always yields an
isomorphism.

Lemma 2-8.5. Let a group G act by automorphisms on a commutative mon-
oid M and let H be a subgroup of G. Then there is a unique monoid homomorphism
µHG : M//H →M//G such that µHG ◦ µH = µG. This map is surjective.

Proof. This follows trivially from µG beingH-invariant, together with Lemma
2-8.3. �

In particular, if H is a subgroup of G, then M//G is a monoid quotient of M//H.
In case H is a normal subgroup of G, we shall now give more information. Thinking
of Lemma 2-8.3 as the “First Isomorphism Theorem” for the structures M//G, the
“Second Isomorphism Theorem” is the following.

Proposition 2-8.6. Let a group G act by automorphisms on a commutative
monoid M and let H be a normal subgroup of G. The following statements hold:

(1) There is a unique group action of G/H on M//H sending every pair (gH, [x]H)
to [gx]H .

(2) The assignments [x]G 7→ [[x]H ]G/H and [[x]H ]G/H 7→ [x]G are well defined,
and define mutually inverse isomorphisms between M//G and (M//H)//(G/H).
Therefore, M//G ∼= (M//H)//(G/H).
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Proof. (1). Let x, y ∈ M with x ∼H y and let g ∈ G. By definition, y = hx
for some h ∈ H. Hence gy = ghx = (ghg−1)gx. Since H is a normal subgroup
of G, gy ∼H gx. It follows that ∼H is contained in the binary relation

θ = {(x, y) ∈M ×M | gx 'H gy} .
Since θ is a monoid congruence of M containing ∼H , it also contains 'H . This
means that for every g ∈ G, there is a unique map τg : M//H → M//H such
that τg([x]H) = [gx]H for all x ∈ M . Obviously, τg is a monoid homomorphism.
Moreover, it is obvious that τg([x]H) depends only on Hg(= gH). Hence, the
assignment (gH, [x]H) 7→ [gx]H is well defined. It is straightforward that it defines
a group action of G/H on M//H by monoid automorphisms.

(2). For every (g, x) ∈ G ×M , [gx]H = (gH)[x]H ∼G/H [x]H . Hence ∼G is
contained in the binary relation

ξ =
{

(x, y) ∈M ×M | [x]H 'G/H [y]H
}
.

Since ξ is a monoid congruence of M , it also contains 'G. Hence, the map
ϕ : M//G → (M//H)//(G/H), [x]G 7→ [[x]H ]G/H is well defined. It is obviously
a monoid homomorphism.

Conversely, for all x, y ∈M such that [x]H ∼G/H [y]H , there is g ∈ G such that
[y]H = (gH)[x]H , that is, gx 'H y, thus x 'G y. Hence, the binary relation

η = {(x,y) ∈ (M//H)× (M//H) | (∃(x, y) ∈ x× y)(x 'G y)}
= {(x,y) ∈ (M//H)× (M//H) | (∀(x, y) ∈ x× y)(x 'G y)}

contains ∼G/H . Since η is a monoid congruence of M//H, it thus contains ≡G/H .
Hence, the map ψ : (M//H)//(G/H) → M//G, [[x]H ]G/H 7→ [x]G is well defined.
It is obviously a monoid homomorphism. It is trivial that ϕ and ψ are mutually
inverse. �

The case of a group acting on a refinement monoid is especially straightforward.

Proposition 2-8.7. Let a group G act on a refinement monoid M . Then 'G
is a V-equivalence on M , and M//G is a refinement monoid. Furthermore, if M is
conical, then so are the monoid M//G and the relation 'G.

Proof. We first claim that ∼G is a V-equivalence: indeed, if x0 + x1 ∼G
y in M , then y = g(x0 + x1) for some g ∈ G, thus, setting yi = gxi, we get
y = y0 + y1 with each xi ∼G yi, thus proving our claim. By Lemma 2-4.3, it
follows that the additive closure ∼+

G of ∼G in M ×M is an additive V-equivalence
on M . In particular, it is a monoid congruence of M . Since it contains ∼G, it also
contains 'G. Since the converse containment is trivial, the relations 'G and ∼+

G

are identical, and so 'G is an additive V-equivalence on M . By Lemma 2-4.4,
M//G = M/'G is a refinement monoid.

The last statement, about conicality, is trivial. �

In case M is a refinement monoid, then the V-equivalence 'G is the additive
closure of ∼G within M ×M , hence it can be explicitly defined as follows: for any
a, b ∈M , a 'G b holds iff there are decompositions a =

∑
i<n ai and b =

∑
i<n giai,

where all ai ∈M and gi ∈ G. Let us highlight the following trivial consequence of
Lemma 2-4.4(1).

Lemma 2-8.8. Let a group G act on a refinement monoid M , let a, b ∈M//G,
and let c ∈M . If [c]G = a+ b, then there is (a, b) ∈ a× b such that c = a+ b.
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As the following observations show, a significant class of examples arises from
the construction Z+〈B〉 = Umon(B,⊕, 0) given in Example 2-2.7.

Example 2-8.9. Let B be a Boolean ring. Observe that the automorphisms
of the Boolean ring B are identical to the automorphisms of the partial refine-
ment monoid (B,⊕, 0) (cf. Example 2-2.7). Since Z+〈B〉 is the enveloping monoid
of (B,⊕, 0), every automorphism α of B extends to a unique automorphism of
the monoid Z+〈B〉. This automorphism sends 1u to 1α(u), for each u ∈ B. In
particular, every action of a group G on the Boolean ring B extends to an action
of G on the monoid Z+〈B〉, thus making it possible to define the commutative
monoid Z+〈B〉//G = Z+〈B〉/'G. The equivalence relation 'G is given by

u 'G v ⇐⇒
(
∃ decompositions u =

∑
i<n

1ai and v =
∑
i<n

1giai ,

with all ai ∈ B and gi ∈ G
)
.

An equivalent way to define Z+〈B〉//G, taking advantage of (B,⊕, 0) being a partial
refinement monoid, is the following. Since the orbital equivalence relation ∼G
defines a V-equivalence on B, its additive closure ∼+

G within B is an additive V-

equivalence on B (cf. Lemma 2-4.3). The relation ∼+
G is nothing else than the

G-equidecomposability relation on B: namely,

a ∼+
G b ⇐⇒

(
∃ decompositions a =

⊕
i<n

ai and b =
⊕
i<n

giai ,

with all ai ∈ B and gi ∈ G
)
.

By Lemma 2-4.4, this makes it possible to define the partial refinement monoid
B//G = B/∼+

G. Furthermore, by Theorem 2-4.6, ∼+
G extends to a unique V-

equivalence on Umon(B,⊕, 0) = Z+〈B〉, which is necessarily 'G. By Theorem 2-4.6
again, Z+〈B〉//G ∼= Umon(B//G).

We shall often write [a]G instead of [1a]G, for a ∈ B. Since Z+〈B〉//G =
Umon(B//G), every element of Z+〈B〉//G can be written in the form

∑
i<n[ai]G,

where all ai ∈ B.

2-9. Cancellation properties of M//G

The question, whether various cancellativity properties of M are inherited
by M//G, will come up regularly in this work. It turns out that the study of
that question leads to various nontrivial positive statements, but also to surprising
counterexamples.

In this section we shall focus on positive statements, in the context of the
cancellation properties of M//G, where a finite group G acts by automorphisms on
a refinement monoid M . Although a few positive results can be proved, lots of
surprising counterexamples arise.

Definition 2-9.1. Let a finite group G act by automorphisms on a commuta-
tive monoid M . The G-trace of an element x ∈M is defined as

τG(x) =
∑
g∈G

gx . (2-9.1)
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Proposition 2-9.2. In the context of Definition 2-9.1, there is a unique monoid
homomorphism τG : M//G→M such that τGµG = τG.

Proof. The map τG is a G-invariant monoid homomorphism from M to M .
Apply Lemma 2-8.3. �

In particular, a 'G b implies that τG(a) = τG(b), for all a, b ∈M . The question
whether τG is a complete invariant for 'G, that is, τG(a) = τG(b) implies a 'G b,
arises. This already leads us to an easy counterexample (we use Notation 2-8.2).

Example 2-9.3. An action σ of Z/2Z by automorphisms on the additive group Z
of all integers, such that τσ is not a complete invariant for 'σ.

Proof. Set σ(x) = −x, for any x ∈ Z. Two integers x and y are σ-equidecom-
posable iff there are u, v ∈ Z such that x = u+ v and y = u− v, that is, iff x− y is
even. On the other hand, τσ is the constant zero map. In particular, τσ(0) = τσ(1)
while 0 and 1 are not σ-equidecomposable. �

Proposition 2-9.4. Let a (not necessarily finite) group G act by automor-
phisms on an Abelian group M . Then the monoid M//G is an Abelian group.

Proof. The canonical map µG : M �M//G is a surjective monoid homomor-
phism. Since M is an Abelian group, so is M//G. �

By contrast, it follows from Example 2-9.3 that the power-cancellativity of M
may not be inherited by M//G. For that example, 2[0]G = 2[1]G, but [0]G 6= [1]G.
Hence, power cancellativity is not propagated from M to M//G. Nevertheless, as
the following result shows, stable finiteness propagates.

Proposition 2-9.5. Let a finite group G act by automorphisms on a conical
commutative monoid M . If M is stably finite, then so is M//G.

Proof. Let a, b ∈ M//G such that a + b = b. Write a = [a]G and b = [b]G
for some a, b ∈M . By applying the homomorphism τG of Proposition 2-9.2 to the
equation a+ b = b, we get the equation τG(a) + τG(b) = τG(b). Since M is stably
finite, τG(a) = 0. Since M is conical, a = 0, so a = 0. �

The completeness of the trace invariant can be easily reached under an addi-
tional divisibility assumption.

Proposition 2-9.6. Let a finite group G, with m elements, act by automor-
phisms on a uniquely m-divisible commutative monoid M (i.e., every element of M
can be written in the form my for a unique y ∈ M). Then the trace function τG
is a complete invariant for G-equidecomposability on M . In particular, if M is
cancellative, then so is M//G.

Proof. Let a, b, e ∈ M such that e = τG(a) = τG(b). Denote by (1/m)x
the unique y ∈ M such that x = my, for any x ∈ M . From e =

∑
g∈G ga it

follows that (1/m)e =
∑
g∈G g((1/m)a). Since a =

∑
g∈G(1/m)a, it follows that

e 'G a. Likewise, e 'G b. Therefore, a 'G b, thus completing the proof that τG is
a complete invariant. The statement about cancellativity follows trivially. �

In case of the action of a finite group on the positive cone of an Abelian lattice-
ordered group, it turns out that the trace is also a complete invariant.
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Theorem 2-9.7. The following statements hold, for any action of a finite
group G by automorphisms on an Abelian lattice-ordered group M :

(1) The G-trace map τG : M+ → M+ is a complete invariant for G-equidecompo-
sability on M+. In fact, [a]G = [b]G iff τG(a) = τG(b), and [a]G ≤+ [b]G iff
τG(a) ≤ τG(b), for all a, b ∈M+.

(2) The monoid M//G is the positive cone of an Abelian lattice-ordered group.

Proof. Since M is a dimension group (cf. Goodearl [46, Proposition 1.22]),
M+ is an unperforated, conical refinement monoid (cf. Goodearl [46, Proposi-
tion 2.1]).

(1). Let a, b ∈ M+ such that τG(a) = τG(b). We must prove that [a]G = [b]G.
Set m = cardG and fix an enumeration G = {g1 = 1, g2, . . . , gm}. We argue by
descending induction on the largest k ≤ m, denoted by ν(a, b), such that gia∧b = 0
whenever 1 ≤ i < k. Suppose first that k = m, that is, ga ∧ b = 0 for all g ∈ G.
Since M is lattice-ordered, τG(a) ∧ τG(b) = 0, hence, since τG(a) = τG(b), we get
τG(a) = τG(b) = 0, whence a = b = 0.

Suppose now that k < m and set a′ = a − (a ∧ g−1
k b) and b′ = b − (gka ∧ b).

Then 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b, thus gia
′ ∧ b′ = 0 whenever 0 ≤ i < k. Since

gka
′ ∧ b′ = 0, we get ν(a′, b′) > ν(a, b). Furthermore, gka ∧ b = gk(a ∧ g−1

k b),
thus τG(a′) = τG(b′). Hence, by the induction hypothesis, [a′]G = [b′]G. Since
a = a′ + a ∧ g−1

k b and b = b′ + gk(a ∧ g−1
k b), it follows that [a]G = [b]G.

The proof that τG(a) ≤ τG(b) iff [a]G ≤+ [b]G is, mutatis mutandis, the same.
(2). It follows from (1) above that M+//G is cancellative (Proof : if [a]G+[c]G =

[b]G + [c]G, then τG(a) + τG(c) = τG(a + c) = τG(b + c) = τG(b) + τG(c), thus
τG(a) = τG(b), and thus, by (1), [a]G = [b]G). Since M+ is a conical refinement
monoid, so is M+//G (cf. Proposition 2-8.7).

Since M+//G is cancellative, the canonical map M+//G → M//G that to [x]G
(within M+) associates [x]G (within M) is one-to-one. Hence we will identify any
element of M+//G with its image in M//G via this embedding, and we will endow
M//G with the positive coneM+//G. We extend the map τG to the whole monoidM
via the formula (2-9.1). By definition, this map is isotone.

To any elements a, b ∈ M+, we associate finite sequences (ai | 0 ≤ i ≤ m) and
(bi | 0 ≤ i ≤ m) of elements of M+ by

a0 = a , b0 = b (2-9.2)

ak+1 = ak − (ak ∧ g−1
k+1bk) , bk+1 = bk − (gk+1ak ∧ bk) whenever 0 ≤ k < m .

(2-9.3)

Set a =
∑

0≤k<m(ak ∧ g−1
k+1bk) and b =

∑
0≤k<m(gk+1ak ∧ bk). From ak ∧ g−1

k+1bk =

gk+1(ak ∧ g−1
k+1bk) whenever 0 ≤ k < m, it follows that

a 'G b . (2-9.4)

Further, it follows easily from (2-9.2) and (2-9.3) that

a = a+ am and b = b+ bm . (2-9.5)

By (2-9.5), it follows that [a]G ≤ [a]G, [b]G in M//G. By using (2-9.3), we get

gkak ∧ bk = 0 whenever 1 ≤ k ≤ m.

Since both finite sequences (ak | 0 ≤ k ≤ m) and (bk | 0 ≤ k ≤ m) are decreasing,
we get gam ∧ bm = 0 for every g ∈ G. Since M is an Abelian lattice-ordered group,
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this means that
τG(am) ∧ τG(bm) = 0 within M . (2-9.6)

In order to prove that [a]G = [a]G∧ [b]G, it suffices to prove that for any c ∈M such
that [c]G ≤ [a]G, [b]G, the inequality [c]G ≤ [a]G holds. From [c]G ≤ [a]G, [b]G it
follows that τG(c) ≤ τG(a), τG(b), thus, by (2-9.5), τG(c−a) ≤ τG(am) and further,
by using (2-9.4) and (2-9.5),

τG(c− a) = τG(c)− τG(a) = τG(c)− τG(b) = τG(c− b) ≤ τG(bm) .

By (2-9.6), it follows that τG(c− a) ≤ 0, so τG(c) ≤ τG(a). By (1) above, it follows
that [c]G ≤ [a]G. �

Recall that a group is locally finite if every finitely generated subgroup is finite.

Corollary 2-9.8. Let a locally finite group G act by automorphisms on an
Abelian lattice-ordered group M . Then M+//G is the positive cone of a structure
of dimension group on M//G.

Proof. Let a, b, c ∈ M+ such that a+ c 'G b+ c. There are decompositions
a+ c =

∑
i<n xi and b+ c =

∑
i<n gixi in M+, with all gi ∈ G. Since G is locally

finite, {gi | i < n} is contained in a finite subgroup H of G. Since a+c 'H b+c and
by Theorem 2-9.7, it follows that a 'H b, thus a 'G b. This proves that M+//G
is cancellative. Since every Abelian lattice-ordered group is unperforated, a similar
argument shows that M+//G is unperforated.

Since M+//G is cancellative, the canonical map from M+//G to M//G is a
monoid embedding. Since the partially ordered Abelian group M , with its positive
cone M+, is directed, the partially ordered Abelian group M//G, with its positive
cone M+//G, is also directed. �

It will follow from Theorem 5-1.10 that conversely, every positive cone of a
dimension group, of cardinality at most ℵ1, arises as M+//G for a locally finite
group G acting by automorphisms on an Abelian lattice-ordered group M .

2-10. Partially ordered Abelian groups and V-equivalences with bad
quotients

As we will see in Examples 2-10.7 and 2-10.8, Theorem 2-9.7 cannot be extended
from lattice-ordered groups to dimension groups. We will also discover in this
section a few additional positive results, notably involving the concept of weak
comparability (cf. Section 1-5).

All the counterexamples of this section are based on the following construction.

Notation 2-10.1. For an arbitrary partially ordered Abelian group G and a
nonnegative integerm, we shall denote by EG,n the set of all sequences (xn | n ∈ Z+)
of elements of G such that

For every integer n ≥ m, x2n+2 =
∑
k<2n

xk and x2n+3 = x2n + x2n+1 .

We shall also set EG =
⋃
n∈Z+ EG,n.

It is trivial that the EG,m are all additive subgroups of GZ+

. Since they form
an increasing chain (with respect to containment), EG is also an additive subgroup

of GZ+

. Hence the EG,m and EG are all partially ordered subgroups of the partially

ordered Abelian group GZ+

(endowed with its componentwise ordering).
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Lemma 2-10.2. All partially ordered Abelian groups EG,m are finite powers
of G. In particular, if G is a dimension group, then so are EG and all EG,n.

Proof. Every element of EG,m is determined by its first 2m+ 2 coordinates,
which yields EG,m ∼= G2m+2. In particular, if G is a dimension group, then so are
all EG,m, thus so is EG. �

Denote by ρG : G� G/2G the canonical projection map. The following lemma
records a few elementary properties of the EG,m and EG.

Lemma 2-10.3. The following statements hold, for every nonnegative integer m,
every x ∈ EG,m, and every integer n ≥ m:

(1) The equalities x2n+4 = x2n+5 and x2n+6 = x2n+7 = 2x2n+4 hold, for every
integer n ≥ m.

(2)
∑
k<n+2 ρG(x2k) =

∑
k<n+2 ρG(x2k+1).

Proof. (1). From x ∈ EG,m it follows that x2n+4 =
∑
k<2n xk + x2n + x2n+1,

thus

x2n+5 = x2n+2 + x2n+3 =
∑
k<2n

xk + x2n + x2n+1 = x2n+4 . (2-10.1)

It follows that x2n+7 = x2n+4 + x2n+5 = 2x2n+4. By using (2-10.1) with n + 1
instead of n, we get x2n+7 = x2n+6.

(2). By (1) above, x2n+6 ∈ 2G. Since x2n+6 =
∑
k<n+2 x2k +

∑
k<n+2 x2k+1,

it follows that
∑
k<n+2 ρG(x2k) +

∑
k<n+2 ρG(x2k+1) = 0, which is equivalent to

the desired conclusion. �

It follows from Lemma 2-10.3(1) that xn ∈ 2G (i.e., ρG(xn) = 0), for all
sufficiently large n, whenever x ∈ EG. Hence, both expressions

∑
k∈Z+ ρG(x2k) and∑

k∈Z+ ρG(x2k+1) are defined. By Lemma 2-10.3(2), these two elements of G/2G
are equal. We denote their common value by ρG(x).

Now denote by σ the self-map of Z+ that interchanges 2n and 2n+1, whenever
n ∈ Z+.

Lemma 2-10.4. The assignment σG : x 7→ (xσn | n ∈ Z+) defines an involutive
automorphism of the dimension group EG.

Proof. It follows immediately from Lemma 2-10.3(1) that σG maps EG,m
into EG,m+1. The other statements of Lemma 2-10.4 are trivial. �

The proof of the following lemma is straightforward and we leave it to the
reader.

Lemma 2-10.5. The map ρG is a σG-invariant homomorphism from EG to
G/2G.

Theorem 2-10.6. Suppose that G is a 2-power cancellative interpolation group.
Then the pair (id + σG, ρG) is a complete invariant for σG-equidecomposability
within E+

G . In particular, the commutative monoid E+
G//σG is cancellative.

Of course, id + σG is the trace function associated to σG (cf. Definition 2-9.1).
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Proof. We must prove that any a, b ∈ E+
G such that a+σG(a) = b+σG(b) and

ρG(a) = ρG(b) are σG-equidecomposable. By Lemma 2-10.3, there is a nonnegative
integer m such that

a2n = a2n+1 belongs to 2G , (2-10.2)

b2n = b2n+1 belongs to 2G , (2-10.3)

a2n+2 = a2n+3 =
∑
k<2n

ak = 2a2n , (2-10.4)

b2n+2 = b2n+3 =
∑
k<2n

bk = 2b2n (2-10.5)

for every integer n ≥ m. Since a + σG(a) = b + σG(b), it follows from (2-10.2)
and (2-10.3) that 2a2n = 2b2n. Since G is 2-power cancellative, a2n = b2n, for every
integer n ≥ m. Hence, again by (2-10.2) and (2-10.3),

an = bn belongs to 2G , whenever 2m ≤ n in Z+ . (2-10.6)

For every k < m, we pick any x2k ∈ G such that
0

b2k − a2k+1
≤ x2k ≤

a2k

b2k
. Such an

element certainly exists, because G has interpolation and a + σG(a) = b + σG(b),

thus
0

b− σG(a)
≤ a
b
. Furthermore, we set

x2k+1 = x2k + b2k+1 − a2k , whenever 0 ≤ k < m . (2-10.7)

Claim 1. The inequalities
0

bn − aσ(n)
≤ xn ≤

an
bn

hold whenever 0 ≤ n < 2m.

Proof of Claim. For n = 2k, this follows from the definition of x2k. By
adding the term b2k+1 − a2k = −(b2k − a2k+1) to the inequalities around x2k, we
obtain

0
b2k+1 − a2k

≤ x2k+1 ≤
b2k+1

b2k + b2k+1 − a2k
,

which, since b2k + b2k+1− a2k = a2k+1, yields the desired inequalities. � Claim 1.

Claim 2.
∑
k<2m xk belongs to 2G.

Proof of Claim. For each k < m, x2k + x2k+1 = b2k+1 − a2k + 2x2k ≡
b2k+1 − a2k (mod 2G). Now by (2-10.2) and (2-10.3),

∑
k<m ρG(a2k) = ρG(a) and∑

k<m ρG(b2k+1) = ρG(b). Hence,
∑
k<2m ρG(xk) =

∑
k<m ρG(x2k + x2k+1) =

ρG(b)− ρG(a) = 0. � Claim 2.

It follows from Claims 1 and 2 that the element x2m = 1
2

∑
k<2m xk belongs

to G+. (We denote by 1
2x the unique y ∈ G such that x = 2y, for any x ∈ 2G.) Set

x2m+1 = x2m.

Claim 3. The inequalities 0 ≤ xn ≤
an
bn

hold whenever 0 ≤ n ≤ 2m+ 1.

Proof of Claim. For 0 ≤ n < 2m this follows from Claim 1. For n = 2m,
this follows from the inequalities

x2m =
1

2

∑
k<2m

xk ≤
1

2

∑
k<2m

ak (use Claim 1)

= a2m (use (2-10.4)) ,
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and similarly, using (2-10.5), we get x2m ≤ b2m. Since x2m = x2m+1 and by (2-10.2)
and (2-10.3), we get the desired inequalities at n = 2m+ 1. � Claim 3.

We can now complete the construction of the xn, by defining, inductively,

x2n+2 =
∑
k<2n

xk , (2-10.8)

x2n+3 = x2n + x2n+1 , (2-10.9)

whenever m ≤ n in Z+. By construction, the sequence x = (xn | n ∈ Z+) belongs
to EG.

Claim 4. 0 ≤ x ≤ a
b
.

Proof of Claim. By Claim 3 together with (2-10.8) and (2-10.9) it follows,
inductively, that 0 ≤ x. Let n be a nonnegative integer, we must prove that

0 ≤ xn ≤
an
bn

. If n ≤ 2m+ 1 this follows immediately from Claim 3. Suppose that

n = 2k + 2, where m ≤ k in Z+. We compute

x2k+2 =
∑
l<2k

xl ≤
∑
l<2k

al = a2k+2 ,

and similarly, x2k+2 ≤ b2k+2. Since x2k+2 = x2k+3, a2k+2 = a2k+3, and b2k+2 =
b2k+3, the desired conclusion follows. � Claim 4.

Claim 5. x− σG(x) = b− σG(a).

Proof of Claim. We need to prove that xn − xσ(n) = bn − aσ(n), for every
nonnegative integer n. If n < 2m this is taken care of by (2-10.7) together with
the equation b2k+1 − a2k = a2k+1 − b2k. If n ∈ {2m, 2m+ 1} this follows from
the equations a2m = a2m+1 = b2m = b2m+1 (cf. (2-10.2), (2-10.3), and (2-10.6))
together with the equations x2m+1 = x2m = 1

2

∑
k<2m xk. Let k ≥ m such that

x2k = x2k+1 = 1
2

∑
l<2k xl. Then

x2k+3 = x2k + x2k+1 =
∑
l<2k

xl = x2k+2 ,

thus also x2k+2 = x2k+3 = 1
2

∑
l<2k+2 xl. Therefore, the equations x2k = x2k+1 =

1
2

∑
l<2k xl hold for every integer k ≥ m. Since a2k = b2k = a2k+1 = b2k+1 for any

such integer k, the desired conclusion follows. � Claim 5.

The element y = a−x belongs to E+
G , and a = x+y. By Claim 5, b = x+σG(y).

Therefore, a 'G b within E+
G .

Since the complete invariant (1 + σG, ρG) takes its values in the cancellative
monoid E+

G × (G/2G), it follows that E+
G//σG is cancellative. �

By using Theorem 2-10.6, we can now construct the promised series of coun-
terexamples.

Example 2-10.7. A simple dimension group E, with an action σ of Z/2Z, such
that the monoid E+

G//σ is cancellative, yet the trace function id + σ on E+ is not a
complete invariant for σ-equidecomposability.
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It will turn out (cf. Corollary 2-10.11) that the cancellativity of E+
G//σ is no

surprise. Nevertheless, for the present example, we have a complete invariant, given
by Theorem 2-10.6.

Proof. Define G as the set of all fractions of the form p/q, where p and q are
integers with q odd. Then G is a dense subgroup of the rationals, with 1 ∈ G and
1/2 /∈ G. Since G is 3-divisible (i.e., 3G = G), so is EG, thus every order-unit of EG
is the sum of two order-units. Since EG is a dimension group and by Proposition
1-4.5, it follows that the structure E = (EG,�) (cf. (1-4.7)) is a dimension group.
Moreover, σG restricts to an involutive automorphism σ of E. Denote by ρ the
restriction of ρG to E. The element

e = (1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . )

is an order-unit of EG (and E), fixed under σ.

Claim. The pair (id + σ, ρ) is a complete invariant for σ-equidecomposability
within E+. In particular, E+

G//σ is cancellative.

Proof of Claim. Let a, b ∈ E+ such that a+σ(a) = b+σ(b) and ρ(a) = ρ(b).
We must prove that a 'σ b within E+. If either a or b is zero then a = b = 0 and the
statement is trivial. Suppose that a and b are both nonzero. Since a and b are both

order-units, there is an integer n such that 2 ·3−n ·e ≤ a
b
. Since σG(e) = e, it follows

that a′ = a−3−ne and b′ = b−3−ne are elements of E+
G , with a′+σG(a′) = b′+σG(b′)

and ρG(a′) = ρG(b′). By Theorem 2-10.6, it follows that a′ 'σG b′ within E+
G , that

is, there are x, y ∈ E+
G such that a′ = x + y and b′ = x + σG(y). Therefore,

a = (x + 3−ne) + (y + 3−ne) and b = (x + 3−ne) + σ(y + 3−ne) are σ-equidecom-
posable within E+. � Claim.

Now we set

a = (1, 0, 1, 0, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . ) , (2-10.10)

b = (1, 0, 0, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . ) . (2-10.11)

The elements a and b both belong to E+
G , with a+ σG(a) = b+ σG(b), ρG(a) = 1,

and ρG(b) = 0. Hence, the elements a′ = a+ e and b′ = b+ e are order-units, with
a′ + σ(a′) = b′ + σ(b′) and ρ(a′) 6= ρ(b′). In particular, a′ 6'σ b′. �

We are now ready to introduce the most elaborate example of this section.

Example 2-10.8. A dimension group M , with an involutive automorphism σ,
such that the monoid M+//σ is not cancellative.

Proof. Since Z2 and EZ are both dimension groups, an easy application of
Goodearl [46, Corollary 2.12] yields that the lexicographical product F = Z2×lexEZ
is a dimension group. We define an involutive automorphism σ of F , by setting

σ((m,n), x) = ((n,m), σZ(x)) , for all ((m,n), x) ∈ F .
Consider the elements a and b of EZ defined in (2-10.10) and (2-10.11), and set

d = a− b = (0, 0, 1,−1, 0, 0, 0, 0, . . . ) .

Denote by H the subgroup of F generated by ((1,−1), d). From σZ(d) = −d it
follows that σ((1,−1), d) = ((−1, 1),−d). Hence σ[H] = H.
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Claim 1.

(1) H ∩ F+ = {0}.
(2) H is a convex subgroup of F .
(3) ((0, 0), x) ∈ H iff x = 0, for every x ∈ EZ.

Proof of Claim. (1). Let n ∈ Z. If ((n,−n), nd) ∈ F+, then (n,−n) ∈
(Z2)+ = Z+ × Z+, thus n = 0.

(2) follows trivially from (1).
(3) is trivial. � Claim 1.

Since H is a convex subgroup of F , M = F/H is a partially ordered Abelian
group, with positive cone M+ = (F+ +H)/H. Since F is directed, so is M .

Set [(m,n), x] = ((m,n), x) + H ∈ F/H, for every ((m,n), x) ∈ F . From
σ[H] = H it follows that σ induces an involutive automorphism σ of M , defined by

σ(t+H) = σ(t) +H for every t ∈ F .
The value of m+ n is unchanged by adding any element of H to ((m,n), x). This
enables us to define `([(m,n), x]) = m+ n, for all ((m,n), x) ∈ F .

Claim 2.

(1) Every element x ∈ M can be written in the form [(`(x), 0), x] for a unique
x ∈ EZ.

(2) The map ` is a positive homomorphism from M onto Z.
(3) `(x) > 0 implies that x ∈M++, for every x ∈M .

Proof of Claim. (1). Write x = [(m,n), y]. Then x = [(m,n), y]+[(n,−n), nd] =
[(`(x), 0), x] where we put x = y+nd. The uniqueness statement on x follows from
Claim 1(3).

(2) follows from `�F+ ≥ 0 together with `�H = 0.
(3) follows trivially from (1). � Claim 2.

Claim 3. [(m,n), x] ∈M+ iff one of the following statements holds:

(i) m+ n > 0.
(ii) m + n = 0, −x3 ≤ m ≤ x2, and xk ≥ 0 for every nonnegative integer

k /∈ {2, 3} (Here and elsewhere in this proof, we write x = (xn | n ∈ Z+), for
any x ∈ EZ).

Consequently, M is unperforated.

Proof of Claim. Since m+n > 0 implies that that [(m,n), x] ∈M+, which
implies in turn that m+ n ≥ 0 (cf. Claim 2), the only case we need to consider is
the one where m + n = 0. Then [(m,n), x] ∈ M+ iff ((m,−m), x) ∈ F+ + H, iff
there is k ∈ Z such that ((m− k, k −m), x− kd) ∈ F+. Since the latter condition
implies that k = m, it follows that [(m,n), x] ∈ M+ iff x − md ∈ E+

Z , which is
easily seen to be equivalent to the given condition.

Since Conditions (i) and (ii) are unchanged by positive scaling, M is unperfo-
rated. � Claim 3.

Claim 4. M is a dimension group.

Proof of Claim. By our previous claims, it suffices to verify that M has

the interpolation property. Let x,y0,y1 ∈ M such that
0
x
≤ y0

y1
, we must find
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z ∈ M such that
0
x
≤ z ≤ y0

y1
. We may assume that 0 and x, respectively y0

and y1, are incomparable in M . By Claim 2, `(x) = 0 and `(y1) = `(y2) ≥ 0. Set
m = `(y1). By Claim 2, there are (unique) x, y0, y1 ∈ EZ such that x = [(0, 0), x]
and yi = [(m, 0), yi] whenever i ∈ {0, 1}. We separate cases.

Case 1. m > 0. Since EZ is directed, there is z ∈ EZ such that
0
x
≤ z. Then

z = [(0, 0), z] is as required.

Case 2. m = 0. It follows from Claim 3 that
0
x
≤ y0

y1
. Since EZ is an interpolation

group, there is z ∈ EZ such that
0
x
≤ z ≤ y0

y1
. Then z = [(0, 0), z] is as required.

� Claim 4.

Now we can conclude the proof of Example 2-10.8. We define elements of M++

by
a = [(0, 0), a] , b = [(0, 0), b] , c = [(1, 0), 0] .

Observe that a + c = [(1, 0), a] and b + σ(c) = [(0, 1), b]. By the definition of H,
we get a + c = b + σ(c), thus a + c 'σ b + c. Suppose that a 'σ b. There are
x,y ∈ M+ such that a = x + y and b = x + σ(y). From `(a) = `(b) = 0 it
follows that `(x) = `(y) = 0, thus (cf. Claim 2) there are x, y ∈ E+

Z such that
x = [(0, 0), x] and y = [(0, 0), y]. It follows that a = x + y and b = x + σZ(y), so
a 'σZ b, thus (cf. Lemma 2-10.5) ρZ(a) = ρZ(b), a contradiction since ρZ(a) = 1
and ρZ(b) = 0. �

The dimension group constructed in Example 2-10.8 is not simple. In view of
Example 2-10.7, this raises the question whether Example 2-10.8 could be achieved
with M a simple dimension group. As shown by the following Theorems 2-10.9
and 2-10.10, together with Corollary 2-10.11, this is not the case. The crucial
concepts are the ones of strict unperforation and weak comparability (cf. Section
1-5).

Theorem 2-10.9. Let a finite group G act by automorphisms on a conical
commutative monoid M . If M satisfies weak comparability, then so does M//G.

Proof. Since M is conical, the statements x = 0, [x]G = 0, and τG(x) = 0
are equivalent, for all x ∈ M . Hence we must prove that given e, y ∈ M \ {0}, the
set comp([y]G : [e]G) is nonempty. Since M has weak comparability, τG(e) belongs
to the weak comparability set of M , thus comp(y : τG(e)) is nonempty. Let k be
an element of that set and let x ∈ M//G such that kx ≤+ [e]G. Write x = [x]G,
where x ∈ M . By applying the homomorphism τG of Proposition 2-9.2, it follows
that kτG(x) ≤+ τG(e), thus, since k ∈ comp(y : τG(e)), we get τG(x) ≤+ y, thus, a
fortiori, x ≤+ y, and thus x ≤+ [y]G. Therefore, k belongs to comp([y]G : [e]G). �

Theorem 2-10.10. Let a finite group G act by automorphisms on a commu-
tative monoid M . If M is simple, strictly unperforated, and cancellative, then so
is M//G.

Proof. If M is not conical, then it is an Abelian group (cf. Proposition 1-5.6)
and everything is trivial. Suppose from now on that M is conical. We already
know that M//G is a conical refinement monoid. Furthermore, the simplicity of M
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obviously carries over to M//G. Since M is strictly unperforated, it has weak
comparability (cf. Proposition 1-5.8). By Theorem 2-10.9, M//G also has weak
comparability. Since M is cancellative, it is stably finite, thus, by Proposition 2-
9.5, M//G is also stably finite. By Ara and Pardo [14, Corollary 1.8], M//G is
cancellative. By Proposition 1-5.8 again, M//G is strictly unperforated. �

Corollary 2-10.11. Let a finite group G act by automorphisms on a simple
dimension group M . Then the monoid M+//G is cancellative.

Recall from Example 2-10.7 that M+//G may not be power cancellative (for
that example, M+//G is not 2-power cancellative).

The final counterexample of this section, although not directly related to prob-
lems of equidecomposability, is also obtained via the construction EG. This example
solves Problem 31 of Goodearl [46], in the negative.

Example 2-10.12. A dimension group E, with an involutive automorphism σ,
such that the subgroup Eσ = {x ∈ E | σ(x) = x} does not satisfy the interpolation
property.

Proof. Consider again the dimension group E = EZ, now endowed with the
involutive automorphism σ defined by

σ(x) = (x0, x1, x3, x2, x5, x4, x7, x6, . . . ) , whenever x ∈ EZ .

It follows that Eσ consists of all the sequences x = (xn | n ∈ Z+) of integers such
that x2n = x2n+1 whenever n ∈ N, and x2n+2 = 2x2n = x0 + x1 + 2

∑
1≤k<n x2k

for all sufficiently large n. In particular,

x0 + x1 is even, for every x ∈ Eσ . (2-10.12)

We consider the following interpolation problem in Eσ.

(0, 0, 0, 0, 0, 0, . . . )
(1,−1, 0, 0, 0, 0, . . . )

≤ x ≤ (2, 0, 1, 1, 2, 2, 4, 4, . . . )
(1, 1, 1, 1, 2, 2, 4, 4, . . . )

Suppose that this problem has a solution x ∈ Eσ. Necessarily,

(0, 0)
(1,−1)

≤ (x0, x1) ≤ (2, 0)
(1, 1)

,

thus (x0, x1) = (1, 0), in contradiction with (2-10.12). �





CHAPTER 3

Boolean inverse semigroups and tight maps

Tarski studies in [103] partial commutative monoids constructed from partial
bijections on a given set. It has been recognized that this study can be formalized
conveniently in the language of inverse semigroups (see, in particular, Kudryavtseva
et al. [66]). Further connections can be found in works on K-theory of rings, such
as Ara and Exel [7].

By definition, a partial bijection, on a set Ω, is a bijection from a subset of Ω
onto another subset of Ω. Partial bijections can be composed, by letting (g ◦ f)(x)
be defined if f(x) is defined and belongs to the domain of g. Instead of forming a
group, all partial bijections on Ω form an inverse semigroup. Moreover, two partial
bijections f and g, with disjoint domains and ranges, can be added, by defining
their orthogonal join f ⊕ g as the smallest common extension of f and g. This
brings us naturally to the widely studied concept of a Boolean inverse semigroup,
in particular Exel [39], Lawson [69, 70], Lawson and Lenz [71] (the definitions
of a Boolean inverse semigroup, presented in those works, are not all equivalent).
While the literature contains a number of interesting weakenings of the concept of
Boolean inverse semigroup, most notably the one of distributive inverse semigroup
(cf. Lawson [69], Lawson and Scott [72]), Boolean inverse semigroups will take up
most of our discussion, mostly due to our ring-theoretical emphasis and the results
of Section 6-1.

In Section 3-1 we recall a few basic results on inverse semigroups and Boolean
inverse semigroups, in particular emphasizing with Proposition 3-1.9 that they are
distributive, and beginning the discussion of tightness in Subsection 3-1.3.

In Section 3-2, we prove that the category of all Boolean inverse semigroups,
with tight maps, is identical to a variety of algebras (in the sense of universal
algebra) that we call biases, with their homomorphisms.

In Section 3-3, we discuss the faithfulness of Exel’s regular representation, de-
fined for any inverse semigroup, with emphasis on the class of all Boolean inverse
semigroups. We also present a variant of this representation which is valid for
all distributive inverse semigroups, as a specialization of a duality theorem due to
Lawson and Lenz [71].

In Section 3-4 we study the bias congruences of a given Boolean inverse semi-
group, in terms of the semigroup operations and the orthogonal join. We also
describe the congruence associated with a tight ideal.

Section 3-5 is of preparatory nature, and it introduces a minor extension of the
concept of generalized rook matrices introduced in Kudryavtseva et al. [66]. The
results of that section are applied in Section 3-6 to an extension, to the class of all
Boolean inverse semigroups, of the ring-theoretical concept of crossed product.

63



64 3. BOOLEAN INVERSE SEMIGROUPS AND TIGHT MAPS

Section 3-7 introduces some material on two subclasses of Boolean inverse semi-
groups, called Boolean antigroups (i.e., fundamental Boolean inverse semigroups)
and Boolean meet-semigroups.

Section 3-8 is devoted to a brief study of inner automorphisms of a Boolean
inverse semigroup, which can be defined even in the non-unital case.

Our main textbook references for inverse semigroups will be Howie [57] and
Lawson [68].

Highlights of Chapter 3.

• The category of all Boolean inverse semigroups, with semigroup homo-
morphisms preserving finite orthogonal joins, is identical to a variety of
algebras that we call biases (Theorems 3-2.4 and 3-2.5).
• Exel’s regular representation, mapping every inverse semigroup to a sym-

metric inverse monoid, is faithful on Boolean inverse semigroups (Corol-
lary 3-3.2). (Warning : this is stated for the current definition of a
Boolean inverse semigroup, as opposed to Exel’s original one.) Replac-
ing ultrafilters by prime filters in Exel’s construction, we extend this
observation to all distributive inverse semigroups with zero in Theorem
3-3.1. This turns out to be contained in a duality result of Lawson and
Lenz [71].
• Every tight ideal I of a Boolean inverse semigroup S gives rise to a bias

congruence on S, and to a Boolean inverse semigroup quotient (Proposi-
tion 3-4.6).

• Any two bias congruences, of the same Boolean inverse semigroup, per-
mute. In particular, the variety of all biases is congruence-modular (The-
orem 3-4.11).

• The crossed product, of a Boolean inverse semigroup under a group ac-
tion, can be conveniently defined in terms of generalized rook matrices
(Proposition 3-6.3).

3-1. Boolean inverse semigroups

3-1.1. Arbitrary inverse semigroups. We first recall a few classical def-
initions. Let S be a semigroup (i.e., a set endowed with an associative binary
operation). For x, y ∈ S, we say that y is a quasi-inverse (resp., an inverse) of x if
x = xyx (resp., x = xyx and y = yxy).

Recall (cf. Howie [57]) that S is

• a regular semigroup if every element of S has a quasi-inverse (this is
consistent with Definition 1-4.1),

• an inverse semigroup if every x ∈ S has a unique inverse, then denoted
by x−1. The assignment x 7→ x−1 is the inversion map of S.

Every semigroup homomorphism between inverse semigroups is also a homo-
morphism of inverse semigroups. We denote by IdpS the set of all idempotent
elements of S. A regular semigroup S is an inverse semigroup iff all the idem-
potent elements of S commute (cf. Howie [57, Theorem V.1.2]). In that case,

(xy)
−1

= y−1x−1 for all x, y ∈ S, and e idempotent implies that xex−1 is also
idempotent (cf. Howie [57, Proposition V.1.4]).
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For the remainder of this section we shall fix an inverse semigroup S. We set
XY = {xy | (x, y) ∈ X × Y }, aX = {a}X, Xa = X {a}, andX−1 =

{
x−1 | x ∈ X

}
,

for all a ∈ S and all X,Y ⊆ S.
We set d(x) = x−1x (the domain of x) and r(x) = xx−1 (the range of x), for

any x ∈ S. Both d(x) and r(x) are idempotent.
Recall that Green’s relations L , R, D , H , and J can be defined on S by

xL y if d(x) = d(y) ;

xR y if r(x) = r(y) ,

D = L ◦R = R ◦L (cf. Howie [57, Proposition II.1.3]), H = L ∩R, and

xJ y if SxS = SyS .

Every congruence of S with respect to the semigroup structure is also a congruence
with respect to the inverse semigroup structure.

The following very useful lemma, contained in Schein [95], yields an alternate
characterization of inverse semigroups. We include a proof for convenience.

Lemma 3-1.1. Let (S, ·) be a semigroup and let i : S → S be a map satisfying
the following conditions:

(I1) x = x · i(x) · x for all x ∈ S.
(I2) i(x · y) = i(y) · i(x) for all x, y ∈ S.
(I3) i(i(x)) = x for all x ∈ S.
(I4) i(x) · x · x · i(x) = x · i(x) · i(x) · x for all x ∈ S.

Then S is an inverse semigroup, with inversion map i.

Proof. By applying (I1) to i(x), we obtain, by virtue of (I3),

i(x) · x · i(x) = i(x) , for all x ∈ S . (3-1.1)

By (I1) and (3-1.1), i(x) is an inverse of x.
We claim that i(e) = e, for every idempotent element e of S. Indeed, by

applying (I4), we obtain, by virtue of (I3),

i(e) · e · e · i(e) = e · i(e) · i(e) · e ,
hence, as e and i(e) are both idempotent (use (I2)),

i(e) · e · i(e) = e · i(e) · e .
By (I1) and (3-1.1), this means that i(e) = e, thus proving our claim.

Since every element of S has an inverse (use (I1) and (3-1.1)), it suffices, in
order to reach the desired conclusion, to prove that any idempotent elements a
and b of S commute. By (I2) together with the claim above,

i(a · b) = b · a . (3-1.2)

By applying (I1) to x = a · b, we thus obtain that a · b = a · b · b · a · a · b, that
is, a · b = a · b · a · b, which means that a · b is idempotent. By the claim above,
i(a · b) = a · b. By (3-1.2), it thus follows that a · b = b · a. �

Let x ≤ y hold if x = y d(x), for all elements x and y in an inverse semigroup S.
This relation is a partial ordering on S, called the natural ordering of S. It is com-
patible with the multiplication and the inversion operation on S (cf. Howie [57,
Proposition V.2.4], or Lemma 1.4.6 and Proposition 1.4.7 in Lawson [68]). Various
statements equivalent to x ≤ y can be found in Howie [57, Proposition V.2.2] or
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Lawson [68, Proposition 1.4.6]: x = r(x)y; x = ye (resp., x = ey) for some idem-
potent e; r(x) = yx−1; d(x) = y−1x; x = xy−1x. The set IdpS of all idempotents
of S is a lower subset of (S,≤).

For x, y ∈ S, let x ∼ y hold (we say that x and y are compatible) if x−1y
and xy−1 are both idempotent. Equivalently (cf. Lawson [68, Lemma 1.4.11]), the
meet x∧ y exists in S, d(x∧ y) = d(x) d(y), and r(x∧ y) = r(x) r(y). In that case
(see, for example, Lawson [68, Lemma 1.4.12]),

x ∧ y = r(x)y = y d(x) = xy−1x . (3-1.3)

If {x, y} is majorized, then x ∼ y; the converse fails for easy examples. A subset A
of S is compatible if any two elements of A are compatible.

Definition 3-1.2. Let S be an inverse semigroup with zero and let x, y ∈ S.

(1) We say that x and y are left orthogonal , in notation x ⊥lt y, if xy−1 = 0;
equivalently, d(x) d(y) = 0.

(2) We say that x and y are right orthogonal , in notation x ⊥rt y, if x−1y = 0;
equivalently, r(x) r(y) = 0.

(3) We say that x and y are orthogonal , in notation x ⊥ y, if x ⊥lt y and x ⊥rt y.

A subset A of S is orthogonal if any two elements of A are orthogonal.

In particular, x ⊥ y (orthogonality) implies that x ∼ y (compatibility).
For a congruence relation θ on S and elements x, y ∈ S, let x ≤θ y hold if

x ≡θ y d(x). Equivalently, θ(x) ≤ θ(y), where θ : S � S/θ denotes the canonical
projection. Observe, in particular, that since S/θ is an inverse semigroup, x ≤θ y
and y ≤θ x iff x ≡θ y, for all x, y ∈ S.

For any a ∈ S, let λa : S → S, x 7→ ax and ρa : S → S, x 7→ xa. The following
lemma is well known but we could not trace it back to any particular source. It
enables us to reduce order properties of an inverse semigroup to its semilattice of
idempotents. We include a proof for convenience.

Lemma 3-1.3 (folklore). The following statements hold, for any a ∈ S.

(1) λa and λa−1 restrict to mutually inverse, domain-preserving order-isomorphisms,
from S ↓d(a) onto S ↓ a and from S ↓ a onto S ↓d(a), respectively. The graphs
of those maps are all contained in L .

(2) ρa and ρa−1 restrict to mutually inverse, range-preserving order-isomorphisms,
from S ↓ r(a) onto S ↓ a and from S ↓ a onto S ↓ r(a), respectively. The graphs
of those maps are all contained in R.

Furthermore, all the isomorphisms above preserve orthogonality, and also all exist-
ing meets and joins, evaluated in S.

Proof. It is clear that λa, λa−1 , ρa, ρa−1 are all isotone.
(1). Any x ∈ S ↓ d(a) satisfies x = d(a) d(x) (so x is idempotent), thus

λa(x) = ad(x) ≤ a. Furthermore, λa−1λa(x) = d(a)x = x, and further, by using
the idempotence of x, d(λa(x)) = x−1a−1ax = x, so (x, λa(x)) ∈ L . This proves
that λa[S ↓d(a)] ⊆ S ↓a, λa−1λa�S↓d(a) = idS↓d(a), and the graph of λa is contained
in L .

Any y ∈ S ↓ a satisfies y = ad(y), thus λa−1(y) = d(a) d(y) ≤ d(a). Further-
more, λaλa−1(y) = aa−1ad(y) = ad(y) = y, and λa−1(y) = a−1ad(y) = d(y), so
(y, λa−1(y)) ∈ L . This proves that λa−1 [S ↓a] ⊆ S ↓d(a), λaλa−1�S↓a = idS↓a, and
the graph of λa−1 is contained in L . This completes the proof of (1).
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The proof of (2) is symmetric.

For all x, y, z ∈ S, if x ⊥ y, then (xz)
−1
yz = z−1(x−1y)z = 0 and xz(yz)

−1
=

xzz−1y−1 ≤ xy−1 = 0, thus xz ⊥ yz. Symmetrically, zx ⊥ zy. In particular, all
maps λa, λa−1 , ρa, ρa−1 preserve orthogonality. By virtue of Lawson [68, Proposi-
tion 1.4.19], all those maps preserve all existing meets evaluated in S.

Let u ∈ S and let X ⊆ S ↓ d(a) such that u =
∨
X within S. In particular,

u ∈ S ↓ d(a). Let y ∈ S such that aX ≤ y. Then x = a−1ax ≤ a−1y, for each
x ∈ X. It follows that X ≤ a−1y, so u ≤ a−1y, and so au ≤ aa−1y ≤ y. This
proves that au =

∨
(aX) within S.

Let u ∈ S and let X ⊆ S ↓ a such that u =
∨
X. In particular, u ∈ S ↓ a. Let

y ∈ S such that a−1X ≤ y. Then x = aa−1x ≤ ay, for each x ∈ X. It follows that
u ≤ ay, so a−1u ≤ a−1ay ≤ y. This proves that a−1u =

∨
(a−1X) withing S.

Therefore, both λa and λa−1 preserve all existing joins from S. The proofs
for ρa and ρa−1 are symmetric. �

In particular, since d(x) = a−1x and r(x) = xa−1 whenever x ∈ S ↓ a, we
obtain the following result, contained in Schein [97, Lemma 1.12], see also Lawson
[68, Proposition 1.4.17].

Lemma 3-1.4. The maps d and r both preserve all existing meets and joins
in S.

Since the map d preserves all existing meets and joins, it follows that IdpS is
closed under all existing meets and joins in S.

3-1.2. Boolean inverse semigroups.

Definition 3-1.5 (Orthogonal join in an inverse semigroup with zero). For
elements x, y, z in an inverse semigroup S with zero, let z = x⊕ y hold if z = x∨ y
in S and x ⊥ y.

Definition 3-1.6. An inverse semigroup S is

— distributive if IdpS is a distributive lattice and x ∨ y exists for all com-
patible x, y ∈ IdpS;

— Boolean if IdpS is a generalized Boolean lattice and x ∨ y exists for all
compatible x, y ∈ IdpS.

Although distributive inverse semigroups will be met on an occasional basis
throughout the present work, Boolean inverse semigroups will be given the lion’s
share.

It is well known that an inverse semigroup S is Boolean iff IdpS is a generalized
Boolean lattice and x∨ y exists for all orthogonal x, y ∈ IdpS (thus x∨ y = x⊕ y).
The literature contains at least three non-equivalent concepts of “Boolean inverse
semigroups”. The “Boolean inverse semigroups” of Lawson [69] are the same as
the “Boolean inverse ∧-semigroups” of Lawson [70] (cf. Definition 3-7.7), which are
a proper subclass of the “Boolean inverse semigroups” of that paper. Proposition
3-1.9 shows, in particular, that our Boolean inverse semigroups are identical to
Lawson’s Boolean inverse semigroups from [70].

As the following example shows, all those concepts are stronger than the one
introduced in Exel [39]. For further discussion about this, see Section 3-2.
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Example 3-1.7. Table 3-1.1 describes a finite, commutative, inverse monoid S
with zero, such that IdpS is the Boolean semilattice with two atoms, but the atoms
of S have no join.

S 0 1 2 3 4
0 0 0 0 0 0
1 0 1 0 1 1
2 0 0 2 2 2
3 0 1 2 4 3
4 0 1 2 3 4

Table 3-1.1. A non-Boolean inverse monoid with zero, with
Boolean semilattice of idempotents

The atoms of S are 1 and 2. They are both idempotent, and they join to 4
in IdpS. However, they do not have a join in S.

Another inverse monoid, which is Boolean in Exel’s sense but not in ours, is
the final example in Exel [39]. This will be discussed further in Section 3-2.

Example 3-1.8. The semigroup IX , of all partial one-to-one functions between
subsets of a set X, is a Boolean inverse monoid, the so-called symmetric inverse
monoid on X. It has a zero element, namely the function with empty domain (and
range). Its unit element is the identity function on X. For u, v ∈ IX , the inequality
u ≤ v holds iff v extends u. Furthermore, u ∼ v iff u and v agree on the intersection
of the domains of u and v, and u ⊥ v iff dom(u) ∩ dom(v) = rng(u) ∩ rng(v) = ∅.
If X = [n] = {1, . . . , n}, for a nonnegative integer n, then we shall write In instead
of I[n].

The inverse monoid IX has the additional property that every collection F of
elements of IX has a meet (with respect to the natural ordering), whose domain is
the set of all elements of X on which all members of F agree. In particular, IX is
an inverse meet-semigroup as introduced further (cf. Definition 3-7.7).

The monoid IX can be viewed as a “skeleton” of X × X matrix rings. In
particular, for i, j ∈ X, the unique function ei,j , with domain {j} and range {i},
belongs to IX . Denoting by δx,y the Kronecker symbol and interpreting 0 · f as
the empty function (which is the zero element of IX), the ei,j satisfy the following
relations:

ei,jek,l = δj,kei,l , (3-1.4)

e−1
i,j = ej,i , (3-1.5)

for all i, j, k, l ∈ X. We call the ei,j the matrix units of IX .

The following result is at the basis of many calculations in distributive and
Boolean inverse semigroups.

Proposition 3-1.9. The following statements hold, for any distributive inverse
semigroup S, with a zero element required in (2)–(4):

(1) For every nonempty finite compatible subset {b1, . . . , bn} of S, the join
∨n
i=1 bi

exists, and the following statements hold:
(i) a ·

∨n
i=1 bi =

∨n
i=1(a · bi) and

(∨n
i=1 bi

)
· a =

∨n
i=1(bi · a), for every a ∈ S.
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(ii) For every a ∈ S, a ∧
∨n
i=1 bi exists iff each a ∧ bi exists, and then

a ∧
∨n
i=1 bi =

∨n
i=1(a ∧ bi).

(2) The partial operation (x, y) 7→ x⊕y endows S with a structure of conical partial
refinement monoid.

(3) The results of (1) above extend to the orthogonal join ⊕ in place of the join ∨.
(4) If a⊕ c = b⊕ c in S, then a = b.

Proof. (1i) follows from the finite version of Lawson [68, Proposition 1.4.20].
(1ii) follows from the finite version of Resende [92].
(2). Let u = (x⊕ y)⊕ z in S. From x⊕ y ⊥ z it follows that x ⊥ z and y ⊥ z.

Since S is distributive, it follows that y ⊕ z is defined. By (1ii), it follows that
x ⊥ y ⊕ z. Since S is distributive, x ⊕ (y ⊕ z) is defined, with value x ∨ (y ∨ z) =
(x ∨ y) ∨ z = u. Hence, ⊕ is associative, so (S,⊕, 0) is a partial commutative
monoid.

Let x⊕x′ = y⊕y′ in S. Applying (1ii),we get the following refinement matrix:

y y′

x x ∧ y x ∧ y′

x′ x′ ∧ y x′ ∧ y′
within (S,⊕) . (3-1.6)

Item (2) follows. If a⊕ c = b⊕ c, then, taking x = y = c, x′ = a, and y′ = b yields
x ∧ y′ = x′ ∧ y = 0, thus x′ = y′. Item (4) follows.

Finally, it is straightforward to obtain (3) from (1). �

As an immediate application of Proposition 3-1.9(1ii), we record the following.

Corollary 3-1.10. Let S be a distributive inverse semigroup, let m and n be
positive integers, and let a1, . . . , am, b1, . . . , bn ∈ S. Then

(∨m
i=1 ai

)
∧
(∨n

j=1 bj
)

exists iff each ai ∧ bj exists, and then( m∨
i=1

ai

)
∧
( n∨
j=1

bj

)
=

∨
1≤i≤m, 1≤j≤n

(ai ∧ bj) . (3-1.7)

Furthermore, if S has a zero element, then the analogue of (3-1.7), with ∨ replaced
by ⊕, also holds.

It is well known (see, for example, Lawson and Lenz [71, Lemma 3.27]) that
for any elements x and y in a Boolean inverse semigroup S, if x ≤ y, then there
exists a unique z ∈ S such that y = x ⊕ z. Consequently, the natural ordering ≤
of S is also the algebraic ordering ≤⊕ of the partial commutative monoid (S,⊕, 0).

Notation 3-1.11. For any elements x and y in a Boolean inverse semigroup S
such that x ≤ y, we denote by y r x the unique z ∈ S such that y = x ⊕ z. The
range of this symbol is extended to all pairs (x, y) such that x∧y exists, by defining
xr y = xr (x ∧ y).

A direct application of Proposition 3-1.9 yields the following result, whose easy
proof we omit.

Lemma 3-1.12. The following statements hold, for every Boolean inverse semi-
group S and all x, y, z ∈ S such that x ≤ y:

(1) z(y r x) = (zy)r (zx) and (y r x)z = (yz)r (xz).
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(2) If y ∧ z exists, then x ∧ z exists and (y r x) ∧ z = (y ∧ z)r (x ∧ z).

We will repeatedly use the following easy fact.

Lemma 3-1.13. Let S be an inverse subsemigroup of a Boolean inverse semi-
group T . If S is closed under finite orthogonal joins and a r b ∈ S whenever
a, b ∈ IdpS with b ≤ a, then S is a Boolean inverse semigroup, and x r y ∈ S
whenever x, y ∈ S with y ≤ x.

Proof. It follows from our assumptions, together with the identity x r y =
x r xy (in generalized Boolean algebras), that IdpS is a subsemigroup of IdpT ,
closed under the operation (x, y) 7→ xr y and under finite orthogonal joins. Since
the latter is a Boolean ring, so is the former.

By assumption, S contains the empty sum 0. Hence, the orthogonality relation
on S is the restriction to S of the orthogonality relation on T . By our assumption,
x ⊕ y exists in S whenever x and y are orthogonal elements of S. Therefore, S is
Boolean.

Let x, y ∈ S with y ≤ x. From y ≤ x it follows that y = xd(y), whence
xr y = x(d(x)r d(y)). By assumption, d(x)r d(y) ∈ S; whence xr y ∈ S. �

The following example shows that the additional assumption, in Lemma 3-1.13,
that IdpS be closed under (x, y) 7→ xr y, cannot be dropped.

Example 3-1.14. The powerset algebra T of {0, 1}, endowed with set inter-
section, is a Boolean inverse semigroup. The subset S = {∅, {0} , {0, 1}} is an
inverse subsemigroup of T , closed under finite orthogonal joins. However, S is not
a Boolean inverse semigroup.

3-1.3. Tightness in Boolean inverse semigroups. The definition of tight-
ness given below is the restriction, to Boolean inverse semigroups, of a definition
by Lawson and Lenz [71].

Definition 3-1.15. Let S and T be Boolean inverse semigroups.

• A map f : S → T is tight if it is a semigroup homomorphism and the
equality f(x ⊕ y) = f(x) ⊕ f(y) holds whenever x and y are orthogonal
elements in S.

• A one-to-one map f : S ↪→ T is a lower semigroup embedding if it is tight
and f [S] is a lower subset of T with respect to the natural ordering.

In particular, every lower semigroup embedding is also a V-embedding (cf.
Definition 2-1.2). Further, it is well known, and an easy exercise, that any tight
map between Boolean inverse semigroups preserves finite compatible joins. We
postpone a more complete characterization of tight maps until Theorem 3-2.5.

Definition 3-1.16. An inverse subsemigroup S of an inverse semigroup T is
an ideal of T (resp., a quasi-ideal of T ) if TST ⊆ S (resp., STS ⊆ S).

It is easy to verify that every ideal is a quasi-ideal. Our concept of quasi-ideal is
a variant, restricted to inverse semigroups, of the one of Lawson [67]. The definition
involved in [67] is formulated not only for inverse subsemigroups, but for arbitrary
subsemigroups. The five-element inverse semigroup T represented in Table 3-1.2,
with the subsemigroup S = {0, 1}, shows that this makes a difference.

Definition 3-1.17. A subset S in a Boolean inverse semigroup T is
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T 0 1 2 3 4
0 0 0 0 0 0
1 0 0 3 0 1
2 0 4 0 2 0
3 0 1 0 3 0
4 0 0 2 0 4

Table 3-1.2. The subsemigroup S = {0, 1} of T has STS = S
and S−1 6= S

• a tight inverse subsemigroup of T if S is an inverse subsemigroup of T ,
IdpS is closed under the operation (x, y) 7→ xr y, and S is closed under
finite orthogonal joins in T ;

• a lower inverse subsemigroup of T if S is a tight inverse subsemigroup
of T and S is a lower subset of T with respect to the natural ordering;

• a tight ideal of T if S is an ideal of T and S is closed under finite orthog-
onal joins in T .

Our tight ideals are called ∨-ideals in Kudryavtseva et al. [66]. The following
result shows that the concepts introduced above occur only between Boolean inverse
semigroups.

Proposition 3-1.18. The following implications hold, for any subset S in a
Boolean inverse semigroup T :

S tight ideal of T ⇒ S tight quasi-ideal of T ⇒ S lower inverse subsemigroup of T

⇒ S tight inverse subsemigroup of T ⇒ S Boolean inverse semigroup .

Proof. It is trivial that any ideal of T is also a quasi-ideal of T . Now suppose
that S is a quasi-ideal of T and let x ∈ T and y ∈ S such that x ≤ y. Then
x = r(y)xd(y) ∈ STS ⊆ S. Hence, S is a lower subset of T . Now if S is a lower
inverse subsemigroup of T , then IdpS is a lower subset of IdpT , thus it is closed
under the operation (x, y) 7→ xr y. The final implication follows immediately from
Lemma 3-1.13. �

Proposition 3-1.19. Every tight inverse subsemigroup S of a Boolean inverse
semigroup T is closed under finite compatible joins.

Proof. Let x, y ∈ S with x ∼ y. Using (3-1.3), we get x ∧ y = y d(x) ∈ S.
Further, by Lemma 3-1.13, x r y = x r (x ∧ y) belongs to S. It follows that
x ∨ y = (xr y)⊕ y ∈ S. �

Proposition 3-1.20. Let X be a subset in a Boolean inverse semigroup S.
Then (SXS)⊕ is the smallest tight ideal of S containing X.

Proof. For each x ∈ X, x = r(x)xd(x) ∈ SXS ⊆ (SXS)⊕; thus X ⊆
(SXS)⊕. Moreover, SXS is an ideal of S, thus, using Proposition 3-1.9, it follows
that (SXS)⊕ is also an ideal of S. This ideal is obviously tight in S. �

Definition 3-1.21. A Boolean inverse semigroup T is an additive enlargement
of a quasi-ideal S if T = (TST )⊕.
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Our concept of additive enlargement is obtained, from the one of enlargement
introduced in Lawson [67], by replacing the condition T = TST by the weaker
condition T = (TST )⊕. For an interpretation of additive enlargements in terms of
the type monoid introduced in Definition 4-1.3, see Theorem 4-2.2. An important
class of additive enlargements is given by the following result.

Proposition 3-1.22. Let e be an idempotent element in a Boolean inverse
semigroup S. Then eSe is a tight quasi-ideal of S, and (SeS)⊕ is an additive
enlargement of eSe.

Proof. Set B = IdpS. It is trivial that eSe is an inverse subsemigroup of S.
Clearly, Idp(eSe) = B ↓ e is Boolean. Furthermore, it follows from Proposition
3-1.9 that eSe is closed under finite orthogonal joins. Hence, eSe is a tight inverse
subsemigroup of S. It is trivial that (eSe)S(eSe) ⊆ eSe. Thus, eSe is a tight
quasi-ideal of S.

By Proposition 3-1.20, (SeS)⊕ is the tight ideal of S generated by e. Setting
S′ = eSe and T ′ = (SeS)⊕, it is straightforward to verify that (T ′S′T ′)⊕ = T ′. �

The two following examples show that none of the converse implications in
Proposition 3-1.18 holds.

Example 3-1.23. Let T = I2 (cf. Example 3-1.8). Then S =
{
∅, id{1}

}
is a

tight quasi-ideal of T , but not an ideal of T .

The following result gives a convenient characterization of lower inverse sub-
semigroups.

Proposition 3-1.24. An inverse subsemigroup S, of a Boolean inverse semi-
group T , is a lower inverse subsemigroup of T iff S is closed under finite orthogonal
joins and IdpS is a lower subset of IdpT .

Proof. It is sufficient to prove that if IdpS is a lower subset of IdpT , then S
is a lower subset of T . Let t ≤ s where t ∈ T and s ∈ S. Since S is an inverse
subsemigroup of T , d(s) ∈ S. Since d(t) ≤ d(s) and by assumption, it follows that
d(t) ∈ S. Therefore, t = sd(t) ∈ S. �

In particular, IdpS is a lower inverse subsemigroup of S, for every Boolean
inverse semigroup S.

Example 3-1.25. Let T = I2. Then S = IdpT =
{
∅, id{1}, id{2}, id{1,2}

}
is a

lower inverse subsemigroup of T , but not a quasi-ideal. In fact, STS = T .

3-2. The concept of bias: an equational definition of Boolean inverse
semigroups

Due to their formulation in terms of the partial operation ⊕, the original defin-
ing axioms of the class of all Boolean inverse semigroups are not identities in the
usual sense of universal algebra. For example, the formula x(y ⊕ z) = (xy) ⊕ (xz)
makes sense only in case y ⊕ z and (xy) ⊕ (xz) are both defined. This causes con-
fusion when it comes to handling standard concepts of universal algebra, such as
homomorphisms, colimits, or free algebras.

In general, a similarity type is a set of “operation symbols” (or just, using a
standard abuse of language, “operations”), each one given a nonnegative natural
number called the arity . Operations with arity zero are usually called constants.
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Formal compositions of operations, starting with variables, are called terms. An
identity is a formal expression of the form p = q, where p and q are terms. A
variety is the class of all algebras that satisfy a given set of identities. For more
detail, see McKenzie, McNulty, and Taylor [76].

We shall provide in this section an alternative characterization, of Boolean
inverse semigroups, by a finite set of identities. This characterization will be given
in the language of inverse semigroups (i.e., a binary operation for the product, a
unary operation for the inversion, and a constant for the zero), enriched by two
additional binary operations � and O (cf. Definition 3-2.1). This will enable us
to define natural concepts such as homomorphisms, congruences, or free objects,
within Boolean inverse semigroups, and more generally, study that class from the
vantage point of universal algebra.

Our definition of the operations � and O is inspired by Leech [73, Exam-
ple 1.7(c)].

Definition 3-2.1. Let S be a Boolean inverse semigroup. We set

x �y = (r(x)rr(y))x(d(x)rd(y)) and xOy = (x �y)⊕y , for all x, y ∈ S . (3-2.1)

We shall call x � y the skew difference and x O y the skew join of x and y.

Since B is a Boolean inverse semigroup and d(x), d(y), r(x), r(y) are all
idempotent, both differences d(x)r d(y) and r(x)r r(y) are always defined, thus
x � y is always defined. Furthermore, r(y)(x � y) = (x � y) d(y) = 0, thus x � y ⊥ y,
and thus x O y is also always defined.

Notation 3-2.2. We denote by LIS the similarity type of inverse semigroups.
It is thus defined as LIS = (0,−1, ·), where 0 is a symbol of constant, −1 is a symbol
of unary operation, and · is a symbol of binary operation1 .

We also denote by LBIS the similarity type obtained by enriching LIS with two
binary operation symbols � and O.

As the sequel of the present section will involve relatively complicated identities,
we shall use a number of abbreviations, such as d(x) = x−1x, r(x) = xx−1, x2 = x ·x,
x ≤ y instead of x = yd(x), x ⊥ y instead of x−1y = xy−1 = 0, and so on.

For instance, the identity x−1xy−1y = (xy)
−1xy (which is not valid in all inverse

semigroups!) will be abbreviated by d(xy) = d(x) d(y).
The capture of the class of all Boolean inverse semigroups by a set of identities

will be performed via the following concept.

Definition 3-2.3. A bias is a LBIS-structure (S, 0,−1, ·, �,O), that is, a set S
together with a distinguished element 0 ∈ S, a unary operation x 7→ x−1 on S, and
binary operations (x, y) 7→ x · y, (x, y) 7→ x � y, (x, y) 7→ xO y on S, subject to the
following (finite) collection of identities:

(InvSem) Any set of identities defining inverse semigroups with zero. For example,
state that · is associative, 0 is a zero element with respect to ·, x = xx−1x,

(x−1)
−1

= x, and d(x) d(y) = d(y) d(x).
(GBa � ,O) All defining identities (1-3.1) of generalized Boolean algebras, with ∧

changed to the product operation ·, r changed to �, ∨ changed to O,
and x, y, z respectively replaced by d(x), d(y), d(z). For example, the

1Although strictly speaking, the operation symbols should not be denoted the same way as
their interpretations (in a given structure), that confusion is widespread and harmless.
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identity d(x) = (d(x) � d(y))O (d(x) d(y)), which is the translation of the
identity x = (xr y) ∨ (x ∧ y), belongs to the list.

(Idp � ,O) (d(x) � d(y))2 = d(x) � d(y) and (d(x)O d(y))2 = d(x)O d(y). This says
that the set of all idempotents is closed under both operations � and O.

(Distr � ,O) z
((

d(x) � d(y)
)
O d(y)

)
= z
(
d(x) � d(y)

)
O zd(y). This states a certain

restricted distributivity of the product · on the skew join O.
(Maj � ,O) x � y ≤ x O y and y ≤ x O y.
(DomO) d(x O y) = d(x � y) O d(y).

(Def � ) x � y =
(
r(x) � r(y)

)
x
(
d(x) � d(y)

)
.

The equivalence between the concept of bias on the one hand, and the one of
Boolean inverse semigroup on the other hand, is achieved by the following result.

Theorem 3-2.4.

(1) Every Boolean inverse semigroup (S, 0,−1, ·) expands, via the operations �

and O defined in (3-2.1), to a bias.
(2) For every bias (S, 0,−1, � ,O), the reduct (S, 0,−1, ·) to the similarity type LIS

is a Boolean inverse semigroup.
(3) Any two biases on S with the same inverse semigroup reduct are equal. In

particular, the two operations of expansion and reduction, defined in (1) and (2)
above, are mutually inverse.

Proof. (1). The identities (InvSem) and (Maj � ,O) are both satisfied by
definition. For all idempotent a, b ∈ S, a·b = a∧b, a �b = arb, and aOb = a∨b, thus,
since IdpS is a generalized Boolean algebra, the identities (GBa � ,O) and (Idp � ,O)
are satisfied. It follows that (Def � ) holds as well.

In order to verify (Distr � ,O), we just need to observe that z(a⊕b) = (za)⊕(zb),
for all z ∈ S and all orthogonal a, b ∈ IdpS. (Indeed, whenever x, y ∈ S, the
elements a = d(x) � d(y) = d(x)r d(y) and b = d(y) are orthogonal idempotents,
thus a O b = a⊕ b.)

Now we verify (DomO). Observe first that whenever x, y ∈ S, the elements
x′ = x � y and y are orthogonal, thus x′ O y = x′ ⊕ y. Further, d(x′) and d(y) are
orthogonal, and d(x′ ⊕ y) = d(x′)⊕ d(y).

(2). It follows from (InvSem) that (S, 0,−1, ·) is an inverse semigroup. Further,
it follows from (GBa � ,O) and (Idp � ,O) that IdpS, endowed with the restriction ∧
of ·, the restriction r of �, and the restriction ∨ of O, is a generalized Boolean
algebra.

Now let x, y ∈ S be orthogonal elements. Since d(x) and d(y) are orthogonal
idempotents, d(x) � d(y) = d(x)r d(y) = d(x), and similarly, r(x) � r(y) = r(x).
Further, it follows from (Def � ) that x � y = r(x)xd(x) = x. By (Maj � ,O), this

implies that
x
y
≤ x O y. By using (DomO), we get d(x O y) = d(x) O d(y).
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Now let z ∈ S such that
x
y
≤ z. We compute:

z d(x O y) = z
(
d(x) O d(y)

)
(by the above)

= z
(
(d(x) � d(y)) O d(y)

)
(because d(x) � d(y) = d(x))

= z(d(x) � d(y)) O z d(y) (by (Distr � ,O))

= z d(x) O z d(y) (because d(x) � d(y) = d(x))

= x O y (because x ≤ z and y ≤ z) ,
so x O y ≤ z. This completes the proof that x O y is the orthogonal join of {x, y}
in S. Therefore, S is a Boolean inverse semigroup.

(3). We need to prove that in the presence of the bias identities, the opera-
tions � and O are necessarily given by (3-2.1). Observe from the start that by (2)
above, S is a Boolean inverse semigroup.

Due to (GBa � ,O) and (Idp � ,O), this certainly holds on IdpS: that is, a � b =
a r b and a O b = a ∨ b (within IdpS), for any a, b ∈ IdpS. Due to (Def � ), it
follows that the operation � is given by (3-2.1); thus it is uniquely determined.

Now let x, y ∈ S. We must prove that x O y = (x � y) ⊕ y. Since S is a
Boolean inverse semigroup and by (Maj � ,O), (x � y) ⊕ y ≤ x O y. Further, it
follows from (DomO) that d(x O y) = d(x � y) O d(y). Since x � y ⊥ y and since
the restriction of O to the idempotents is the join within IdpS, it follows that
d(x O y) = d(x � y)⊕ d(y). Therefore, we get

(x � y)⊕ y = (x O y) d
(
(x � y)⊕ y

)
(because (x � y)⊕ y ≤ x O y)

= (x O y) d(x O y)

= x O y ,

so the operation O is given by (3-2.1).
The second statement of (3) follows immediately. �

In particular, given a Boolean inverse semigroup S, Theorem 3-2.4 enables us
to define the Boolean inverse subsemigroup of S generated by a subset X, as the
sub-bias of S generated by X.

The following result, crucial despite the easiness of its proof, identifies the
homomorphisms on Boolean inverse semigroups, with respect to the structure of
bias.

Theorem 3-2.5. Let S and T be Boolean inverse semigroups and let f : S → T
be a semigroup homomorphism. The following are equivalent:

(i) f is a bias homomorphism.
(ii) The domain-range restriction of f from IdpS to IdpT is a homomorphism of

Boolean rings.
(iii) c = a⊕ b implies that f(c) = f(a)⊕ f(b), for all a, b, c ∈ IdpS.
(iv) f is tight.

Proof. (i)⇒(ii). Since f is a semigroup homomorphism, it sends IdpS into
IdpT . Since the bias operations � and O restrict, on the idempotents, to the
difference (x, y) 7→ xr y and the join (x, y) 7→ x ∨ y, (ii) follows.

(ii)⇒(iii) is trivial.
(iii)⇒(iv). Let z = x ⊕ y in S, we must prove that f(z) = f(x) ⊕ f(y) in T .

Since f is a homomorphism of inverse semigroups with zero, f(x) ⊥ f(y); whence
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f(x)⊕ f(y) ≤ f(z). It follows from Lemma 3-1.4 that d(z) = d(x)⊕d(y), thus, by
assumption and since f is a homomorphism of inverse semigroups,

d(f(z)) = f(d(z)) = f(d(x))⊕ f(d(y)) = d(f(x))⊕ d(f(y)) = d(f(x)⊕ f(y)) .

Since f(x)⊕ f(y) ≤ f(z), it follows that f(x)⊕ f(y) = f(z).
(iv)⇒(i). Suppose that f is a tight map from S to T . For all a, b ∈ IdpS, it

follows from the tightness of f together with the equation a = (arb)⊕ab that f(a) =
f(arb)⊕f(ab) = f(arb)⊕f(a)f(b). It follows that f(arb) = f(a)rf(b). Since f
is an inverse semigroup homomorphism, it follows that f(x � y) = f(x) � f(y), for all
x, y ∈ S. Since f is tight, it follows that f(xOy) = f(x)Of(y), for all x, y ∈ S. �

The following result relates Theorem 3-2.5 with the concept of tight inverse
subsemigroup introduced in Definition 3-1.17.

Corollary 3-2.6. An inverse subsemigroup S of a Boolean inverse semi-
group T is a sub-bias of T iff it is a tight inverse subsemigroup of T .

Proof. It is trivial that every sub-bias is a tight inverse subsemigroup. Sup-
pose, conversely, that S is a tight inverse subsemigroup of T . By Lemma 3-1.13, S
is a Boolean inverse semigroup. The desired conclusion follows then from Theorem
3-2.5. �

In particular, a Boolean inverse subsemigroup S of a Boolean inverse semi-
group T is a tight inverse subsemigroup iff S is a sub-bias of T . Even more partic-
ularly, an ideal I of S is a sub-bias of S iff it is a tight ideal of S.

By Theorem 3-2.4 and Theorem 3-2.5, the category of all Boolean inverse semi-
groups and tight maps is identical to the category of all biases and bias homomor-
phisms. In particular, this category is a variety of algebras (in the sense of universal
algebra).

3-3. The prime spectrum representation of a distributive inverse
semigroup

Cayley’s Theorem states that every group embeds into some symmetric group,
and the Vagner2-Preston Theorem (cf. Lawson [68, Theorem 1.5.4]) states that ev-
ery inverse semigroup embeds into some symmetric inverse semigroup. As observed
in Exel [39], the implied embedding does not preserve finite joins as a rule, even
starting with a Boolean inverse semigroup.

The following theorem is an analogue of those results for distributive inverse
semigroups and embeddings preserving finite joins and meets. Although it is not
explicitly stated there, most of it can, in principle, deduced from results of Lawson
and Lenz [71] via elementary arguments: ε being one-to-one is essentially contained
in the combination of Lemma 3.6, Proposition 3.12, and Proposition 3.19 in [71],
and ε preserving existing meets can be deduced from Lemma 2.16 and Corollary 2.18
in [71]. Since the required translations involve the digestion of a fair number of
nontrivial definitions, we provide direct proofs for convenience.

2Although “Wagner” looks like a more plausible transliteration from the Russian, all that
author’s publications, on our current subject matter, are listed on MathSciNet with that spelling,

which we thus keep here.
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Theorem 3-3.1. Let S be a distributive inverse semigroup with zero. Then
there are a set Ω and a zero-preserving semigroup embedding ε : S ↪→ IΩ such that
the following conditions hold for every positive integer n and all x1, . . . , xn ∈ S:

(i)
∨n
i=1 xi exists in S iff

∨n
i=1 ε(xi) exists in IΩ, and then

n∨
i=1

ε(xi) = ε
( n∨
i=1

xi

)
. (3-3.1)

(ii) If
∧n
i=1 xi exists in S, then

n∧
i=1

ε(xi) = ε
( n∧
i=1

xi

)
. (3-3.2)

Note. Remember that every subset of IΩ has a meet (cf. Example 3-1.8).

Proof. Let us recall the definition of the prime spectrum GP(S) of S, as
considered in Lawson and Lenz [71]. By definition, a nonempty subset p of S is a
filter of S if it is a downward directed, upper subset of S, with respect to the natural
ordering of S. In addition, we say that p is prime if x ∨ y ∈ p implies that either
x ∈ p or y ∈ p, for all x, y ∈ S such that x∨ y is defined. By definition, Ω = GP(S)
is3 the set of all prime filters of S. Set D = IdpS and Ωe = {p ∈ Ω | ep ⊆ p}, for
every e ∈ D.

For all x ∈ S and all p ∈ Ωd(x), we define ε(x)(p) = ↑xp (where ↑X is shorthand
for S ↑X). If p /∈ Ωd(x), let ε(x)(p) be undefined.

Claim 1. Let x ∈ S and let p ∈ Ωd(x). Then ε(x)(p) is a prime filter of S.

Moreover, ε(x)(p) ∈ Ωr(x), and ε(x−1)
(
ε(x)(p)

)
= p.

Proof of Claim. If is obvious that ε(x)(p) is a proper filter of S. Let
y0, y1 ∈ S be compatible such that y0 ∨ y1 ∈ ε(x)(p), so xp ≤ y0 ∨ y1 for some
p ∈ p. Since d(x)p ⊆ p, we may assume that p = d(x)p. Since S is distributive, it
follows from Proposition 3-1.9 that

xp = xp ∧ (y0 ∨ y1) = (xp ∧ y0) ∨ (xp ∧ y1) ,

thus, by applying again Proposition 3-1.9, p = d(x)p = p0 ∨ p1 where each pi =
x−1(xp ∧ yi). Since p ∈ p and p is prime, there is i ∈ {0, 1} such that pi ∈ p.
Since xpi = r(x)(xp ∧ yi) ≤ yi, it follows that yi ∈ ↑xp, thus completing the proof
that ε(x)(p) is prime.

The proofs of the relations ε(x)(p) ∈ Ωr(x) and ε(x−1)
(
ε(x)(p)

)
= p are routine

and we omit them. � Claim 1.

It follows from Claim 1 that ε takes its values in IΩ.
Denote by Ω the prime spectrum of D. An argument, similar to the one of the

proof of Claim 1, yields the following claim.

Claim 2. Let p ∈ Ω. Then ↑p ∈ Ω, and p = D ∩ ↑p.

Claim 3. Let a, b ∈ D. Then Ωa∧b = Ωa∩Ωb and Ωa∨b = Ωa∪Ωb. Furthermore,
Ωa = Ωb implies that a = b.

3This set can be endowed with a well studied structure of topological groupoid, which will
however not be of concern in the present work.
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Proof of Claim. The relation Ωa∧b = Ωa ∩Ωb follows immediately from the
distributivity of the multiplication on the meet in S, while the relation Ωa∨b =
Ωa ∪ Ωb follows immediately from Proposition 3-1.9.

Now suppose that Ωa = Ωb. By Claim 2, it follows that a · (↑p) ⊆ ↑p iff
b · (↑p) ⊆ ↑p, for every p ∈ Ω; that is, a ∈ p iff b ∈ p, for every p ∈ Ω. By
Proposition 1-3.1, this implies that a = b. � Claim 3.

The proof of the following claim is routine (and it does not require distributiv-
ity), and we omit it.

Claim 4. The map ε is a semigroup homomorphism from S to IX .

Claim 5. The map ε is one-to-one.

Proof of Claim. Let x, y ∈ S such that ε(x) = ε(y). By equating the do-
mains of the two sides, we get Ωd(x) = Ωd(y), thus, by Claim 3, d(x) = d(y).

Set e = d(x). The filter ↑p belongs to Ωe, for every p ∈ Ω(e) (cf. Claim 2).
Hence, it follows from our assumption ε(x) = ε(y) that ↑xp = ↑yp. This implies
easily that for every p ∈ Ω(e), there exists p ∈ p ↓ e such that xp = yp. Setting
∆ = {p ∈ D ↓ e | xp = yp}, this means that

Ω(e) ⊆
⋃(

Ω(p) | p ∈ ∆
)
.

Since Ω(e) is compact and all Ω(p) are open within Ω (cf. Theorem 1-3.2), there is
a finite subset X of ∆ such that

Ω(e) ⊆
⋃(

Ω(p) | p ∈ X
)
.

By Proposition 1-3.1, this means that e ≤
∨
X. Since xp = yp for every p ∈ X, it

follows from the distributivity of S that xe = ye, that is, x = y. � Claim 5.

Now we know that ε is a semigroup embedding. Trivially, this embedding
maps 0 to the empty function.

Let us prove (i). Since S and IΩ are both distributive inverse semigroups and
since compatibility can be expressed equationally,

∨n
i=1 ε(xi) is defined iff

∨n
i=1 xi

is defined. Suppose that this holds and set y =
∨n
i=1 xi. Obviously,

n∨
i=1

ε(xi) ≤ ε(y) . (3-3.3)

Furthermore, by using Lemma 3-1.4 together with Claim 3, we obtain the relations

dom ε(y) = Ωd(y) =

n⋃
i=1

Ωd(xi) =

n⋃
i=1

dom ε(xi) = dom
( n∨
i=1

ε(xi)
)
.

By (3-3.3), it follows that
∨n
i=1 ε(xi) = ε(y), thus completing the proof of (i).

Finally, suppose that z =
∧n
i=1 xi exists in S. Obviously,

ε(z) ≤
n∧
i=1

ε(xi) . (3-3.4)

Thus, in order to complete the proof of (ii), it suffices to prove that the domain
of the right hand side of (3-3.4) is contained in the domain of its left hand side.
That is, for every element p of the domain of

∧n
i=1 ε(xi), we must prove that

d(z)p ⊆ p. Let p ∈ p. For all i, j ∈ [n], ε(xi)(p) = ε(xj)(p), thus there is qi,j ∈ p ↓ p
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such that xiqi,j ≤ xjqi,j . Pick q ∈ p such that q ≤ qi,j for all i, j ∈ [n]; since
d(x1)p ⊆ p, we may assume that q = d(x1)q. Then xiq = xjq for all i, j ∈ [n],

whence x1q =
∧n
i=1 xiq = zq. From z ≤ x1 it follows that x−1

1 z = d(z). Therefore,

q = d(x1)q = x−1
1 x1q = x−1

1 zq = d(z)q ≤ d(z)p, so d(z)p ∈ p, as desired. �

Specializing Theorem 3-3.1 to Boolean inverse semigroups, we obtain immedi-
ately the following result.

Corollary 3-3.2. Every Boolean inverse semigroup S has a tight embedding
into some symmetric inverse semigroup IΩ, preserving all existing nonempty finite
meets. In particular, S is a sub-bias of IΩ.

Remark 3-3.3. The set Ω of Corollary 3-3.2 is identical to the one of Theorem
3-3.1, that is, it is the prime spectrum of S. In the context of Corollary 3-3.2 (i.e.,
S is Boolean), more can be said: the prime filters of S are exactly the ultrafilters
of S, that is, the maximal elements of the set of all filters of S with respect to set
inclusion (cf. Lawson and Lenz [71, Lemma 3.20]).

For an arbitrary inverse semigroup S, the canonical semigroup homomorphism
λ : S → IΩ′ introduced in Exel [39], where Ω′ is the set of all ultrafilters of S
(denoted by GM(S) in Lawson and Lenz [71]), is tight in Exel’s sense. As in [39], λ
will be called the regular representation of S. Although Exel’s concept of a Boolean
inverse semigroup is less restrictive than ours, it follows from Exel [39, Proposi-
tion 6.2], together with Theorem 3-2.5, that his concept of a tight map extends
ours, and is thus consistent with it. Moreover, for a Boolean inverse semigroup S,
GM(S) = GP(S) and the canonical embedding ε : S ↪→ IGP(S) of Theorem 3-3.1 is
identical to Exel’s regular representation λ.

On the other hand, GM(S) 6∼= GP(S) for most distributive inverse semigroups S
(consider the three-element chain), so there are examples where ε 6= λ.

Remark 3-3.4. There is an apparent conflict between our statement of Corol-
lary 3-3.2 and the final counterexample of Exel [39], together with Exel’s [39,
Theorem 6.16]. This is due to Exel’s concept of a Boolean inverse semigroup be-
ing weaker than ours: in [39], an inverse semigroup with zero is Boolean, if its
semilattice of idempotents is Boolean (not necessarily unital). Let us call such
semigroups Exel-Boolean inverse semigroups. The final example of Exel [39] is an
Exel-Boolean inverse semigroup with no tight embedding into any symmetric in-
verse semigroup. Of course, by Corollary 3-3.2, such an inverse semigroup cannot
be Boolean. A much simpler example, serving the same purpose, is the one of Ex-
ample 3-1.7: in that example, the ultrafilters of S are pi = {i, 3, 4}, for i ∈ {1, 2};
and 3pi = 4pi = pi, whenever i ∈ {1, 2}. In particular, λ(3) = λ(4), with 3 6= 4.

We say that two elements x and y in an inverse semigroup S with zero essentially
coincide, in notation x ≡ y, if d(x) = d(y) and for every nonzero idempotent
e ≤ d(x) there exists a nonzero idempotent a ≤ e such that xa = ya. We say
that S is continuous if x ≡ y implies that x = y, for all x, y ∈ S. Exel proved in
[39, Theorem 7.5] that every continuous Exel-Boolean inverse semigroup embeds
tightly into some symmetric inverse monoid. He also asks, just before the statement
of [39, Theorem 7.5], whether x ≡ y implies λ(x) = λ(y). The following example,
whose construction is inspired by the final counterexample of Exel [39], shows that
this is not the case as a rule. This example turns out to be Boolean.
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Example 3-3.5. A Boolean inverse monoid S, with unit element 1S and an
element x such that 1S ≡ x and λ(1S) 6= λ(x). In particular, S is not continuous.

Proof. We denote by B the Boolean algebra of all subsets of Z+ that are
either finite or cofinite, and we fix a nontrivial group G. For each x ∈ B, we set
Nx = G if x is finite, and Nx = {1} if x is cofinite. The semigroup B × G is an
inverse monoid, and the binary relation ∼ on S defined by the rule

(x, g) ∼ (y, h) if x = y and g ≡ h (mod Nx) , for any (x, g), (y, h) ∈ B×G ,
is a monoid congruence on S×G. The quotient monoid S = (B×G)/∼ is an inverse
monoid with zero. Denoting by [x, g] the equivalence class of (x, g) modulo ∼, the
zero element of S is [∅, 1] = [∅, g] (for all g ∈ G) and the unit element of S

is 1S = [Z+, 1]. Easy calculations show that [x, g]
−1

= [x, g−1] and d([x, g]) =
r([x, g]) = [x, 1], for every (x, g) ∈ B × G. Two elements [x0, g0] and [x1, g1] of S
are orthogonal if x0 ∩ x1 = ∅ (thus one of x0 and x1 needs to be finite), and
then their orthogonal sum is [x0 ∪ x1, g1−i] if xi is finite. The semilattice of all
idempotents of S is B = {[x, 1] | x ∈ B}, which is isomorphic to B. Therefore, S is
a Boolean inverse monoid.

Pick g ∈ G \ {1} and set x = [Z+, g]. Every nonzero idempotent of S contains
an idempotent of the form en = [{n} , 1], where n ∈ Z+; and 1Sen = xen = en.
This proves that 1S ≡ x.

However, since S is Boolean, it follows from Corollary 3-3.2 that Exel’s regular
representation λ of S (cf. Remark 3-3.3) is one-to-one; whence λ(1S) 6= λ(x). �

3-4. Tight congruences of Boolean inverse semigroups

In this section we shall apply to our context the crucial universal-algebraic
concept of a congruence, in particular by describing bias congruences in terms of
the semigroup operations and the orthogonal join operation ⊕.

Proposition 3-4.1. Let S be a Boolean inverse semigroup. An equivalence re-
lation θ on S is a bias congruence iff θ is a semigroup congruence and the following
condition holds:

For all x ∈ S and all a, b ∈ IdpS orthogonal,

(xa ≡θ a and xb ≡θ b)⇒ x(a⊕ b) ≡θ a⊕ b . (3-4.1)

Proof. We prove the non-trivial direction. Let θ be a semigroup congruence
of S (thus also an inverse semigroup congruence) satisfying (3-4.1).

The assumption (3-4.1) means that for all orthogonal idempotents a and b,

from
a
b
≤θ x it follows that a ⊕ b ≤θ x, for each x ∈ S. (Recall that x ≤θ y is

shorthand for x ≡θ y d(x).) Denoting by θ : S � S/θ the canonical projection, this
means that θ(a⊕ b) = θ(a)⊕ θ(b) within S/θ.

Claim 1. θ(a∨ b) is the join of {θ(a), θ(b)} within S/θ, for any idempotents a
and b of S. Hence, θ is compatible with the operations ∧, ∨, and r on idempotents.

Proof of Claim. Any majorant, within S/θ, of {θ(a), θ(b)} is also a majo-
rant of the set {θ(ar b), θ(b)}, thus, by (3-4.1), it is a majorant of θ((ar b)⊕ b) =
θ(a∨ b). Hence, θ(a∨ b) is the join of {θ(a), θ(b)} within S/θ, and hence θ is com-
patible with the ∨ operation on IdpS. Since θ is also a congruence with respect to
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the product operation, its restriction to the generalized Boolean algebra IdpS is a
congruence with respect to join and meet, thus it is also a congruence with respect
to the difference operation r . � Claim 1.

Claim 2. The equivalence relation θ is compatible with the operation � on S.

Proof of Claim. Since θ is compatible with the product operation, it is also
compatible with the operations d and r, thus, by Claim 1, it is also compatible with
the operations (x, y) 7→ r(x)rr(y) and (x, y) 7→ d(x)rd(y). Since it is compatible
with the product operation, the desired conclusion follows. � Claim 2.

Claim 3. Let x0, y0, x1, y1 ∈ S such that x0 ≡θ y0, x1 ≡θ y1, x0 ⊥ x1, and
y0 ⊥ y1. Then x0 ⊕ x1 ≡θ y0 ⊕ y1.

Proof of Claim. Set x = x0 ⊕ x1 and y = y0 ⊕ y1. Then

d(xi) = x−1
i xi = x−1xi ≡θ x−1yi ≤θ x−1y , for each i ∈ {0, 1} .

Thus, by our assumption (3-4.1), d(x0) ⊕ d(x1) ≤θ x−1y, that is, d(x) ≤θ x−1y,
and thus x = xd(x) ≤θ xx−1y, and so x ≤θ y. Symmetrically, y ≤θ x, and
therefore, since θ is an inverse semigroup congruence, x ≡θ y. � Claim 3.

Let x0, x1, y0, y1 ∈ S such that x0 ≡θ y0 and x1 ≡θ y1. It follows from Claim 2
that x0 � x1 ≡θ y0 � y1. Since x0 � x1 ⊥ x1, y0 � y1 ⊥ y1, and y0 ≡θ y1, it follows
from Claim 3 that (x0 � x1) ⊕ x1 ≡θ (y0 � y1) ⊕ y1, that is, x0 O x1 ≡θ y0 O y1.
Therefore, θ is compatible with the operation O. �

Define a tight congruence of a Boolean inverse semigroup S as a semigroup
congruence satisfying (3-4.1). Proposition 3-4.1 says that the concepts of tight
congruence and bias congruence are equivalent.

It would be nicer if within the statement of Proposition 3-4.1, the assumption
(3-4.1) could be replaced by the weaker assumption that the restriction of θ to IdpS
is a ring congruence. The following example shows that this cannot be done, even for
idempotent-separating congruences. (A congruence θ of S is idempotent-separating
if a ≡θ b implies that a = b, for all a, b ∈ IdpS. By Howie [57, Proposition II.4.8],
this is equivalent to saying that θ ⊆H .)

Example 3-4.2. Denote the two-element group G = Z/2Z multiplicatively, so
G = {1, u} with u2 = 1. The inverse semigroup S = Gt0×{0, 1} is a Boolean inverse
monoid. The equivalence relation θ on S, defined as the union of the diagonal of S
with the set {((u, 0), (1, 0)), ((1, 0), (u, 0))}, is an idempotent-separating semigroup
congruence of S.

This congruence is not tight, for (u, 0) ≡θ (1, 0) while (u, 1) 6≡θ (1, 1), the latter
meaning that (u, 0)⊕ (0, 1) 6≡θ (1, 0)⊕ (0, 1).

Observe the contrast between Example 3-4.2 and Theorem 3-2.5. The point is
that the quotient inverse semigroup S/θ, in Example 3-4.2, is not Boolean.

Notation 3-4.3. We set

x 〈y〉 = xyx−1 , for all x , y in any inverse semigroup . (3-4.2)

Recall that if y is idempotent, then so is x 〈y〉. The following observation will
be used repeatedly without mentioning, throughout this work.
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Lemma 3-4.4. Let x, u, v be elements in an inverse semigroup, with either u
or v idempotent. Then x 〈uv〉 = x 〈u〉 · x 〈v〉.

Proof. If, for example, u is idempotent, then u and x−1x commute (they are
both idempotent), thus x 〈uv〉 = xx−1xuvx−1 = xux−1xvx−1 = x 〈u〉 · x 〈v〉. �

As our next result shows, the somewhat irregular-looking behavior witnessed
by Example 3-4.2 does not occur for the largest idempotent-separating congruence
of a Boolean inverse semigroup.

Proposition 3-4.5. Let S be a Boolean inverse semigroup. Then the largest
idempotent-separating congruence µ of S is a tight congruence of S. In particular,
S/µ is a Boolean inverse semigroup and the canonical projection S � S/µ is a
tight map.

Proof. Recall (cf. Howie [57, Theorem V.3.2]) that µ can be described by

µ = {(x, y) ∈ S × S | (∀e ∈ IdpS)(x 〈e〉 = y 〈e〉)} (3-4.3)

(cf. Notation 3-4.3). Now let a, b ∈ IdpS be orthogonal and let x ∈ S with xa ≡µ a
and xb ≡µ b. By (3-4.3), this means that x 〈ae〉 = ae and x 〈be〉 = be for every
e ∈ IdpS. Now for every e ∈ IdpS,

x 〈(a⊕ b)e〉 = x 〈ae⊕ be〉 = x 〈ae〉 ⊕ x 〈be〉 = ae⊕ be = (a⊕ b)e ,
so x(a⊕ b) ≡µ a⊕ b. By Proposition 3-4.1, it follows that µ is a bias congruence.
The last part of Proposition 3-4.5 follows immediately. �

Proposition 3-4.6. Let I be a tight ideal in a Boolean inverse semigroup S.
Then the binary relation ≡I on S, defined by the rule

x ≡I y ⇔ (∃z)
(
z ≤ x and z ≤ y and {xr z, y r z} ⊆ I

)
, for all x, y ∈ S ,

(3-4.4)
is the least tight congruence of S for which the equivalence class of 0 contains I.

Proof. Obviously, every tight congruence of S, for which the equivalence class
of 0 contains I, contains ≡I . Hence, it suffices to prove that ≡I is a tight congruence
of S. It is trivial that ≡I is both reflexive and symmetric. Let x, y, z ∈ S such that

x ≡I y and y ≡I z. There are u, v ∈ S with u ≤ x, v ≤ z, and
u
v
≤ y, such that

xr u, yr u, yr v, and zr v all belong to I. From
u
v
≤ y it follows that u ∼ v and

y r u ∼ y r v. The latter relation implies that (y r u) ∨ (y r v) exists in S. Since
{y r u, y r v} ∈ I, it follows that (y r u) ∨ (y r v) ∈ I (cf. Proposition 3-1.19),
that is, y r (u ∧ v) ∈ I. (All statements, such as y r (u ∧ v) = (y r u) ∨ (y r v),
can easily be proved by reduction to the idempotent case, via Lemma 3-1.3.) By
meeting that relation with u, we get ur (u∧ v) ∈ I and vr (u∧ v) ∈ I. Therefore,
xr (u ∧ v) = (xr u)⊕ (ur (u ∧ v)) ∈ I, and, similarly, z r (u ∧ v) ∈ I, so x ≡I z.

Let x, y, z ∈ S with x ≡I y. There exists u ∈ S such that u ≤ x
y

and

{xr u, y r u} ⊆ I. By Lemma 3-1.12 and since I is an ideal of S, it follows that
{xz r uz, yz r uz} ⊆ I and {zxr zu, zy r zu} ⊆ I, thus xz ≡I yz and zx ≡I zy.
Therefore, ≡I is a semigroup congruence of S.

In order to verify that ≡I is a tight congruence, it suffices to verify (3-4.1).
Let a, b ∈ IdpS be orthogonal idempotents and let x ∈ S such that xa ≡I a and
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xb ≡I b. There are u ≤ xa
a

and v ≤ xb
b

such that xa r u, a r u, xb r v, and b r v

all belong to I. From u ≤ a and v ≤ b it follows that u and v are both idempotent.

Further, u⊕ v ≤ x(a⊕ b)
a⊕ b , and

(a⊕ b)r (u⊕ v) = (ar u)⊕ (br v) ∈ I ,
x(a⊕ b)r (u⊕ v) = (xa⊕ xb)r (u⊕ v) = (xar u)⊕ (xbr v) ∈ I ,

so x(a ⊕ b) ≡I a ⊕ b. Therefore, ≡I is a tight congruence of S. By virtue of The-
orem 3-2.4 and Proposition 3-4.1, the final statement of Proposition 3-4.6 follows
immediately. �

For a tight ideal I in a Boolean inverse semigroup S, we will denote by x/I the
equivalence class of x with respect to ≡I , for each x ∈ S. Observe that 0/I = I.

In the context of Proposition 3-4.6, ≡I is a bias congruence of S (cf. Proposition
3-4.1), thus the quotient structure S/I = S/≡I is a Boolean inverse semigroup.

Our next group of results introduces an alternate way to view tight ideals of S,
by focusing attention on the idempotents of S.

Definition 3-4.7. Let S be a Boolean inverse semigroup. An ideal I of the
Boolean ring IdpS is D-closed if for all a, b ∈ IdpS, aDS b and a ∈ I implies that
b ∈ I.

Our next result shows that tight ideals (of Boolean inverse semigroups) are
essentially the same concept as D-closed ideals (in Boolean rings of idempotents).

Proposition 3-4.8. Let S be a Boolean inverse semigroup and set B = IdpS.
The following statements hold:

(1) For any tight ideal J of S, the intersection J ∩B is a D-closed ideal of B.
(2) For any D-closed ideal I of the Boolean ring B, the equality d−1[I] = r−1[I]

holds. Furthermore, this set is the ideal of S generated by I, and it is also a
tight ideal.

(3) The two transformations described in (1) and (2) above are mutually inverse.

Proof. (1). From 0 ∈ J it follows that 0 ∈ J ∩ B. Let a ∈ B and b ∈ J ∩ B
with a ≤ b. Then a = ab ∈ SJ ⊆ J , so a ∈ J ∩ B, and so J ∩ B is a lower subset
of B. Since J is closed under finite orthogonal joins, so is J ∩B. Hence J ∩B is an
ideal of B. Now let a, b ∈ B with a D b. Pick x ∈ S with d(x) = a and r(x) = b.
In particular, b = xax−1, hence a ∈ I implies that b ∈ I.

(2). Since d(x) D r(x) for all x ∈ S, the equality d−1[I] = r−1[I] is obvious. It
is then easy to verify, in particular by using Lemma 3-1.4, that this set is a tight
ideal of S. It obviously contains I. Let J be an ideal of S containing I. For any
x ∈ d−1[I], the element d(x) belongs to I, thus to J , thus x = xd(x) ∈ J ; whence
d−1[I] ⊆ J .

(3). Let J be a tight ideal of S and set I = J ∩B. We claim that J = d−1[I].
For each x ∈ J , d(x) = x−1x ∈ J , thus d(x) ∈ I, that is, x ∈ d−1[I]. Conversely,
let x ∈ d−1[I]. Then d(x) ∈ J as well, so x = xd(x) ∈ J , thus completing the
proof of our claim.

Finally, it is trivial that I = d−1[I] ∩B, for any D-closed ideal I of B. �
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Proposition 3-4.9. Let S and T be Boolean inverse semigroups and let
f : S → T be a tight map. Then the set ker f = f−1 {0} is a tight ideal of S. Fur-
thermore, denoting by p : S � S/ker f the canonical projection, there is a unique
tight map f : S/ker f → T such that f = f ◦ p.

Note. The set ker f = f−1 {0}, which is a subset of the domain of f , should
not be confused with the kernel Ker f of f , which is an equivalence relation on the
domain of f (cf. Section 1-2).

Proof. It is straightforward to verify that the subset I = ker f is a tight ideal
of S.

Since biases form a variety of algebras, the standard concepts of universal
algebra apply to the category of biases and bias homomorphisms. This is the case,
in particular, for the First Isomorphism Theorem. Since bias homomorphisms and
tight maps are the same concept (cf. Theorem 3-2.5), in order to prove the final
statement of Proposition 3-4.9, it suffices to prove that p(x) = p(y) (i.e., x ≡I y)
implies that f(x) = f(y), for all x, y ∈ S. Let z ∈ S witness x ≡I y, that is,

z ≤ x
y

and {xr z, y r z} ⊆ I. Since x = (x r z) ⊕ z and f is tight, we get

f(x) = f(xr z)⊕ f(z) = f(z). Similarly, f(y) = f(z), so f(x) = f(y). �

Say that a congruence θ of S is ideal-induced if θ is equal to ≡I for some tight
ideal I of S. As the following example shows, a Boolean inverse semigroup may
have many tight congruences that are not ideal-induced. This example also shows
that the map f of the statement of Proposition 3-4.9 may not be one-to-one.

Example 3-4.10. For any group G, the inverse semigroup Gt0 is a Boolean
inverse semigroup, where x ⊥ y iff either x = 0 or y = 0. If a tight congruence θ
of Gt0 identifies 0 with some nonzero element, then θ = Gt0 ×Gt0 is the largest
congruence. If θ does not identify 0 with any nonzero element, then θ is the
congruence θH associated with a normal subgroup H of G, in the sense that x ≡θ y
iff either x = y = 0 or x, y 6= 0 and x−1y ∈ H. Observe that θH is ideal-induced iff
H = {1}.

It follows, in particular, that the lattice of all tight congruences of Gt0 is
isomorphic to the normal subgroup lattice NSubG of G, with a top element added.
In particular, taking for G the Klein group (Z/2Z)× (Z/2Z), the tight congruence
lattice of Gt0 is the five-element modular non distributive lattice M3, with a top
element added. Thus we get the following observation: The lattice of all tight
congruences of a Boolean inverse semigroup may not be distributive.

On the other hand, it is well know that the lattice NSubG is modular, for any
group G. Hence, the lattice of all tight congruences of Gt0 is modular. We shall
now see that this observation can be extended to any Boolean inverse semigroup.

To this end, let us introduce the following ternary term m, in the similarity
type LBIS of all biases (cf. Notation 3-2.2; recall that d(x) and r(z) are shorthand
for x−1x and xx−1, respectively):

m(x, y, z) =
(
x
(
d(x) � d(y)

)
O xy−1z

)
O
(
r(z) � r(y)

)
z . (3-4.5)

Recall that a variety V of algebras is congruence-permutable if α◦β = β ◦α for
any congruences α and β of any algebra in V. We also say that V is congruence-
modular if the lattice of all congruences of any algebra A ∈ V is modular, that is,



3-5. GENERALIZED ROOK MATRICES 85

α∩(β∨(α∩γ)) = (α∩β)∨(α∩γ) for any congruences α, β, γ of A. It is well known
that every congruence-permutable variety is congruence-modular (for every lattice
of pairwise commuting equivalence relations is modular, and even Arguesian; this
originates in Jónsson [59], see also Grätzer [50, Theorem 410]).

Theorem 3-4.11. The term m is a Mal ′cev term for the variety of all biases;
that is, the equations m(x, x, y) = m(y, x, x) = y hold identically in every bias.
Therefore, the variety of all biases is congruence-permutable, thus also congruence-
modular.

Proof. Let S be a bias. It is straightforward to verify that xO 0 = 0Ox = x,
for every x ∈ S. Since the operations � and r agree on the idempotents of S,
while O and ⊕ agree on orthogonal pairs, we can compute

m(x, x, y) =
(
x
(
d(x)r d(x)

)
O xx−1y

)
O
(
r(y)r r(x)

)
y

= r(x)y ⊕
(
r(y)r r(x)

)
y

=
(
r(x) ∨ r(y)

)
y

= y ,

and

m(y, x, x) =
(
y
(
d(y)r d(x)

)
O yx−1x

)
O
(
r(x)r r(x)

)
x

= y
(
d(y)r d(x)

)
O y d(x)

= y
(
d(y) ∨ d(x)

)
= y .

Hence m is a Mal′cev term for biases. It is well known since Mal′cev [74] (cf.
McKenzie, McNulty, and Taylor [76, Theorem 4.141]) that this implies the congru-
ence-permutability result, whence the congruence-modularity result. �

Theorem 3-4.11 marks a crucial difference between Boolean inverse semigroups
on the one hand, and inverse semigroups on the other hand. Indeed, it is well known
that there is no lattice identity satisfied by the congruence lattices of all semilattices
(cf. Freese and Nation [45]), thus, a fortiori, by the congruence lattices of all inverse
semigroups.

3-5. Generalized rook matrices over Boolean inverse semigroups

The following concept is taken from Wallis [109, § 4.5], see also Kudryavtseva et
al. [66]. It extends the one of a rook matrix introduced in Solomon [98]. Solomon’s
rook matrices are identical to generalized rook matrices taken over the two-element
inverse semigroup. Left and right orthogonality are both introduced in Definition
3-1.2.

Definition 3-5.1. Let S be an inverse semigroup with zero and let Ω be a
(possibly infinite) set. A square matrix a = (ai,j | (i, j) ∈ Ω× Ω), with all ai,j ∈ S,
is a generalized rook matrix over S if any two distinct rows (resp., columns) of S
are left orthogonal (resp., right orthogonal). In formula,

ai,j ⊥rt ai,k and aj,i ⊥lt ak,i , for all i, j, k ∈ Ω with j 6= k . (3-5.1)
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We denote by R⊕Ω(S) the set of all Ω×Ω generalized rook matrices over S. We also

consider the following subsets of R⊕Ω(S):

• the set B⊕Ω(S) of all generalized rook matrices a that are both row-finite
(i.e., for each i ∈ Ω, ai,j = 0 for all but finitely many j ∈ Ω) and column-
finite (i.e., for each j ∈ Ω, ai,j = 0 for all but finitely many i ∈ Ω);

• the set M⊕Ω(S) of all generalized rook matrices a such that ai,j = 0 for
all but finitely many (i, j) ∈ Ω× Ω.

If Ω = [n], for n ∈ N, we will write M⊕n (S) = B⊕n (S) = R⊕n (S) = R⊕[n](S).

The basic properties of generalized rook matrices over S are summed up in
Wallis [109, § 4.5], Kudryavtseva et al. [66, Proposition 3.5]. Since we are dealing
with a slightly more general context (due to the possibility that Ω be infinite), we
include proofs for convenience.

In what follows, for any family (ai | i ∈ I) of elements in a Boolean inverse
semigroup S, we say that the orthogonal join

⊕
i∈I ai is defined if the ai are pairwise

orthogonal and ai = 0 for all but finitely many i ∈ I.

Lemma 3-5.2. Let S be an inverse semigroup with zero and let Ω be a set. The
following statements hold, for any generalized rook matrices a = (ai,j | (i, j) ∈ Ω× Ω)
and b = (bi,j | (i, j) ∈ Ω× Ω) over S:

(1) For any i, j ∈ Ω, the elements ai,kbk,j , where k ∈ Ω, are pairwise orthogonal.
(2) If S is Boolean inverse and all elements ci,j =

⊕
k∈Ω ai,kbk,j , for i, j ∈ Ω, are

defined (in which case we say that the matrix ab is defined), then
c = (ci,j | (i, j) ∈ Ω× Ω) is a generalized rook matrix over S.

(3) If S is Boolean inverse, a, b ∈ R⊕Ω(S), and either a is row-finite or b is column-
finite, then ab is defined. Furthermore, if a is row-finite and b is column-finite,
then ab is both row-finite and column-finite.

(4) If S is Boolean inverse, then M⊕Ω(S) is an ideal of B⊕Ω(S).

In the context of Lemma 3-5.2(2), we say that c is the product of a and b, and
we write c = ab.

Proof. (1). For any distinct k, l ∈ Ω, from bk,jb
−1
l,j = 0 it follows that

ai,kbk,j(ai,lbl,j)
−1

= ai,kbk,jb
−1
l,j a

−1
i,l = 0 ,

so ai,kbk,j ⊥lt ai,lbl,j . Similarly, from a−1
i,kai,l = 0 it follows that

(ai,kbk,j)
−1
ai,lbl,j = b−1

k,ja
−1
i,kai,lbl,j = 0 .

so ai,kbk,j ⊥rt ai,lbl,j . Hence, ai,kbk,j ⊥ ai,lbl,j .
(2). Suppose that the matrix c = ab is defined. Let i, j, k ∈ Ω with j 6= k. We

claim that ci,j ⊥rt ci,k and cj,i ⊥lt ck,i. In order to verify the first statement, it

suffices to verify that ai,pbp,j ⊥rt ai,qbq,k, that is, b−1
p,ja

−1
i,pai,qbq,k = 0, for all p, q ∈ Ω.

If p 6= q, then this follows from a−1
i,pai,q = 0. If p = q, then a−1

i,pai,q = d(ai,p) is

idempotent, thus, since b−1
p,jbp,k = 0, we get

b−1
p,ja

−1
i,pai,qbq,k ≤ b

−1
p,jbp,k = 0 ,

thus b−1
p,ja

−1
i,pai,qbq,k = 0, as desired. The proof of the relation cj,i ⊥lt ck,i is similar.
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(3). Suppose first that a is row-finite and let i, j ∈ Ω. By assumption, the set
X = {k ∈ Ω | ai,k 6= 0} is finite. It follows that

⊕
k∈Ω ai,kbk,j =

⊕
k∈X ai,kbk,j is

defined. Hence ab is defined. The argument is similar in case b is column-finite.
Now suppose that a is row-finite and b is column-finite. By the paragraph above,

c = ab is defined. Let i ∈ Ω. Since a is row-finite, the set X = {k ∈ Ω | ai,k 6= 0} is
finite. Since b is column-finite, the set Y = {j ∈ Ω | (∃k ∈ X)(bk,j 6= 0)} is finite.
We shall prove that ai,kbk,j = 0, for any j ∈ Ω \ Y and any k ∈ Ω. If k /∈ X, then
ai,k = 0 and we are done. If k ∈ X, then, since j /∈ Y , we get bk,j = 0. In any case,
we are done. This proves that ci,j = 0 whenever j ∈ Ω \ Y , thus completing the
proof that c is row-finite. The proof that c is column-finite is symmetric.

A similar type of argument yields (4). �

Proposition 3-5.3. The following statements hold, for any Boolean inverse
semigroup S and every set Ω:

(1) The multiplication, (a, b) 7→ ab, defined in the statement of Lemma 3-5.2, en-
dows B⊕Ω(S) with a structure of inverse semigroup, for which the inverse of

a matrix a = (ai,j | (i, j) ∈ Ω× Ω) is given by a−1 =
(
a−1
j,i | (i, j) ∈ Ω× Ω

)
.

The idempotent elements of B⊕Ω(S) are the diagonal matrices with idempotent
entries.

(2) Let a, b ∈ B⊕Ω(S). Then a ≤ b iff ai,j ≤ bi,j for all i, j ∈ Ω.

(3) Two matrices a, b ∈ B⊕Ω(S) are left orthogonal (resp., right orthogonal) iff any
row of a is left orthogonal to any row of b (resp., any column of a is right
orthogonal to any column of b). Furthermore, if a and b are orthogonal, then
their orthogonal join a⊕ b is defined, and

a⊕ b = (ai,j ⊕ bi,j | (i, j) ∈ Ω× Ω) .

(4) B⊕Ω(S) is a Boolean inverse semigroup, in which M⊕Ω(S) is a tight ideal.

Proof. (1). The proof of the associativity of the matrix multiplication on
B⊕Ω(S), given in the statement of Lemma 3-5.2, is identical, mutatis mutandis (and
using Proposition 3-1.9), to the one of the associativity of the matrix multiplication
over any ring, so we omit it.

Now set ι(a) =
(
a−1
j,i | (i, j) ∈ Ω× Ω

)
, for any generalized rook matrix a over S.

A straightforward calculation yields that a·ι(a) is the diagonal matrix with diagonal
entries

⊕
j∈Ω r(ai,j), for i ∈ Ω. A further easy calculation yields a · ι(a) · a = a.

In particular, any matrix of the form a · ι(a) is diagonal with idempotent diagonal
entries. Hence, any two such matrices commute. Since the map ι is obviously
involutive, it follows from Lemma 3-1.1 that B⊕Ω(S) is an inverse semigroup, with

inversion map ι. Further, the zero matrix is the zero element of B⊕Ω(S).
(2). As observed in the proof of (1), r(a) is the diagonal matrix with entries

ei =
⊕

j∈Ω r(ai,j), for i ∈ Ω. Hence, r(a)b =
(
b′i,j | (i, j) ∈ Ω× Ω

)
where we set

b′i,j = eibi,j whenever i, j ∈ Ω. In particular, if a ≤ b, that is, a = r(a)b, then
ai,j ≤ bi,j for all i, j ∈ Ω. Suppose, conversely, that ai,j ≤ bi,j for all i, j ∈ Ω. Let
k ∈ Ω\{j}. From r(bi,k)bi,j = 0 and ai,k ≤ bi,k it follows that r(ai,k)bi,j = 0. Since
r(ai,j)bi,j = ai,j , a direct application of Proposition 3-1.9 yields that eibi,j = ai,j .
Hence, a = r(a)b, that is, a ≤ b.

(3). For all i, j ∈ Ω, the (i, j)-th entry of ab−1 is
⊕

k∈Ω ai,kb
−1
j,k. Hence, ab−1 = 0

iff ai,kb
−1
j,k = 0 for each k ∈ Ω, that is, any row of a is left orthogonal to any row

of b. The proof of the statement about right orthogonality is similar.
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Now suppose that a ⊥ b. Let i, j, k ∈ Ω with j 6= k. Since a and b are both
generalized rook matrices over S, ai,j ⊥rt ai,k and bi,j ⊥rt bi,k. Moreover, by the
paragraph above, ai,j ⊥rt bi,k and bi,j ⊥rt ai,k. Therefore, ai,j ⊕ bi,j ⊥rt ai,k ⊕ bi,k.
The proof of the relation aj,i ⊕ bj,i ⊥lt ak,i ⊕ bk,i is similar. It follows that the
matrix c = (ai,j ⊕ bi,j | (i, j) ∈ Ω× Ω) is a generalized rook matrix over S. An
easy application of (2) yields then that c is the orthogonal join of {a, b}.

(4). By (1) above, Idp B⊕Ω(S) is isomorphic to (IdpS)Ω endowed with the

componentwise ordering. By (3) above, it follows that Idp B⊕Ω(S) is Boolean. Hence,

B⊕Ω(S) is a Boolean inverse semigroup. The subset M⊕Ω(S) is an ideal (cf. Lemma
3-5.2), closed under finite orthogonal sum by (3) above, so it is a tight ideal. �

For a Boolean inverse semigroup S and a set Ω, denote by x(i,j) the matrix
with (i, j)-th entry x and all other entries 0, for all x ∈ S and all (i, j) ∈ Ω×Ω. It
follows from Proposition 3-5.3 that every element of M⊕Ω(S) is a finite orthogonal
join of elements of the form x(i,j). The x(i,j) behave essentially like matrix units:

x(i,j) · y(k,l) = δj,k · (xy)(i,l) , for all x, y ∈ S and all i, j, k, l ∈ Ω , (3-5.2)

(x(i,j))
−1

= (x−1)(j,i) , for all x ∈ S and all i, j ∈ Ω , (3-5.3)

where δj,k denotes the Kronecker symbol. In particular,

e(i,i) = ei,j(e(i,j))
−1

and e(j,j) = (e(i,j))
−1
e(i,j) , for all e ∈ IdpS and all i, j ∈ Ω ,

(3-5.4)
so e(i,i) D e(j,j) within M⊕Ω(S).

Corollary 3-5.4. Let S be a Boolean inverse semigroup, let Ω be a set, and let
o ∈ Ω. Then the map η : S ↪→ M⊕Ω(S), x 7→ x(o,o) is a lower semigroup embedding

and M⊕Ω(S) is an additive enlargement of η[S].

Proof. It is straightforward to verify from Proposition 3-5.3 that η is a tight
embedding. Set S = η[S] and T = M⊕Ω(S). Then S consists of all matrices with all
entries, with the possible exception of the (o, o)-th, zero. By the definition of the

multiplication in T , we obtain easily that S T S = S. Since S
−1

= S, it follows
that S is a tight quasi-ideal of T .

Finally, it follows from Proposition 3-5.3(3) that the orthogonal joins in T
are evaluated componentwise, thus every element of T is a finite orthogonal join
of elements of the form x(i,j), where x ∈ S and (i, j) ∈ Ω × Ω. From x(i,j) =

x(i,o)x(o,o)x(o,j) it follows that x(i,j) ∈ T S T . Therefore, T = (T S T )⊕. �

It is interesting to compare the results of this section, especially Proposition
3-5.3, to the corresponding results in ring theory. A unital ring R is an exchange
ring if for every x ∈ R, there is an idempotent e ∈ R such that eR ⊆ xR and
(1− e)R ⊆ (1−x)R. Every von Neumann regular ring is an exchange ring, but the
converse fails. A C*-algebra is an exchange ring iff it has real rank zero (cf. Ara et
al. [11, Theorem 7.2]). O’Meara proves in [85] that the ring B(R), of all countably
infinite, row-finite, and column-finite matrices over a regular ring R, is an exchange
ring. He also observes there that for an arbitrary exchange ring R, B(R) may not
be an exchange ring. On the other hand, it is well known that the ring B(R) is not
regular unless R is trivial (if s is the matrix of the shift operator, then 1− s has no
quasi-inverse in B(R)).
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3-6. Crossed product of a Boolean inverse semigroup by a group action

The goal of this section is to extend, to Boolean inverse semigroups, the classical
construction of the crossed product of a ring by a group action (cf. Section 2-8).

Let a group G act by automorphisms on a Boolean inverse semigroup S. We de-
note the group action by (g, x) 7→ g(x). We set x·g =

(
δp,gqp

−1(x) | (p, q) ∈ G×G
)
,

for any (x, g) ∈ S ×G, where δp,q denotes the Kronecker symbol. The set S ·G =

{x · g | (x, g) ∈ S ×G} is a subset of the Boolean inverse semigroup B⊕G(S) of row-
finite and column-finite G × G generalized rook matrices over S (cf. Proposition
3-5.3). The following lemma records a few elementary properties of the elements x·g.
Its proof is straightforward and we leave it to the reader.

Lemma 3-6.1. The following statements hold, for any x, y ∈ S and g, h ∈ G:

(1) x · g = y · h iff x = y and either g = h or x = 0;
(2) (x · g)(y · h) =

(
xg(y)

)
· gh;

(3) (x · g)
−1

= g−1(x−1) · g−1;
(4) d(x · g) = g−1(d(x)) · 1;
(5) r(x · g) = r(x) · 1.

In particular, S · G is an inverse subsemigroup of B⊕G(S), and the idempotent ele-
ments of S ·G are the e · 1, where e ∈ IdpS.

Definition 3-6.2. The crossed product of S by (the action of ) G, denoted by
S oG, is the closure of S ·G under finite orthogonal joins, within B⊕G(S).

Hence the elements of S oG are the orthogonal joins of the form

x =

n⊕
i=1

(xi · gi) , where n ∈ Z+ and each (xi, gi) ∈ S ×G . (3-6.1)

The orthogonality, within B⊕G(S), of the finite sequence (xi · gi | i ∈ [n]) is, by
Lemma 3-6.1, equivalent to the orthogonality, within IdpS, of both finite sequences(
g−1
i (d(xi)) | i ∈ [n]

)
and (r(xi) | i ∈ [n]).

Proposition 3-6.3. Let a group G act by automorphisms on a Boolean inverse
semigroup S. Then S oG is a tight inverse subsemigroup of B⊕G(S). In particular,
it is a Boolean inverse semigroup. Furthermore, Idp(S oG) = (IdpS) · 1, and the
canonical map ε : S ↪→ S oG, x 7→ x · 1 is a lower semigroup embedding.

Proof. It follows from the definition of SoG, together with Lemma 3-6.1 and
Proposition 3-1.9, that S o G is an inverse subsemigroup of B⊕G(S), closed under
finite orthogonal sums. Any element x ∈ S oG can be written in the form (3-6.1),
and then, using Lemma 3-6.1, we get r(x) = e · 1 where e =

⊕n
i=1 r(xi). It follows

that Idp(SoG) = (IdpS) ·1. Since IdpS is Boolean, so is Idp(So1). In particular,
Idp(S o 1) is closed under the operation (x, y) 7→ xr y. By Lemma 3-1.13, S oG
is a Boolean inverse semigroup.

Let x ∈ S o G, written as in (3-6.1), and let y ∈ S such that x ≤ y · 1 within
S oG. For each i ∈ [n], xi · gi = r(xi · gi)(y · 1) =

(
r(xi) · 1

)
(y · 1) = r(xi)y · 1, thus

xi = r(xi)y (i.e., xi ≤ y) and either gi = 1 or xi = 0. In any case, xi · gi = xi · 1.
Then it follows from Lemma 3-6.1 that the xi are pairwise orthogonal in S; whence
x =

(⊕n
i=1 xi

)
· 1 belongs to the range of ε. Therefore, ε is a lower semigroup

embedding. �
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Our next encounter with crossed products of Boolean inverse semigroups, in-
volving type monoids, will occur in Theorem 4-1.10.

3-7. Boolean antigroups and Boolean inverse meet-semigroups

Two important subclasses, of the class of all Boolean inverse semigroups, will
come up recurrently in our work, namely Boolean antigroups and Boolean inverse
meet-semigroups. This will also motivate the introduction of a definition of semisim-
plicity for Boolean inverse semigroups, close in spirit to the ring-theoretical concept
with that name.

We start by recalling the following definition.

Definition 3-7.1. An inverse semigroup S is an antigroup4 (cf. Vagner [105,
106], Zhitomirskiy [119, 120]) if the identity is the only idempotent-separating
congruence of S. Equivalently, every element of S, which commutes with all idem-
potent elements of S, is idempotent.

Denote by µ the largest idempotent-separating congruence of an inverse semi-
group S. By Howie [57, Theorem V.3.4], the quotient S/µ is then an antigroup
and Idp(S/µ) ∼= IdpS.

The following lemma records a useful basic property of antigroups.

Lemma 3-7.2. Let S be an antigroup and let p and q be atoms of IdpS. Then
there is at most one element x ∈ S such that d(x) = p and r(x) = q.

Proof. We first deal with the case where p = q. Let x ∈ S such that d(x) =
r(x) = p. Hence x = pxp. Since p is an atom, every e ∈ IdpS satisfies either p ≤ e
or pe = 0. In the first case, xe = ex = x. In the second case, xe = ex = 0. In either
case, xe = ex, so x commutes with every idempotent of S. Since S is an antigroup,
x is idempotent, so x = p.

Now we deal with the general case. Let x, y ∈ S such that d(x) = d(y) = p and
r(x) = r(y) = q. It follows that d(x−1y) = r(x−1y) = p, thus, by the paragraph
above, x−1y = p. It follows that y = qy = xx−1y = xp = x. �

Example 3-7.3. For any set X, the symmetric inverse monoid IX (cf. Example
3-1.8) is a Boolean antigroup.

Example 3-7.4. For a group G, the monoid Gt0 (cf. Definition 1-4.1) is a
Boolean inverse semigroup, with the same unit as G. It is an antigroup iff G is
trivial.

Let τg : G→ G, x 7→ gx, for all g ∈ G. Then the assignment τ : Gt0 → IG (cf.
Example 3-1.8), defined by 0 7→ ∅, g 7→ τg, is a semigroup embedding from Gt0

into IG. The orthogonality relation on the range of τ is trivial, hence the range of τ
is closed under finite orthogonal joins. Therefore, Gt0 is isomorphic to an inverse
subsemigroup of IG, closed under finite orthogonal joins. More generally, recall
from Corollary 3-3.2 that every Boolean inverse semigroup has a tight embedding
into some symmetric inverse monoid, thus into some Boolean antigroup. This shows
that Lemma 3-1.13 does not extend to Boolean antigroups.

Definition 3-7.5. The pedestal of a Boolean inverse semigroup S is defined as
the set PedS = {x ∈ S | S ↓ x is finite}. We say that S is semisimple if PedS = S.

4After Munn [81], such semigroups are often called fundamental (see also Howie [57]).
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The terminology in Definition 3-7.5 is consistent with the one, introduced in
Ara and Goodearl [10, Definition 2.3], for conical refinement monoids. With an eye
on ring theory, it would seem reasonable to call the subset defined above the socle
of S. However, the concept of the (left or right) socle, of a semigroup with zero (cf.
Clifford and Preston [29, § 6.4]), is related, but not equivalent, to our concept of a
pedestal, even in the particular case of Boolean inverse semigroups.

It is not hard to verify that an element x, in a Boolean inverse semigroup S,
belongs to PedS iff d(x) (resp., r(x)) is a finite join of atoms of the Boolean ring
IdpS, iff x is a finite orthogonal join of atoms of S. Further, PedS is a tight ideal
of S. Observe also that every finite Boolean inverse semigroup is semisimple.

Proposition 3-7.6. Every tight congruence θ of a semisimple Boolean anti-
group S is ideal-induced, and S/θ is a semisimple Boolean antigroup.

Proof. By applying Proposition 3-4.9 to the canonical projection θ : S � S/θ,
we obtain that the subset I = 0/θ is a tight ideal of S. In order to prove that θ is
induced by that ideal, it suffices to prove that the tight map θ : S/I � S/θ given
by Proposition 3-4.9 is one-to-one, that is, θ(x) = θ(y) implies that x ≡I y, for all
x, y ∈ S.

We first settle the case where x, y ∈ qSp, for atoms p and q of B. Since S is an
antigroup and by Lemma 3-7.2, either x = y or 0 ∈ {x, y}. In the first case, x ≡I y
trivially. In the second case, say x = 0, then θ(y) = 0, that is, y ∈ I, so x ≡I y.

Now we settle the general case. Since S is semisimple, there is a finite set P
of atoms of IdpS whose (orthogonal) join contains d(x), r(x), d(y), r(y). For any
p, q ∈ P , θ(qxp) = θ(qyp), thus, by the paragraph above, qxp ≡I qyp. By evaluating
the orthogonal join, over p ∈ P , of both sides of that equation, we obtain, since ≡I
is a tight congruence (cf. Proposition 3-4.6), the relation⊕

p∈P
qxp ≡I

⊕
p∈P

qyp ,

thus, using Proposition 3-1.9, qx ≡I qy. By the same token, now summing up over q
instead of p, we obtain x ≡I y. This completes the proof that θ is one-to-one.

Observe that x/θ is either zero or an atom, for every atom x of S, according
to whether x ∈ I or x /∈ I, respectively. Since every element of S is a finite join of
atoms, it follows that every element of S/θ is a finite join of atoms, that is, S/θ is
semisimple.

Finally we prove that S/θ is an antigroup. This amounts to proving that for
every x ∈ S, if xe ≡θ ex for all e ∈ IdpS, then x/θ is idempotent in S/θ. Since θ
is one-to-one, we get xe ≡I ex, for all e ∈ IdpS. The latter relation means that

there is ze ∈ S such that ze ≤
xe
ex

and {xer ze, exr ze} ⊆ I. Set v = d(x) ∨ r(x)

(any larger idempotent would do). Since S is semisimple, the set P = (IdpS) ↓ v is
finite. Since I is a tight ideal of S, the idempotent element

u =
∨
e∈P

(
d(xer ze) ∨ d(exr ze)

)
belongs to I; moreover, u ≤ v. Observe that xe r ze = (xe r ze)u for each e ∈ P .
Hence, from ze ≤ xe it follows that xe(v r u) = ze(v r u). Likewise, ex(v r u) =
ze(v r u), so xe(v r u) = ex(v r u). It follows that x(v r u) commutes with every
element of P , thus with every idempotent below v. Since it also commutes with
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every idempotent e orthogonal to v (for in that case, xe = ex = 0), it follows
that x(v r u) commutes with every idempotent of S. Since S is an antigroup,
x r xu = x(v r u) is idempotent in S, thus x/θ = x(v r u)/θ is idempotent
in S/θ. �

Definition 3-7.7. An inverse semigroup S is an inverse meet-semigroup (cf.
Lawson [70]) if it is a meet-semilattice under ≤, that is, the meet x ∧ y exists for
all x, y ∈ S. An inverse semigroup is a meet-antigroup if it is both an antigroup
(cf. Definition 3-7.1) and an inverse meet-semigroup.

As witnessed by Example 3-1.7, not every finite inverse monoid with zero is

an inverse meet-semigroup: in that example,
1
2
≤ 3

4
, but there is no x such that

1
2
≤ x ≤ 3

4
. For Boolean inverse semigroups, this strange behavior does not occur.

Proposition 3-7.8. Let S be a Boolean inverse semigroup, let x ∈ PedS, and
let y ∈ S. Then x ∧ y exists in S. In particular, every semisimple Boolean inverse
semigroup S is an inverse meet-semigroup.

Proof. The set X, of all common minorants of x and y, is a compatible subset
of the finite set S ↓ x. Since S is Boolean, X has a join in S, which is necessarily
the meet of {a, b}. �

The following example shows that not every Boolean antigroup is an inverse
meet-semigroup. By Proposition 3-7.8, any such example is infinite.

Example 3-7.9. Define S as the inverse subsemigroup of the symmetric inverse
semigroup IZ+ (cf. Example 3-1.8) consisting of all functions whose domain is either
finite or cofinite. Then S is a Boolean antigroup. However, for any permutation α
of Z+ whose fixed point set consists of all even numbers, α ∧ idZ+ does not exist
in S. Hence S is not an inverse meet-semigroup.

It is well known that any compatible elements x and y in an inverse semigroup S
have a meet, given (among many other expressions) by (3-1.3). In particular, Every
semigroup homomorphism preserves compatible meets. On the other hand, we will
see shortly that tight maps between Boolean inverse meet-semigroups may not
preserve meets (cf. Example 3-7.12). Nevertheless, the following result shows that
under certain conditions, tight maps may preserve all meets.

Proposition 3-7.10. Let S be a Boolean antigroup, let T be a Boolean inverse
semigroup, and let f : S → T be a tight map. Then f(x ∧ y) = f(x) ∧ f(y), for all
x ∈ PedS and all y ∈ S.

Note. Although, by Proposition 3-7.8, the meet x ∧ y exists in S, we are not
assuming that T is an inverse meet-semigroup.

Proof. Set B = IdpS. The set P , of all atoms of B below d(x) ∨ r(x), is

finite. Let z ∈ T such that z ≤ f(x)
f(y)

. By multiplying those inequalities by f(p) on

the right side and f(q) on the left side, we obtain

f(q)zf(p) ≤ f(qxp)
f(qyp)

, for any p, q ∈ P . (3-7.1)
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It follows from Lawson [68, Proposition 1.4.19] that (qxp) ∧ (qyp) = q(x ∧ y)p.
Further, by Lemma 3-7.2, either qxp = qyp or 0 ∈ {qxp, qyp}. Hence, in any case,

f(qxp) ∧ f(qyp) = f(q(x ∧ y)p) = f(q)f(x ∧ y)f(p) ,

and hence, by (3-7.1), we get f(q)zf(p) ≤ f(q)f(x ∧ y)f(p). This holds for all
p, q ∈ P , thus, since z ≤

⊕
p∈P f(p) and by using the tightness of f , we get

z ≤ f(x ∧ y). �

The following two examples show that the assumption in Proposition 3-7.6,
that x ∈ PedS, cannot be dropped. Moreover, Example 3-7.11 witnesses that
Proposition 3-7.10 cannot be extended to arbitrary finite Boolean inverse semi-
groups S, and Example 3-7.12 witnesses that the finiteness assumption is necessary
in Proposition 3-7.10, even for inverse meet-semigroups S.

Example 3-7.11. Finite Boolean inverse monoids S and T , together with a
surjective, non one-to-one tight map f : S � T such that ker f = {0}.

Proof. Let G be any non-trivial group. Set S = Gt0 and T = {0,∞} (the
two-element join-semilattice), and let f : S � T the map that sends 0 to 0 and any
element of G to ∞. Then f is a tight map and ker f = {0}. Since G is non-trivial,
f is not one-to-one. �

Example 3-7.12. Unital, Boolean meet-antigroups S and T , together with a
surjective tight map f : S � T , with an invertible element α ∈ S \ {1} such that
f(α ∧ 1) < f(α) = f(1) and α 6≡ker f 1. In particular, f is not ideal-induced.

Proof. Define S as the inverse submonoid of the symmetric inverse mon-
oid IZ+ (cf. Example 3-1.8) consisting of all bijections x : A→ B, where A and B
are both either finite or cofinite subsets of Z+, and such that if A is cofinite, then
there exists n ∈ Z such that x(k) = n+ k for all large enough k ∈ A (this condition
is put there in order to ensure that S is an inverse meet-semigroup). Further, de-
fine T as the two-element join-semilattice {0,∞}, and define f : S � T by letting
f(x) =∞ iff the domain of x is cofinite, whenever x ∈ S. Then S and T are both
unital meet-antigroups and f is a tight map from S to T .

Now let α be any permutation of Z+ without fixed points (e.g., let α in-
terchange 2n and 2n + 1, for any n ∈ Z+). Then f(α) = f(id) = ∞ and
f(α ∧ id) = f(0) = 0. If α ≡ker f id, then α and id would need to agree on
some cofinite subset of Z+, which is not the case. �

The following example shows that a tight homomorphic image of a Boolean
meet-antigroup may not be an antigroup.

Example 3-7.13. A unital Boolean meet-antigroup S, a unital Boolean inverse
meet-semigroup T , and a surjective tight map f : S � T , such that T is not an
antigroup.

Proof. We use the same monoid S as in Example 3-7.12, and use the larger
T = Zt0. For every x ∈ S, we set f(x) = 0 in case the domain of x is finite. If x
is infinite, we define f(x) as the unique n ∈ Z such that x(k) = n+ k for all large
enough k. Observe that T is not an antigroup (cf. Example 3-7.4). �

We will need later the following preservation result for Boolean antigroups and
Boolean inverse meet-semigroups.
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Proposition 3-7.14. Let T be a Boolean inverse semigroup. If T is an anti-
group (resp., a Boolean inverse meet-semigroup), then so is any tight quasi-ideal
of T , and so is M⊕Ω(T ), for any set Ω.

Proof. Let S be any tight quasi-ideal of T . It follows from Proposition 3-1.18
that S is a lower inverse subsemigroup of T .

Set T = M⊕Ω(T ).
Suppose first that T is an antigroup, and let x ∈ S commute with all idempo-

tents of S. Since x commutes with both d(x) and r(x), we get d(x) = r(x). Denote
by a this element. Since S is a lower subset of T , T ↓ a is contained in IdpS. By
assumption, it follows that x commutes with all elements of T ↓ a. On the other
hand, xe = ex = 0 for any e ∈ IdpT orthogonal to a. Since e = ea ⊕ (e r a)
for any e ∈ IdpT and by Proposition 3-1.9, it follows that x commutes with all
idempotent elements of T . Since T is an antigroup, x is idempotent. Therefore, S
is an antigroup.

Any element x ∈ T that commutes with all idempotents must commute with all
e(i,i), where e ∈ IdpS and i ∈ [n]. It follows easily that x must be a diagonal matrix,
each of whose diagonal entries commutes with all idempotents of T . Since T is an
antigroup, it follows that x is a diagonal matrix with idempotent entries; hence x
is idempotent. Therefore, T is an antigroup.

Finally, we only assume that T is an inverse meet-semigroup. Since S is a
lower subset of T , it is a meet-subsemilattice of T , thus it is also a meet-antigroup.
Furthermore, since T is an inverse meet-semigroup and by Proposition 3-5.3(2), T
is an inverse meet-semigroup and the meets in T are evaluated componentwise. �

3-8. Inner endomorphisms and automorphisms of a Boolean inverse
semigroup

We set adg(x) = g 〈x〉 = gxg−1, for all elements g and x in an inverse semi-
group S. We call adg the inner endomorphism determined by g. If S is unital,
then inner endomorphisms with respect to invertible elements are automorphisms,
called inner automorphisms of S.

In order to extend this definition to the case where S is not unital, we add the
assumption that S is Boolean, then we need to drop the assumption that g be invert-
ible but we keep the assumption that d(g) = r(g), and then we replace g by g⊕e, for
large enough idempotents e ranging through the ideal g⊥ = {e ∈ IdpS | e ⊥ g} =
{e ∈ IdpS | ge = eg = 0} of the Boolean ring IdpS. As the following lemma shows,
for large enough e ∈ g⊥, the value of (g ⊕ e) 〈x〉 depends only on g and x.

Lemma 3-8.1. Let S be a Boolean inverse semigroup and let g, x ∈ S. Then
the value of (g ⊕ e) 〈x〉, where e ∈ g⊥ and d(x) ∨ r(x) ≤ (d(g) ∨ r(g))⊕ e, depends
only on g and x.

Proof. Both elements x = d(x) ∨ r(x) and g = d(g) ∨ r(g) are idempotent.
Let ei ∈ IdpS such that ei ⊥ g and x ≤ g⊕ei, for i ∈ {0, 1}. From ei = (g⊕ei)rg
it follows, by multiplying on the left by x, that xei = x r xg is independent of i.
Symmetrically, eix = x r gx is also independent of i. It follows that eixei =
xei r gxei = (xr xg)r g(xr xg) is also independent of i. Therefore,

(g ⊕ ei) 〈x〉 = (g ⊕ ei)x(g−1 ⊕ ei) = gxg−1 ⊕ gxei ⊕ eixg−1 ⊕ eixei
is independent of i. �
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Notation 3-8.2. We shall denote by inng(x) the constant value of (g ⊕ e) 〈x〉,
for large enough e ∈ g⊥.

Hence, inng is the directed union, over all e ∈ g⊥, of all maps adg⊕e.
We will be interested in situations where inng is an automorphism of S. We

wish to identify those g ∈ S such that inng defines an automorphism of aSa for any
large idempotent a. Accordingly, we define a subset of S as follows.

Notation 3-8.3. We set Self S = {g ∈ S | d(g) = r(g)}, for any Boolean in-
verse semigroup S.

Observe that Self S is usually not a subsemigroup of S.

Lemma 3-8.4. The following statements hold, for any Boolean inverse semi-
group S:

(1) inng⊕e = inng, for any g ∈ S and any e ∈ g⊥. In particular, inne = idS
whenever e is idempotent.

(2) innfg = innf ◦ inng, for any f, g ∈ Self S with d(f) = d(g).
(3) inng is an automorphism of S, for any g ∈ Self S. We call the automorphisms

of that form the inner automorphisms of S.
(4) xD inng(x), for any x ∈ S and any g ∈ Self S.
(5) The inner automorphisms of S form a subgroup of the automorphism group

of S.

Proof. (1) is trivial.
(2). Set a = d(f) = d(g). For all x ∈ S and all large enough e ∈ a⊥,

(innf ◦ inng)(x) = (f ⊕ e) 〈(g ⊕ e) 〈x〉〉 = ((f ⊕ e)(g ⊕ e)) 〈x〉
= (fg ⊕ e) 〈x〉
= innfg(x) .

(3) follows trivially from (1) and (2).
(4). Since xD d(x) for every x, a direct application of (3) reduces the problem

to the case where x is idempotent. Set a = d(g) = r(g) and let e ∈ a⊥ such that
d(x)∨ r(x) ≤ a⊕ e. Setting h = g⊕ e, we get d(h) = r(h) = a⊕ e. It follows from

Lemma 3-8.1 that inng(x) = h 〈x〉; thus inng(x) = (hx)(hx)
−1

. Moreover,

(hx)
−1
hx = x−1(h−1h)x = x−1(a⊕ e)x = x−1x = x .

Hence xD inng(x).
(5). Let f, g ∈ Self S, with respective domains a and b. We must prove that

innf ◦ inng is an inner automorphism of S. By (1), we may replace f by f ⊕ (br a)
and g by g ⊕ (a r b), and thus suppose that d(f) = d(g). The conclusion follows
then immediately from (2). �

Observe that every inner automorphism of S fixes all elements in some a⊥,
where a ∈ S: if g ∈ Self S and d(g) = r(g) = a, then inng(x) = x for every x ∈ a⊥.

Notation 3-8.5. We denote by InnS the group of all inner automorphisms
of S.

Of course, if S has a unit, then InnS = {adg | g invertible element of S}.
However, InnS is also defined if S has no unit. In fact, it can be proved that

InnS ∼= Inn S̃, where S̃ is a Boolean inverse monoid, introduced in Section 6-6,
that we will call the Boolean unitization of S.





CHAPTER 4

Type monoids and V-measures

The type monoid, of a Boolean inverse semigroup, is an abstraction of the
concept of monoid of equidecomposability types, of a Boolean ring under a group
action. The latter concept has been widely studied, among many others in Ba-
nach [17], Tarski [103]. Its relation with type monoids of Boolean inverse semi-
groups was recognized in Wallis’ Ph.D. thesis [109], see also Kudryavtseva et
al. [66], Lawson and Scott [72]. The type monoid is an analogue, for Boolean
inverse semigroups, of the nonstable K-theory of a ring (cf. Subsection 1-2.4) or
the dimension monoid of a lattice (cf. Wehrung [115]).

In Section 4-1, we introduce some basic material pertaining to type monoids
of Boolean inverse semigroups, in particular calculating type monoids of direct
products, directed colimits, and crossed products.

In Section 4-2, we express the concepts of quasi-ideal and additive enlargement,
originating in Lawson [67], in terms of the type monoid, and we use this to calculate
type monoids of Boolean inverse semigroups of generalized rook matrices (M⊕Ω(S))
or corners (eSe). We also relate the tight ideals, of a Boolean inverse semigroup,
with the o-ideals of the type monoid.

In Section 4-3, we describe the type monoid of a quotient of a Boolean inverse
semigroup S by a tight ideal I, in monoid-theoretical terms involving the type
monoids of S and I.

Section 4-4 will be mainly devoted to descriptions of examples, in terms of par-
tial bijections (or their analogues for abstract Boolean rings, of Boolean antigroups
and Boolean inverse meet-semigroups. In that section, we will also formally relate
type monoids, of Boolean inverse semigroups, with monoids of equidecomposability
types of a Boolean ring with respect to a group action.

In Section 4-5 we will specialize the concept of a V-relation, introduced in Sec-
tion 2-4, to the class of all Boolean rings, and recall some folklore results originating
in Vaught’s thesis [107]. We will also express the existence of a V-equivalence, be-
tween two Boolean algebras, via elementary equivalence with respect to infinitary
sentences of first-order logic. Although most results of that section are known in
some form, they are difficult to trace back to a definite bibliographical reference,
thus we chose to state them here in some detail.

A V-measure, on a partial commutative monoid P , is a homomorphism of
partial monoids, defined on P , whose graph is a V-relation. Section 4-6 will prepare
the ground for relating that concept to the study of type monoids of Boolean inverse
semigroups.

Section 4-7 sets the relation, initiated in Section 4-4, between type monoids of
Boolean inverse semigroups and monoids of equidecomposability types of Boolean
rings with respect to group actions (which will lead to group-induced measures) or
inverse semigroup of partial transformations (which will lead to groupoid-induced

97
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measures). In particular, we will discuss sufficient conditions for “groupoid-in-
duced” to be able to be turned to “group-induced”.

Instead of focusing on the measures as Section 4-7, Section 4-8 will focus of the
monoids, leading to the definitions of groupoid-measurable (resp., group-measura-
ble) commutative monoids, as those which are representable as monoids of equide-
composability types with respect to partial (resp., full) automorphisms.

Section 4-9 will show that although type monoids of Boolean meet-semigroups
are the same as type monoids of Boolean inverse semigroups, most obvious exten-
sions of this result, that one may think of, do not hold.

Highlights of Chapter 4.

• The type monoid functor preserves finite direct products and directed
colimits (Proposition 4-1.9).

• The type monoid of a crossed product, of a Boolean inverse semigroup
by a group action, can be described in terms of the operation M//G
introduced in Section 2-8 (Theorem 4-1.10).

• The tight ideals, of a Boolean inverse semigroup S, are in one-to-one
correspondence with the o-ideals of the type monoid of S (Proposition
4-2.4).

• The type monoid of S/I, for a tight ideal I of a Boolean inverse semi-
group S, is isomorphic to the quotient of the type monoid of S by the
one of I (Theorem 4-3.2).

• The monoid of all equidecomposability types of elements of a Boolean
ring B, with respect to an action of a group G, is isomorphic to the type
monoid of the Boolean antigroup Inv(B,G) of all finite orthogonal joins
of restrictions to B of elements of G (Proposition 4-4.20).

• Although the concepts of groupoid-measurability and group-measurabil-
ity are not equivalent for conical refinement monoids with order-unit,
they are equivalent for conical refinement monoids (Proposition 4-8.5
and Example 4-8.8).

• A conical refinement monoid is group-measurable iff it is isomorphic to
the type monoid of a Boolean inverse semigroup (Boolean antigroup,
Boolean inverse meet-semigroup, respectively), iff it is isomorphic to the
monoid of all equidecomposability types of a Boolean ring with respect
to a group action (Proposition 4-8.5 and Theorem 4-9.1).

• Every countable conical refinement monoid is group-measurable (Theo-
rem 4-8.9). This strengthens, from “embedding” to “isomorphism”, a
result of Ara and Exel [7].

• There is a countable conical refinement monoid with order-unit, which
is not isomorphic to the type monoid of any Boolean meet-antigroup
(Example 4-9.4).

4-1. Type monoids of Boolean inverse semigroups

The type monoid of a Boolean inverse semigroup is one of many constructs of
the form Umon(P/Γ), where Γ is an additive V-equivalence Γ on a partial refinement
monoid P . The original form of this construction arises in Tarski [103], with the
monoid of equidecomposability types of elements of a ring of subsets of a set Ω,
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with respect to a collection of partial transformations of Ω (see Section 4-4 for more
detail).

Let us first introduce some notation and terminology on arbitrary inverse semi-
groups. For such a semigroup S and for a, b, x ∈ S with a and b both idempotent,

let a
x−→ b hold if d(x) = a and r(x) = b. Then for any idempotent a, b ∈ S, aD b iff

there exists x ∈ S such that a
x−→ b (cf. Howie [57, Proposition V.1.4]). The trace

product of elements x, y ∈ S is defined as xy if d(x) = r(y), undefined otherwise.
The origin of the trace product can be found in Schein [96, § 3]. The trace product
groupoid1 of S has objects the idempotents of S and arrows the elements of S, with

Hom(a, b) =
{
x ∈ S | a x−→ b

}
, for all a, b ∈ IdpS .

In particular, Green’s relation D on IdpS is identical to the relation of isomorphy
in the trace product groupoid of S.

For what follows, recall that V-relations are introduced in Definition 2-4.1.

Lemma 4-1.1. Let S be a distributive inverse semigroup with zero. Then Green’s
relations L , R, and D are all additive, conical V-equivalences on S.

Note. The proofs of the statements about L and R require no further assump-
tion than S being an inverse semigroup with zero. Only our proof of the additivity
of D requires S being distributive (weaker assumptions would be sufficient, but we
will not need such generalizations).

Proof. Let x = x0 ⊕ x1 and y = y0 ⊕ y1 in S, with each xi L yi. It follows
from Lemma 3-1.4 that d(x) = d(x0) ⊕ d(x1) = d(y0) ⊕ d(y1) = d(y), that is,
xL y. Hence L is additive.

Let x, x0, x1, y ∈ S such that x = x0⊕x1 and xL y. Using again Lemma 3-1.4, it
follows that d(y) = d(x0)⊕d(x1), thus, using Lemma 3-1.3 and setting yi = y d(xi),
we get y = y d(y) = y d(x0)⊕y d(x1) = y0⊕y1, with each d(xi) = d(yi). Hence L
is a V-equivalence. It is trivially conical. Symmetrically, R is an additive, conical
V-equivalence. Since D is the join of L and R, it is also a conical V-equivalence.

Finally, we need to prove that D is additive. (This was already observed in
Wallis [109, Lemma 4.2.1]; we include a proof for convenience.) Let a = a0 ⊕ a1

and b = b0 ⊕ b1 with ai
ui−→ bi whenever i ∈ {0, 1}. Since u0 ⊥ u1 and S is a

distributive inverse semigroup, the element u = u0 ⊕ u1 exists. By Lemma 3-1.4,

d(u) = a and r(u) = b, so a
u−→ b. �

Example 4-1.2. Green’s relation H , on a Boolean inverse semigroup, need
not be a V-relation. Let S = I2; define a as the identity on {1, 2} and b as the
transposition

(
1 2

)
. Then a = a1 ⊕ a2, where each ai is the identity function

on {i}, and aH b. Nevertheless, there is no decomposition b = b1 ⊕ b2 where each
ai H bi.

Lemma 4-1.1 also fails to extend to Green’s relation J , on a Boolean inverse
semigroup, with a far more involved counterexample (cf. Example 5-2.11).

Definition 4-1.3. Let S be a Boolean inverse semigroup. The type interval
of S, denoted by IntS, is the quotient partial commutative monoid S/D (cf. Lemma

1A groupoid is a category where every arrow is an isomorphism. Not to be confused with the
groupoids in universal algebra, which are just sets endowed with a binary operation.
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2-4.4). The type monoid of S, denoted by TypS, is the enveloping monoid of IntS.
That is, TypS = Umon(IntS).

The type interval IntS was introduced in Wallis [109, § 4.2], where it was
denoted by A(S), under an additional assumption called “orthogonally separat-
ing”, equivalent to saying that IntS is a (full) commutative monoid. The partial
monoid IntS was studied further in Lawson and Scott [72], where it was denoted
by E(S) and called the partial algebra associated with S. Since E(S) often denotes,
in many papers, the set of all idempotent elements of S, we gave preference to the
notations IdpS (for the idempotents of S) and IntS (for the type interval of S).

The type monoid TypS is introduced in Kudryavtseva et al. [66], where it is
denoted by T(S). In the present work, we define it in a different, though equivalent,
fashion, taking advantage of the results of Chapter 2, about extending a partial re-
finement monoid to a full refinement monoid.

The symbolism used in Definition 4-1.3 can be decoded as follows. We empha-
size (cf. Lemma 2-4.3) that D is a conical V-equivalence on S. The type interval
of S is the partial commutative monoid consisting of all equivalence classes x/D ,
with x ∈ S, endowed with the addition defined by

z/D = x/D ⊕ y/D whenever x, y, z ∈ S and z = x⊕ y in S .

Owing to Lemma 3-1.3, it suffices to consider the case where x, y, and z are
idempotent. In particular,

IntS = {x/D | x ∈ S} = {x/D | x ∈ IdpS} .

The type monoid of S can thus be defined as the commutative monoid freely gen-
erated by elements typ(x) (thought of as x/D), where x ∈ IdpS, subjected to the
relations

typ(0) = 0 ; (4-1.1)

typ(x) = typ(y) , whenever x, y ∈ IdpS and xD y ; (4-1.2)

typ(z) = typ(x) + typ(y) , whenever x, y, z ∈ IdpS and z = x⊕ y in IdpS .
(4-1.3)

Whenever convenient, we shall extend the notation typ(x) to the case where x
is not necessarily idempotent, by setting typ(x) = typ(d(x)) = typ(r(x)). The
statements (4-1.1)–(4-1.3), now extended to x, y, z ∈ S, remain valid. We will also
write typS(x) instead of typ(x) in case we feel that S should be specified.

By applying Theorem 2-2.3 together with Lemmas 2-4.4 and 4-1.1, we get
immediately the following.

Corollary 4-1.4. Let S be a Boolean inverse semigroup. Then TypS is a
conical refinement monoid, and IntS is a lower interval of TypS.

Lemma 4-1.5. The following statements hold, for any Boolean inverse semi-
group S.

(1) x ≤ y (within S) implies that typ(x) ≤+ typ(y) (within TypS), for all x, y ∈ S.

(2) typ(xy) ≤+ typ(x)
typ(y)

(within TypS), for all x, y ∈ S.

Proof. (1). From y = x⊕(yrx) (cf. Notation 3-1.11) it follows that typ(y) =
typ(x) + typ(y r x), thus typ(x) ≤+ typ(y).
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(2). From d(xy) = y−1 d(x)y ≤ y−1y ≤ d(y) it follows that typ(xy) =
typ(d(xy)) ≤+ typ(d(y)) = typ(y). Likewise, r(xy) ≤ r(x), thus typ(xy) =
typ(r(xy)) ≤+ typ(r(x)) = typ(x). �

By Lemma 4-1.1, D is an additive, conical V-equivalence on S. Thus a direct
application of Lemma 2-4.4(1) yields the following.

Lemma 4-1.6. Let S be a Boolean inverse semigroup, let z ∈ S, and let x,y ∈
TypS such that typ(z) = x + y. Then there are x, y ∈ S such that z = x ⊕ y,
x = typ(x), and y = typ(y).

Definition 4-1.7. For a Boolean inverse semigroup S and a commutative mon-
oid M , define an M -valued dimension function on S as a map µ : IdpS → M
satisfying (4-1.1)–(4-1.3) above. That is, µ(0S) = 0M , x D y implies that µ(x) =
µ(y), and µ(x⊕ y) = µ(x) + µ(y) whenever x⊕ y exists, for all x, y ∈ IdpS.

The map (IdpS → TypS, x 7→ typ(x) = x/D) is then the initial object in
the category of all dimension functions on S. That is, for every commutative mon-
oid M and every dimension function µ : IdpS →M , there exists a unique monoid
homomorphism µ : TypS →M such that µ(x) = µ(typS(x)) for all x ∈ IdpS. We
will refer to this statement as the universal property of the type monoid.

The universality of the S 7→ TypS construction yields immediately the follow-
ing result.

Lemma 4-1.8. Let S and T be Boolean inverse semigroups and let f : S → T
be a tight map. Then there are a unique homomorphism Int f : IntS → IntT of
partial monoids and a unique homomorphism Typ f : TypS → TypT of monoids
such that (Int f)(typS(x)) = (Typ f)(typS(x)) = typT (f(x)) for all x ∈ S.

In particular, the assignments S 7→ TypS, f 7→ Typ f define a functor, from
the category of all Boolean inverse semigroups with tight maps, to the category of
all conical refinement monoids with monoid homomorphisms.

The following result expresses basic preservation properties for the functor Typ.

Proposition 4-1.9.

(1) The functor Typ preserves finite direct products.
(2) The functor Typ preserves directed colimits.

Proof. (1). Let S and T be Boolean inverse semigroups. It is straightforward
to verify that the inverse semigroup S × T is Boolean, and that the projection
homomorphisms p : S×T � S and q : S×T � T are both tight. This yields monoid
homomorphisms Typ p : Typ(S × T ) → TypS and Typ q : Typ(S × T ) → TypT ,
thus a monoid homomorphism ϕ : Typ(S×T )→ (TypS)×(TypT ), that sends any
z ∈ Typ(S × T ) to the pair ((Typ p)(z), (Typ q)(z)). Conversely, the assignments
e : S ↪→ S×T , x 7→ (x, 0T ) and f : T ↪→ S×T , y 7→ (0S , y) are both V-embeddings,
which, by (1) above, give rise to monoid homomorphisms

Typ e : TypS → Typ(S × T ) and Typ f : TypT → Typ(S × T ) ,

thus to a monoid homomorphism ψ : (TypS) × (TypT ) → Typ(S × T ), (x,y) 7→
(Typ e)(x) + (Typ f)(y). It is straightforward to verify that ϕ and ψ are mutually
inverse. In particular, ϕ is an isomorphism.

(2). Let S = lim−→i∈I Si, for a directed poset I, Boolean inverse semigroups Si,

tight transition maps f ji : Si → Sj (for i ≤ j in I), limiting maps fi : Si → S.
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Working in the variety of all biases, all f ji are bias homomorphisms (cf. Theorem
3-2.5), thus so are all fi. In particular, S =

⋃
(fi[Si] | i ∈ I), from which it follows

trivially that

IdpS =
⋃

(fi[IdpSi] | i ∈ I) . (4-1.4)

Set M = lim−→i∈I TypSi, with transition maps Typ f ji : TypSi → TypSj (for i ≤ j

in I) and limiting maps f i : TypSi →M (for i ∈ I). By (4-1.4), every x ∈ IdpS can
be written as x = fi(x), for some i ∈ I and x ∈ IdpSi. It can then be easily verified
that the element f i(typSi(x)) depends only on x. Denoting this element by µ(x), it
is then straightforward to verify that µ is an M -valued dimension function on S. By
the universal property of the type monoid, there is a unique monoid homomorphism
ϕ : TypS →M such that ϕ(typS(x)) = µ(x) for every x ∈ IdpS.

Conversely, by the universal property of the colimit, there is a unique monoid
homomorphism ψ : M → TypS such that Typ fi = ψ ◦ f i for all i ∈ I. It is
straightforward to verify that ϕ and ψ are mutually inverse. In particular, they are
both isomorphisms. �

The following result makes it possible to calculate the type monoid of a crossed
product of a Boolean inverse semigroup by a group action (cf. Section 3-6), via the
construction M//G introduced in Section 2-8. It is a Boolean inverse semigroup
version of Proposition 2-8.4. Unlike Proposition 2-8.4, this result always yields an
isomorphism.

Theorem 4-1.10. Let a group G act by automorphisms on a Boolean inverse
semigroup S. We endow the commutative monoid TypS with the induced group
action, that is, g · typS(x) = typS(g(x)), for all x ∈ S and all g ∈ G. Then
there is a unique monoid isomorphism τ : Typ(S)//G → Typ(S o G) such that
τ
(
[typS(x)]G

)
= typSoG(x · 1) for every x ∈ S.

Proof. Denote by ε : S ↪→ S o G, x 7→ x · 1 the canonical lower semigroup
embedding (cf. Proposition 3-6.3). Since Idp(S o G) = ε[IdpS] (cf. Proposition
3-6.3), the canonical map Int ε : Int(S)→ Int(S oG) is surjective.

Claim. The kernel of Int ε is the restriction of 'G to IntS.

Proof of Claim. An argument similar to the one of the proof of Proposition
2-8.4 yields that g(x) · 1 DSoG x · 1, for any x ∈ S and any g ∈ G (it suffices to
consider the case where x is idempotent). It follows that 'G is contained in the
kernel of Int ε.

Conversely, let a, b ∈ IdpS such that a · 1 DSoG b · 1, that is, there is x ∈ SoG
such that a · 1 = d(x) and b · 1 = r(x). Writing x in the form (3-6.1), this means,
using Lemma 3-6.1, that a =

⊕n
i=1 g

−1
i

(
d(xi)

)
and b =

⊕n
i=1 r(xi). Therefore,

setting bi = typS
(
d(xi)

)
= typS

(
r(xi)

)
, we obtain that

typS(a) =

n∑
i=1

g−1
i bi and typS(b) =

n∑
i=1

bi ,

so typS(a) 'G typS(b). � Claim.

Since 'G is a V-equivalence, it follows from Lemma 2-4.5 that Int ε induces
an isomorphism τ0 : Int(S)//G → Int(S o G) of partial commutative monoids. By
using the canonical isomorphism Typ(S)//G ∼= Umon

(
Int(S)//G

)
(apply Theorem
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2-4.6 to Γ ='G) and since Typ(SoG) = Umon

(
Int(S oG)

)
, τ0 extends to a unique

isomorphism τ as desired. �

4-2. Type theory of tight quasi-ideals and additive enlargements

In this section we shall introduce tools that will enable us to describe type
monoids of further semigroups, such as ideals (of Boolean inverse semigroups),
corners (subsemigroups of the form eSe), semigroups of generalized rook matrices.

Definition 4-2.1. Let S and T be Boolean inverse semigroups. A tight map
f : S → T is

• type-expanding if Typ f is a V-embedding of commutative monoids;
• type-preserving if Typ f is an isomorphism.

For a tight inverse subsemigroup S of T , we say that T is a type-expanding
extension (resp., a type-preserving extension) if Typ ε is type-expanding (resp.,
type-preserving), where ε : S ↪→ T denotes the inclusion map.

Our next result relates the quasi-ideals (cf. Definition 3-1.16) and additive en-
largements (cf. Definition 3-1.21) to the type theory of Boolean inverse semigroups.

Theorem 4-2.2. Let S be a tight quasi-ideal in a Boolean inverse semigroup T .
Then T is a type-expanding extension of S. Furthermore, T is a type-preserving
extension of S iff T is an additive enlargement of S.

Proof. Denote by ε : S ↪→ T the inclusion map.
Let a, b ∈ IdpS such that (Int ε)(typS(a)) = (Int ε)(typS(b)), that is, a DT b.

There is x ∈ T such that a = d(x) and b = r(x). Since S is a quasi-ideal of T and
x = bxa ∈ STS, it follows that x ∈ S, so aDS b, that is, typS(a) = typS(b). Hence,
Int ε is one-to-one.

Let a, b ∈ IntT and let c ∈ IntS such that (Int ε)(c) = a⊕b within IntT . Pick
c ∈ c. Since c/DT = (Int ε)(c) = a⊕ b and by Lemma 2-4.4, there is (a, b) ∈ a× b
such that c = a⊕b within T . Since S is a lower subset of T (cf. Proposition 3-1.18),
a and b both belong to S and c = a⊕b within S. Observe that a = (Int ε)(typS(a))
and b = (Int ε)(typS(b)).

We have thus verified that Int ε is a V-embedding from IntS into IntT . By
Proposition 2-2.5, it follows that Typ ε is a V-embedding from TypS into TypT .

Suppose now that T is an additive enlargement of S. We must prove that
Typ ε is surjective. Since every element of TypT is a finite sum of elements of
IntT , it suffices to prove that the range of Typ ε contains IntT . Let b ∈ IdpT .
Since T = (TST )⊕, there is a decomposition of the form b =

⊕
i<n xiaiyi, where

all xi, yi ∈ T and all ai ∈ S. Observe that all elements bi = xiaiyi are beneath b,
thus they are idempotent. By Nambooripad [82, Theorem 1.6], for each i < n,
there are x′i ≤ xi, a

′
i ≤ ai, and y′i ≤ yi such that bi = x′ia

′
iy
′
i is a trace product. In

particular, bi DT a
′
i. Since S is a lower subset of T (cf. Proposition 3-1.18), ai ∈ S,

and a′i ≤ ai, we get a′i ∈ S. Hence, typT (bi) = typT (a′i) belongs to the range
of Typ ε. Therefore, typT (b) =

∑
i<n typT (bi) also belongs to the range of Typ ε.

Suppose, finally, that S is a tight quasi-ideal of T and that Typ ε is an isomor-
phism. We must prove that every element b of T belongs to (TST )⊕. Since Typ ε
is surjective, there is a decomposition of the form typT (d(b)) =

∑
i<n typT (ai),

where each ai ∈ IdpS. By Lemma 4-1.6, there is a decomposition d(b) =
⊕

i<n bi,
where each typT (ai) = typT (bi), that is, ai DT bi. If xi ∈ T such that d(xi) = ai
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and r(xi) = bi, then we get bi = xiaix
−1
i ∈ TST . Therefore, b = bd(b) =⊕

i<n bxiaix
−1
i ∈ (TST )⊕. �

Example 3-1.25 shows that the assumption, of Theorem 4-2.2, that S be a
tight quasi-ideal of T , cannot be relaxed to S be a lower inverse subsemigroup of T :
for that example,

(
TypS, typS(1)

) ∼= (
Z+ × Z+, (1, 1)

)
and

(
TypT, typT (1)

) ∼=
(Z+, 2), so there is no monoid embedding from TypS into TypT .

The following result is an analogue, for Boolean inverse semigroups, of a result
stating that V(eRe) ∼= V(ReR) for any idempotent element e in a ring R (see the
beginning of the proof of Lemma 7.3 in Ara and Facchini [8]). Observe that in
the latter statement, ReR is defined as the two-sided ideal of R generated by e, as
opposed to the set of all xey where x, y ∈ R.

Proposition 4-2.3. Let e be an idempotent element in a Boolean inverse semi-
group S. Then the tight ideal (SeS)⊕ is a type-preserving extension of the cor-
ner eSe. In particular, Typ(eSe) ∼= Typ

(
(SeS)⊕

)
.

Proof. By Proposition 3-1.22, (SeS)⊕ is an additive enlargement of eSe. Ap-
ply Theorem 4-2.2. �

The following result relates the o-ideals of TypS with the tight ideals of S, for
any Boolean inverse semigroup S.

Proposition 4-2.4. The following statements hold, for any Boolean inverse
semigroup S:

(1) Let I be a tight ideal in S. Then S is a type-expanding extension of I, and the
canonical image I of Typ I in TypS is an o-ideal of TypS.

(2) Let I be an o-ideal of TypS. Then the set I = {x ∈ S | typ(x) ∈ I} is a tight
ideal of S.

(3) The assignments I 7→ I from (1), and I 7→ I from (2), are mutually inverse
order-isomorphisms, between the lattice of all tight ideals of S and the lattice
of all o-ideals of TypS.

Proof. (1). Since I is a tight ideal of S, it is also a tight quasi-ideal. Denote
by ε : I ↪→ S the inclusion map. By Theorem 4-2.2, Typ ε is a V-embedding, thus
the range I of Typ ε is a lower subset of TypS. Since Typ I is a monoid and Typ ε
is a monoid homomorphism, I is a submonoid of TypS.

(2). It follows immediately from Lemma 4-1.5 that SIS ⊆ I. Since 0 ∈ I, it
follows that I is an ideal of S. For all orthogonal elements x, y ∈ I, typ(x ⊕ y) =
typ(x) + typ(y) ∈ I, thus x⊕ y ∈ I. Hence I is a tight ideal of S.

(3). First, let I be a tight ideal of S, denote by I the canonical image of Typ I
in TypS, and set I ′ = {x ∈ S | typ(x) ∈ I}. We claim that I = I ′. The contain-
ment I ⊆ I ′ is trivial. Conversely, let x ∈ I ′. There are a positive integer n and
elements y0, . . . , yn−1 ∈ I such that typ(x) =

∑
i<n typ(yi). By Lemma 4-1.6, there

is a decomposition x =
⊕

i<n xi such that xiD yi whenever i < n. Since each yi ∈ I
and I is an ideal, each xi ∈ I. Since I is a tight ideal, x ∈ I, thus proving our
claim.

Finally, let I be an o-ideal of TypS, set I = {x ∈ S | typ(x) ∈ I}, and denote
by I ′ the canonical image of Typ I in TypS. We claim that I = I ′. First, every
x ∈ I ′ has the form

∑
i<n typ(xi), where n is a positive integer and each xi ∈ I.

Since each typ(xi) ∈ I, it follows that x ∈ I. Hence, I ′ ⊆ I. Conversely, let
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x ∈ I. Since I ⊆ TypS, we can write x =
∑
i<n typ(xi) for a positive integer n

and elements xi ∈ S. From x ∈ I it follows that typ(xi) ∈ I, that is, xi ∈ I, for
each i < n. Hence, x ∈ I ′, thus completing the proof of our claim. �

In view of Proposition 4-2.4, we will often identify Typ I with the canonical
image of Typ I in TypS, for any tight ideal I in a Boolean inverse semigroup S.

Another useful class of type-preserving embeddings is provided by the following
result.

Proposition 4-2.5. Let S be a Boolean inverse semigroup, let Ω be a set,
and let o ∈ Ω. Then the canonical tight embedding η : S ↪→ M⊕Ω(S), x 7→ x(o,o) is

type-preserving. In particular, TypS ∼= Typ M⊕Ω(S).

Proof. By Corollary 3-5.4, η is a lower semigroup embedding and M⊕Ω(S) is
an additive enlargement of η[S]. By Theorem 4-2.2, it follows that η is type-pre-
serving. �

The following result describes a “scaling” process of a Boolean inverse semi-
group S, relatively to an element of TypS.

Theorem 4-2.6. Let S be a Boolean inverse semigroup and let e ∈ TypS.
Then there are a positive integer n and an idempotent e of M⊕n (S) such that, setting
S = eM⊕n (S)e, the relation

(
(TypS)|e, e

) ∼= (TypS, typS(1)) holds.

Note. By Proposition 3-5.3 and Proposition 3-1.22, both M⊕n (S) and eM⊕n (S)e
are Boolean inverse semigroups.

Proof. There are a positive integer n and idempotents e1, . . . , en of S such
that e =

∑n
i=1 typS(ei). Set S1 = M⊕n (S) and denote by η : S ↪→ S1, x 7→ x(1,1)

the canonical tight embedding. By Proposition 4-2.5, Typ η is an isomorphism
from TypS onto TypS1. For each i ∈ [n], (ei)(1,1) DS1 (ei)(i,i) (cf. (3-5.4)), thus

(Typ η)
(
typS(ei)

)
= typS1

(
(ei)(1,1)

)
= typS1

(
(ei)(i,i)

)
, (4-2.1)

thus, denoting by e the diagonal matrix with diagonal entries e1, . . . , en (so e =⊕n
i=1(ei)(i,i)) and adding together the equations in (4-2.1), we obtain

(Typ η)(e) =

n∑
i=1

typS1

(
(ei)(i,i)

)
= typS1

(e) . (4-2.2)

Now by Proposition 3-1.20, S2 = (S1eS1)⊕ is the tight ideal of S1 generated by e.
Denote by ε : S2 ↪→ S1 the inclusion map. By Proposition 4-2.4, Typ ε is a V-em-
bedding from TypS2 into TypS1, with range (TypS1)| typS1

(e). By Proposition

4-2.3, the subset S = eS1e is a quasi-ideal of S1, and S2 is a type-preserving
extension of S. Therefore,(

TypS, typS(e)
) ∼= (TypS2, typS2

(e)
)

∼=
(
(TypS1)| typS1

(e), typS1
(e)
) ∼= ((TypS)|e, e

)
. �

4-3. Type monoids of quotients

In this section we shall prove that type monoids of quotients S/I, for a tight
ideal I of a Boolean inverse semigroup S, behave as one should expect.
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Lemma 4-3.1. Let S and T be Boolean inverse semigroups and let f : S � T be
a surjective tight map. Then for all a ∈ IdpS, all n ∈ N, and all b1, . . . , bn ∈ IdpT
such that f(a) =

⊕n
i=1 bi, there is a decomposition a =

⊕n
i=1 ai in IdpS such that

each f(ai) = bi.

Proof. An easy induction argument reduces the problem to the case where
n = 2. Since f is surjective, there are a1, a2 ∈ S such that f(ai) = bi whenever
i ∈ {1, 2}. From the idempotence of bi it follows that bi = f(d(ai)), thus we may
assume that a1 and a2 are both idempotent. Since f is a semigroup homomorphism,
f(aia) = f(ai)f(a) = bif(a) = bi, so we may assume that ai ≤ a, whenever
i ∈ {1, 2}. Since f restricts, on idempotents, to a homomorphism of Boolean rings,
and since f(a1a2) = b1b2 = 0, we may replace each ai by aira1a2 and thus assume
that a1 ⊥ a2. At this point, each f(ai) = bi and a1⊕a2 ≤ a. Keeping a1 unchanged
and replacing a2 by a2 ⊕

(
ar (a1 ⊕ a2)

)
, we finally get a1 and a2 as desired. �

Theorem 4-3.2. Let S and T be Boolean inverse semigroups and let f : S � T
be a surjective tight map. Consider the tight ideal I = ker f . Then the map
Typ f : TypS � TypT factors, through TypS/Typ I, to an isomorphism
TypS/Typ I ∼= TypT .

Proof. The set I = Typ I is an o-ideal of TypS (cf. Proposition 4-2.4), on
which the map Typ f vanishes. We claim that for any a, b ∈ TypS, if (Typ f)(a) =
(Typ f)(b), then a/I = b/I, that is, there are x,y ∈ I such that a + x = b + y.
This claim clearly implies the desired result.

Write a =
∑
i<m typS(ai) and b =

∑
j<n typS(bj), for positive integers m

and n together with idempotents ai, bj ∈ S, for i < m and j < n. Since TypT is a
refinement monoid (cf. Corollary 4-1.4) and since∑

i<m

typT (f(ai)) = (Typ f)(a) = (Typ f)(b) =
∑
j<n

typT (f(bj)) ,

there is a refinement matrix as follows:

typT f(bj) (j < n)

typT f(ai) (i < n) di,j
with all di,j ∈ TypT .

For each i < m, it follows from the equality typT (f(ai)) =
∑
j<n di,j together

with Lemma 4-1.6 that there is a decomposition of the form f(ai) =
⊕

j<n xi,j
within T , where each typT (xi,j) = di,j . By Lemma 4-3.1, there is a decomposition
ai =

⊕
j<n ai,j within IdpS, such that each f(ai,j) = xi,j . Hence, typT f(ai,j) =

typT (xi,j) = di,j . Likewise, for each j < n, there is a decomposition bi =
⊕

i<m bi,j
in IdpS such that each typT f(bi,j) = di,j .

Let i < m and j < n. From typT f(ai,j) = typT f(bi,j) = di,j it follows that
f(ai,j) DT f(bi,j), thus f(ai,j) = d(y) and f(bi,j) = r(y) for some y ∈ T . Since f is
surjective, y = f(x) for some x ∈ S. Hence,

f(ai,j) = f(d(x)) and f(bi,j) = f(r(x)) . (4-3.1)

Since f is a tight map, it restricts, on the idempotents, to a homomorphism of
Boolean rings. Since ai,j , bi,j , d(x), r(x) are all idempotents of S, it follows that
ai,j ≡ d(x) (mod I) and bi,j ≡ r(x) (mod I), where x ≡ y (mod I) is shorthand
for {xr y, y r x} ⊆ I. From the equalities x ∨ y = x ⊕ (y r x) = y ⊕ (x r y)
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it follows, in particular, that x ≡ y (mod I) implies typS(x)/I = typS(y)/I. By
applying this observation to (4-3.1), we obtain

typS(ai,j)/I = typS(d(x))/I and typS(bi,j)/I = typS(r(x))/I .

Now d(x) DS r(x), thus typS(d(x)) = typS(r(x)). Therefore, typS(ai,j)/I =
typS(bi,j)/I, and therefore,

a/I =
∑
i<m

typS(ai)/I =
∑

i<m, j<n

typS(ai,j)/I =
∑

i<m, j<n

typS(bi,j)/I = b/I ,

as desired. �

By applying Theorem 4-3.2 to the canonical projection S � S/I, for a tight
ideal I of S, we obtain the following.

Corollary 4-3.3. Let I be a tight ideal in a Boolean inverse semigroup S.
Then Typ(S/I) ∼= TypS/Typ I.

4-4. Inverse semigroups of bi-measurable partial functions

In this section we will give a few constructions of Boolean inverse semigroups via
partial bijections (on sets) or partial automorphisms (on Boolean rings). Further,
we will give sufficient conditions for those constructions to yield Boolean antigroups
(resp., Boolean inverse meet-semigroups).

Definition 4-4.1. Let B be a ring of subsets of a set Ω. A bi-measurable
partial function with respect to B is a partial bijective function f , with domain and
range both belonging to B, such that both f [X] and f−1[X] belong to B whenever
X ∈ B.

We leave to the reader the straightforward proof of the following result.

Proposition 4-4.2. The set pMeas(B), of all bi-measurable partial functions
with respect to B, is a tight Boolean inverse subsemigroup of the symmetric inverse
semigroup IΩ. Furthermore, the idempotent elements of pMeas(B) are exactly the
identity functions on the elements of B, and the orthogonal join in pMeas(B) is
given by disjoint union of functions.

The proof of the following lemma is equally straightforward.

Lemma 4-4.3. A subset F of pMeas(B) has a meet, in pMeas(B), iff there is
a largest element of B contained in the set {x ∈ Ω | f(x) = g(x) for all f, g ∈ F}.

Corollary 4-4.4. If the set ‖f = g‖ = {x ∈ (dom f) ∩ (dom g) | f(x) = g(x)}
belongs to B whenever f, g ∈ pMeas(B), then pMeas(B) is an inverse meet-semi-
group.

Lemma 4-4.5. The following are equivalent, for any f ∈ pMeas(B):

(i) f commutes with every idempotent element of pMeas(B).
(ii) f [X] ∩X 6= ∅ for any X ∈ B such that ∅ $ X ⊆ dom f .
(iii) f [X] ⊆ X for any X ∈ B ↓ dom f .
(iv) f [X] ⊆ X for any X ∈ B.
(v) f [X] = X for any X ∈ B ↓ dom f .
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Proof. (i)⇒(iv). Let X ∈ B. From f�X = f ◦ idX = idX ◦ f = f�f−1[X] it

follows that X ∩ dom f = f−1[X] ∩ dom f , thus f [X] ⊆ X.
(iv)⇒(iii) and (iii)⇒(ii) are both trivial.
(ii)⇒(iii). Let X ∈ B↓dom f and suppose that f [X] 6⊆ X. This means that the

subset Y = X \ f−1[X] is nonempty. Since Y ∈ B and ∅ $ Y ⊆ dom f , it follows
that f [Y ]∩Y 6= ∅, so Y ∩ f−1[Y ] 6= ∅, a contradiction since f−1[Y ] ⊆ f−1[X] and
Y ∩ f−1[X] = ∅.

(iii)⇒(v). Let X ∈ B ↓ dom f . It follows from our assumption that f [X] ⊆ X.
Further, the subset Y = X \ f [X] belongs to B ↓ dom f , thus f [Y ] ⊆ Y . Since
f [Y ] ⊆ f [X], it follows that f [Y ] = ∅, thus, since Y ⊆ dom f , we get Y = ∅, that
is, f [X] = X.

(v)⇒(i). Both sets Y = X∩dom f and Z = f−1[X]∩dom f belong to B↓dom f ,
for any X ∈ B. From Y ⊆ dom f and our assumption it follows that Y ⊆ f−1[Y ],
thus Y ⊆ Z. From Z ⊆ dom f and our assumption it follows that Z ⊆ f [Z], thus
Z ⊆ Y . Therefore, Y = Z, that is, f ◦ idX = idX ◦ f . �

Corollary 4-4.6. The inverse semigroup pMeas(B) is an antigroup iff for
every f ∈ pMeas(B), if f is not an identity, then there exists a nonempty subset
X ∈ B ↓ dom f such that f [X] ∩X = ∅.

Example 4-4.7. Define a partial homeomorphism on a Hausdorff topologi-
cal space Ω as a homeomorphism between compact open2 subsets of Ω. The set
pHomeo(Ω) of all partial homeomorphisms of Ω is an inverse subsemigroup of the
inverse semigroup of all partial one-to-one functions on Ω. In fact, pHomeo(Ω) =
pMeas(B), where B denotes the Boolean ring of all compact open subsets of Ω.
An immediate application of Corollary 4-4.6 yields the following result.

Proposition 4-4.8. Let Ω be a Hausdorff topological space. Then the inverse
semigroup pHomeo(Ω) is a Boolean inverse semigroup. Its idempotent elements
are the identity functions on the compact open subsets of Ω. Furthermore, if Ω is
Hausdorff zero-dimensional, then pHomeo(Ω) is an antigroup.

Example 4-4.9. Let B be a Boolean ring. A partial automorphism of B is
an automorphism f : B ↓ a → B ↓ b, where a, b ∈ B. The inverse of a partial
automorphism is a partial automorphism. Partial automorphisms f : B ↓ a→ B ↓ b
and g : B ↓ c→ B ↓ d can be composed, by setting

gf : B ↓ f−1(bc)→ B ↓ g(bc) , x 7→ g(f(x)) .

The composition map defined above endows the collection Inv(B) of all partial
automorphisms of B with a structure of Boolean antigroup. Partial automorphisms
f : B ↓ a → B ↓ b and g : B ↓ c → B ↓ d are orthogonal iff ac = bd = 0, and then
f⊕g : B↓(a⊕b)→ B↓(c⊕d), x 7→ f(x∧a)⊕g(x∧b). The proofs are straightforward
abstractions of those in Example 4-4.7 (cf. Proposition 4-4.8) and we omit them.

By the following result, Examples 4-4.7 (for Ω Hausdorff zero-dimensional) and
4-4.9 are essentially the same object.

Proposition 4-4.10. Let Ω be the set of all prime filters of a Boolean ring B.
There are mutually inverse isomorphisms ε : Inv(B)→ pHomeo(Ω) and
η : pHomeo(Ω)→ Inv(B), given by the following rules:

2We stray away from the usual definition of a partial homeomorphism, which involves open
subsets as opposed to the compact open used here.
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(1) Let f : B ↓a→ B ↓b in Inv(B). Then ε(f) : Ω(a)→ Ω(b) sends any prime filter
p ∈ Ω(a) to the filter generated by f [p].

(2) Let g : Ω(a) → Ω(b) in pHomeo(Ω). Then g[Ω(x)] = Ωη(g)(x) whenever x ∈
B ↓ a.

The proof of Proposition 4-4.10, although somewhat tedious, is a routine ap-
plication of the results of Section 1-3, and we leave it to the reader.

As an immediate consequence of Propositions 4-4.8 and 4-4.10, Inv(B) is a
Boolean antigroup.

Let us now move to a refinement of the definition of pMeas(B).

Definition 4-4.11. Let B be a ring of subsets of a set Ω. An action η of a
group G on Ω is B-measurable if g[X] ∈ B whenever g ∈ G and X ∈ B. For such
an action, a bijection f : A→ B, where A,B ∈ B, is piecewise in G relatively to B

if there are m ∈ Z+, elements f0, . . . , fm−1 ∈ G, and decompositions of the form

A =
⊔
i<m

Ai and B =
⊔
i<m

Bi ,

with all Ai, Bi ∈ B, such that

f(x) = ηfi(x) , whenever i < m and x ∈ Ai . (4-4.1)

Of course, those conditions imply that f is bi-measurable with respect to B, that
is, f ∈ pMeas(B). We denote by pMeas(B, η), or pMeas(B, G) if there is no
ambiguity on the group action η, the set of all elements of pMeas(B) that are
piecewise in G with respect to B.

In the context of Definition 4-4.11, define a support of f as any subset of G con-
taining {fi | i < m}. If X is a support of f , then X−1 =

{
x−1 | x ∈ X

}
is a support

of f−1, and if, moreover, Y is a support of g, then XY = {xy | (x, y) ∈ X × Y } is
a support of f ◦ g. As a consequence, we obtain easily the following result.

Proposition 4-4.12. Let B be a ring of subsets of a set Ω and let η be a B-
measurable group action on Ω. Then pMeas(B, η) is a tight inverse subsemigroup
of pMeas(B), with the same idempotents.

The following result gives a convenient sufficient condition for pMeas(B, η) to
be an inverse meet-semigroup.

Proposition 4-4.13. Let B be a ring of subsets of a set Ω, and let η be a
B-measurable action of a group G on Ω. If η is fixed point free, then pMeas(B, η)
is a Boolean inverse meet-semigroup.

Proof. For any partial bijections f : A→ B and g : C → D in pMeas(B, η),
there are decompositions A =

⊔m
i=1Ai, B =

⊔m
i=1Bi, C =

⊔n
i=1 Ci, and D =⊔n

i=1Di in B, together with group elements f1, . . . , fm, g1, . . . , gn such that each
fiAi = Bi, each gjCj = Dj , and

f(x) = fix whenever i ∈ [m] and x ∈ Ai ,
g(x) = gjx whenever j ∈ [n] and x ∈ Cj ,

for all x ∈ Ω. Since each f−1
i gj is either the unit element of G or has no fixed point,

we get, setting ∆ = {(i, j) ∈ [m]× [n] | fi = gj},

‖f = g‖ =
⊔

(i,j)∈∆

(Ai ∩ Cj) .
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In particular, ‖f = g‖ belongs to B. By Lemma 4-4.3, the meet f ∧ g exists in
pMeas(B). The domain of f ∧ g is ‖f = g‖, which is the disjoint union of the
sets Ai ∩ Cj where (i, j) ∈ ∆. For each such (i, j), the restriction of f ∧ g to
Ai ∩ Cj is left multiplication by fi (or, equivalently, gj). Therefore, f ∧ g belongs
to pMeas(B, η). �

Example 4-4.14. Let us be given a continuous action η of a discrete group G
on a Hausdorff topological space Ω. Since G is discrete, the continuity of the action
only means that ηg is a self-homeomorphism of Ω whenever g ∈ G. Defining B

as the Boolean ring of all compact open subsets of Ω, it follows from Proposition
4-4.12 that the structure pHomeo(Ω, η) = pMeas(B, η) is a tight Boolean inverse
subsemigroup of pHomeo(Ω), with the same idempotents.

Now suppose that Ω is Hausdorff zero-dimensional. Then pHomeo(Ω) is an
antigroup (cf. Proposition 4-4.8). Since pHomeo(Ω, η) has the same idempotents
as pHomeo(Ω), it follows that pHomeo(Ω, η) is a Boolean antigroup.

Following an earlier convention, we will write pHomeo(Ω, G) instead of
pHomeo(Ω, η) in case there is no ambiguity on action of the group G.

In parallel to the step from Example 4-4.7 to Example 4-4.14, we can construct
the following variant of Example 4-4.9.

Example 4-4.15. For an action η of a group G on a Boolean ring B, denote
by Inv(B, η), or Inv(B,G) if there is no ambiguity on η, the set of all partial
automorphisms f : B ↓ a→ B ↓ b for which there are decompositions a =

⊕
i<m ai

and b =
⊕

i<m bi in B, together with group elements f0, . . . , fm−1 ∈ G, such that
fiai = bi for each i < m, and

f(x) =
⊕
i<m

fi(xai) , for all x ∈ B ↓ a . (4-4.2)

Of course the formula (4-4.2) is the abstract analogue of (4-4.1). Define a sup-
port of f as any subset of G containing {fi | i < m}. If X is a support of f , then
X−1 =

{
x−1 | x ∈ X

}
is a support of f−1, and if, moreover, Y is a support of g,

then XY = {xy | (x, y) ∈ X × Y } is a support of fg. Hence, Inv(B, η) is an inverse
subsemigroup of Inv(B). This inverse subsemigroup is closed under finite orthogo-
nal joins. Therefore, Inv(B, η) is also a Boolean inverse semigroup. Since it has the
same idempotents as the antigroup Inv(B), it follows that Inv(B, η) is a Boolean
antigroup.

As usual, we will write Inv(B,G) instead of Inv(B, η) in case there is no ambi-
guity on the action of G.

The following analogue of Proposition 4-4.10 shows that Examples 4-4.14 (for Ω
Hausdorff zero-dimensional) and 4-4.15 describe essentially the same object. The
proof is somewhat tedious, but straightforward, and we leave it to the reader.

Proposition 4-4.16. Let a group G act by automorphisms on a Boolean ring B.
The assignment (g, p) 7→ g[p] defines a continuous action η of G on Ω. Further-
more, the mutually inverse isomorphisms ε : Inv(B)→ pHomeo(Ω) and
η : pHomeo(Ω) → Inv(B) of Proposition 4-4.10 define, by restriction, mutually
inverse isomorphisms between Inv(B,G) and pHomeo(Ω, G).

The following result shows a universality property of the Boolean antigroups
introduced in Example 4-4.7. Its first two statements are particular cases of a result



4-4. INVERSE SEMIGROUPS OF BI-MEASURABLE PARTIAL FUNCTIONS 111

proved in Zhitomirskiy [119] about arbitrary (not necessarily Boolean) antigroups.
We include an outline of a proof for convenience. We use the notation of Section 1-3
for Boolean rings. Recall that by Proposition 3-4.5, S/µ is a Boolean antigroup.

Theorem 4-4.17. Let S be a Boolean inverse semigroup. Set B = IdpS and
denote by Ω the set of all prime filters of B. For any x ∈ S, with a = d(x) and
b = r(x), the assignment

xµ : p 7→ filter of B generated by
{
xux−1 | u ∈ p

}
(4-4.3)

defines a partial homeomorphism xµ : Ω(a) → Ω(b). Furthermore, the assignment
x 7→ xµ defines a tight map from S to pHomeo(Ω), with kernel the largest idem-
potent-separating congruence µ of S.

Outline of proof. An easy application of Lemma 1-3.4 shows that p ∈ Ω(a)
implies that xµ(p) ∈ Ω(b), for each p ∈ Ω. Straightforward calculations show
that xµ and (x−1)µ are mutually inverse functions between Ω(a) and Ω(b).

Further straightforward calculations yield that xµ(p) ∈ Ω(c) iff p ∈ Ω(x−1cx),
whenever c ≤ b and p ∈ Ω(a). In particular, xµ is continuous. By applying a
similar argument to x−1, we obtain that xµ is a partial homeomorphism from Ω(a)
onto Ω(b). The verification of the equality (xy)µ = xµyµ, whenever x, y ∈ S, is
routine.

Further, we must verify that (x, y) ∈ µ iff xµ = yµ, whenever x, y ∈ S. The
implication from the left to the right follows trivially from (3-4.3) together with
the definition of xµ. Suppose, conversely, that xµ = yµ. Set a = d(x), b = r(x),
a′ = d(y), b′ = r(y). The maps xµ and yµ are identical, thus they have the same
domain, that is, Ω(a) = Ω(a′), so a = a′. Likewise, b = b′. Let e ∈ IdpS, we must
prove that xex−1 = yey−1. Since x = xa and y = ya, we may replace e by ae
and thus assume that e ≤ a. Suppose that xex−1 6= yey−1, say xex−1 � yey−1.
Since xex−1 and yey−1 are both idempotents below b and S is Boolean, there exists
a nonzero d ≤ xex−1 such that dyey−1 = 0. The idempotent c = x−1dx is nonzero
and beneath e, with (xcx−1)(ycy−1) ≤ dyey−1 = 0, so

(xcx−1)(ycy−1) = 0 . (4-4.4)

Let p ∈ Ω(c). Then xcx−1 ∈ xµ(p) and ycy−1 ∈ yµ(p), with xµ(p) = yµ(p), in
contradiction with (4-4.4). Therefore, µ is the kernel of the map x 7→ xµ, so the
image Sµ = {xµ | x ∈ S} is isomorphic to S/µ.

By Proposition 3-4.5, it follows that the map x 7→ xµ is tight. �

We shall hence from now on identify S/µ with Sµ.

Corollary 4-4.18. Every Boolean inverse semigroup embeds tightly into
pHomeo(Ω), for some compact, Hausdorff, zero-dimensional topological space Ω.

Proof. By Corollary 3-3.2, every Boolean inverse semigroup S has a tight
embedding into IX for some set X. Since IX is a Boolean antigroup, it follows
from Theorem 4-4.17 that IX has a tight embedding into pHomeo(Ω), where
Ω = βX is the Čech-Stone compactification of X. �

While Corollary 3-3.2 gives a tight embedding, of any Boolean inverse semigroup
into some IΩ, Theorem 4-4.17 yields only a tight homomorphism. On the other
hand, the apparently weaker construction offers some advantages:
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• The set Ω of all ultrafilters of S, encountered in Corollary 3-3.2 (cf.
Remark 3-3.3), can be endowed with several interesting topologies (much
more about this can be found in Lawson and Lenz [71]). Among those,
there is the topology induced by the product topology on the powerset

of S (via the bijection PowS ∼= {0, 1}S). Hence this topology is Hausdorff
and zero-dimensional. However, unlike what happens for the construction
in Theorem 4-4.17, the set Ω(x) = {p ∈ Ω | x ∈ p} may not be compact
for all x ∈ S: in fact, it is not hard to prove that Ω(x) is compact iff
x∧y exists for all y ∈ S. For example, if S is the Boolean inverse monoid
of Example 3-3.5, one can compute that this topology makes the set Ω
of all ultrafilters infinite discrete (indexed by Z+ tG), with each subset
Ω([Z+, g]) is infinite (indexed by Z+t{g}), thus none of them is compact.

The compactness of all Ω(x), for the space Ω of Theorem 4-4.17, will
be put to use in the proof of Theorem 5-3.8 (about type monoids with
respect to supramenable groups).

• We will see shortly (cf. Theorem 4-4.19) that the canonical projection
map S � S/µ is type-preserving (with S/µ an antigroup). By contrast,
there is Example 4-9.3, showing that nothing of that sort can be done
with inverse meet-semigroups.

Theorem 4-4.17 can be completed by the following observation, also completing
Proposition 3-4.5, that S and S/µ have the same type monoids. Since the map
x 7→ xµ is tight, there is a well defined homomorphism µ̃ : IntS → Int(S/µ),
typS(x) 7→ typS/µ(xµ) of partial monoids.

Theorem 4-4.19. Let S be a Boolean inverse semigroup, with largest idempo-
tent-separating congruence µ. Then the canonical homomorphism
µ̃ : IntS → Int(S/µ) is an isomorphism of partial monoids. In particular, we get
IntS ∼= Int(S/µ) and TypS ∼= Typ(S/µ).

Proof. Observe that Idp(S/µ) = {xµ | x ∈ IdpS}. We claim that a D b
(within S) iff aµ D bµ (within S/µ), for all a, b ∈ IdpS. We prove the non-trivial
direction only. If aµ D bµ, then there exists x ∈ S such that a ≡µ d(x) and
b ≡µ r(x). Since µ is idempotent-separating, it follows that a = d(x) and b = r(x),
so a D b. It follows that µ̃ is a bijection from IntS onto Int(S/µ). Since x 7→ xµ

preserves finite orthogonal joins and µ is idempotent-separating, it follows that µ̃
is an isomorphism of partial monoids. �

An alternate proof of Theorem 4-4.19 follows from a direct application of The-
orem 4-3.2, to the canonical projection µ : S � S/µ. Indeed, since µ separates
idempotents, 0/µ = {0}, so Theorem 4-4.19 yields that Typµ is an isomorphism.
However, the proof of Theorem 4-4.19 given above is direct.

Theorem 4-4.19 implies that the canonical projection S � S/µ is type-preserv-
ing (cf. Definition 4-2.1). The given result is in fact slightly stronger, as it states
more than an isomorphism TypS ∼= Typ(S/µ) of monoids, namely an isomorphism
IntS ∼= Int(S/µ) of partial monoids.

As the following easy result shows, the type theory of Boolean antigroups con-
tains the theory of equidecomposability types monoids Z+〈B〉//G. It will turn out
later (cf. Proposition 4-8.5) that the two theories are actually the same.
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Proposition 4-4.20. Let a group G act by automorphisms on a Boolean ring B.
Then Typ(Inv(B,G)) ∼= Z+〈B〉//G, via an isomorphism that sends typ(idB↓a) to
[a]G for every a ∈ B.

Proof. The idempotent elements of the Boolean antigroup S = Inv(B,G)
are exactly the partial automorphisms idB↓a, where a ∈ B. Furthermore, for all
a, b ∈ B,

idB↓a D idB↓b ⇔ (∃f ∈ S)(d(f) = idB↓a and r(f) = idB↓b)

⇔
(
∃ decompositions a =

⊕
i<m

ai and b =
⊕
i<m

fiai

with each ai ∈ B and fi ∈ G
)

(cf. Example 4-4.15)

⇔ a ∼+
G b (cf. Example 2-8.9) .

Therefore, TypS = Umon

(
(IdpS)/D

) ∼= Umon(B/∼+
G) ∼= Z+〈B〉//G. �

It is sometimes interesting to deal with more general kinds of Boolean inverse
semigroups than Boolean antigroups. Hence we state the following result.

Proposition 4-4.21. Let B be a ring of subsets of a set Ω, and let η be a
B-measurable action of a group G on Ω. Then Typ(pMeas(B, η)) ∼= Z+〈B〉//G,
via an isomorphism that sends typ(idA) to [A]G for every A ∈ B.

The proof of Proposition 4-4.21 is similar to the one of Proposition 4-4.20, and
we omit it.

4-5. V-relations and L∞,ω-equivalence on Boolean algebras

Every Boolean algebra is a conical partial refinement monoid under disjoint
join (cf. Example 2-2.7), which makes it possible to apply some of the results
of Sections 2-2 and 2-4. Since Boolean algebras are very special kinds of partial
refinement monoids, it is not surprising that much more can be said.

In various references, the concepts handled (and, mostly, surveyed) in the
present section are often credited to Vaught’s thesis [107], which is not available
to me. Further relevant references include Hanf [55] and Pierce [88].

Lemma 4-5.1. Let A and B be Boolean algebras, and let A0 be a subalgebra
of A, with A countable and A0 finite. Let Γ ⊆ A×B be an additive, right conical,
left V-relation. Then every embedding f0 : A0 ↪→ B of Boolean algebras, with graph
contained in Γ, extends to some embedding f : A ↪→ B, with graph contained in Γ.

Proof. Suppose first that A is generated by A0 ∪ {a}, for some a. For every
atom u of A0, it follows from the equation u = (u ∧ a) ⊕ (u ∧ ¬a), the relation
uΓf0(u), and the assumption that Γ is a right conical left V-relation that there are
f ′(u), f ′′(u) ∈ B such that f0(u) = f ′(u)⊕ f ′′(u), (u∧ a) Γ f ′(u), (u∧¬a) Γ f ′′(u),
and the following conditions hold:

u ∧ a = 0A ⇔ f ′(u) = 0B , (4-5.1)

u ∧ ¬a = 0A ⇔ f ′′(u) = 0B . (4-5.2)

Since 1B is the disjoint join, in B, of all elements f0(u), it is also the disjoint join
of all f ′(u) and f ′′(u), so it follows from (4-5.1) and (4-5.2) that there exists a
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unique embedding f : A → B of Boolean algebras such that f(u ∧ a) = f ′(u) and
f(u ∧ ¬a) = f ′′(u) for every atom u of A0. Then f(u) = f(u ∧ a) ⊕ f(u ∧ ¬a) =
f ′(u)⊕ f ′′(u) = f0(u), for every atom u of A0; whence f extends f0. Furthermore,
since Γ is additive, the graph of f is contained in Γ.

In the general case, we can write A =
⋃
n<ω An, for finite subalgebras An such

that each An+1 is generated by An ∪ {an} for some an. By the paragraph above,
every embedding fn : An → B, with graph contained in Γ, extends to an embedding
fn+1 : An+1 → B, with graph contained in Γ. The union of all fn is an embedding
from A into B, with graph contained in Γ. �

Lemma 4-5.2 (Vaught’s Theorem). Let A and B be countable Boolean algebras,
let A0 be a finite subalgebra of A, let B0 be a finite subalgebra of B, and let Γ ⊆ A×B
be an additive conical V-relation. Then every isomorphism f0 : A0 → B0 of Boolean
algebras, with graph contained in Γ, extends to an isomorphism f : A → B with
graph contained in Γ.

Note. If A is trivial (i.e., 0A = 1A), then, since 0A = 1A Γ f0(1A) = 1B and Γ
is conical, we get 0B = 1B . Hence, A is trivial iff B is trivial. It follows that if
1A Γ 1B , then the subalgebras A0 = {0A, 1A} and B0 = {0B , 1B} are as above; in
particular, Γ contains the graph of an isomorphism from A onto B.

Proof. Let A = {an | n < ω} and B = {bn | n < ω}. Suppose having defined
finite subalgebras An of A and Bn of B, with an isomorphism fn : An → Bn with
graph contained in Γ. If n = 2m for some m, define An+1 as the subalgebra
of A generated by An ∪ {am}. It follows from Lemma 4-5.1 that fn extends to
an embedding fn+1 : An+1 ↪→ B with graph contained in Γ. Hence fn+1 is an
isomorphism from An+1 onto Bn+1 = fn+1[An+1]. Similarly, if n = 2m + 1 for
some m, define Bn+1 as the subalgebra of B generated by Bn∪{bm}, then extend fn
to an isomorphism fn+1 : An+1 → Bn+1 for some finite subalgebra An+1 of A. The
union of all fn is an isomorphism from A onto B, with graph contained in Γ. �

The following concepts can be found in Barwise [18, Chapter VII], where they
are stated for arbitrary models of first-order theories (not only Boolean algebras).

Definition 4-5.3. Let A and B be Boolean algebras. A partial isomorphism
from A to B is an isomorphism from a subalgebra of A onto a subalgebra of B. A
back and forth system between A and B is a set I of partial isomorphisms from A
to B such that for every x ∈ A (resp., y ∈ B), every f ∈ I extends to some g ∈ I
such that x belongs to the domain of f (resp., y belongs to the range of f); then
we write I : A∼=p B. Let A∼=p B hold, if there exists I such that I : A∼=p B.

The infinitary language L∞,ω is built on a first-order language L by allowing
conjunctions and disjunctions of arbitrary (transfinite) length (all strings of quan-
tifiers ∀ and ∃ are finite). For first-order structures A and B, say that A ≡∞,ω B
if A and B satisfy the same L∞,ω sentences.

For Boolean algebras, we obtain an alternate description of the relation ≡∞,ω.

Proposition 4-5.4. The following statements are equivalent, for any Boolean
algebras A and B:

(i) A∼=p B.
(ii) A ≡∞,ω B.
(iii) There exists a conical V-relation Γ on A×B such that 1A Γ 1B.
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(iv) There exists an additive conical V-relation Γ on A×B such that 1A Γ 1B.

Proof. The equivalence between (i) and (ii) is established in Karp [63], see
also Barwise [18, Theorem VII.5.3].

(i)⇒(iii). Let I : A ∼=p B and define Γ as the union of (the graphs of) all
members of I. Trivially, 1A Γ 1B . Let y ∈ B such that 0A Γ y. This means that
there exists f ∈ I such that f(0A) = y, that is, y = 0B . Now let x = x0 ⊕ x1 in A
and let y ∈ B such that x Γ y. There exists f ∈ I such that f(x) = y. Since I is a
back and forth system, f extends to some g ∈ I with x0 and x1 both in the domain
of g. Set yi = g(xi), for each i < 2. Then y = y0 ⊕ y1 and xi Γ yi for each i < 2.
By interchanging the roles of A and B, it follows that Γ is a V-relation on A×B.

(iii)⇒(iv) follows trivially from Lemma 2-4.3.
(iv)⇒(i). Let Γ be an additive conical V-relation on A×B such that 1A Γ 1B .

Define I as the set of all finite partial isomorphisms from A to B with graph
contained in Γ. It follows immediately from the finite case of Lemma 4-5.2 that I
is a back and forth system between A and B. �

4-6. Vaught measures

Vaught measures, or V-measures, are a large souce of interesting V-equivalences
on a given Boolean ring. They originate in Vaught’s thesis [107] and have been
much studied by Dobbertin, see, in particular, Dobbertin [32, § 3]. In particular,
we will recall, in this section, a bunch of sufficient conditions, due to Dobbertin, for
a conical refinement monoid to be the range of a V-measure (Theorem 4-6.7). This
result is a precursor of various representability results as type monoids of Boolean
inverse semigroups.

Definition 4-6.1. Let B be a Boolean ring and let M be a commutative mon-
oid. A map µ : B →M is a premeasure if it is a homomorphism of partial monoids,
that is, µ(0) = 0 and µ(x⊕y) = µ(x)+µ(y) for all disjoint x, y ∈ B. If, in addition,
µ is conical (i.e., µ−1 {0} = {0}), we say that µ is a measure. If µ is a premeasure
satisfying the following V-condition:

Whenever a, b ∈M and c ∈ B with µ(c) = a+ b , there is a decomposition

c = a⊕ b in B such that µ(a) = a and µ(b) = b , (4-6.1)

then we say that µ is a V-premeasure. If, in addition, µ is a measure, we say that
it is a V-measure.

A pointed commutative monoid (M, c) (cf. Section 1-4) is V-measurable if
there are a Boolean ring A and a V-measure µ : A→M such that c belongs to the
range of µ. We also say that c is V-measurable in M .

We say that M is V-measurable if every element of M is V-measurable in M .

The following are easy examples of V-measures.

Example 4-6.2. Let B be the powerset algebra of a set Ω and let M be any
lower subset of the cardinals containing {n · card Ω | n ∈ Z+}, endowed with cardi-
nal addition. Set µ(x) = cardX, for any x ∈ B. Then µ is an M -valued V-measure
on B.

Example 4-6.3. Let a group G act on a Boolean ring B. Then the commuta-
tive monoid M = Z+〈B〉 is the positive cone of a lattice-ordered group (cf. Example
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2-2.7). By Lemma 2-8.8, the map µG : x 7→ [x]G defines an M -valued V-measure
on B.

Example 4-6.4. Let S be a Boolean inverse semigroup. By Lemma 4-1.6, the
assignment x 7→ typS(x) defines a V-measure on the Boolean ring IdpS. We will
thus call this map the canonical V-measure on S.

For a family (Bi | i ∈ I) of Boolean rings, the direct sum
⊕

(Bi | i ∈ I) is also
a Boolean ring. Its elements are the families (xi | i ∈ I) where all xi ∈ Bi and the
support {i ∈ I | xi 6= 0} is finite.

An easy application of refinement yields immediately the following property.

Lemma 4-6.5. Let M be a refinement monoid and let (µi : Bi →M | i ∈ I) be
a family of V-measures. Then the assignment⊕

(Bi | i ∈ I)→M , (xi | i ∈ I) 7→
∑
i∈I

µi(xi)

defines a V-measure on
⊕

(Bi | i ∈ I).

The following observation gathers a few basic consequences of V-measurability.

Proposition 4-6.6. The following statements hold, for every commutative
monoid M and P = {c ∈M | (M, c) is V-measurable}:
(1) For every Boolean ring B, the range of a V-measure µ : B → M is always a

lower subset of M (with respect to the algebraic preordering ≤+ of M).
(2) The set P is a lower subset of M .
(3) An element c ∈M is V-measurable in M iff there are a unital Boolean ring B

and a V-measure µ : B →M with µ(1) = c (we will say that µ is a normalized
V-measure from B to (M, c)).

(4) If P is nonempty, then M is conical, and the lower interval M ↓ c satisfies
refinement whenever c ∈ P .

(5) If M is a conical refinement monoid, then P is an o-ideal of M .
(6) Suppose that M is a refinement monoid and let e be an order-unit of M .

Then M is V-measurable iff (M, e) is V-measurable.
(7) M is V-measurable iff there are a Boolean ring B and a V-measure with

range M .

Proof. (1). Let a ≤+ b in M . There exists c ∈ M such that b = a + c. If
b = µ(b) with b ∈ B, then, by the V-condition, there is a decomposition b = a⊕ c
with µ(a) = a and µ(c) = c. Hence a belongs to the range of µ.

(2) follows trivially from (1).
(3). Let B be a Boolean ring with c ∈ B and a V-measure µ : B → M such

that µ(c) = c. Then A = B ↓ c is a unital Boolean ring, and the restriction of µ
to A is a normalized V-measure from A to (M, c).

(4). Let c ∈ P . There are a Boolean ring B with c ∈ B and a V-measure
µ : B →M such that µ(c) = c. For any x,y ∈M , if x+y = 0, then x+y+c = c,
thus, by the V-condition, there is a decomposition c = x⊕y⊕z such that µ(x) = x,
µ(y) = y, and µ(z) = c. Since µ(x ⊕ y) = µ(x) + µ(y) = x + y = 0 and µ is a
measure, we get x⊕ y = 0, thus x = y = 0, so x = y = 0, thus proving that M is
conical.

Now let z = x0 +x1 = y0 +y1 in M ↓c. By (1) above, there is z ≤ c such that
µ(z) = z. Since µ is a V-measure, there are decompositions z = x0 ⊕ x1 = y0 ⊕ y1
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such that µ(xi) = xi and µ(yi) = yi for each i ∈ {0, 1}. The following is a
refinement matrix in M :

y0 y1

x0 µ(x0 ∧ y0) µ(x0 ∧ y1)

x1 µ(x1 ∧ y0) µ(x1 ∧ y1)

Thus M ↓ c has refinement.
(5). Since M is conical, 0 ∈ P . Let a, b ∈ P . By (3) above, there are unital

Boolean rings A and B together with V-measures α : A→M and β : B →M such
that α(1A) = a and β(1B) = b. Since M is a refinement monoid, the assignment
A × B → M , (x, y) 7→ α(x) + β(y) is a V-measure (cf. Lemma 4-6.5). It sends
1A×B = (1A, 1B) to a+ b. Hence, a+ b ∈ P .

(6). By definition, M is V-measurable iff P = M , while e is V-measurable in M
iff e ∈ P . However, by (5) above and since e is an order-unit, e ∈ P iff P = M .

(7). Suppose first that M is V-measurable. There is a family (µx | x ∈M)
of V-measures, each µx : Bx → M with µx(1Bx) = x. Since M is a refinement
monoid, the assignment

µ :
⊕

(Bx | x ∈M)→M , (bx | x ∈M) 7→
∑
x∈M

µx(bx) (4-6.2)

defines a V-measure (cf. Lemma 4-6.5), which is obviously surjective. Conversely,
if M is the range of a V-measure, then, by (1) above, every element of M is V-
measurable in M . �

The following result sums up many known representation results by V-meas-
ures. Recall that regular commutative monoids are introduced in Definition 1-4.1.

Theorem 4-6.7 (Dobbertin). Every monoid in each of the following classes is
V-measurable:

(1) All conical refinement monoids M such that card(M ↓ e) ≤ ℵ1 for each e ∈M
(cf. [32, Theorem 3.4]).

(2) All distributive lattices with zero, under supremum (cf. [33, Corollary 1.3]).
(3) All conical simple regular commutative monoids (cf. [33, Corollary 1.5]).
(4) All positive cones of Abelian lattice-ordered groups (cf. [34, Theorem 13]).
(5) All (∨, 0)-semilattices of all finitely generated lower subsets of arbitrary posets

(cf. [34, Theorem 14]).

An important additional uniqueness statement was obtained by Dobbertin for
the case of countable conical refinement monoids. The essence of the following
result is contained in Dobbertin [31, Lemma 5.1].

Theorem 4-6.8. The following statements hold, for any conical refinement
monoids (M,a) and (N, b) with order-unit, any Boolean algebras A and B, any
normalized measure α : A → (M,a), any normalized V-measure β : B → (N, b),
and any homomorphism f : (M,a)→ (N, b) of pointed monoids:

(1) If A is countable, then there is an embedding f : A ↪→ B of Boolean algebras
such that f ◦ α = β ◦ f .

(2) If A and B are both countable, α is a V-measure, and f is an isomorphism, then
there is an isomorphism f : A→ B of Boolean algebras such that f ◦α = β ◦ f .
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Proof. Since α and β are both measures, the following binary relation

Γ = {(x, y) ∈ A×B | α(x) = β(y)}
is both additive and conical on A × B. Furthermore, since β is a V-measure, Γ is
a left V-relation.

(1). By Lemma 4-5.1, Γ contains the graph of an embedding f : A ↪→ B of
Boolean algebras.

(2). Since α and β are both V-measures, Γ is a V-relation. By Lemma 4-5.2,
Γ contains the graph of an isomorphism f : A→ B of Boolean algebras. �

The problem, whether every conical refinement monoid is measurable, was
stated in Dobbertin [32, Problem 4]. A negative answer was established in Weh-
rung [117] (Theorem 2.8 of that paper for positive cones of dimension groups,
Theorem 2.15 for distributive semilattices with zero).

Theorem 4-6.9. For every cardinal κ ≥ ℵ2, there are a dimension group G
with order-unit, and a bounded distributive semilattice S, both of cardinality κ, such
that neither G+ nor S is V-measurable.

While the dimension group G constructed in Wehrung [117] is a vector space
over the rationals, it is also possible to construct G and its order-unit u in such a
way that u has index 2 in G+ (cf. Wehrung [118]). For that example, G+ is neither
isomorphic to the dimension monoid of any lattice (as defined in Wehrung [115]),
nor to V(R) for any regular ring R.

In view of the uniqueness result given by Theorem 4-6.8(2), this looks some-
how counter-intuitive. The point is that the isomorphism f given by Theorem
4-6.8(2) may not be unique: in short, uniqueness up to isomorphism does not imply
uniqueness up to unique isomorphism.

4-7. Measures and inverse semigroups

We shall consider those V-measures that can be associated in a natural way to
Boolean inverse semigroups (resp., to actions of groups on Boolean rings). These
measures will be called groupoid-induced (resp., group-induced).

4-7.1. Groupoid-induced and group-induced V-measures. We recall
that the Boolean antigroup Inv(B) is introduced in Example 4-4.9.

Definition 4-7.1. Let M be a commutative monoid. An M -valued premeasure
space is a pair (B,µ), where B is a Boolean ring and µ : B → M is a premeasure.
If µ is a measure then we will say that (B,µ) is a measure space. For M -valued
premeasure spaces (A,α) and (B, β), a partial function f from a subset of A to B
is measure-preserving if β(f(x)) = α(x) for every x in the domain of f .

Notation 4-7.2. Let B be a Boolean ring, let M be a commutative monoid,
and let µ : B →M be a premeasure. We introduce the following sets:

(1) The set Inv(B,µ) of all measure-preserving f ∈ Inv(B).
(2) The set Aut(B,µ) of all measure-preserving automorphisms f of the Boolean

ring B.

Proposition 4-7.3. The following statements hold, for any Boolean ring B,
any commutative monoid M , and any premeasure µ : B →M :

(1) Aut(B,µ) is a subgroup of the automorphism group Aut(B) of B.
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(2) Inv(B,µ) is an inverse subsemigroup of Inv(B), closed under finite orthogonal
joins. It is also a Boolean antigroup.

Proof. The statement (1) is trivial. It is also straightforward to verify that
Inv(B,µ) is an inverse subsemigroup of Inv(B), closed under finite orthogonal joins.
Since the two semigroups have the same idempotents and Inv(B) is a Boolean
antigroup, it follows that Inv(B,µ) is also a Boolean antigroup. �

We are interested in the case where a V-measure µ : B →M determines an iso-
morphism between M and Typ(Inv(B,µ)). Accordingly, we introduce the following
binary relations ∼gpd

µ , ∼gp
µ , and 'gp

µ on B.

Notation 4-7.4. Let B be a Boolean ring, let M be a commutative monoid,
and let µ : B →M be a premeasure. For a, b ∈ B, we define

• a ∼gpd
µ b if there exists f ∈ Inv(B,µ) with b = f(a).

• a ∼gp
µ b if there exists f ∈ Aut(B,µ) with b = f(a).

• 'gp
µ is the additive closure of ∼gp

µ : that is, a 'gp
µ b if there are de-

compositions a =
⊕

i<n ai, b =
⊕

i<n bi, with all bi = fi(ai) where
fi ∈ Aut(B,µ).

Observe, in particular, the obvious implications

a ∼gp
µ b =⇒ a 'gp

µ b =⇒ a ∼gpd
µ b =⇒ B ↓ a ∼= B ↓ b ,

for any a, b ∈ B.
The reason why we do not need to introduce the additive closure of ∼gpd

µ is
contained in (3) of the following basic result.

Proposition 4-7.5. The following statements hold, for any Boolean ring B,
any commutative monoid M , and any premeasure µ : B →M :

(1) ∼gp
µ is contained in ∼gpd

µ , which is contained in Kerµ.

(2) The binary relations ∼gpd
µ and ∼gp

µ are both refining equivalence relations.

(3) The binary relation ∼gpd
µ is additive.

Proof. The proofs of (1) and (2) are straightforward. For (3), let a = a0⊕ a1

and b = b0 ⊕ b1 in B, with ai ∼gpd
µ bi for each i ∈ {0, 1}. Pick fi ∈ Inv(B,µ) such

that fi(ai) = bi. By restricting fi to B ↓ai we may assume that fi : B ↓ai → B ↓ bi.
The function f = f0⊕f1 (cf. Example 4-4.9) belongs to Inv(B,µ), and f(a) = b. �

In certain cases it is possible to reduce ∼gpd
µ to ∼gp

µ :

Proposition 4-7.6. The following statements hold, for any Boolean ring B,
any commutative monoid M , any a, b, c ∈ B, and any premeasure µ : B →M :

(1) Suppose that a, b ≤ c. If a ∼gpd
µ b and cr a ∼gpd

µ cr b, then a ∼gp
µ b.

(2) Let B be unital. Then a ∼gp
µ b iff a ∼gpd

µ b and ¬a ∼gpd
µ ¬b.

(3) If a ∧ b = 0, then a ∼gp
µ b iff a ∼gpd

µ b.

(4) If (a ∨ b) ∧ c = 0 and a ∼gpd
µ b ∼gpd

µ c, then a ∼gp
µ b.

Proof. (1). There are f, g ∈ Inv(B,µ) such that f(a) = b and g(cra) = crb.
Trimming down f and g, we may assume that f and g have domain B ↓ a and
B↓(cra), respectively. Then h = f⊕g belongs to Inv(B,µ), h(a) = b, and h(c) = c.
Extend h to an automorphism h of B the standard way, that is, h(x⊕y) = h(x)⊕y
whenever x ≤ c and y ∧ c = 0. Then h ∈ Aut(B,µ) and h(a) = b.
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(2) follows immediately from (1), by letting c be the unit of B.
(3). The non-trivial implication follows immediately from (1), by taking c =

a⊕ b.
(4). Since a ∼gpd

µ c and a ∧ c = 0, it follows from (3) above that a ∼gp
µ c.

Likewise, b ∼gp
µ c. The desired conclusion follows from the transitivity of ∼gp

µ . �

Definition 4-7.7. Let B be a Boolean ring and let M be a conical commu-
tative monoid. We say that a V-measure µ : B → M is groupoid-induced3 (resp.,
group-induced) if the kernel of µ is ∼gpd

µ (resp., 'gp
µ ). In particular, µ is group-

oid-induced iff for all a, b ∈ B, µ(a) = µ(b) iff there exists f ∈ Inv(B,µ) such that
f(a) = b.

Example 4-7.8. A non groupoid-induced V-measure on a Boolean algebra of
cardinality ℵ1.

Proof. Fix an atomless Boolean algebra Bk of cardinality ℵk, whenever k ∈
{0, 1}, set B = B0 × B1, and denote by 2 = {0,∞} the two-element semilat-
tice. Then the unique zero-separating map µ : B → 2 is a V-measure. In partic-
ular, µ(1, 0) = µ(0, 1) = ∞. However, the Boolean algebras B ↓ (1, 0) ∼= B0 and
B ↓ (0, 1) ∼= B1 are not isomorphic; whence µ is not groupoid-induced. �

For an example involving a complete atomic Boolean algebra, see Example
5-4.3.

If a measure µ is group-induced, then it is groupoid-induced. As the following
example shows, the converse does not hold as a rule.

Example 4-7.9. Denote by P the commutative monoid defined by generators ε
and 1, subjected to the relation ε+ 1 = 1. Hence P = Z+ε tN, and P is a conical
refinement monoid (it is a so-called primitive monoid). Denote by B the Boolean
ring of subsets X of Z+ that are either finite or cofinite. Set µ(X) = (cardX)ε
in the first case, µ(X) = 1 in the second case. Then µ is a P -valued V-measure
on B. It is easy to see that µ is groupoid-induced and that the automorphisms
of (B,µ) are the automorphisms induced by the permutations of Ω. Furthermore,
µ(Z+) = µ(N) = 1.

Suppose that Z+ 'gp
µ N. This means that there are n ∈ Z+, permutations g0,

. . . , gn of Z+, and decompositions of the form Z+ =
⊔n
i=0Xi, N =

⊔n
i=0 Yi, such

that each Yi = giXi. Necessarily, there is exactly one i such that Xi is infinite.
The finite sets Z+ \Xi and N \ Yi have the same cardinality, a contradiction since
Yi = giXi and gi is a permutation of Z+. Therefore, µ is not group-induced.

The following result shows that for many types of pointed monoids, groupoid-
induced is equivalent to group-induced.

Proposition 4-7.10. Let B be a unital Boolean ring, let (M, e) be a pointed
conical refinement monoid, and let µ : B → (M, e) be a normalized groupoid-induced
V-measure. Then each of the following conditions implies that µ is group-induced:

(1) There are a ∈M and a positive integer m such that 2a ≤+ e ≤+ ma.
(2) For all a, b, c ∈ M , if a + c = b + c ≤+ e, then there exists d ∈ M such that

2d ≤+ c and a+ d = b+ d.
(3) M is cancellative.

3By reference to the trace product groupoid of the inverse semigroup Inv(B,µ) (cf. Section
4-1).
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Proof. (1). Let a′ ∈ M such that e = 2a + a′. Since M is a refinement
monoid, a′ ≤+ ma, and by Wehrung [111, Lemma 1.9], there are decompositions
of the form

a =

m∑
k=0

ak and a′ =

m∑
k=0

kak in M .

It follows that e =
∑m
k=0(k + 2)ak.

Since each k + 2 ≥ 2, we obtain, by reindexing the ak, an integer n ≥ 2 and a
decomposition of the form e =

∑
k<n ek where for each i < n there is j < n such

that i 6= j and ei = ej . Since µ(1) = e =
∑
k<n ek and µ is a V-measure, there is

a decomposition of the form e =
⊕

k<n ek such that each µ(ek) = ek.
Now let x, y ∈ B such that µ(x) = µ(y), in other words,

∑
i<n µ(x ∧ ei) =∑

j<n µ(y ∧ ej). Since M is a refinement monoid, there is a refinement matrix of
the form

µ(y ∧ ej) (j < n)

µ(x ∧ ei) (i < n) zi,j
with all zi,j ∈M .

Since µ is a V-measure, for each i < n there is a decomposition x ∧ ei =
⊕

j<n xi,j
with each µ(xi,j) = zi,j . Similarly, for each j < n there is a decomposition y∧ ej =⊕

i<n yi,j with each µ(yi,j) = zi,j . Since µ is groupoid-induced, xi,j ∼gpd
µ yi,j for

all i, j < n.
We claim that xi,j ∼gp

µ yi,j . If i 6= j, then this follows from the relation

xi,j ∼gpd
µ yi,j , together with xi,j ∧ yi,j = 0 (because xi,j ≤ ei and yi,j ≤ ej) and

Proposition 4-7.6(3). Now suppose that i = j and pick k < n with i 6= k and
ei = ek. Since µ(xi,i) ≤+ µ(x ∧ ei) ≤+ µ(ei) = µ(ek) and µ is a V-measure, there
is z ≤ ek such that µ(xi,j) = µ(z). From xi,i ∨ yi,i ≤ ei and z ≤ ek it follows that
(xi,i ∨ yi,i) ∧ z = 0. By Proposition 4-7.6(4), we get xi,i ∼gp

µ yi,i. Therefore, the
relation xi,j ∼gp

µ yi,j holds in every case. Since x =
⊕

i,j<n xi,j and y =
⊕

i,j<n yi,j ,
it follows that x 'gp

µ y.
(2). Let x, y ∈ B such that µ(x) = µ(y). Setting a = µ(x r y), b = µ(y r x),

and c = µ(x ∧ y), we get a+ c = b+ c, thus, by assumption, there is d ∈M such
that 2d ≤+ c and a+ d = b+ d. Since µ is a V-measure, there is a decomposition
x ∧ y = z0 ⊕ z1 ⊕ z2 such that µ(z0) = µ(z1) = d. Set x′ = (x r y) ⊕ z0 and
y′ = (y r x) ⊕ z1. Then x′ ∧ y′ = 0 and µ(x′) = a + d = b + d = µ(y′). By
Proposition 4-7.6(3), it follows that x′ ∼gp

µ y′. By the same token, z0 ∼gp
µ z1. Since

x = x′ ⊕ z1 ⊕ z2 and y = y′ ⊕ z0 ⊕ z2, it follows that x 'gp
µ y.

The sufficiency of (3) is a trivial consequence of the sufficiency of (2). �

Proposition 4-7.11. The following statements hold, for any Boolean ring B,
any conical refinement monoid M , and any groupoid-induced V-measure µ : B →M :

(1) The restriction of µ to any ideal of B is also a groupoid-induced V-measure.
(2) Let I be a set with at least two elements and denote by B(I) the direct sum of I

copies of B. Then µ(I) : B(I) → M , (xi | i ∈ I) 7→
∑
i∈I µ(xi) is a group-in-

duced V-measure.

Proof. Since (1) is trivial, we only give a proof of (2). It follows from Lemma

4-6.5 that µ(I) is a V-measure. Now let ~a = (ai | i ∈ I) and ~b = (bi | i ∈ I) be

elements of B(I) with µ(I)(~a) = µ(I)(~b). We need to prove that ~a 'gp
µ(I)

~b. Fix
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a finite subset K of I, with at least two elements, such that ~a,~b ∈ BK . Since∑
i∈K µ(ai) =

∑
j∈K µ(bj) and M is a refinement monoid, there exists a refinement

matrix of the form

µ(bj) (j ∈ K)

µ(ai) (i ∈ K) ci,j
with all ci,j ∈M .

Since µ is a V-measure, for each i ∈ K there is a decomposition ai =
⊕

j∈K ai,j
with each µ(ai,j) = ci,j . Likewise, for each j ∈ K there is a decomposition bj =⊕

i∈K bi,j with each µ(bi,j) = ci,j . Denoting by εi : B ↪→ B(I) the ith canonical
embedding whenever i ∈ I, we get

~a =
⊕
i∈K

εi(ai) =
⊕

(i,j)∈K×K

εi(ai,j) ,

and, likewise,

~b =
⊕
j∈K

εj(bj) =
⊕

(i,j)∈K×K

εj(bi,j) .

Hence it suffices to prove that εi(ai,j) ∼gp
µ(I) εj(bi,j) for each (i, j) ∈ K ×K. First

observe that µ(ai,j) = ci,j = µ(bi,j), thus, since µ is groupoid-induced, there
is a measure-preserving isomorphism B ↓ ai,j → B ↓ bi,j . Since εi and εj are
both measure-preserving V-embeddings, we get measure-preserving isomorphisms
B ↓ai,j ∼= B(I) ↓εi(ai,j) and B ↓bi,j ∼= B(I) ↓εj(bi,j), thus also a measure-preserving

isomorphism B(I) ↓εi(ai,j)→ B(I) ↓εj(bi,j). This means that εi(ai,j) ∼gpd
µ(I) εj(bi,j).

Now we separate cases.

Case 1. i 6= j. Then εi(ai,j) ∧ εj(bi,j) = 0, thus, by Proposition 4-7.6(3), we get
εi(ai,j) ∼gp

µ(I) εj(bi,j).

Case 2. i = j. Pick k ∈ K \ {i}. The argument used for Case 1 above shows
that εi(ai,i) ∼gp

µ(I) εk(ai,i) and εk(ai,i) ∼gp
µ(I) εj(bi,i). Hence, we get again

εi(ai,j) ∼gp
µ(I) εj(bi,j).

This completes the proof that ~a 'gp
µ(I)

~b. �

4-7.2. Exhaustive sets on Boolean rings. In view of further applications,
it might be interesting to explore the degree of freedom on the Boolean inverse
semigroups representing, via the type monoid, a given conical refinement monoid.
This is the purpose of exhaustive sets.

Definition 4-7.12. Let B be a Boolean ring, let M be a commutative monoid,
and let µ : B →M be a premeasure.

(1) A set S of measure-preserving partial functions between subsets of B is µ-
exhaustive if the following condition holds:

For all a, b ∈ B with µ(a) = µ(b) , there are finite decompositions

a =
⊕
i<n

ai , b =
⊕
i<n

bi , and elements fi ∈ S such that each bi = fi(ai) . (4-7.1)



4-7. MEASURES AND INVERSE SEMIGROUPS 123

(2) An action of a group G on B by measure-preserving automorphisms is µ-
exhaustive if the subgroup of Aut(B,µ) induced by the action of G is µ-
exhaustive, that is,

For all a, b ∈ B with µ(a) = µ(b) , there are finite decompositions

a =
⊕
i<n

ai , b =
⊕
i<n

bi , and elements gi ∈ G such that each bi = giai . (4-7.2)

The following result relates exhaustive sets of partial functions and type monoids
of Boolean inverse semigroups.

Theorem 4-7.13. Let M be a conical refinement monoid, let B be a Boolean
ring, and let µ : B →M be a groupoid-induced V-measure, with range generating M
as a submonoid. Then the following statements hold:

(1) There exists a µ-exhaustive Boolean inverse subsemigroup S of Inv(B,µ), with
the same idempotents as Inv(B,µ).

(2) Any such inverse semigroup S is a Boolean antigroup, and there exists a unique
monoid homomorphism τ : TypS → M such that τ(typ(a)) = µ(a) for all
a ∈ B, where we denote by a = idB↓a the natural image of a in S. Furthermore,
τ is a monoid isomorphism.

Proof. (1). Take S = Inv(B,µ).
(2). It follows from our assumptions on S, together with Inv(B,µ) being a

Boolean antigroup, that S is a Boolean antigroup.
Let a, b ∈ B such that typ(a) = typ(b), that is, aD b. There is f ∈ S such that

d(f) = a and r(f) = b, that is, f is an isomorphism B ↓ a → B ↓ b. In particular,
f(a) = b. From S ⊆ Inv(B,µ) it follows that µ(a) = µ(b).

Conversely, let a, b ∈ B such that µ(a) = µ(b). Since S is µ-exhaustive and
closed under finite orthogonal joins, there exists f ∈ S such that f(a) = b. Since a is
an idempotent of S, we may replace f by fa and thus assume that f : B ↓a→ B ↓b.
It follows that d(f) = a and r(f) = b, so aD b, that is, typ(a) = typ(b).

We have thus proved that the kernel of the canonical V-homomorphism
µ : IdpS → M , a 7→ µ(a) is equal to D . By applying Lemma 2-4.5 to µ, it
follows that µ induces a V-embedding τ0 : IntS ↪→M , typ(a) 7→ µ(a).

By Proposition 2-2.4, τ0 extends to a unique V-embedding τ : TypS ↪→ M .
Since the range of τ0 is the range of µ, it generates M , thus τ is an isomorphism. �

The following result relates exhaustive group actions and monoids of equide-
composability types.

Theorem 4-7.14. Let M be a conical refinement monoid, let B be a Boolean
ring, and let µ : B → M be a group-induced V-measure, with range generating M
as a submonoid. Then the following statements hold:

(1) There exists a µ-exhaustive action of a group G on B.
(2) For any such group action, there exists a unique monoid homomorphism

τ : Z+〈B〉//G → M such that τ([a]G) = µ(a) for every a ∈ B. Furthermore, τ
is a monoid isomorphism.

Proof. (1). Consider the natural action of G = Aut(B,µ) on B.
(2). The assumption that the action of G is µ-exhaustive means that the kernel

of µ is the restriction of 'G to B. By Lemma 2-4.5, µ induces the V-embedding
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τ0 : B//G ↪→ M , [a]G 7→ µ(a). By Proposition 2-2.4, τ0 extends to a unique V-em-
bedding τ : Z+〈B〉//G ↪→ M . Since the range of τ0 is equal to the range of µ, it
generates M , thus τ is surjective. �

We can paraphrase Theorems 4-7.13 and 4-7.14 as follows: for a conical refine-
ment monoid M ,

• any groupoid-induced V-measure µ : B → M induces an isomorphism
TypS ∼= M , for any large enough Boolean inverse subsemigroup S of
Inv(B,µ);

• any group-induced V-measure µ : B → M induces an isomorphism
Z+〈B〉//G ∼= M , for any large enough subgroup G of Aut(B,µ).

Although the trivial implication from group-induced to groupoid-induced may
seem lost there, we recover it quickly once we remember the isomorphism between
Typ(Inv(B,G)) and Z+〈B〉//G given by Proposition 4-4.20.

4-8. Groupoid- and group-measurable monoids

Following the lead given by Theorems 4-7.13 and 4-7.14, we shall strengthen the
definition of V-measurability for pointed monoids (cf. Definition 4-6.1), as follows.

Definition 4-8.1. A pointed commutative monoid (M, e) is groupoid-measur-
able (resp., group-measurable) if there are a unital Boolean ring B and a groupoid-
induced (resp., group-induced) V-measure µ : B →M such that µ(1) = e.

Proposition 4-8.2. The following statements hold, for any conical refinement
monoid M with order-unit e:

(1) (M, e) is groupoid-measurable iff there is a unital Boolean inverse semigroup
(resp., a unital Boolean antigroup) S such that (M, e) ∼= (TypS, typ(1)).

(2) (M, e) is group-measurable iff there is a group G, acting by automorphisms on
a unital Boolean ring B, such that (M, e) ∼=

(
Z+〈B〉//G, [1]G

)
.

Proof. (1). If (M, e) is groupoid-measurable, via a groupoid-induced V-
measure µ : B → M , then, by Theorem 4-7.13, the unital Boolean antigroup
S = Inv(B,µ) satisfies (M, e) ∼= (TypS, typ(1)). Let, conversely, S be a unital
Boolean inverse semigroup such that (M, e) = (TypS, typ(1)). Set B = IdpS. It
follows from Lemma 4-1.6 that the assignment x 7→ typ(x) defines a V-measure
from B to M , sending 1 to e. For any a, b ∈ B such that typ(a) = typ(b), there
exists f ∈ S such that d(f) = a and r(f) = b. Hence the assignment x 7→ fxf−1

is a measure-preserving isomorphism from B ↓ a onto B ↓ b.
(2) If (M, e) is group-measurable, via a group-induced V-measure µ : B →M ,

then, by Theorem 4-7.14, (M, e) ∼= (Z+〈B〉//G, [1]G) where G = Aut(B,µ). Let,
conversely, (M, e) = (Z+〈B〉//G, [1]G) for some action η of a group G on a unital
Boolean ring B. We claim that the canonical V-measure µG : B → M , x 7→ [x]G
(cf. Lemma 2-8.8) is group-induced. Let a, b ∈ B such that [a]G = [b]G. This
means that a 'G b, that is, there are decompositions a =

⊕
i<n ai and b =

⊕
i<n bi

where each bi = giai where gi ∈ G. It follows that each ηgi belongs to Aut(B,µ)
and bi = ηgi(ai). Therefore, a 'gp

µ b. �

The following result shows that for non-pointed commutative monoids, the
separation between “group” and “groupoid” becomes immaterial.
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Proposition 4-8.3. The following statements are equivalent, for every conical
refinement monoid M :

(i) There are a Boolean ring B and a groupoid-induced V-measure µ : B → M
with generating range.

(ii) There are a Boolean ring B and a surjective group-induced V-measure
µ : B →M .

Proof. (ii)⇒(i) is trivial.

(i)⇒(ii). By Proposition 4-7.11, µ(Z+) : B(Z+) →M is a group-induced V-meas-

ure. Since the range of µ generates M , µ(Z+) is surjective. �

Definition 4-8.4. A conical refinement monoid M is group-measurable if one
of the equivalent conditions of Proposition 4-8.3 holds.

The analogue of Proposition 4-8.2 for non-pointed monoids is the following.
The proof is similar to the one of Proposition 4-8.2 and we omit it.

Proposition 4-8.5. The following are equivalent, for any conical refinement
monoid M :

(1) M is group-measurable.
(2) There is a group G, acting by automorphisms on a Boolean ring B, such that

M ∼= Z+〈B〉//G.
(3) There is a Boolean inverse semigroup (resp., a Boolean antigroup) S such that

M ∼= TypS.

For an extension of Proposition 4-8.5 to Boolean inverse meet-semigroups, see
Theorem 4-9.1.

Theorem 4-8.6. Let M be a conical refinement monoid and let B be a countable
Boolean ring. Then any V-measure µ : B →M is groupoid-induced.

Proof. Let a, b ∈ B such that µ(a) = µ(b). Since µ is a V-measure, the binary
relation

Γ = {(x, y) ∈ (B ↓ a)× (B ↓ b) | µ(x) = µ(y)}
is an additive, conical V-relation on (B ↓ a) × (B ↓ b) (cf. Definition 2-4.1). By
Vaught’s Theorem (cf. Lemma 4-5.2), the graph of Γ contains an isomorphism
ϕ : B ↓ a→ B ↓ b. Then ϕ ∈ Inv(B,µ) and ϕ(a) = b. �

Theorem 4-8.7. Every countable conical refinement monoid (M, e) with order-
unit is groupoid-measurable. In fact, there exists a countable unital Boolean anti-
group S such that (M, e) ∼= (TypS, typS(1)).

Proof. By the countable case of Theorem 4-6.7, (M, e) is V-measurable, via
a normalized V-measure µ : B → (M, e). By a standard Löwenheim-Skolem type
argument, B can be taken countable. By Theorem 4-8.6, µ is groupoid-induced.
For each a, b ∈ B with µ(a) = µ(b), pick fa,b ∈ Inv(B,µ) sending a to b. By
the Löwenheim-Skolem Theorem, Inv(B,µ) contains a countable Boolean anti-
group S such that all fa,b belong to S. By Theorem 4-7.13(2), it follows that
(TypS, typS(1)) ∼= (M, e). �

Example 4-7.9, giving a groupoid-induced measure that is not group-induced,
yields immediately the following example.
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Example 4-8.8. A groupoid-measurable, non group-measurable, countable con-
ical refinement monoid with order-unit.

Proof. As in Example 4-7.9, denote by P the commutative monoid defined
by generators ε, 1 and the relation ε + 1 = 1. We have seen in Example 4-7.9
that (P, 1) is groupoid-measurable.

Suppose that there is a group-induced normalized V-measure ν : B → (P, 1). A
standard Löwenheim-Skolem type argument shows that B can be taken countable.
But then, by Theorem 4-6.8, (B, ν) is isomorphic to the pair (B, µ) of Example
4-7.9, which we proved there is not group-induced. �

The non-unital version of Theorem 4-8.7 runs as follows.

Theorem 4-8.9. Every countable conical refinement monoid is group-measur-
able; thus it is isomorphic to the type monoid of a Boolean antigroup.

Proof. Let M be a countable conical refinement monoid and embed M as
an ideal into a countable conical refinement monoid (N, e) with order-unit. For
example, N = M t{∞} with x+∞ =∞ for all x ∈ N , and e =∞. By Theorem 4-
8.7, there are a countable Boolean antigroup T and an isomorphism ε : TypT → N .
It follows from Proposition 4-2.4 that S = {x ∈ T | ε(typT (x)) ∈M} is a tight ideal
of T and TypS ∼= M . By Proposition 4-8.3, M is group-measurable. �

4-9. Type monoids of Boolean inverse meet-semigroups

Recall from Proposition 4-8.5 that a conical refinement monoid is group-meas-
urable iff it is isomorphic to the type monoid of a Boolean inverse semigroup (resp., a
Boolean antigroup). The following result enables Boolean inverse meet-semigroups
to enter that picture as well.

Theorem 4-9.1. Every group-measurable conical refinement monoid is isomor-
phic to the type monoid of a Boolean inverse meet-semigroup.

Proof. By Proposition 4-8.5, it suffices to prove that for every group G, acting
by automorphisms on a Boolean ring B, there is a Boolean inverse meet-semigroup S
such that Z+〈B〉//G ∼= TypS. We may assume without loss of generality that B is
a ring of subsets of a set Ω, on which G acts B-measurably (define Ω as the prime
filter space of the original B, and then replace B by the ring of all compact open
subsets of Ω; then G acts continuously on Ω). Now let G act on Ω′ = Ω × G via
g ·(p, h) = (gp, gh) whenever g ∈ G and (p, h) ∈ Ω′. The set B′ = {X ×G | X ∈ B}
is a ring of subsets of Ω′, isomorphic to B (as a Boolean ring), and the action of G
on Ω′ is B′-measurable. Further, two elements X,Y ∈ B are G-equidecomposa-
ble with pieces from B iff X × G and Y × G are G-equidecomposable with pieces
from B′. It follows that Z+〈B′〉//G ∼= Z+〈B〉//G ∼= M . By Proposition 4-4.21, it
follows that Typ(pMeas(B′, G)) ∼= M .

Now the action of G on Ω′ = Ω × G is fixed point free, thus, by Proposition
4-4.13, pMeas(B′, G) is a Boolean inverse meet-semigroup. �

By combining that result with Theorem 4-8.9 and a final Löwenheim-Skolem
type argument, we get the following.

Theorem 4-9.2. Every countable conical refinement monoid is isomorphic to
the type monoid of some countable Boolean inverse meet-semigroup.
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The proof of Theorem 4-9.1 contains a touch of ad-hoc-ness that does not ap-
pear in the proof of the “antigroup” part of Proposition 4-8.5: while the canonical
projection, from a Boolean inverse semigroup S, onto its maximal antigroup quo-
tient S/µ, is type-preserving (cf. Theorem 4-4.19), there is no convenient “canonical
Boolean inverse meet-semigroup image” that we could use to that end. (However,
remember that every Boolean inverse semigroup has a tight embedding into some
symmetric inverse monoid — thus into some unital Boolean inverse meet-semigroup,
see Corollary 3-3.2.) More dramatically, the following example shows that embed-
ding a given Boolean inverse semigroup into any Boolean inverse meet-semigroup
may introduce some collapsing at the type monoid level.

Example 4-9.3. A countable, unital Boolean antigroup S without any type-ex-
panding map into any Boolean inverse meet-semigroup. That is, for every Boolean
inverse meet-semigroup T and every tight map ϕ : S → T , the monoid homomor-
phism Typϕ : TypS → TypT is not one-to-one.

Proof. Let τ : Z/3Z → Z/3Z, t 7→ 2 − t. We set Ω = Z+ × (Z/3Z), and we
define S as the set of all partial functions x ∈ IΩ such that the domain of x is
either finite or cofinite in Ω, and, in the latter case, there are m ∈ Z+, h ∈ Z, and
ε ∈ {0, 1} such that

for all n ∈ [m,∞) and all t ∈ Z/3Z , x(n, t) =
(
n+ h, τε(t)

)
. (4-9.1)

It is straightforward to verify that S is a tight Boolean inverse submonoid of IΩ,
and also an antigroup. The idempotent elements of S are the identity functions idX
on the subsets X of Ω that are either finite or cofinite, and the pedestal of S (cf.
Definition 3-7.5) consists exactly of the elements of IΩ with finite domain. The
zero element of S is the empty function.

We set Ω′ = Ω \ {(0, 0), (0, 2)}. The functions a = idΩ and b = idΩ′ are
idempotent elements of S.

Claim. (a, b) /∈ DS.

Proof of Claim. By way of contradiction, suppose that there exists a bijec-
tion x : Ω→ Ω′ in S. Since the domain of x is cofinite, there are m ∈ N, h ∈ Z, and
ε ∈ {0, 1} such that (4-9.1) holds. We may choose m > −h. It follows from (4-9.1)
that x

[
[m,∞)× (Z/3Z)

]
= [m + h,∞) × (Z/3Z). Since x[Ω] = Ω′ and since x is

one-to-one, it follows, by evaluating set-theoretical differences, that

x
[
[0,m)× (Z/3Z)

]
=
(
[0,m+ h)× (Z/3Z)

)
\ {(0, 0), (0, 2)} ,

thus, evaluating cardinalities, 3m = 3(m+ h)− 2, that is, 3h = 2, a contradiction.
� Claim.

Hence, in order to conclude the proof, it suffices to prove that ϕ(a) DT ϕ(b)
whenever T is a Boolean inverse meet-semigroup and ϕ : S → T is a tight map.
To this end, let s and g the self-maps of Ω defined by the rules s(n, t) = (n+ 1, t)
and g(n, t) = (n, 2 − t) whenever (n, t) ∈ Ω. Observe that s and g both belong
to S, g2 = idΩ, and g ◦ s = s ◦ g. Set X0 = {0} × (Z/3Z) and Ω1 = Ω \ X0.
Then idX0

∧ g�Ω1
= idΩ1

∧ g�X0
= 0, thus, since idX0

and g�X0
both belong to the

pedestal of S and by Proposition 3-7.10, we obtain

ϕ(idX0
) ∧ ϕ(g�Ω1

) = ϕ(idΩ1
) ∧ ϕ(g�X0

) = 0 . (4-9.2)
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Further, idX0
∧ g�X0

= id{(0,1)}. Since idX0
belongs to the pedestal of S and by

Proposition 3-7.10, we obtain

ϕ(idX0
) ∧ ϕ(g�X0

) = ϕ(id{(0,1)}) . (4-9.3)

Further, it follows from the tightness of ϕ that

ϕ(idΩ) = ϕ(idX0
)⊕ ϕ(idΩ1

) and ϕ(g) = ϕ(g�X0
)⊕ ϕ(g�Ω1

) . (4-9.4)

Therefore, putting together (4-9.2), (4-9.3), (4-9.4) and using the distributivity of ∧
on ⊕ (cf. Proposition 3-1.9), we obtain

ϕ(idΩ) ∧ ϕ(g) = ϕ(id{(0,1)})⊕
(
ϕ(idΩ1

) ∧ ϕ(g�Ω1
)
)
. (4-9.5)

We further compute, using the abbreviation x 〈y〉 = xyx−1 (cf. (3-4.2)),

ϕ(s) 〈ϕ(idΩ)〉 = ϕ(s 〈idΩ〉) = ϕ(idΩ1
) ,

ϕ(s) 〈ϕ(g)〉 = ϕ(s 〈g〉) = ϕ(g�Ω1
) ,

thus

ϕ(s) 〈ϕ(idΩ) ∧ ϕ(g)〉 = ϕ(s) 〈ϕ(idΩ)〉 ∧ ϕ(s) 〈ϕ(g)〉
= ϕ(idΩ1) ∧ ϕ(g�Ω1

) ,

and thus, using the abbreviation xr y = xr (x ∧ y) (cf. Notation 3-1.11),

ϕ(s) 〈ϕ(idΩ)r ϕ(g)〉 = ϕ(s)
〈
ϕ(idΩ)r

(
ϕ(idΩ) ∧ ϕ(g)

)〉
= ϕ(s) 〈ϕ(idΩ)〉r ϕ(s) 〈ϕ(idΩ) ∧ ϕ(g)〉
= ϕ(idΩ1

)r
(
ϕ(idΩ1

) ∧ ϕ(g�Ω1
)
)

= ϕ(idΩ1)r ϕ(g�Ω1
) .

It follows that

ϕ(b) = ϕ(idΩ′) = ϕ(id{(0,1)})⊕ ϕ(idΩ1
)

= ϕ(id{(0,1)})⊕
(
ϕ(idΩ1

) ∧ ϕ(g�Ω1
)
)
⊕
(
ϕ(idΩ1

)r ϕ(g�Ω1
)
)

= ϕ(id{(0,1)})⊕
(
ϕ(idΩ1

) ∧ ϕ(g�Ω1
)
)
⊕ ϕ(s) 〈ϕ(idΩ)r ϕ(g)〉 ,

thus, by (4-9.5),

ϕ(b) =
(
ϕ(idΩ) ∧ ϕ(g)

)
⊕ ϕ(s) 〈ϕ(idΩ)r ϕ(g)〉 . (4-9.6)

From d(ϕ(s)) = ϕ(d(s)) = ϕ(idΩ) ≥ ϕ(idΩ)r ϕ(g) it follows that

ϕ(s) 〈ϕ(idΩ)r ϕ(g)〉DT ϕ(idΩ)r ϕ(g) . (4-9.7)

Since

ϕ(a) = ϕ(idΩ) =
(
ϕ(idΩ) ∧ ϕ(g)

)
⊕
(
ϕ(idΩ)r ϕ(g)

)
,

and DT is additive, it follows, by using (4-9.6) and (4-9.7), that ϕ(a) DT ϕ(b). �

On the other hand, using the notation of the proof of Theorem 4-9.1, it is not
hard to verify that pMeas(B, G) is a type-preserving quotient of pMeas(B′, G).

The following example shows that there is no “best of two worlds” improving
both Theorems 4-8.9 and 4-9.2: in that example, “Boolean antigroup” and “Boolean
inverse meet-semigroup” cannot be reached simultaneously.

Example 4-9.4. A countable, conical refinement monoid M with order-unit,
such that there is no Boolean meet-antigroup S with TypS ∼= M .
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Proof. We consider again the conical refinement monoid P , introduced in
Example 4-7.9, defined by the generators ε, 1 and the relation ε+1 = 1. We denote
by π : P � Z+ the unique monoid homomorphism such that π(1) = 1 (and thus
π(ε) = 0).

The additive group G of all eventually constant sequences (xn | n ∈ Z+) of
integers, ordered componentwise, is an Abelian lattice-ordered group. For x ∈ G,
we denote by x(∞) the constant value of x(n) for large enough n. We also denote
by χX the characteristic function of any subset X of Z+. The set

M =
{

(n, x) ∈ P ×G+ | π(n) = x(∞)
}

is a conical submonoid of P ×G+, with order-unit e = (1, χZ+).
For every n ∈ Z+, the set Mn = {(n, x) ∈ P ×G+ | π(n) = x(k) for all k ≥ m}

is a submonoid of M , isomorphic to P × (Z+)m via (n, x) 7→ (n, x + π(n)χ[m,∞)).
In particular, Mn is a refinement monoid. Since M is the directed union of all Mn,
it follows that M is also a refinement monoid.

Now suppose that M ∼= TypT for some Boolean meet-antigroup T . Since e is
an order-unit of M and by Theorem 4-2.6, there are a positive integer n and an
idempotent e of M⊕n (T ) such that, setting S = eM⊕n (T )e, the following relation
holds: (

M, e
) ∼= (TypS, typS(1)

)
.

Since T is a Boolean meet-antigroup, so are M⊕n (T ) and S (apply Propositions
3-1.22 and 3-7.14). Pick an isomorphism ι : (TypS, typS(1))→ (M, e). Set µ(x) =
ι(typS(x)), for each x ∈ S. Observe that µ defines a V-measure from IdpS to M
(cf. Example 4-6.4). The elements a = (ε, 0) and bn = (0, χ{n}), for n ∈ Z+ all
belong to M .

Claim 1. For each n ∈ Z+, there is a unique bn ∈ IdpS such that bn = µ(bn).

Proof of Claim. Let x, y ∈ IdpS such that µ(x) = µ(y) = bn and suppose
that x 6= y. Since µ is a V-measure and since bn is a minimal element of M \{0}, the
elements x and y are both atoms of IdpS. Since x 6= y, it follows that x ⊥ y, thus
x ⊕ y ≤ 1, and thus 2bn = µ(x) + µ(y) = µ(x ⊕ y) ≤+ µ(1) = e, a contradiction.
This deals with the uniqueness part. The existence part follows from µ being a
V-measure together with the inequalities bn ≤+ e = µ(1). � Claim 1.

Since a+ e = e = µ(1) and µ is a V-measure, there are a, e ∈ IdpS such that
1 = a⊕ e, µ(a) = a, and µ(e) = e. From µ(1) = µ(e) it follows that 1 DS e, that is,
there is x ∈ S such that d(x) = 1 and r(x) = e. Set ak = xk 〈a〉, for each k ∈ Z+.
From 1 = a⊕ x 〈1〉 and an easy induction argument, we get

1 =
⊕
k<n

ak ⊕ xn 〈1〉 , for each n ∈ Z+ . (4-9.8)

Since S is an inverse meet-semigroup, the element b = 1∧x exists in S. From b ≤ 1
it follows that b is idempotent. If b ≤ xn, then b = b2 ≤ xb ≤ xn+1; whence b ≤ xn
for each n ∈ Z+. It follows that b ≤ r(xn) = xn 〈1〉, for each n ∈ Z+, and thus, by
(4-9.8), ⊕

k<n

ak ≤ 1r b , for each n ∈ Z+ .
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Since aD ak for all k, it thus follows that (nε, 0) = na ≤+ µ(1r b), for all n ∈ Z+.
Since µ(1r b) ≤+ µ(1) = (1, χZ+), it follows from the definition of M that

µ(1r b) = (1, χV ) , for some cofinite subset V ⊆ Z+ . (4-9.9)

Claim 2. The inequality bn ≤ b holds, for each n ∈ Z+.

Proof of Claim. Since bn ≤ 1 = d(x), we get bn D x 〈bn〉. By Claim 1, it
follows that x 〈bn〉 = bn, thus xbn = bnx = bnxbn. Moreover, from ex = x and
x 〈bn〉 = bn it follows that ebn = bn, that is, bn ≤ e.

If bnx = 0, then bn = bne = bnxx
−1 = 0, a contradiction. Hence bnx 6= 0.

Since bn is an atom of IdpS and by Lemma 3-7.2 together with the assumption
that S is an antigroup, it follows that bnxbn ∈ {0, bn}. Since bnx = bnxbn and
bnx 6= 0, it follows that bnx = bn, that is (since bn is idempotent), bn ≤ x. Since
bn ≤ 1, the desired conclusion follows. � Claim 2.

Since the bn are pairwise meet-orthogonal in M and all bn = µ(bn), the bn
are pairwise orthogonal in M . By Claim 2, it follows that

⊕
i<n bi ≤ b, for each

n ∈ Z+, and thus, evaluating the two sides under µ, it follows that
∑
i<n bi ≤+ µ(b),

that is, (0, χ[0,n)) ≤+ µ(b). This holds for every n ∈ Z+, thus, since µ(b) ≤+

µ(1) = (1, χZ+), it follows that µ(b) = (1, χZ+). Consequently, (1, χZ+) = µ(1) =
µ(b) + µ(1r b) = (1, χZ+) + µ(1r b), in contradiction with (4-9.9). �



CHAPTER 5

Type theory of special classes of Boolean inverse
semigroups

While Theorem 4-8.9 implies that the type monoid of a Boolean inverse semi-
group S can be any countable conical refinement monoid, there are situations in
which the structure of S impacts greatly the one of TypS. A basic illustration
of this is given by the class of AF inverse semigroups, introduced in Lawson and
Scott [72], which is the Boolean inverse semigroup version of the class of AF C*-
algebras. Another Boolean inverse semigroup version of a class of C*-algebras,
which we will not consider here, is given by the Cuntz inverse monoids studied in
Lawson and Scott [72, § 3].

Section 5-1 introduces the class of locally chartable inverse semigroups, which
are just the directed colimits of finite products of finite symmetric inverse semi-
groups, and the countable members of that class, the AF inverse semigroups. Mim-
icking the classical ring-theoretical proofs, we describe the type monoids of those
Boolean inverse semigroups.

In Section 5-2, we describe a different class of Boolean antigroups, whose type
monoids are exactly the positive cones of Abelian lattice-ordered groups. More-
over, we show that the projectable Abelian lattice-ordered groups are exactly those
arising from Boolean inverse meet-semigroups from that class.

It follows from Tarski [103] that monoids of equidecomposability types, with
respect to exponentially bounded groups, are strongly separative (i.e., they satisfy
the implication x + z = y + 2z ⇒ x = y + z). In Section 5-3, we state a Boolean
inverse semigroup version of that result. This result enables us, in particular, to
extend Tarski’s result to all supramenable groups.

In Section 5-4, we partly survey the impact of various amounts of completeness,
of a Boolean inverse semigroup S, on the type monoid of S, and we illustrate the
sharpness of those results by various examples and counterexamples.

Highlights of Chapter 5.

• The type monoid of a locally chartable inverse monoid S is the positive
cone of a dimension group, and it is isomorphic to the monoid of equide-
composability types, with respect to the inner automorphism group of S
(cf. Section 3-8), of the Boolean ring of all idempotents of S (Proposition
5-1.5).
• Every dimension group with at most ℵ1 elements arises as the type mon-

oid of some locally chartable inverse semigroup (Theorem 5-1.10). More-
over, for countable dimension groups with order-unit and AF monoids,
this representation is unique up to isomorphism (but not up to unique
isomorphism; Theorem 5-1.11).

131
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• The positive cone of every Abelian lattice-ordered group G is isomorphic
to the type monoid of a Boolean antigroup SG (Theorem 5-2.7), in such a
way that SG is an inverse meet-semigroup iff G is projectable (Theorem
5-2.9).

• Every MV-algebra is isomorphic to S/J for some Foulis monoid S (The-
orem 5-2.10). This solves a problem stated in Lawson and Scott [72].

• The type monoid of every “fork-nilpotent” Boolean inverse semigroup is
strongly separative (Theorem 5-3.4). The condition of fork-nilpotence
holds for the Boolean antigroup associated with the action of an expo-
nentially bounded, respectively supramenable, group on a Boolean ring
(Theorems 5-3.6 and 5-3.8).

• Let S be a Boolean inverse semigroup with conditionally σ-complete
semilattice of idempotents. Then the type monoid of S is antisymmetric
(Corollary 5-4.2), and, more generally, it is a “refinement algebra” (Corol-
lary 5-4.11). Those results do not extend to all V-measures defined on a
complete Boolean algebra (Example 5-4.3).

5-1. Type monoids of AF inverse semigroups

Most of the results presented in this section are analogues, for Boolean inverse
semigroups, of classical results for nonstable K-theory of regular rings, see for ex-
ample Goodearl [47, Chapter 15]. Some of the ideas that we will state here can
also be found, with different formulations, in Lawson and Scott [72, § 2]. The in-
verse semigroups proofs are straightforward translations of the ring proofs, and we
present only that part of them that we believe will help the reader to get familiar
with the context.

Recall that symmetric inverse semigroups are introduced in Example 3-1.8.

Definition 5-1.1. An inverse semigroup S is locally chartable1 if it is a directed
colimit of finite Boolean antigroups and tight homomorphisms. We say that S is
approximately finite, or AF , if it is both countable and locally chartable.

It is fairly easy, although not completely trivial, to see that the definition of AF
given in Definition 5-1.1 is equivalent to the one of Lawson and Scott [72]. That
this is indeed the case will follow from Proposition 5-1.2.

It follows from Lawson [70, Theorem 4.18] that the finite Boolean antigroups
are exactly2 the isomorphic copies of the

∏m
i=1 Ini , where m ∈ Z+ and all ni ∈ N.

This yields the following alternative description of locally chartable inverse
semigroups

Proposition 5-1.2. An inverse semigroup S is locally chartable iff it is a
directed union of finite Boolean antigroups that are tight in S. If those conditions
are satisfied, then S is a Boolean meet-antigroup.

Proof. If S is a directed union of finite Boolean antigroups Si that are tight
in S, then it is also the directed colimit of the Si, the transition maps being defined
as the inclusion maps Si ↪→ Sj whenever Si ⊆ Sj .

1Our motivation for this terminology lies in the occasional denomination of elements of finite
symmetric inverse semigroups as charts.

2Those inverse semigroups are called semisimple in the first version of Lawson and Scott [72],
which conflicts with the usual meaning of that word in ring theory. We chose instead to introduce
semisimplicity through Definition 3-7.5.
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Suppose, conversely, that S = lim−→i∈I Si, where I is a directed poset, with

all the Si finite Boolean antigroups and all transition maps f ji : Si → Sj tight.

Since all f ji are bias homomorphisms (cf. Theorem 3-2.5), so are all limiting maps
fi : Si → S, for i ∈ I; that is, all fi are tight. (See the comments following Theorem
3-2.5.) The subset Ki = ker fi is a tight ideal in Si, for each i ∈ I (cf. Proposition
3-4.9). Denote by pi : Si � Si/Ki the canonical projection. By Proposition 3-7.6,
Si/Ki is a Boolean antigroup and there is a unique tight embedding f i : Si/Ki → S
such that fi = f i◦pi. Since S is the directed union of all fi[Si], it is also the directed
union of all (finite Boolean antigroups) f i[Si/Ki].

Hence, the Si, f
j
i , and fi can be modified in such a way that each Si is a tight

inverse subsemigroup of S, and the f ji and fi are all inclusion maps. By Proposition

3-7.10, all f ji are meet-homomorphisms. It follows that all fi are meet-homomor-
phisms and S is a meet-semilattice, thus a Boolean inverse meet-semigroup.

Let x ∈ S commute with all idempotents of S. Then x ∈ Si for some i ∈ I,
and x commutes with every idempotent of Si. Since Si is an antigroup, x is idem-
potent. Hence S is an antigroup. �

Corollary 5-1.3. The following statements hold, for any tight ideal S in an
inverse semigroup T :

(1) If T is a finite symmetric inverse semigroup, then either S = {0} or S = T .
(2) If T is a finite Boolean antigroup, then so is S.
(3) If T is locally chartable, then so is S.

Proof. (1). All the atoms of IdpT are pairwise D-equivalent, thus if one of
them belongs to S, then all of them do. In the first case, S = {0}. In the second
case, S contains all the idempotents of T , thus all its matrix units (because it is an
ideal), thus S = T (because S is closed under finite orthogonal joins).

(2). Let T =
∏m
i=1 Ini , where m ∈ Z+ and all ni ∈ N. Then each Ini embeds,

as a tight ideal, in T . Since S is a tight ideal, S =
∏m
i=1 Si where each Si = S∩Ini .

By (1) above, either Si = {0} or Si = Ini .
(3). By Proposition 5-1.2, T is a tight directed union of finite Boolean anti-

groups Ti. Each S ∩ Ti is a tight ideal of Ti, thus, by (2) above, S ∩ Ti is a finite
Boolean antigroup. Since S is the tight directed union of all S ∩ Ti, S is locally
chartable. �

It is trivial that any locally chartable Boolean antigroup S is locally finite.
An easy application of Lemma 3-8.4 yields then that the group InnS of all inner
automorphisms of S is locally finite. As the following example shows, the converse
does not hold.

Example 5-1.4. A unital Boolean meet-antigroup S such that InnS is locally
finite but S has elements of infinite order (thus it is not locally finite).

Proof. We consider the unital Boolean meet-antigroup S introduced in Ex-
ample 3-7.12, and the tight map f : S � Zt0 introduced in Example 3-7.13. The
shift mapping σ : Z+ → Z+, n 7→ n + 1 is an element of S generating an infinite
subsemigroup, and f(σ) = 1.

Now let u be an invertible element of S and set m = f(u). Since u is a
permutation of Z+ and u ∈ S, there exists n ∈ Z+ such that u(k) = m + k for
every k ≥ n. In particular, u maps [n,∞) onto [m+ n,∞). Since u is a bijection,



134 5. SPECIAL CLASSES OF BOOLEAN INVERSE SEMIGROUPS

it follows that m+ n = n, that is, m = 0Z. Therefore, the invertible elements of S
are exactly the permutations u of Z+ such that u(k) = k for all large enough k. It
follows easily that the invertible elements of S form a locally finite subgroup of S,
thus that InnS is locally finite. �

For the following result, we remind the reader that simplicial monoids are
introduced in Section 1-4 and exhaustive group actions are introduced in Definition
4-7.12.

Proposition 5-1.5. The following statements hold, for any Boolean inverse
semigroup S:

(1) If S is a finite symmetric inverse semigroup, then either TypS = {0} or
TypS ∼= Z+.

(2) If S is a finite Boolean antigroup, then TypS is a simplicial monoid.
(3) If S is locally chartable, then TypS is the positive cone of a dimension group.

Furthermore, the action of InnS on IdpS by restriction is exhaustive with
respect to the dimension function typS, and TypS ∼= Z+〈IdpS〉/InnS.

Proof. (1). Let S = Im, where m ∈ Z+. If m = 0 then TypS = {0}. Suppose
that m 6= 0. Then the idempotents of Im are the identities on the subsets of [m].
Furthermore, for all X,Y ⊆ [m], idX D idY iff cardX = cardY . It follows easily
that (TypIm, typ(1)) ∼= (Z+,m) if m > 0.

(2). Let S =
∏m
i=1 Ini , where m ∈ Z+ and each ni ∈ N. Then, by the proof

of (1) together with Proposition 4-1.9(1), we get (TypS, typ(1)) ∼= ((Z+)m, ~n)
where ~n = (n1, . . . , nm).

(3). Consider a directed colimit S = lim−→i∈I Si with respect to tight maps, where

all the Si are finite Boolean antigroups. It follows from Proposition 4-1.9(2) that
TypS = lim−→i∈I TypSi. By (2) above, each TypSi is a simplicial monoid. Thus,

TypS is the positive cone of a dimension group.
Now let a, b ∈ IdpS such that a D b. There is u ∈ S such that a = d(u) and

b = r(u). Let i ∈ I such that u ∈ Si, and denote by ei the unit element of Si. Since

typSi(ei) = typSi(a) + typSi(ei r a) = typSi(b) + typSi(ei r b) ,
it follows from the equation typSi(a) = typSi(b) together with the cancellativity of
TypSi (cf. (2) above) that typSi(ei r a) = typSi(ei r b), so there is v ∈ Si such
that d(v) = ei r a and r(v) = ei r b. It follows that g = u ⊕ v is an invertible
element of Si and g 〈a〉 = b, so inng(a) = b. This proves that the action of InnS
on IdpS is exhaustive with respect to the dimension function typS . The relation
TypS ∼= Z+〈IdpS〉/InnS follows then immediately from Theorem 4-7.14. �

There is some overlap between some of the conclusions of Proposition 5-1.5(3):
since S is locally chartable, the group InnS is locally finite, thus, since Z+〈IdpS〉 is
an Abelian lattice-ordered group and by Corollary 2-9.8, the monoid Z+〈IdpS〉/InnS
is the positive cone of a dimension group. Nevertheless, the proof of Proposition
5-1.5(3) above also yields an explicit representation of TypS ∼= Z+〈IdpS〉/InnS as
a directed colimit of simplicial monoids (viz., the monoids TypSi, for i ∈ I).

We are now aiming at a converse to Proposition 5-1.5. In view of Theorem 4-6.9,
there are dimension groups of cardinality ℵ2 whose positive cone is not isomorphic
to TypS for any Boolean inverse semigroup S. For the smaller cardinalities, it is
known since the 1979 edition of Goodearl [47] for the countable case, and Good-
earl and Handelman [49] for the ℵ1 case, that every positive cone of a dimension
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group of cardinality at most ℵ1 is isomorphic to V(R) for some locally matricial
von Neumann regular ring. It turns out that those ring-theoretical proofs can be
easily adapted to the context of Boolean inverse semigroups, by observing that all
the matrices involved in them have entries either 0 or 1.

The following result apes, both in its statement and its proof, the one in Good-
earl [47, Lemma 15.23]. We include a proof for convenience. Recall that the inner
endomorphisms adx are introduced in Section 3-8.

Lemma 5-1.6. The following statements hold, for any finite Boolean anti-
group S and any Boolean inverse semigroup T :

(1) For any c ∈ IdpT and any monoid homomorphism f : TypS → TypT with
f(typS(1)) = typT (c), there exists a tight map f : S → T such that f(1) = c
and f = Typ f .

(2) For any tight maps f, g : S → T , Typ f = Typ g iff there is x ∈ T with d(x) =
f(1), r(x) = g(1), and g = adx ◦f .

Proof. By Lawson [70, Theorem 4.18], there are a nonnegative integer m,
central idempotents e1, . . . , em of S, and positive integers n1, . . . , nm such that
1 =

⊕m
i=1 ei in S and each eiS ∼= Ini . It follows that

typT (c) = f(typS(1)) =

m∑
i=1

f(typS(ei)) .

By Lemma 4-1.6, there is a decomposition c =
⊕m

i=1 ci in IdpT such that each

f(typS(ei)) = typT (ci). Denote by
(
e

(i)
j,k | (j, k) ∈ [ni]× [ni]

)
a system of matrix

units of eiS ∼= Ini (cf. Example 3-1.8). According to Proposition 5-1.5(2), TypS

is a simplicial monoid, with simplicial basis
(

typS(e
(1)
1,1), . . . , typS(e

(m)
1,1 )

)
.

(1). For each i ∈ [m], typT (ci) = f(typS(ei)) = ni · typS(e
(i)
1,1), thus, again by

Lemma 4-1.6, there is a decomposition ci =
⊕ni

j=1 c
(i)
j,j such that each typT (c

(i)
j,j) =

f
(
typS(e

(i)
j,j)
)
. Whenever 2 ≤ j ≤ ni, the relation c

(i)
j,j DT c

(i)
1,1 holds, thus there

is c
(i)
j,1 ∈ T such that d(c

(i)
j,1) = c

(i)
1,1 and r(c

(i)
j,1) = c

(i)
j,j . Now set c

(i)
1,j =

(
c
(i)
j,1

)−1

whenever 1 ≤ j ≤ ni, and further, set

c
(i)
j,k = c

(i)
j,1c

(i)
1,k , whenever j, k ∈ [ni] .

It is straightforward to verify that the c
(i)
j,k satisfy the defining relations of the matrix

units of Ini (viz., the relations (3-1.4) and (3-1.5), where n is replaced by ni and ej,k

by c
(i)
j,k). The elements of eiS ∼= Ini are exactly the orthogonal joins of elements

of the form e
(i)
j,k, that is, all the elements of S of the form

⊕
j∈dom(x) e

(i)
j,x(j), where

x ∈ Ini . This makes it possible to define a tight map fi : eiS → T by the rule

fi

( ⊕
j∈dom(x)

e
(i)
j,x(j)

)
=

⊕
j∈dom(x)

c
(i)
j,x(j) , for all x ∈ Ini .

From the equations c
(i)
j,k = cic

(i)
j,kci it follows, in particular, that fi(x) ∈ ciTci. Since

the central elements ci are pairwise orthogonal, it is possible to define a tight map
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f : S → T by the rule

f(x) =

m⊕
i=1

fi(eix) , for all x ∈ S .

For every i ∈ [m], (Typ f)
(
typS(e

(i)
1,1)
)

= typT (c
(i)
1,1) = f

(
typS(e

(i)
1,1)
)
. Therefore,

f = Typ f .
(2). Suppose first that g = adx ◦f for some x ∈ T with d(x) = f(1) and

r(x) = g(1). For every a ∈ IdpS, g(a) = xf(a)x−1 = xf(a)
(
xf(a)

)−1
while, using

the inequality f(a) ≤ f(1) = d(x), we get f(a) =
(
xf(a)

)−1
xf(a), so f(a) D g(a),

and so (Typ f)(typS(a)) = (Typ g)(typS(a)). This proves that Typ f = Typ g.
Suppose, conversely, that Typ f = Typ g. Set a = f(1) and b = g(1). Set

also f
(i)
j,k = f

(
e

(i)
j,k

)
and g

(i)
j,k = g

(
e

(i)
j,k

)
, for all i ∈ [m] and all j ∈ [ni]. From

Typ f = Typ g it follows that for all i ∈ [m], the relation f
(i)
1,1 D g

(i)
1,1 holds within T ,

thus there is xi ∈ T such that d(xi) = f
(i)
1,1 and r(xi) = g

(i)
1,1. For each j ∈ [ni],

the product g
(i)
j,1xif

(i)
1,j is a trace product, with domain f

(i)
j,j and range g

(i)
j,j . It

follows that the element x =
⊕

i∈[m] , j∈[ni]
g

(i)
j,1xif

(i)
1,j is well defined, and x−1 =⊕

i∈[m] , j∈[ni]
f

(i)
j,1x

−1
i g

(i)
1,j . Now for all i ∈ [m] and all p, q ∈ [ni], the only value of

j ∈ [ni] such that f
(i)
1,jf

(i)
p,q 6= 0 is j = p. Hence

xf (i)
p,q = g

(i)
p,1xif

(i)
1,pf

(i)
p,q = g

(i)
p,1xif

(i)
1,q .

Now the only value of j ∈ [ni] such that f
(i)
1,qf

(i)
j,1 6= 0 is j = q. Hence

xf (i)
p,qx

−1 = g
(i)
p,1xif

(i)
1,qf

(i)
q,1x

−1
i g

(i)
1,q = g

(i)
p,1xif

(i)
1,1x

−1
i g

(i)
1,q = g

(i)
p,1g

(i)
1,1g

(i)
1,q = g(i)

p,q .

This holds for all i ∈ [m] and all j ∈ [ni], thus g = adx ◦f . �

The inverse semigroup analogue of Goodearl and Handelman [49, Lemma 1.3],
itself arising from Kado [60, Lemma 3], is then the following.

Lemma 5-1.7. Let S be an AF inverse monoid, let T be a Boolean inverse
semigroup, let c ∈ T , and let g : TypS → TypT be a monoid homomorphism such
that g(typS(1)) = typT (c). Then there exists a tight map g : S → T such that
g(1) = c and g = Typ(g).

Proof. By virtue of Proposition 5-1.2, we can write S =
⋃
n∈Z+ Sn (directed

union), with each Sn a finite Boolean antigroup which is tight in S. We may assume
that 1 ∈ S0. Denote by en : Sn ↪→ Sn+1 and fn : Sn ↪→ S the inclusion maps, for
n ∈ Z+. Then g ◦ Typ f0 : TypS0 → TypT is a monoid homomorphism sending
typS0

(1) to typT (c), thus, by Lemma 5-1.6(1), there is a tight map g0 : S0 → T
sending 1 to c such that g ◦ Typ f0 = Typ g0. Let n ∈ Z+ and suppose having
constructed a tight map gn : Sn → T sending 1 to c such that g ◦Typ fn = Typ gn.
By Lemma 5-1.6(1), there is a tight map h : Sn+1 → T sending 1 to c such that
g ◦ Typ fn+1 = Typh. It follows that h ◦ en and gn are both tight maps from Sn
to T , sending 1 to c, with Typ(h ◦ en) = Typ gn. By Lemma 5-1.6(2), there exists
x ∈ T such that d(x) = r(x) = c and gn = adx ◦h ◦ en. Set gn+1 = adx ◦h.
Hence gn = gn+1 ◦ en = gn+1�Sn . Moreover, Typ gn+1 = Typh = g ◦Typ fn+1 and
gn+1(1) = c, thus completing the inductive construction of the gn. The common
extension g : S → T of all gn is a tight map sending 1 to c, and g = Typ g. �
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It will follow from Example 5-1.12 that the assumption that S be AF cannot
be dropped from the statement of Lemma 5-1.7.

We obtain the following inverse semigroup analogue of Goodearl and Handel-
man [49, Theorem 1.5]. The last part of our statement involves the concept of
group-measurability introduced in Definition 4-8.1.

Theorem 5-1.8. Let (G,u) be a dimension group with order-unit. If cardG ≤ ℵ1,
then there exists a unital locally chartable antigroup S such that
(G+,u) ∼= (TypS, typS(1)). Consequently, (G+,u) is group-measurable, via a lo-
cally finite group.

Proof. We first deal with the case where G is simplicial. Let (G,u) =
(Zm, ~n) where ~n = (n1, . . . , nm), with all ni ∈ N. Setting S =

∏m
i=1 Ini , then

(TypS, typS(1)) ∼= (G+,u) (cf. Proposition 5-1.5(2)).
Next, we deal with the case where G is countable. By the directed colimit

representation theorem of Grillet [54] and Effros, Handelman, and Shen [37], we

can write (G,u) = lim−→
~G, where ~G is a direct system of simplicial groups with

order-unit (Gn,un) and positive homomorphisms. Denote by fn : (G+
n ,un) →

(G+
n+1,un+1) the restrictions to positive cones of the corresponding transition maps.

By the simplicial case, for each n ∈ Z+, there are a finite Boolean antigroup Sn and
an isomorphism εn : (TypSn, typSn(1)) → (G+

n ,un). By Lemma 5-1.6(1), there is

a tight map fn : Sn → Sn+1, preserving the unit, such that ε−1
n+1fnεn = Typ fn.

Denote by ~S the direct system of finite Boolean antigroups and tight maps consisting
of the Sn and the fn. Then the sequence (εn | n ∈ Z+) defines a natural equivalence

from Typ ~S to ~G. Setting S = lim−→
~S, it follows from Proposition 4-1.9(2) that

(TypS, typS(1)) ∼= (G+,u).
Finally, we deal with the case where cardG = ℵ1. Denoting by ω1 the first

uncountable ordinal, a standard Löwenheim-Skolem type argument enables us to
construct an increasing ω1-sequence (Gξ | ξ < ω1) of countable dimension subgroups
of G, with u ∈ G0, such that Gλ =

⋃
ξ<λGξ for every countable limit ordinal λ.

Denote by fηξ : G+
ξ → G+

η the inclusion map, for any ξ ≤ η < ω1. By the count-
able case, for each ξ < ω1, there is a unital AF inverse semigroup Sξ such that
(TypSξ, typSξ(1)) ∼= (G+

ξ ,u). We construct inductively a direct system of unit-

preserving tight transition maps fηξ : Sξ → Sη, together with a natural isomorphism

(εξ | ξ < ω1) with εξ : (TypSξ, typSξ(1))→ (G+
ξ ,u), as follows. At stage 0, just pick

any isomorphism ε0 : (TypS0, typS0
(1)) → (G+

0 ,u). If everything is defined up to
stage ξ, then pick any isomorphism

εξ+1 : (TypSξ+1, typSξ+1
(1))→ (G+

ξ+1,u)

and further, by virtue of Lemma 5-1.7, pick any unit-preserving tight map

fξ+1
ξ : Sξ → Sξ+1 such that Typ fξ+1

ξ = ε−1
ξ+1 ◦ f

ξ+1
ξ ◦ εξ; then set fξ+1

η = fξ+1
ξ ◦ fξη

for each η ≤ ξ, and, of course, fξ+1
ξ+1 = idSξ+1

.
Finally, let λ < ω1 such that everything is defined below λ. Define

Sλ = lim−→
ξ<λ

Sξ . (5-1.1)

By virtue of the natural transformation (εξ | ξ < λ), we get an isomorphism ελ
from TypSλ = lim−→ξ<λ

TypSξ onto lim−→ξ<λ
G+
ξ =

⋃
ξ<λG

+
ξ = G+

λ (in order not to
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overload the notation we drop the units). For ξ < λ, define fλξ as the limiting map

of the directed colimit (5-1.1). This completes the inductive construction of the
desired direct system and natural isomorphism. Defining S = lim−→ξ<ω1

Sξ, it follows

that (TypS, typS(1)) ∼= (G+,u). �

Together with results from earlier sections, this enables us to confirm a guess
from the first version of Kudryavtseva et al. [66, § 2]. We quote the following
statement from their paper:

We do not believe that all 0-simplifying AF inverse monoids
are necessarily UHF.

Here, a Boolean inverse monoid S is 0-simplifying if it has no non-trivial
tight ideals. By Proposition 4-2.4, this is, for non-trivial S, equivalent to say-
ing that TypS has no non-trivial o-ideals, that is, TypS is a simple refinement
monoid (cf. Section 1-4). A Boolean inverse monoid is UHF it is a countable
directed colimit, via tight transition maps, of finite symmetric inverse monoids.

Example 5-1.9. A 0-simplifying AF Boolean inverse monoid, which is not
UHF.

Proof. Pick any simple dimension group G of rank greater than 1 (i.e., with
two elements with no nonzero common integer multiple). For example, let G =
Q × Q, with positive cone {(0, 0)} ∪ (Q++ × Q++). By Theorem 5-1.8, there is
a unital Boolean antigroup S such that TypS ∼= G+. Since G is simple and
by Proposition 4-2.4, S is 0-simplifying. However, the type monoid of an UHF
semigroup is easily seen to have rank at most 1. Hence, S is not UHF. �

Theorem 5-1.8 also has a non-unital version.

Theorem 5-1.10. Let G be a dimension group. If cardG ≤ ℵ1, then there
exists a locally chartable antigroup S such that G+ ∼= TypS. Consequently, G+ is
group-measurable, via a locally finite group.

Proof. We first embed G as an ideal into a unital dimension group H with
cardH ≤ ℵ1. For example, define H as the lexicographical product Z×lexG, which
admits (1, 0) as an order-unit. By Theorem 5-1.8, there are a locally chartable
antigroup T and an isomorphism ε : TypT → H+. By Proposition 4-2.4, the set
S = {x ∈ T | ε(typT (x)) ∈ G+} is a tight ideal of T , thus it is a locally chartable
Boolean antigroup (cf. Corollary 5-1.3), and TypS ∼= G+. �

By modifying mutatis mutandis the proof of Elliott’s Theorem, of the unique-
ness of an AF C*-algebra with given partially ordered K0 group, we can also obtain
the following uniqueness result. Its proof is a back-and-forth variant of the one
of Lemma 5-1.7 and we omit it, refering the reader to Theorems 4.3 and 5.3 in
Elliott [38], see also Goodearl [47, Theorem 15.26] for the regular rings analogue.

Theorem 5-1.11. Let S and T be unital AF inverse semigroups. Then for any
isomorphism f : (TypS, typS(1))→ (TypT, typT (1)), there exists an isomorphism
f : S → T of inverse semigroups such that f = Typ f .

If we drop the assumption that S and T be AF, then counterexamples arise.

Example 5-1.12. Countable, unital, Boolean antigroups S0 and S1 such that
(TypS0, typS0

(1)) ∼= (TypS1, typS1
(1)) ∼= (Q+, 1), S0 is AF, and S1 is not locally

finite (thus S0 6∼= S1).
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Proof. Denote by B the Boolean subalgebra of the powerset algebra of the
real interval I = (0, 1] generated by all intervals (x, y], where 0 ≤ x ≤ y ≤ 1 and
x, y ∈ Q. The restriction µ, of the Lebesgue measure on R, to B, is a Q+-valued
V-measure. In particular, µ((x, y]) = y − x, whenever 0 ≤ x ≤ y ≤ 1 and x, y ∈ Q.
Set S = Inv(B,µ) and denote by S0 the inverse subsemigroup of S consisting
of all piecewise translations via rational scalars. By considering all subdivisions
0 < 1

n! < · · · <
n!−1
n! < 1, it is not hard to see that S0 is AF, and in fact it is

a directed union of finite Boolean antigroups of the form In! . In particular, by
Theorem 4-7.13, (TypS0, typS0

(1)) ∼= (Q+, 1).
On the other hand, pick any irrational number α such that 0 < α < 1 and let

τ : I → I defined by the rule

τ(x) =

{
α+ x , if α+ x < 1 ,

α+ x− 1 , otherwise.

Then τ ∈ Aut(B,µ), thus τ ∈ S, and τn 6= id for every nonzero integer n. Let S1 be
a countable tight inverse subsemigroup of S such that S0 ∪ {τ} ⊆ S1. By Theorem
4-7.13, (TypS1, typS1

(1)) ∼= (Q+, 1). Nevertheless, S0 is locally finite while S1 is
not. �

Example 5-1.12 is to be put in contrast with Theorem 4-6.8: the latter im-
plies the uniqueness of the countable V-measure representing (Q+, 1) (or any given
countable conical refinement monoid with order-unit), while the former implies the
non-uniqueness of the countable Boolean antigroup representing (Q+, 1).

5-2. Representing positive cones of Abelian lattice-ordered groups

We know from Theorem 5-1.10 that the positive cone of every dimension group,
with up to ℵ1 elements, is group-measurable. By Theorem 4-6.9, this result does
not extend to dimension groups with at least ℵ2 elements. Nevertheless, we shall
see with Theorem 5-2.7 that for the special case of lattice-ordered groups, there is
no need for any cardinality restriction.

5-2.1. The enveloping Boolean ring of a distributive lattice with zero.
Throughout Section 5-2.1 we shall fix a distributive lattice D with zero. The en-
veloping Boolean ring of D is defined as the unique (up to isomorphism) Boolean
ring BR(D) such that D embeds into BR(D) as a 0-sublattice, and such that D
generates BR(D) as a Boolean ring. Details about the construction of BR(D),
along with its basic properties, can be found in Grätzer [50, § II.4]. Write D[2] =
{(x, y) ∈ D ×D | x ≤ y}. It is well known (cf. Grätzer [50, Lemma 155]) that the
elements of BR(D) are exactly those of the form

⊕
k<n(a2k+1 r a2k), where n is a

positive integer and each (a2k, a2k+1) ∈ D[2]. Call the elements of the form b r a,
where (a, b) ∈ D[2], the elementary generators of BR(D) (relatively to D).

Lemma 5-2.1. Let (a, b), (a′, b′) ∈ D[2]. Then b r a ≤ b′ r a′ iff a′ ∧ b ≤ a
and b ≤ a ∨ b′. If this statement holds, then b r a = b r a for some a, b ∈ D with
a′ ≤ a ≤ b ≤ b′.

Proof. b r a ≤ b′ r a′ iff b r a ≤ b′ and (b r a) ∧ a′ = 0, iff b ≤ a ∨ b′ and
b ∧ a′ ≤ a.

Now suppose that this statement holds. Then b r a = (b r a) ∧ (b′ r a′) =
(b∧b′)r

(
b ∧ b′ ∧ (a ∨ a′)

)
, so we may replace b by b∧b′ and thus assume that b ≤ b′.
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Then a direct application of the paragraph above yields br a = (a′ ∨ b)r (a′ ∨ a).
Hence a = a′ ∨ a and b = a′ ∨ b are as required. �

Lemma 5-2.2. Let a, b, c ∈ D with a ≤ b. Then (b r a) ∧ c = 0 iff there are
a′, b′ ∈ D such that c ≤ a′ ≤ b′ and br a = b′ r a′.

Proof. Suppose first that (b r a) ∧ c = 0, that is, b ∧ c ≤ a. Let a′ = a ∨ c
and b′ = b ∨ c; so c ≤ a′ ≤ b′, and a direct application of Lemma 5-2.1 yields
br a = b′ r a′.

If, conversely, bra = b′ra′ with c ≤ a′ ≤ b′, then (b′ra′)∧c ≤ (brc)∧c = 0. �

Set B ↓ ¬c = {x ∈ B | x ∧ c = 0B}, for any element c in a Boolean ring B (this
is consistent with the notation B ↓ b in case B has a unit, and it makes sense even
in case B has no unit).

Lemma 5-2.3. For each c ∈ D, there exists a unique isomorphism of Boolean
rings from BR(D ↑ c) onto BR(D) ↓ ¬c, sending y r x (within BR(D ↑ c)) to y r x
(within BR(D)) for all (x, y) ∈ (D ↑ c)[2].

Proof. The inclusion embedding D ↑ c ↪→ D extends to a unique embedding
η : BR(D ↑ c) ↪→ BR(D) of Boolean rings (cf. Grätzer [50, Corollary 160]). It
follows from Lemma 5-2.2 that the range of η is BR(D) ↓ ¬c. �

5-2.2. Representing lattice-ordered groups. For an arbitrary Abelian lat-
tice-ordered group G, we shall apply the results of Section 5-2.1 to the distributive
lattice DG = G t {⊥}, where ⊥ denotes a new zero element. In particular, DG

embeds, as a sublattice with the same zero element (viz. ⊥), into BG = BR(DG).
The subset

BG =
{
x ∈ BG | (∃c ∈ G)(x ∧ c = ⊥)

}
=
⋃
c∈G

(BG ↓ ¬c) (5-2.1)

is an ideal of the Boolean ring BG. It follows from Lemma 5-2.3 that the elements
of BG are exactly the finite joins (resp., the finite orthogonal joins), within BG, of
elements of the form y r x, where (x, y) ∈ G[2].

For each a ∈ G, the translation DG → DG that sends ⊥ to ⊥ and any x ∈ G
to x+a is a lattice automorphism. This map extends to a unique automorphism τa
of the Boolean ring BG. From τa(c) = a + c whenever c ∈ G, it follows that
τa restricts to an automorphism τa of the Boolean ring BG. For any a, b ∈ G,
the automorphisms τa+b and τa ◦ τb agree on DG, thus they are equal. Hence,
the assignment c 7→ τc defines an isomorphism from G onto the subgroup G =
{τc | c ∈ G} of AutBG.

We shall now define a G+-valued V-measure on BG. It is convenient to ap-
ply here some results of Wehrung [115]. Endowing G with its underlying lattice
structure, the dimension monoid of G is the commutative monoid DimG defined
by the generators ∆(x, y), for (x, y) ∈ G[2], and the relations (D0) ∆(x, x) = 0 for
each x ∈ G, (D1) ∆(x, z) = ∆(x, y) + ∆(y, z) whenever x ≤ y ≤ z in G, and (D2)
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∆(x ∧ y, x) = ∆(y, x ∨ y) for all x, y ∈ G. The lattice denoted by B(G) on [115,
p. 272] is equal3 to the Boolean ring BG defined in (5-2.1).

Since G is distributive, it follows from [115, Theorem 2.13] that there is a
unique isomorphism εG : DimG→ Z+〈BG〉 such that εG∆(a, b) = br a whenever

(a, b) ∈ D[2]
G .

Now we take advantage of the additive structure of G. Since G is an Abelian
lattice-ordered group, the assignment G[2] → G+, (x, y) 7→ y − x satisfies (D0)–
(D2) above. By the universal property of the dimension monoid, there is a unique
monoid homomorphism ψG : DimDG → G+ such that ψG∆(x, y) = y−x whenever

(x, y) ∈ D[2]
G . The map µG = ψG ◦ ε−1

G is a monoid homomorphism from Z+〈BG〉
to G+, and µG(y r x) = y − x whenever (x, y) ∈ G[2]. Since µG is a monoid
homomorphism and µ−1

G {0} = {0}, the restriction µG of µG to BG is a G+-valued
measure on BG.

Lemma 5-2.4. For all z ∈ BG and all a, b ∈ G+ such that µG(z) = a+ b, there
is a decomposition z = x⊕ y in BG such that µG(x) = a and µG(y) = b, such that
if z is an elementary generator of BG, then so are x and y. In particular, µG is a
V-measure.

Proof. Write z =
⊕n

i=1(yi r xi), where each (xi, yi) ∈ G[2]. Our assumption
means that

∑n
i=1(yi − xi) = a + b. Since G+ is a refinement monoid, there are

ai, bi ∈ G+, for i ∈ [n], such that each yi − xi = ai + bi while a =
∑n
i=1 ai and

b =
∑n
i=1 bi. From xi ≤ xi + ai ≤ yi it follows that

yi r xi =
(
(xi + ai)r xi

)
⊕
(
yi r (xi + ai)

)
,

for each i ∈ [n]. Therefore, setting

x =

n⊕
i=1

(
(xi + ai)r xi

)
and y =

n⊕
i=1

(
yi r (xi + ai)

)
,

we get z = x⊕ y, µG(x) =
∑n
i=1 ai = a, and µG(y) =

∑n
i=1 bi = b. �

Lemma 5-2.5. µG(τc(z)) = µG(z), whenever c ∈ G and z ∈ BG.

Proof. Write z =
⊕n

i=1(yi r xi), where each (xi, yi) ∈ G[2]. Then τc(z) =⊕n
i=1

(
(yi + c)r (xi + c)

)
, thus

µG(τc(z)) =

n∑
i=1

(
(yi + c)− (xi + c)

)
=

n∑
i=1

(yi − xi) = µG(z) . �

We set SG = Inv(BG, G) (cf. Example 4-4.15). In particular, SG is a Boolean
antigroup. It follows from Lemma 5-2.5 that all elements of SG are µG-invariant,
that is, SG ⊆ Inv(BG, µG) (cf. Notation 4-7.2).

Lemma 5-2.6. The Boolean antigroup SG is µG-exhaustive.

3The definition of B(G) given at the bottom of Wehrung [115, p. 272] is misformulated.

Namely, since G has no least element unless it is trivial, x r ⊥ does not belong to BG as a rule,

so x 7→ x r ⊥ does not embed DG into BG. What matters here is that the elements of BG are
exactly the finite (orthogonal) joins of elements of the form bra, where (a, b) ∈ G[2]. The correct

definition of BG = B(G) that ensures this is given by (5-2.1).
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Proof. Let u, v ∈ BG such that µG(u) = µG(v). Write u =
⊕

i<m(yi r xi)
and v =

⊕
j<n(y′jrx′j). By assumption,

∑
i<m(yi−xi) =

∑
j<n(y′j−x′i). Since G+

is a refinement monoid, there is a refinement matrix of the form

y′j − x′j (j < n)

yi − xi (i < m) ci,j
where all ci,j ∈ G+ .

By Lemma 5-2.4, there are decompositions yi r xi =
⊕

j<n wi,j in BG, where

each wi,j is an elementary generator and µG(wi,j) = ci,j . Likewise, there are
decompositions y′j r x′j =

⊕
i<m w

′
i,j in BG, where each w′i,j is an elementary

generator and µG(w′i,j) = ci,j . Writing wi,j = qi,j r pi,j and w′i,j = q′i,j r p′i,j ,
with pi,j ≤ qi,j and p′i,j ≤ q′i,j , we get ci,j = qi,j − pi,j = q′i,j − p′i,j , thus, setting
di,j = q′i,j − qi,j , we get w′i,j = τdi,j (wi,j). Since u =

⊕
i<m, j<n wi,j and v =⊕

i<m, j<n w
′
i,j , we are done. �

A direct application of Theorem 4-7.13 and Proposition 4-8.5 thus yields the fol-
lowing extension of Dobbertin [34, Theorem 13], from V-measures to type monoids
of Boolean inverse semigroups.

Theorem 5-2.7. For every Abelian lattice-ordered group G, there exists a
Boolean antigroup SG such that TypSG ∼= G+. That is, G+ is group-measura-
ble.

5-2.3. When is Inv(BG, G) an inverse meet-semigroup? We shall inves-
tigate in which cases the Boolean antigroup SG = Inv(BG, G), constructed for the
proof of Theorem 5-2.7, is a meet-semilattice under its natural ordering (so it is a
meet-antigroup). Following the standard notation in lattice-ordered groups, we set
|x| = x ∨ (−x), for any x ∈ G. For every a ∈ G, the set a⊥ = {x ∈ G | a ∧ |x| = 0}
is an `-ideal of G, that is, an order-convex additive subgroup closed under x 7→ |x|.
As usual, G is projectable if for all a, b ∈ G+, the set a⊥ ↓ b has a largest element.
We refer to any textbook on lattice-ordered groups, for example Anderson and
Feil [4] or Bigard, Keimel, and Wolfenstein [21], for more details. An example of a
non-projectable, Abelian lattice-ordered group can be found in [4, E 26].

Lemma 5-2.8. The following statements hold, for any Abelian lattice-ordered
group G, with the Boolean ring BG as defined in (5-2.1):

(1) Let a, b, a′, b′, h ∈ G such that h ≥ 0 and b−a = b′−a′ = h. Then bra ≤ bra′
iff br a = br a′, iff |b′ − b| ∧ h = 0.

(2) Let a, b ∈ G and let (p, q) ∈ G[2]. Then τa and τb agree on BG ↓ (q r p) iff
τa(q r p) = τb(q r p), iff |a− b| ∧ (q − p) = 0.

(3) Let a, b ∈ G and let w ∈ BG. Then τa�BG↓w = τb�BG↓w iff |a− b| ∧ µG(w) = 0.

Proof. (1). Set c = a′−a = b′−b. By Lemma 5-2.1, bra ≤ b′ra′ iff a′∧b ≤ a
and b ≤ a ∨ b′, that is, since the translations of G are lattice automorphisms,
c ∧ h ≤ 0 ≤ (−h) ∨ c, or, equivalently, c ∧ h ≤ 0 and (−c) ∧ h ≤ 0. By the
distributivity of the underlying lattice of G, this is equivalent to |c| ∧ h ≤ 0, that
is, since 0 ≤ |c| and 0 ≤ h, |c| ∧ h = 0.

(2). It follows from (1) that

τa(q r p) = τb(q r p) iff |a− b| ∧ (q − p) = 0 . (5-2.2)



5-2. ABELIAN LATTICE-ORDERED GROUPS 143

Suppose that |a−b|∧(q−p) = 0 and let w ∈ BG ↓(qrp). There is a decomposition
of the form w =

∨
i<n(qi r pi), where all (pi, qi) ∈ G[2]. From qi r pi ≤ q r p if

follows (for example by applying µG) that qi−pi ≤ q−p. Since |a−b|∧ (q−p) = 0,
we get |a − b| ∧ (qi − pi) = 0. By (5-2.2), it follows that τa(qi r pi) = τb(qi r pi).
Joining those equations over all i < n, we get τa(w) = τb(w).

(3). Write w =
⊕

i<n(qi r pi), where each (pi, qi) ∈ G[2]. If τa and τb agree on
BG ↓ w, then they agree on each qi r pi, thus, by (2), |a− b| ∧ (qi − pi) = 0. Since
|a−b|⊥ is an additive subgroup of G, it follows that |a−b|∧

∑
i<n(qi−pi) = 0, that

is, |a−b|∧µG(w) = 0. Conversely, if |a−b|∧µG(w) = 0, then |a−b|∧(qi−pi) = 0 for
each i < n, thus, by (2), τa and τb agree on BG ↓ (qir pi). Since w =

∨
i<n(qir pi)

and by the distributivity of BG, it follows that τa and τb agree on BG ↓ w. �

Theorem 5-2.9. Let G be an Abelian lattice-ordered group. The Boolean anti-
group SG is an inverse meet-semigroup iff G is projectable. Consequently, if G is
projectable, then G+ ∼= TypS for some Boolean meet-antigroup S.

Proof. Suppose first that SG is an inverse meet-semigroup and let b, v ∈ G+.
We prove that b⊥ ↓ v has a largest element. By assumption, there is a largest
w ∈ BG such that the maps τ0 = id and τb agree on BG ↓w. By Lemma 5-2.8, this
means that µG(w) ∈ b⊥. We claim that µG(w) is the largest element of b⊥ ↓ v. We
need to prove that any h ∈ b⊥ ↓ v is beneath µG(v). We may assume that h ≥ 0.
It follows that b ∧ h = 0, thus, by Lemma 5-2.8, τ0 and τb agree on BG ↓ (h r 0).
By the definition of w, it follows that hr 0 ≤ w, thus h = µG(hr 0) ≤ µG(w), as
required.

Suppose, conversely, that G is projectable. We must prove that any two ele-
ments x, y ∈ SG have a meet in SG. Call a function x : BG ↓ u→ BG ↓ v, where u
and v are both elementary generators of BG, elementary, if there exists c ∈ G such
that τc(u) = v and x(t) = τc(t) whenever t ∈ BG ↓ u. By the definition of SG,
the elements of SG are exactly the finite orthogonal joins of elementary functions.
By Corollary 3-1.10, it thus suffices to consider the case where x and y are both
elementary. This means that x and y are the restrictions, to elementary generators
of BG, of translations τa and τb, respectively, where a, b ∈ G. The meet of two
elementary generators of BG is an elementary generator of BG, thus, by precom-
posing x and y with a suitable translation, we may assume that the domain of x
and the one of y intersect in BG ↓ (vr 0), for some v ∈ G+. Since G is projectable,
|a− b|⊥ ↓ v has a largest element, say h.

We claim that hr0 is the largest element of BG↓(vr0) such that τa and τb agree
on BG ↓w. First, it follows from Lemma 5-2.8 that τa and τb agree on BG ↓ (hr 0).
Conversely, let w ∈ BG ↓ (v r 0) such that τa and τb agree on BG ↓ w; we must
prove that w ≤ h r 0. We may assume that w is an elementary generator of BG.
By Lemma 5-2.1, w = q r p for some p, q ∈ G such that 0 ≤ p ≤ q ≤ v. We must
prove that q r p ≤ hr 0, that is, by Lemma 5-2.1 and since p ≥ 0, that q ≤ p ∨ h.

By assumption and by Lemma 5-2.8, q − p ∈ |a− b|⊥. Since

0 ≤ (q ∨ h)− (p ∨ h) = q −
(
q ∧ (p ∨ h)

)
≤ q − p ,

it follows that (q ∨ h) − (p ∨ h) ∈ |a − b|⊥, and thus the element h′, defined as
h′ = h+

(
(q ∨ h)− (p ∨ h)

)
, belongs to |a− b|⊥. Since h ≤ h′ ≤ q ∨ h ≤ v and by

the definition of h, it follows that h = h′, that is, q ∨ h = p ∨ h, so q ≤ p ∨ h, thus
completing the proof of our claim.

It follows that x∧y is the restriction of τa (equivalently, τb) to BG ↓ (hr0). �



144 5. SPECIAL CLASSES OF BOOLEAN INVERSE SEMIGROUPS

Recall that an inverse monoid S is factorizable if for every x ∈ S there is a unit g
of S such that x ≤ g. In case S is Boolean, it is not hard to see that this is equivalent
to saying that IntS is cancellative. In Lawson and Scott [72], factorizable Boolean
inverse monoids are called Foulis monoids. It follows immediately from Lawson
[68, Proposition 3.2.8] that in every Foulis monoid, D = J , so the poset S/J
of all principal ideals of S is isomorphic to the poset S/D = IntS, and so it is
naturally endowed with a structure of conical partial refinement monoid. Lawson
and Scott state on [72, p. 7] the question whether every countable MV-algebra (cf.
Example 2-2.8) is isomorphic to IntS for some Foulis monoid S. Their main result
is a positive answer to that question, with the additional information that S is AF.

Our results make it possible to remove the countability assumption from Law-
son and Scott’s result (of course losing AF), with a twist at cardinalities beyond ℵ2.

Theorem 5-2.10. Every MV-algebra A is isomorphic to IntS (thus to S/J )
for some Foulis monoid S. Moreover, if cardA ≤ ℵ1, then S may be taken locally
chartable.

Proof. It follows from Mundici [80, Theorem 3.8] that there are an Abelian
lattice-ordered group G and an order-unit u of G such that A ∼= [0,u]. By Theorem
5-2.7, there is a Boolean inverse semigroup S such that TypS ∼= G+. By Theorem
4-2.6, we may assume that S is unital and (TypS, typS(1)) ∼= (G+,u). In particu-
lar, S is a Foulis monoid.

Since IntS is isomorphic to the interval [0, typS(1)] of TypS, it follows that
IntS ∼= [0,u] ∼= A.

If, in addition, cardA ≤ ℵ1, then cardG ≤ ℵ1 as well (for G is the universal
group of Umon(A), see Example 2-2.8) and we may use Theorem 5-1.8, instead
of Theorem 5-2.7, to represent directly (TypS, typS(1)) ∼= (G+,u), getting the
additional information that S is locally chartable. �

We do not know whether S can be made locally chartable in all cardinalities.
An equivalent form of that question is stated, in Chapter 7, as Problem 5. On the
other hand, the question obtained by changing “MV-algebra” to “effect algebra with
refinement” has a negative answer: if G is the dimension group of cardinality ℵ2,
constructed in Wehrung [117], mentioned in Theorem 4-6.9, and u is an order-unit
of G, then there is no Foulis monoid S such that S/J ∼= [0,u].

The similarity between the relation J and the relation D (e.g., D is contained
in J , and often identical to it) suggests that a type theory might be built for the
former relation. The following example shows that this could be awkward.

Example 5-2.11. A unital Boolean antigroup S on which the relation J is
not a V-relation.

Proof. Moreira Dos Santos constructs in [79] a countable conical refinement
monoid M , with order-unit e, such that the quotient M of M by the monoid
congruence ≡, defined by x ≡ y iff x ≤+ y and y ≤+ x, is not a refinement monoid.

By possibly enlarging e, we may assume that the lower interval M ↓ (e/≡) does
not satisfy refinement. Now by Theorem 4-8.7, there is a unital Boolean antigroup S
such that

(
TypS, typ(1)

) ∼= (M, e). We may thus assume that M = TypS and
e = typ(1).

Towards a contradiction, suppose that the relation J on S is refining. The

map ϕ : Int(S)→M ↓ ϕ(e), ϕ : x 7→ x/≡ is a surjective homomorphism of partial



5-3. INVERSE SEMIGROUPS WITH STRONGLY SEPARATIVE TYPE MONOIDS 145

commutative monoids. Now it follows from Lawson [68, Proposition 3.2.8] that
typ(x) ≡ typ(y) iff xJ y, for all x, y ∈ S. Since J is assumed to be refining and

by Lemma 2-4.5, it follows that ϕ factors to an isomorphism ψ : S/J →M ↓ϕ(e).
Since S satisfies refinement (cf. Proposition 3-1.9) and J is a V-relation, S/J
also satisfies refinement (cf. Lemma 2-4.4). Since M ↓ ϕ(e) fails refinement, we
obtain a contradiction. �

5-3. Inverse semigroups with strongly separative type monoids

In this section we shall isolate a growth type condition, for a Boolean inverse
semigroup, to have its type monoid strongly separative. This growth condition will
be called fork-nilpotence. We will also relate this condition to the classical one of
supramenability for groups.

Definition 5-3.1. Let S be a Boolean inverse semigroup. A fork of S is
a triple (c, g1, g2), where c is an idempotent element of S and g1, g2 ∈ S such
that the relations g1 〈c〉 g2 〈c〉 = 0 and c ≤ d(gi) hold, whenever i ∈ {1, 2}. For
every nonegative integer n, we define 〈g1, g2〉−n(c) as the product of all g−1 〈c〉,
where g = gi1 · · · gin with each in ∈ {1, 2}. (In particular, 〈g1, g2〉−0(c) = c and
〈g1, g2〉−1(c) = g−1

1 〈c〉 g
−1
2 〈c〉 c.)

A fork (c, g1, g2) of S is nilpotent if there is a nonnegative integer n such that
〈g1, g2〉−n(c) = 0. We say that S is fork-nilpotent if every fork of S is nilpotent.

The following lemma is a “lifting” of Lemma 2-7.5, where semigroup elements
witnessing occasional D-dependencies are stated explicitly.

Lemma 5-3.2. Let S be a Boolean inverse semigroup, let a, b, c be idempotent
elements of S, and let g1, g2 ∈ S such that

(i) (c, g1, g2) is a fork of S;
(ii) a⊕ c = b⊕ g1 〈c〉 ⊕ g2 〈c〉.

Then there are idempotent elements d, a, b, c ∈ S such that

(0) c = g−1
1 〈c〉 g

−1
2 〈c〉 c;

(1) c = a⊕ c = b⊕ g1 〈c〉 ⊕ g2 〈c〉;
(2) typ(a) = typ(d) + typ(a);
(3) typ(b) + typ(c) = typ(d) + typ(b) + typ(c).

Proof. We follow the proof of Lemma 2-7.5, keeping track of the elements
of S witnessing the relevant D-dependencies.

Any equality of the form
⊕

i<m ai =
⊕

j<n bj (where ⊕ denotes the orthogonal

join in S) gives rise to the following refinement matrix (within (S,⊕, 0)):

bj (j < n)

ai (i < m) aibj

By applying that observation to the equality a⊕ c = b⊕ g1 〈c〉 ⊕ g2 〈c〉, we get the
following refinement matrix:

b g1 〈c〉 g2 〈c〉

a ab ag1 〈c〉 ag2 〈c〉

c bc cg1 〈c〉 cg2 〈c〉

(5-3.1)
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By the same token, applied to c = g−1
1 〈a〉 c ⊕ g

−1
1 〈c〉 c = g−1

2 〈a〉 c ⊕ g
−1
2 〈c〉 c, we

obtain the following refinement matrix:

g−1
2 〈ag2 〈c〉〉 = g−1

2 〈a〉 c g−1
2 〈cg2 〈c〉〉 = g−1

2 〈c〉 c

g−1
1 〈ag1 〈c〉〉 = g−1

1 〈a〉 c u = g−1
1 〈a〉 g

−1
2 〈a〉 c a′ = g−1

1 〈a〉 g
−1
2 〈c〉 c

g−1
1 〈cg1 〈c〉〉 = g−1

1 〈c〉 c a′′ = g−1
1 〈c〉 g

−1
2 〈a〉 c c = g−1

1 〈c〉 g
−1
2 〈c〉 c

(5-3.2)
In particular,

c = u⊕ a′ ⊕ a′′ ⊕ c , (5-3.3)

hence c = a ⊕ c where we set a = u ⊕ a′ ⊕ a′′. On the other hand, it follows
from (5-3.1) and (5-3.2) that

c = bc⊕ cg1 〈c〉 ⊕ cg2 〈c〉 = bc⊕ g1 〈a′′〉 ⊕ g2 〈a′〉 ⊕ g1 〈c〉 ⊕ g2 〈c〉 ,

so c = b⊕ g1 〈c〉 ⊕ g2 〈c〉 where we set b = bc⊕ g1 〈a′′〉 ⊕ g2 〈a′〉.
By combining (5-3.1) and (5-3.2) again, we obtain that

a = ab⊕ ag1 〈c〉 ⊕ ag2 〈c〉 = d⊕ a∗ ,

where we set d = ab⊕ g1 〈u〉 and a∗ = g1 〈a′〉 ⊕ g2 〈a′′〉 ⊕ g2 〈u〉. From a′ D g1 〈a′〉,
a′′ D g2 〈a′′〉, and uD g2 〈u〉, it follows that typ(a) = typ(a∗), whence

typ(a) = typ(d) + typ(a∗) = typ(d) + typ(a) .

Finally, by combining (5-3.1), (5-3.3), and the definitions of d and b, we get

typ(b) + typ(c) = typ(ab) + typ(bc) + typ(u)

+ typ(a′) + typ(a′′) + typ(c)

= (typ(ab) + typ(u))

+ (typ(bc) + typ(a′) + typ(a′′))

+ typ(c)

= typ(d) + typ(b) + typ(c) . �

Lemma 5-3.3. Let S be a Boolean inverse semigroup, let a, b, c be idempotent
elements of S, and let g1, g2 ∈ S such that

(i) (c, g1, g2) is a fork of S;
(ii) a⊕ c = b⊕ g1 〈c〉 ⊕ g2 〈c〉.

Then there are sequences (dn)n∈Z+ , (an)n∈Z+ , (bn)n∈Z+ , and (cn)n∈Z+ of idem-
potent elements of S such that:

(0) c0 = a⊕ c, and cn+1 = 〈g1, g2〉−n(c) whenever n ∈ Z+;
(1) cn = an ⊕ cn+1 = bn ⊕ g1 〈cn+1〉 ⊕ g2 〈cn+1〉, whenever n ∈ Z+;
(2) typ(a) = typ(dn) + typ(an), whenever n ∈ Z+;
(3) typ(b) + typ(c) = typ(dn) + typ(bn) + typ(cn+1), whenever

n ∈ Z+.

Proof. We argue by induction on n. We set a0 = a, b0 = b, c0 = a⊕c, d0 = 0,
and c1 = c. Then (0)–(3) trivially hold for n = 0. Let n ∈ N, suppose that (0)–(3)
hold at stage n− 1, and set cn = g−1

1 〈cn−1〉 g−1
2 〈cn−1〉 cn−1 = 〈g1, g2〉−n(c). Since
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cn−1 = an−1⊕ cn = bn−1⊕g1 〈cn〉⊕g2 〈cn〉, it follows from Lemma 5-3.2 that there
are d ∈ IntS and idempotents an, bn of S such that

cn = an ⊕ cn+1 = bn ⊕ g1 〈cn+1〉 ⊕ g2 〈cn+1〉 ,
typ(an−1) = d+ typ(an) ,

typ(bn−1) + typ(cn) = d+ typ(bn) + typ(cn+1) .

By using the induction hypothesis, we obtain that

typ(a) = typ(dn−1) + typ(an−1)

= typ(dn−1) + d+ typ(an) ,

hence (cf. Lemma 4-1.6) typ(dn−1) + d = typ(dn) for some dn ≤ a, and

typ(b) + typ(c) = typ(dn−1) + typ(bn−1) + typ(cn)

= typ(dn−1) + d+ typ(bn) + typ(cn+1)

= typ(dn) + typ(bn) + typ(cn+1) . �

The following result is a Boolean inverse semigroup version of Tarski [103,
Theorem 16.10].

Theorem 5-3.4. Let S be a Boolean inverse semigroup. If S is fork-nilpotent,
then the monoid TypS is strongly separative.

Proof. Since TypS = Umon(IntS) and by Corollary 2-7.7, it suffices to prove
that IntS is strongly separative. Let a, b, c ∈ IntS such that a ⊕ c = b ⊕ 2c
within IntS. Let e ∈ a ⊕ c. By Lemma 2-4.4 (applied to the additive, conical
V-equivalence D), there is (a, c) ∈ a × c such that e = a ⊕ c. Since e ∈ b ⊕ 2c, it
follows from Lemma 2-4.4 that there is (b, c1, c2) ∈ b×c×c such that e = b⊕c1⊕c2.
For each i ∈ {1, 2}, it follows from the relation c D ci that there is gi ∈ S such
that d(gi) = c and r(gi) = ci. Observe that gi 〈c〉 = gigi

−1 = ci. Hence, (c, g1, g2)
is a fork of S, so, by assumption, there exists a nonnegative integer n such that
〈g1, g2〉−n(c) = 0. By Lemma 5-3.3, we obtain, using the notation of that lemma,
the equalities

cn = an = bn (because cn+1 = 0) ,

a = typ(dn) + typ(an) ,

b+ c = typ(dn) + typ(bn) + typ(cn+1) ,

whence, using again the equality cn+1 = 0, we get a = b+ c. �

We shall now adapt Theorem 5-3.4 to group actions on Boolean rings.
We will first need some basic notation about finite sequences. The length of

a finite sequence x = (x0, · · · , xn−1) is the integer len(x) = n. We set X<n =
{s ∈ X<ω | len(s) < n}, for any set X and any n ∈ Z+. We denote by p a q the
concatenation of finite sequences p and q. We say that p is a prefix of q if q = pa r
for some finite sequence r.

Lemma 5-3.5. Let (c, g1, g2) be a fork in a Boolean inverse semigroup S. We

define inductively gs, for s ∈ {1, 2}<ω, by g∅ = c, and g(i)as = gigs for every (i, s) ∈
{1, 2}×{1, 2}<ω. We set cn =

∏
s∈{1,2}<n g

−1
s 〈c〉, for every positive integer n. The

following statements hold:

(1) gi 〈cn+1〉 ≤ cn, for all i ∈ {1, 2} and every positive integer n.
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(2) gs 〈cn〉 ≤ cn−len(s), whenever s ∈ {1, 2}<ω and len(s) < n.

(3) Let n ∈ Z+ and let p, q ∈ {1, 2}<n. If none of p and q is a prefix of the other,
then gp 〈cn〉 gq 〈cn〉 = 0.

Note. The notation cn =
∏
s∈{1,2}<n g

−1
s 〈c〉 is consistent with the one used

in Lemma 5-3.3.

Proof. (1). We compute

gi 〈cn+1〉 = gi
〈
g−1

1 〈cn〉 g
−1
2 〈cn〉 cn

〉
≤ gi

〈
g−1
i 〈cn〉

〉
= r(gi)cn ≤ cn .

(2) follows immediately from (1) via an easy induction argument.
(3). We argue by induction on len(p) + len(q). Since none of p and q is a prefix

of the other, none of them is the empty sequence, so p = (i) a p and q = (j) a q for

some i, j ∈ {1, 2} and p, q ∈ {1, 2}<ω. If i = j, then none of p and q is a prefix of
the other, thus, by the induction hypothesis, gp 〈cn〉 gq 〈cn〉 = 0. It follows that

gp 〈cn〉 gq 〈cn〉 = gi 〈gp 〈cn〉〉 gi 〈gq 〈cn〉〉 = gi 〈gp 〈cn〉 gq 〈cn〉〉 = gi 〈0〉 = 0 .

Now suppose that i 6= j. It follows from (2) above that gp 〈cn〉 = cn−len(p) ≤ c.
Hence, gp 〈cn〉 = gi 〈gp 〈cn〉〉 ≤ gi 〈c〉. Similarly, gq 〈cn〉 ≤ gj 〈c〉. Therefore,

gp 〈cn〉 gq 〈cn〉 ≤ gi 〈c〉 gj 〈c〉 = 0 . �

The following result is mostly4 contained in Tarski [103, Theorem 16.10], with
a different argument (sketched on pages 224–229 of that reference) and formu-
lation5. We remind the reader that the inverse semigroup Inv(B,G), of partial
automorphisms of B piecewise in G, is introduced in Example 4-4.15.

Theorem 5-3.6. Let G be an exponentially bounded group, acting by automor-
phisms on a Boolean ring B. Then the monoid Z+〈B〉//G is strongly separative.

Proof. By Proposition 4-4.20, Z+〈B〉//G ∼= Typ(Inv(B,G)). By Proposition
4-4.16, Inv(B,G) is isomorphic to the inverse semigroup S = pHomeo(Ω, G) of
all partial homeomorphisms, of the space Ω of all prime filters of B, that are
piecewise in G. Note that the idempotent elements of that semigroup are the
identity functions on the compact open subsets of Ω; we shall thus identify those
functions with the compact open subsets themselves. With that convention, the
equation g ◦ idU ◦ g−1 = idgU enables us to identify g 〈U〉 with gU , for every g ∈ S
and every compact open subset U of Ω.

Since S is a Boolean inverse semigroup (cf. Example 4-4.14), it suffices, by
Theorem 5-3.4, to prove that every fork (c, g1, g2) of S is nilpotent. With the
identification above, c is now a compact open subset of Ω. Since g1 and g2 are
piecewise in G, they have a common finite support X (cf. Example 4-4.14). For
every positive integer n, we denote by X(n) the set of all products x1 · · ·xn, where
all xi ∈ X. Since G is exponentially bounded, there exists a positive integer n such
that cardX(n) < 2n.

4I believe that Lindenbaum and Tarski’s proof, as printed in [103], yields only that the partial

commutative monoid B//G satisfies the implication a + 2c = b + c ⇒ a + c ≤+ b. However, by
Corollary 2-7.7, this still yields the desired conclusion.

5Although [103, Theorem 16.10] is stated there for Abelian G, it is mentioned on [103, p. 227]
that the only consequence of abelianness that is used there is a specific (and unnamed in [103])

growth condition on group words. This condition is, of course, exponential boundedness.
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Using the notation of Lemma 5-3.5, we shall prove that cn+1 = ∅. Suppose
otherwise and let p ∈ cn+1. For each s ∈ {1, 2}n, cn+1 ≤ g−1

s 〈c〉 ≤ d(gs), p ∈ cn+1,
and X(n) is a support of gs, thus there exists xs ∈ X(n) such that gs(p) = xs(p).
Since {1, 2}n has 2n elements and cardX(n) < 2n, there are distinct p, q ∈ {1, 2}n
such that xp = xq. Hence, gp(p) = gq(p) belongs to gp 〈cn+1〉 ∩ gq 〈cn+1〉, in
contradiction with gp 〈cn+1〉 ∩ gq 〈cn+1〉 = ∅ (cf. Lemma 5-3.5(3)). �

By applying Theorem 5-3.6 to the inverse semigroup pHomeo(G,G), where G
is given the discrete topology and acts on itself by left translations, we obtain
immediately the following corollary, first discovered by Lindenbaum and Tarski (cf.
Tarski [103, Theorem 16.10]), then again by Rosenblatt [94, Theorem 3.3].

Corollary 5-3.7. Every exponentially bounded group is supramenable.

Proof. Set S = pHomeo(G,G). The supramenability of G means that there
is no nonzero x ∈ TypS such that 2x ≤+ x. This is a trivial consequence of the
strong separativity of TypS, as given by Theorem 5-3.6. �

It is a long-standing open problem whether every supramenable group is ex-
ponentially bounded. To our knowledge, this question first appeared in print in
Wagon [108, Question 12.9(a)]. However, Rosenblatt already asked on [94, p. 51]
the question whether the product of two supramenable groups is always supra-
menable. Since exponential boundedness is trivially preserved under finite prod-
uct, a negative answer to Rosenblatt’s question would imply a negative answer to
Wagon’s question.

In light of Corollary 5-3.7, it is interesting to ask the following question:

Can the result of Theorem 5-3.6 (strong separativity of Z+〈B〉//G)
be extended from exponentially bounded to supramenable groups G?

This question was first raised, in case B is a powerset algebra, by Alexander
Pruss (cf. Section 1-1.2).

As our next result shows, the answer to this question (for general B) is posi-
tive. In view of Corollary 5-3.7, it extends Theorem 5-3.6 (and Tarski [103, Theo-
rem 16.10]) from exponentially bounded to supramenable.

Theorem 5-3.8. Let G be a supramenable group, acting by automorphisms on
a Boolean ring B. Then the monoid Z+〈B〉//G is strongly separative. In fact, every
fork of Inv(G,B) is nilpotent.

Proof. By Proposition 4-4.20, Z+〈B〉//G ∼= Typ(Inv(B,G)). As in the proof
of Theorem 5-3.6, we first observe that by Proposition 4-4.16, Inv(B,G) is isomor-
phic to the inverse semigroup S = pHomeo(Ω, G) of all partial homeomorphisms,
of the space Ω of all prime filters of B, that are piecewise in G.

We need to prove that every fork (c, g1, g2) of S is nilpotent. We shall use
the notation of the proof of Theorem 5-3.6. Toward a contradiction, suppose that
cn+1 6= ∅ for every nonnegative integer n. Since the cn+1 form a decreasing se-
quence of nonempty compact subsets in the Hausdorff space Ω, their intersection c
is nonempty. Observe that c is closed, but not open a priori. By Lemma 5-3.5, it
follows that

gi 〈c〉 ≤ c for each i ∈ {1, 2} , while g1 〈c〉 g2 〈c〉 = 0 . (5-3.4)

Pick p ∈ c and set
ϕ(x) = {g ∈ G | gp ∈ x} ,
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for every x ⊆ Ω. It is straightforward to verify that ϕ preserves arbitrary unions
and intersections, and sends the empty set to itself. Moreover,

(1) 1 ∈ ϕ(c), so ϕ(c) 6= ∅.
(2) ϕ(gx) = gϕ(x), for all g ∈ G and all x ⊆ Ω.

Let f : a → b in pHomeo(Ω, G). There are decompositions a =
⊔
i<m ai

and b =
⊔
i<m bi, with all ai and bi compact open, together with group elements

f0, . . . , fm−1 ∈ G, such that bi = fiai for each i < m, and

f(p) = fi(p) , whenever i < m and p ∈ ai .
For every compact open subset x of Ω contained in the domain of f , f 〈idx〉 = idy
where y =

⊕
i<m fi(xai). Assuming the usual identification between x and the

identity function idx, this yields the equality f 〈x〉 =
⊕

i<m fi(xai), so x and f 〈x〉
are G-equidecomposable.

In particular, c and gi 〈c〉 are G-equidecomposable, whenever i ∈ {1, 2}. Since ϕ
preserves disjoint unions and by (2) above, it follows that the sets C = ϕ(c)
and Ci = ϕ(gi 〈c〉) are G-equidecomposable with pieces from the powerset algebra
of G. Moreover, from (5-3.4) it follows that C1∪C2 ⊆ C and C1∩C2 = ∅. Since G
is supramenable, this implies that C = ∅, in contradiction with (1) above. �

Putting together several results of this section, we obtain the following result.

Theorem 5-3.9. The following are equivalent, for every group G:

(i) G is supramenable.
(ii) Whenever G acts by automorphisms on a Boolean ring B, the monoid Z+〈B〉//G

has no nonzero idempotents.
(iii) Whenever G acts by automorphisms on a Boolean ring B, the monoid Z+〈B〉//G

is strongly separative.
(iv) Whenever G acts by automorphisms on a Boolean ring B, every fork of

Inv(B,G) is nilpotent.

Proof. We start recalling that by Proposition 4-4.20, Z+〈B〉//G ∼= Typ(Inv(B,G)).
(i)⇒(iv) is Theorem 5-3.8.
(iv)⇒(iii) follows immediately from Theorem 5-3.4.
(iii)⇒(ii) is trivial.
The particular case of (ii), with G acting on PowG by left translation, implies

that G has no nonempty paradoxical subsets; hence (i) follows. �

In constrast with the equivalence between (ii) and (iii) in Theorem 5-3.9, the
following example will show an action of a group G on a Boolean algebra B such
that Z+〈B〉//G has no nonzero idempotents, yet it is not order-separative (thus, a
fortiori, not strongly separative).

Example 5-3.10. Define T as the set of all intervals of the rational line Q of
the form either [0, x], with x a nonnegative rational number, or [0, x), with x a
positive rational number. Endow T with the addition given by

x+ y = {x+ y | (x, y) ∈ x× y} , for all x,y ∈ T .
Then T is a countable conical refinement monoid, with order-unit [0, 1). It has no
non-trivial idempotents, yet it is not even order-separative (for [0, 1]+[0, 1) = 2·[0, 1)
yet [0, 1] 6≤+ [0, 1)). By Theorem 4-8.9, there is an action of a group G on a Boolean
algebra B such that T ∼= Z+〈B〉//G.
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This monoid T is exactly the monoid T introduced in Wehrung [113], minus
the top element [0,∞).

If follows from Theorem 5-3.9 that whenever a supramenable group G acts by
automorphisms on a Boolean ring R, the monoid Z+〈B〉//G is strongly separative.
As witnessed by Example 2-10.8, this result does not extend to M+//G for a finite
group G acting on a dimension group M .

Another example, with a similar feature, is the following.

Example 5-3.11. Denote by G the group of all self-maps fn,r : Q → Q, x 7→
2nx+r, where n is an integer and r is a rational number. The assignment fn,r 7→ n
defines a surjective homomorphism π : G→ Z, and the assignment r 7→ f0,r defines
an embedding ε : Q ↪→ G, in such a way that we get an exact sequence of groups

1 // Q ε // G
π // Z // 1 .

In particular, G is metabelian. It is well known that G is not supramenable. In fact,
G contains a copy of the free semigroup on two generators: for example, x 7→ 2x
and x 7→ 2x+ 1 are such generators. In particular, denoting by S(Ω,Z+) the com-
mutative monoid of all bounded maps Ω→ Z+, the monoid S(G,Z+)//G contains a
nonzero idempotent element. Setting M = S(G,Z+)/Q, it follows from Proposition
2-8.6 that S(G,Z+)//G ∼= M//(G/Q) = M//Z (as G/Q ∼= Z). Since Q is Abelian, it
is supramenable, thus, by Theorem 5-3.9, M is strongly separative.

5-4. Type monoids with completeness conditions

5-4.1. Antisymmetry. The following result is one of the many reformula-
tions, in many different contexts, of the Schröder-Bernstein Theorem. The present
formulation and proof outline originate in Banach [17, Théorème 1]. We include a
proof for convenience.

Theorem 5-4.1. Let B be a Boolean ring, let M be a conical refinement mon-
oid, and let µ : B → M be a groupoid-induced V-measure. If B is conditionally
σ-complete, then M is antisymmetric.

Proof. It is easy to verify directly that the Boolean ring B(Z+), of all almost
zero sequences of elements of B, is also conditionally σ-complete. By Proposition
4-7.11, we may thus assume that µ is both surjective and induced by the action of a
group G of automorphisms of B. Let a, b, c ∈M such that a+b+c = c. We must
prove that a+c = c. Pick c0 ∈ B such that µ(c0) = c. From a+b+c = c it follows
that there is a decomposition c0 = a0⊕b0⊕c1 in B such that µ(a0) = a, µ(b0) = b,
and µ(c1) = c. Since µ(c0) = µ(c1) = c, there is g ∈ G such that g(c0) = c1.
The latter equation implies that we may define an = gn(a0), bn = gn(b0), and
cn = gn(c0), for each n ∈ Z+. Observe that cn = an ⊕ bn ⊕ cn+1, for each n ∈ Z+.
In particular, the am and the bn are pairwise orthogonal. Since B is conditionally
σ-complete, we may define c =

∧
n≥0 cn, a′ =

⊕
n≥0 an, a′′ =

⊕
n≥1 an, and

b′ =
⊕

n≥0 bn, and then the equation c0 = a′ ⊕ b′ ⊕ c holds.

Since g(an) = an+1 for each n, we get g(a′) = a′′, thus µ(a′) = µ(a′′), and thus,
setting c′ = a′′ ⊕ b′ ⊕ c, we get µ(c′) = µ(c0). Since µ(c0) = c and c0 = a0 ⊕ c′, it
follows that a+ c = c. �
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The assumption in Theorem 5-4.1, that B be conditionally σ-complete, cannot
be dropped. Indeed, by Theorem 4-8.9, every countable conical refinement mon-
oid is group-measurable, in particular Gt0 is group-measurable, for any non-trivial
countable group G. The monoid Gt0 is not antisymmetric.

Since the canonical V-measure on a Boolean inverse semigroup is groupoid-in-
duced (cf. Example 4-6.4), we get immediately the following consequence.

Corollary 5-4.2. Let S be a Boolean inverse semigroup. If IdpS is condi-
tionally σ-complete, then TypS is antisymmetric.

By Theorem 4-8.6, every V-measure on a countable unital Boolean ring is
groupoid-induced. This may suggest that the assumption in Theorem 5-4.1, that µ
be groupoid-induced, can be dropped. The following example proves that guess
wrong.

Example 5-4.3. A conical refinement monoid M , a complete atomic Boolean
algebra B, a V-measure µ : B →M , and a ∈M such that the element e = µ(1) is
an order-unit of M , 2a+ e = e, and a+ e 6= e.

Proof. Throughout this proof, define B as the powerset algebra of Z+. The
commutative monoid M will be defined as the enveloping monoid of B/', for
a suitably defined conical V-equivalence ' on B; then µ will be the canonical
projection B � B/'.

Denote by X 4 Y the symmetric difference of any sets X and Y . We say that
a set is even (resp., odd) if its cardinality is finite and even (resp., finite and odd).

Claim 1. card(X4Y ) ≡ cardX+cardY (mod 2), for any finite sets X and Y .

Proof of Claim. Just observe that the following relation holds:

card(X 4 Y ) = cardX + cardY − 2 card(X ∩ Y ) . � Claim 1

We define a binary relation ' on B, by letting X ' Y hold, if either X and Y
are both finite and cardX = cardY , or X and Y are both infinite and X 4 Y
is even. Observe that, by Claim 1, X ' Y always implies that X 4 Y is even.
Furthermore, if X ' Y and X and Y are both infinite, then X ∩ Y is infinite as
well.

Claim 2. The binary relation ' is an additive and conical V-equivalence on B.

Proof of Claim. It is trivial that ' is both reflexive and symmetric. Let
X,Y, Z ⊆ Z+ such that X ' Y and Y ' Z; we must prove that X ' Z. The
conclusion is trivial if one of the sets X, Y , Z is finite (in which case they are all
finite). If X, Y , Z are all infinite, then the set X 4 Z = (X 4 Y )4 (Y 4 Z) is,
by Claim 1, even, thus X ' Z. Hence, ' is an equivalence relation on B. It is
trivially conical.

Let X0, X1, Y0, Y1 ∈ B such that X0 ∩X1 = Y0 ∩ Y1 = ∅ while X0 ' Y0 and
X1 ' Y1. Then (X0tX1)4(Y0tY1) = (X04X1)4(Y04Y1) = (X04Y0)4(X14Y1)
is, by Claim 1, even, so X0 tX1 ' Y0 t Y1. This proves that ' is additive.

Finally we prove that ' is refining. Let X = X0 tX1 and Y such that X ' Y .
We must find a decomposition Y = Y0 t Y1 such that each Xi ' Yi.

Suppose first that either X0 or X1 (say X0) is finite. Since either cardY =
cardX or Y is infinite, Y has a subset Y0 of the same cardinality as X0; whence
X0 ' Y0. Set Y1 = Y \Y0. If X is finite, then all Xi and Yi are finite, and Xi ' Yi, so
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we are done. Suppose that X (thus X1) is infinite. From X4Y = X04Y04X14Y1

it follows that X1 4 Y1 = (X 4 Y )4 (X0 4 Y0), thus, since X ' Y and X0 ' Y0,
we get, using Claim 1, the relation X1 ' Y1.

Suppose from now on that X0 and X1 are both infinite. Pick an element
z ∈ X0 ∩ Y . The following set

Y0 =

{
X0 ∩ Y , if X0 \ Y is even ,

X0 ∩ Y \ {z} , if X0 \ Y is odd .

is contained in Y . Moreover, Y0 ⊆ X0, thus X0 4 Y0 = X0 \ Y0, and thus

X0 4 Y0 =

{
X0 \ Y , if X0 \ Y is even ,

(X0 \ Y ) t {z} , if X0 \ Y is odd .

In particular,

X0 ' Y0 . (5-4.1)

Now set Y1 = Y \Y0. By definition, Y = Y0tY1. From X4Y = X04Y04X14Y1

it follows that X14 Y1 = (X4 Y )4 (X04 Y0), thus, since X ' Y and by (5-4.1),
we get, using Claim 1, the relation X1 ' Y1. Therefore, ' is refining. � Claim 2.

By Claim 2 together with Lemma 2-4.4, we get a natural structure of a conical
partial refinement monoid on the quotient set P = B/'. By Proposition 2-1.8, P
embeds, as a lower interval, into its enveloping monoid M = Umon(P ). By Theorem
2-2.3, M is a conical refinement monoid.

Denote by µ(X) the equivalence class of a set X relatively to '. Setting a =
µ({0}) and e = µ(Z+), it follows from the relation Z+ ' 2+Z+ that e = µ(2+Z+).
Since {0} ' {1}, we get a = µ({1}), thus 2a+ e = µ({0}) + µ({1}) + µ(2 +Z+) =
µ(Z+) = e. On the other hand, a + e = µ({1}) + µ(2 + Z+) = µ(1 + Z+), thus,
since 1 + Z+ 6' Z+, it follows that a+ e 6= e. �

Although Example 5-4.3 might suggest that the completeness of B puts no
strain on the range of any V-measure with domain B, the following example shows
that this is not the case either.

Example 5-4.4. A countable conical refinement monoid M with order-unit
such that there are no conditionally σ-complete Boolean ring B and no V-measure
µ : B →M with generating range.

Proof. We consider again the conical refinement monoid P , introduced in
Example 4-7.9, defined by the generators ε, 1 and the relation ε+ 1 = 1.

Suppose that there are a conditionally σ-complete Boolean ring B and a V-
measure µ : B → P with generating range. Since 1 is a finite sum of elements of
the range of µ, it necessarily belongs to the range of µ, that is, 1 = µ(e0) for some
e0 ∈ B. Since µ(e0) = 1 = ε + 1 and µ is a V-measure, there are a0, e1 ∈ B such
that e0 = a0 ⊕ e1, µ(a0) = ε, and µ(e1) = 1. Continuing in this manner, we get
elements an and en, for n ∈ Z+, such that each µ(an) = ε, each µ(en) = 1, and each
en = an ⊕ en+1. Since B is conditionally σ-complete, the elements e =

∧
n∈Z+ en

and a(X) =
∨
n∈X an, for X ⊆ Z+, are well defined, and e0 = a(Z+) ⊕ e. The latter

equation can be written e0 = a(2Z+) ⊕ a(1+2Z+) ⊕ e. It follows that

1 = µ(a(2Z+))⊕ µ(a(1+2Z+))⊕ µ(e) . (5-4.2)
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Since a(2Z+) is an infinite orthogonal join of elements all sent by µ to ε, we get

nε ≤+ µ(a(2Z+)) for each n ∈ Z+, thus 1 ≤+ µ(a(2Z+)). Likewise, 1 ≤+ µ(a(1+2Z+)).

By (5-4.2), it follows that 2 · 1 ≤+ 2 · 1 + µ(e) ≤+ 1 within P , a contradiction. �

5-4.2. Power cancellation and unperforation. Let us put even more con-
ditions on the Boolean ring B, by requiring B be complete atomic (i.e., B is the
powerset algebra of a given set). The following result was established, using Hall’s
Matching Theorem, by Miklós Laczkovich (private communication). For a proof,
see Wehrung [113, Corollary 1.4].

Theorem 5-4.5 (Laczkovich). Let B be a Boolean ring, let M be a conical
refinement monoid, and let µ : B →M be a groupoid-induced V-measure with gen-
erating range. If B is complete atomic, then M is unperforated.

The same way as Theorem 5-4.1, Theorem 5-4.5 can be reformulated in terms
of Boolean inverse semigroups.

Corollary 5-4.6. Let S be a Boolean inverse semigroup. If IdpS is complete
atomic, then TypS is unperforated.

In particular, whenever a group G acts by automorphisms on a complete atomic
Boolean ring B, the monoid Z+〈B〉//G is power cancellative. The question, whether
the assumption on B could be relaxed to mere completeness, was asked in Wagon
[108, Problem 14, page 231]. Truss solved that problem in the negative, in [104,
Theorem 1.1].

Theorem 5-4.7 (Truss). Let B be the Boolean ring of all Borel subsets of the
Cantor space, modulo the sets of first Baire category. Then there are a group G of
automorphisms of B and distinct elements a, b ∈ Z+〈B〉//G such that 2a = 2b.

Truss also proves in [104, Theorem 4.1] the following negative cancellation
result.

Theorem 5-4.8 (Truss). Let B be the powerset algebra of Z+. There is a
group G of permutations of Z+ such that Z+〈B〉//G has elements a, b, c such that
a+ c = b+ c but there are no x,y, z ∈ Z+〈B〉//G such that a = x+ z, b = y+ z,
and x+ c = y + c = c.

5-4.3. Refinement algebras. The following definition is equivalent, for full
conical monoids, to the one given in Tarski [103, Definition 11.26].

Definition 5-4.9. A conical refinement monoid M is a refinement algebra if
for all a0,a1, b, c ∈M , if a0 +a1 +c = b+c, then there are b0, b1, c0, c1 ∈M such
that b = b0 + b1, c = c0 + c1, and ai + ci = bi + ci whenever i ∈ {0, 1}.

If a0 + a1 + c = c, then, setting b = 0 in the definition above, it follows from
the conicality of M that bi = 0, thus ai + ci = ci, and thus ai + c = c. Hence,
Every refinement algebra is antisymmetric. In particular, the conical refinement
monoid M of Example 5-4.3, although it is generated by the range of a V-measure
on a complete atomic Boolean ring, is not a refinement algebra. Another example
of a conical refinement monoid which is not a refinement algebra is the primitive
monoid of Example 5-4.4 (consider the equation ε+ ε+ 1 = 0 + 1).

On the positive side, the following result is a particular case of Tarski [103,
Theorem 11.12]. The reduction of our context to the one of [103] works the same
way as the beginning of the proof of Theorem 5-4.1.
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Theorem 5-4.10 (Tarski). Let B be a Boolean ring, let M be a conical re-
finement monoid, and let µ : B → M be a groupoid-induced V-measure. If B is
conditionally σ-complete, then M is a refinement algebra.

The assumption in Theorem 5-4.10, that B be conditionally σ-complete, cannot
be dropped. Indeed, by Theorem 4-8.9, every countable conical refinement monoid
is group-measurable, and the (countable) conical refinement monoid of Example
5-4.4 is not a refinement algebra.

Corollary 5-4.11. Let S be a Boolean inverse semigroup. If IdpS is condi-
tionally σ-complete, then TypS is a refinement algebra.

5-4.4. Conditionally countably closed Boolean inverse semigroups.
The results of the present section are more conveniently formulated in the language
of (finitely closed, generalized) cardinal algebras, as defined in Tarski [103], as op-
posed to mere commutative monoids. By definition, a generalized cardinal algebra,
or GCA, is a partial commutative monoid, endowed with a infinitary partial addi-
tion, defined on countable sequences, satisfying certain attributes that ought to be
satisfied by any well behaved infinitary addition. It turns out that those infinitary
axioms reflect in a strong way on the first-order structure of the partial monoid,
making it possible to establish, in a non-trivial way, such results as antisymmetry
or unperforation.

Since the reference [103] is not easy to find, we also refer the reader to Wehrung
[115, § 3.4] for a brief outline of those concepts. Nevertheless, a full length treat-
ment of the matter would take up too much space and we shall only provide outlines
of the results.

Definition 5-4.12. A Boolean inverse semigroup S is countably closed , or
σ-closed, if every countable orthogonal subset of S has a join.

Example 5-4.13. Let B be a σ-complete Boolean ring. Then the Boolean
inverse semigroup Inv(B) (cf. Example 4-4.9) is σ-closed. The join f of a countable
orthogonal sequence (fn | n ∈ Z+) of elements of Inv(B) is given by the relations
d(f) =

⊕
n∈Z+ d(fn) and r(f) =

⊕
n∈Z+ r(fn), together with

f(x) =
⊕
n∈Z+

fn
(
xd(fn)

)
, for all x ∈ B ↓ d(f) .

More generally, for every group G of automorphisms of B, the set Invσ(B,G), of
all countable orthogonal joins of elements of Inv(B,G) (cf. Example 4-4.15), is a
σ-closed Boolean inverse semigroup. This extends naturally to any tight inverse
subsemigroup of Inv(B) (by Theorem 4-4.17, every Boolean antigroup has this
form). The latter result can be obtained by a straightforward application of Tarski
[103, Theorem 11.23] to B viewed as a GCA.

The proof of the following result is similar to the one of Wehrung [115, Propo-
sition 13.10], and its origin can be traced back to Tarski [103, Theorem 11.32].

Theorem 5-4.14. Let S be a σ-closed Boolean inverse semigroup. Then TypS
is a GCA.

A counterpart of Theorem 5-4.14, for every ring R which is either ℵ0-left con-
tinuous or ℵ0-right continuous (or even every quotient of such a ring), is stated
in Wehrung [115, Corollary 13.14]: namely, the underlying monoid V(R), of the
nonstable K-theory of R, is a GCA.





CHAPTER 6

Constructions involving involutary semirings and
rings

The axioms of ring theory, when deprived of the existence of additive inverses,
yield the axioms of semirings. When endowed with an additional involutary anti-
automorphism (we will talk about involutary semirings), semirings will enjoy quite
a fruitful interaction with Boolean inverse semigroups, the basic idea being to have
the multiplications agree and the inversion map correspond to the involution.

In Section 6-1, we will set the basic framework for involutary semirings, enabling
us to detect Boolean inverse semigroups in both involutary semirings and involutary
rings.

Section 6-2 will introduce our prototype of involutary semiring, obtained via
the natural expansion of the enveloping monoid Umon(S) of a Boolean inverse semi-
group S, endowed with its operation of orthogonal addition.

One of the side products of that construction, discussed in Section 6-3, will
be a convenient introduction of the tight enveloping K-algebra K〈S〉 of a Boolean
inverse semigroup S, for any unital ring K. This object is the universal K-algebra,
in which S embeds as a subsemigroup, with range centralizing K, in such a way
that finite orthogonal sums in the Boolean inverse semigroup are turned to finite
sums in the ring.

The presentation of the tight enveloping K-algebra given in Section 6-3 is not
sufficient, a priori, to establish even basic structural results of K〈S〉. Section
6-4 partly fills this gap, in particular listing a few sufficient conditions, for a tight
embedding S ↪→ T of Boolean inverse semigroups, to extend to an embedding
K〈S〉 ↪→ K〈T 〉 of K-algebras.

In Section 6-5, we present a general argument showing, in particular, that
Leavitt path algebras of quivers are particular cases of the K〈S〉 construction.
Analogues of those results for C*-algebras are also presented.

In Section 6-6, we show how to canonically adjoin a unit to any Boolean in-
verse semigroup, by using the unitization constructions for rings and for generalized
Boolean algebras.

For a Boolean inverse semigroup S and a unital ring K, there is a canonical
monoid homomorphism f from the type monoid of S to the nonstable K-theory of
the ring K〈S〉. Although we will prove that f can be, in some exceptional cases,
an isomorphism, we will show in Section 6-7 a few counterexamples showing that
this statement does not hold in full generality.

While Boolean inverse semigroups mimick, in many of their aspects, von Neu-
mann regular rings or, more generally, exchange rings, we will show in Section 6-8 a
feature of Boolean inverse semigroups absent from those ring-theoretical contexts:

157



158 6. CONSTRUCTIONS INVOLVING INVOLUTARY SEMIRINGS AND RINGS

namely, they afford a natural definition of tensor product. This study will be pur-
sued in Section 6-9, where we will prove that the type monoid functor, and the
tensor product bifunctor, commute.

Highlights of Chapter 6.

• Under mild assumptions, an inverse semigroup with a multiplicative em-
bedding into an involutary semiring M , sending the inversion map to the
involution, is contained in a Boolean inverse semigroup in M (Lemma
6-1.5 and Theorem 6-1.6). A similar statement holds for inverse semi-
groups in involutary rings (Theorem 6-1.7).

• The enveloping monoid Umon(S), of a Boolean inverse semigroup S, is
the positive cone of an Archimedean dimension group (Proposition 6-2.1),
and it extends naturally to an involutary semiring (Proposition 6-2.2).

• For any unital ring K, the K-algebra K〈S〉 = K⊗Umon(S) can be defined
by generators S forming a multiplicative subsemigroup centralizing K,
subjected to the relations z = x + y, within K〈S〉, whenever z = x ⊕ y,
within S (Proposition 6-3.6).

• Let S be a tight Boolean inverse subsemigroup of a Boolean inverse
semigroup T , and let K be a unital ring. Although the canonical map
K〈S〉 → K〈T 〉 is not an embedding as a rule (Example 6-4.1), it is
an embedding if either T is Exel’s regular representation of S (Lemma
6-4.6), or S is a lower subset of T with respect to the natural ordering
(Theorem 6-4.8), or S and T are both Boolean inverse meet-semigroups
and S is a meet-subsemilattice of T (Theorem 6-4.9).

• For any Boolean inverse semigroup S, the tight enveloping complex alge-
bra C〈S〉 is a dense subalgebra of the tight enveloping C*-algebra C∗〈S〉
of S (Theorem 6-4.11), also of its reduced version C∗red〈S〉 (Remark 6-
4.12).

• For any inverse semigroup S, every system Σ of (formal) equations of
the form

⊕m
i=1 xi =

⊕n
j=1 yj , where all the xi and yj are elements of S,

and every unital involutary ring K, the involutary K-algebra K(S,Σ),
defined by generators S centralizing K, with relations Σ, has the form
K〈SΣ〉 for a suitable Boolean inverse semigroup SΣ (Theorem 6-5.2). In
particular, the Leavitt path algebra of any quiver, over a unital ring K,
has the form K〈S〉, for a Boolean inverse semigroup S (Theorem 6-5.6).
Those results also have C*-algebraic analogues (Theorem 6-5.3).

• Every Boolean inverse semigroup has a Boolean unitization, unique up
to isomorphism (Theorem 6-6.2 and Corollary 6-6.4).

• Let S be a Boolean inverse semigroup and let k be a division ring. Then
the canonical monoid homomorphism, from the type monoid of S to the
nonstable K-theory of k〈S〉, need be neither surjective nor one-to-one
(Examples 6-7.2 and 6-7.8).

• The tensor product S ⊗ T , of two Boolean inverse semigroups S and T ,
is also Boolean inverse (Theorem 6-8.5). Furthermore, its type monoid
is isomorphic to the tensor product of the type monoids of S and of T
(Theorem 6-9.2).
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6-1. Inverse semigroups in involutary semirings

We begin with a classical definition.

Definition 6-1.1.

• A semiring is a structure (M,+, 0, ·), where (M,+, 0) is a commutative
monoid, (M, ·) is a semigroup, x ·0 = 0 ·x = 0, x · (y+z) = (x ·y)+(x ·z),
and (x+ y) · z = (x · z) + (y · z), for all x, y, z ∈M .

• An involutary semiring is a structure (M,+, 0, ·, ∗), where (M,+, 0, ·)
is a semiring and ∗ is a unary operation on M (the involution of our
structure) such that (x+ y)∗ = x∗ + y∗, (x · y)∗ = y∗ · x∗, and (x∗)∗ = x,
for all x, y ∈M . An element x ∈M is self-adjoint if x = x∗.

• Following the terminology in use for involutary rings, we say that an
involutary semiring M is proper if x∗x = 0 implies that x = 0, for each
x ∈M .

Following a widespread convention, we will usually write xy instead of x · y.
We will often extend, to involutary semirings, attributes of commutative monoids,
by simply applying those attributes to the underlying commutative monoid. For
example, an involutary semiring is cancellative (resp., conical) if its underlying
commutative monoid is cancellative (resp., conical).

Definition 6-1.2. Two elements x and y in an involutary semiring M are
orthogonal , in notation x ⊥ y, if x∗y = xy∗ = 0. Further, let z = x ⊕ y hold if
z = x + y and x ⊥ y, for all x, y, z ∈ M . We will call ⊕ the orthogonal addition
in M .

It is obvious that the orthogonality relation is symmetric (i.e., x ⊥ y iff y ⊥ x).
There are trivial examples where none of the relations of orthogonality and meet-
orthogonality in M (cf. Definition 2-3.1) contains the other. However, in most
contexts that we shall encounter, orthogonality implies meet-orthogonality.

Lemma 6-1.3. The following statements hold, for any involutary semiring M :

(1) x ⊥ z and y ⊥ z implies that x+ y ⊥ z, for all x, y, z ∈M .
(2) Suppose that M is conical. Then x ⊥ y, u ≤+ x, and v ≤+ y implies that u ⊥ v,

for all x, y, u, v ∈ M . Furthermore, the orthogonal addition ⊕ endows M with
a structure of partial commutative monoid.

(3) Suppose that M is both conical and proper, and let x, y ∈ M . If x ⊥ y, then
x ∧ y = 0 within (M,≤+).

Proof. (1) follows trivially from the distributivity of the multiplication of M
with respect to its addition.

(2). There are elements u, v ∈M such that x = u+u and y = v+ v. It follows
that 0 = x∗y = u∗v+u∗v+u∗v+u∗v, thus, since M is conical, u∗v = 0. The proof
that uv∗ = 0 is similar.

The final statement of (2) follows trivially.

(3). Let z ∈M such that z ≤+ x
y
. It follows from (2) above that z ⊥ z, whence

z∗z = 0. Since M is proper, z = 0. �

Definition 6-1.4. A nonempty subset S in an involutary semiring M is an
inverse semigroup in M if S is a multiplicative subsemigroup of M and x∗ = x−1

for all x ∈ S.
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In particular, if S is an inverse semigroup in an involutary semiring M , with
the same zero, then the orthogonality relation of S is the restriction to S of the
orthogonality relation of M : that is, x ⊥ y iff x−1y = xy−1 = 0, iff x∗y = xy∗ = 0,
for all x, y ∈ S.

Lemma 6-1.5. Let S be an inverse semigroup in a conical involutary semir-
ing M . Then the set S⊕, of all finite orthogonal sums of elements of M , is an
inverse semigroup in M .

Proof. It is trivial that S⊕ is closed under the involution of M .

Claim 1. The set S⊕ is a multiplicative subsemigroup of M .

Proof of Claim. Let x, y ∈ S⊕. There are decompositions x =
⊕m

i=1 xi and
y =

⊕n
j=1 yj , withm,n ∈ Z+ and elements xi, yj ∈ S. Since xy =

∑
(i,j)∈[m]×[n] xiyj ,

all is left to prove is that xiyj ⊥ xi′yj′ whenever (i, j) 6= (i′, j′). In that case, either
m ≥ 2 or n ≥ 2, thus 0 ∈ S. First observe that

(xiyj)
∗xi′yj′ = y∗jx

∗
i xi′yj′ . (6-1.1)

If i 6= i′, then x∗i xi′ = 0, thus, by (6-1.1), (xiyj)
∗xi′yj′ = 0. Suppose now that

i = i′. Then x∗i xi′ = d(xi) is idempotent, thus, by (6-1.1), (xiyj)
∗xi′yj′ ≤ y∗j yj′

(with respect to the natural ordering of S), thus, as y∗j yj′ = 0, we get again
(xiyj)

∗xi′yj′ = 0. Likewise, xiyj(xi′yj′)
∗ = 0, so xiyj ⊥ xi′yj′ . � Claim 1.

Claim 2. The subset S = {(x, y) ∈M ×M | x = xx∗x} is closed under finite
orthogonal sums. In particular, it contains S⊕.

Proof of Claim. Let x, y ∈ S be orthogonal and let z = x + y. Since x =
xx∗x and y = yy∗y, we get zz∗z = z + xx∗y + xy∗x+ xy∗y + yx∗x+ yx∗y + yy∗x.
From x ⊥ y it follows that xx∗y = xy∗x = xy∗y = yx∗x = yx∗y = yy∗x = 0.
Therefore, zz∗z = z belongs to S. � Claim 2.

Claim 3. The elements x∗x and y∗y commute, for all x, y ∈ S⊕.

Proof of Claim. Write again x =
⊕m

i=1 xi and y =
⊕n

j=1 yj , withm,n ∈ Z+

and elements xi, yj ∈ S. Since the xi (resp., yj) are pairwise orthogonal, we obtain

x∗x =

m∑
i=1

x∗i xi and y∗y =

n∑
j=1

y∗j yj . (6-1.2)

Since all elements x∗i xi = d(xi) and y∗j yj = d(yj) are idempotent elements of S,
they pairwise commute. By (6-1.2), it follows that x∗x and y∗y commute. � Claim 3.

The claims above enable us to apply Lemma 3-1.1 to the structure (S⊕, ·, ∗),
thus completing the proof. �

Theorem 6-1.6. Let M be a conical refinement involutary semiring and let S
be an inverse semigroup in M , satisfying the following conditions:

(1) Every element of S has index at most 1 in M .
(2) S is a lower subset of (M,≤+).
(3) IdpS is an upward directed subset of (M,≤+).
(4) S is closed under finite orthogonal sums within M .
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Then S is a Boolean inverse semigroup, with the same zero as M . Furthermore, S
and IdpS are both lower subsets of (M,≤+), the algebraic preordering ≤+ restricts,
on S, to the natural ordering of S, and the orthogonal addition of S is the restriction
to S of the orthogonal addition of M .

Proof. It follows from (4) (applied to the empty sum) that 0 ∈ S, so S is an
inverse semigroup with zero.

Claim 1. Let x ∈M and y ∈ S. If x+ y = y, then x = 0.

Proof of Claim. From y = x + y it follows that y = 2x + y, thus, by (1),
x = 0. � Claim 1.

Claim 2. Let x, y ∈ S. If x ⊥ y, then x ∧ y = 0 within (M,≤+).

Proof of Claim. Let z ∈ M such that z ≤+ x
y
. It follows from (2) that

z ∈ S. Further, it follows from Lemma 6-1.3 that z ⊥ z, whence z∗z = 0. Hence,
z = zz∗z = 0. � Claim 2.

Claim 3. Let x, y ∈ S. Then x + y ∈ S iff x ⊥ y (within the involutary
semiring M) iff x ⊥ y (within the inverse semigroup S).

Proof of Claim. The statements x ⊥ y (within M) and x ⊥ y (within S)
are clearly equivalent. If this statement holds, then, by (4), x+ y ∈ S.

Suppose, conversely, that the element z = x+ y belongs to S. Since x = xx∗x
and y = yy∗y, we get z = zz∗z = z + xx∗y + xy∗x + xy∗y + yx∗x + yx∗y + yy∗x,
thus, by Claim 1 together with the conicality of M , xx∗y = xy∗y = 0. It follows
that x∗y = x∗xx∗y = 0 and xy∗ = xy∗yy∗ = 0, so x ⊥ y. � Claim 3.

Claim 4. Denote by ≤ the natural ordering of S and let x, y ∈ S. Then x ≤+ y
iff x ≤ y, for all x, y ∈ S.

Proof of Claim. Suppose first that x ≤+ y. There is z ∈ M such that
x + z = y. It follows from (2) that z ∈ S. By Claim 3, x ⊥ z. Therefore,
y d(x) = yx∗x = xx∗x+ zx∗x = x+ 0 = x, that is, x ≤ y.

Suppose, conversely, that x ≤ y. By (3), there is e ∈ IdpS such that
d(x)
d(y)

≤+ e.

By the paragraph above, d(y) ≤ e, that is, d(y) = d(y)e, thus, multiplying on the
left by y, we get y = ye. Let x′ ∈M such that e = d(x) + x′. We get

y = ye = y(d(x) + x′) = y d(x) + yx′ = x+ yx′ ,

whence x ≤+ y. � Claim 4.

It follows from (2) that S and IdpS, endowed with the restrictions of the
addition of M , are lower intervals of (M,+, 0). In particular, S and IdpS, endowed
with this addition, are conical partial refinement monoids.

Moreover, by Claim 3, the addition operations in S and IdpS are the restric-
tions of the orthogonal addition inM . By Claim 2, those additions are multiple-free.
By applying (3), together with Proposition 2-3.10, to IdpS, we obtain that IdpS
is a generalized Boolean algebra.

Finally let x, y ∈ S be orthogonal. By Claim 3, the element z = x+ y belongs
to S. By Claim 4, both inequalities x ≤ z and y ≤ z hold within S. Now let t ∈ S
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such that
x
y
≤ t within S. By (2) together with Claim 4, it follows that

x
y
≤⊕ t

within (S,⊕, 0). By applying Lemma 2-3.9 within (S,⊕, 0), it follows that z ≤⊕ t
within (S,⊕, 0). By Claim 4, it follows that z ≤ t within S. Therefore, z is the
orthogonal join of x and y within S, thus completing the verification that S is a
Boolean inverse semigroup. �

We conclude this section with the following analogue of Theorem 6-1.6 for invo-
lutary rings. This result says that the embedding problem of an inverse semigroup
into an involutary ring R (via an involutary semigroup homomorphism) is, essen-
tially, the same as the embedding problem of a Boolean inverse semigroup into R,
with preservation of orthogonal sums.

Theorem 6-1.7. Let R be an involutary ring, let S be an inverse semigroup
in R, and let A be a commutative subring of self-adjoint elements in R, contain-
ing IdpS, such that xAx−1 ⊆ A for every x ∈ S. Then S ∪ A is contained in a
Boolean inverse semigroup S in R, with the same idempotents as A. Furthermore,
orthogonal join in S is induced by orthogonal addition in R.

Proof. It is well known since Foster [43] that the set B, of all idempotent
elements of A, is a generalized Boolean algebra under the operations given by

x ∧ y = xy , x ∨ y = x+ y − xy , and xr y = x− xy , for all x, y ∈ B .
We set Bt1 = B t {1} for a new element 1 such that x1 = 1x = x for all x ∈ R ,
and we define

S =
{
x ∈ R | xx∗x = x and {xbx∗, x∗bx} ⊆ B for all b ∈ Bt1

}
.

It is obvious that S is closed under the involution x 7→ x∗. Now let x, y ∈ S. From
y ∈ S it follows that yby∗ ∈ B. Since x ∈ S, it follows that xyby∗x∗ ∈ B, that is,
(xy)b(xy)∗ ∈ B. Likewise, we can prove that (xy)∗b(xy) ∈ B. For the quasi-inverse
property, we observe that since yy∗ and x∗x both belong to B, they commute, thus

xy(xy)∗xy = x(yy∗)(x∗x)y = xx∗xyy∗y = xy .

We have thus proved that S is a subsemigroup of R, closed under the involution
x 7→ x∗. The elements of the form x∗x, for x ∈ S, all belong to B, thus they
commute pairwise. By Lemma 3-1.1, it follows that S is an inverse semigroup in
the involutary ring R. Furthermore, for any x ∈ S and any b ∈ Bt1, it follows
from our assumption that the element xbx−1 belongs to A. Since this element is
idempotent (for b and x−1x commute, thus xbx−1xbx−1 = xx−1xb2x−1 = xbx−1),
we get xbx−1 ∈ B. Likewise, x−1bx ∈ B, so we have proved that S contains S.

The subset S obviously contains B. Conversely, every idempotent x ∈ S satis-
fies x = x∗x ∈ B, whence the subset IdpS = B is a generalized Boolean algebra.

Now let x and y be orthogonal elements in S. For every b ∈ Bt1, x∗by ≤ x∗y =
0 (where ≤ denotes the natural ordering of S), thus x∗by = 0. Likewise, y∗bx = 0.
It follows that

(x+ y)∗b(x+ y) = x∗bx+ x∗by + y∗bx+ y∗by = x∗bx+ y∗by .

From x, y ∈ S it follows that x∗bx and y∗by both belong to B, thus, in partic-
ular, they are idempotent. Furthermore, from x∗y = xy∗ = 0 it follows that
(x∗bx)(y∗by) = (y∗by)(x∗bx) = 0, whence x∗bx + y∗by is idempotent. Since
x∗bx+ y∗by ∈ A, it follows that x∗bx+ y∗by ∈ B, that is, (x+ y)∗b(x+ y) ∈ B. A
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similar proof yields that (x + y)b(x + y)∗ ∈ B. Further, it follows again from the
orthogonality of x and y that (x+ y)(x∗ + y∗) = xx∗ + yy∗, and thus, by the same
token,

(x+ y)(x∗ + y∗)(x+ y) = xx∗x+ yy∗y = x+ y ,

thus completing the verification that x+ y ∈ S. The elements a = x∗x and b = y∗y
both belong to B. From x = (x + y)a and y = (x + y)b it follows that x ≤ x + y
and y ≤ x + y. Let z ∈ S such that x ≤ z and y ≤ z, that is, x = za and
y = zb. Since a and b are orthogonal elements of B, their sum a+ b belongs to B,
whence x+y = z(a+b) ≤ z (the inequality holding within the inverse semigroup S),
therefore completing the verification that x+y is the orthogonal join of a and b. �

Throughout this work, we will use Theorem 6-1.7 only in the case where A is
the subring of R generated by IdpS (clearly, xAx−1 ⊆ A for any x ∈ S).

6-2. The tight enveloping involutary semiring of a Boolean inverse
semigroup

Recall from that any Boolean inverse semigroup S, endowed with its partial
operation of orthogonal join, is a conical partial refinement monoid (cf. Proposition
3-1.9). This entitles us to define the enveloping monoid Umon(S) (cf. Section 2-1).
It follows from Theorem 2-2.3 that Umon(S) is a conical refinement monoid. As the
following result shows, more can be said about the monoid structure of Umon(S).

A commutative monoid M is Archimedean if its algebraic preordering ≤+ is
antisymmetric (i.e., it is an ordering) and for all x, y ∈ M , if nx ≤+ (n + 1)y
for all n ∈ N, then x ≤+ y. Equivalently (cf. Wehrung [115, Lemma 3.4]), M
embeds, with its algebraic preordering, into a power of [0,∞] endowed with its
natural ordering. In particular, M is unperforated.

Proposition 6-2.1. Let S be a Boolean inverse semigroup. Then every ele-
ment of S (resp., Umon(S)) has index at most 1 (resp., finite index ) in Umon(S),
and Umon(S) is the positive cone of an Archimedean dimension group.

Proof. We start by proving that every element a ∈ S has index at most 1
within Umon(S). Let a = 2x+ y within Umon(S), where x, y ∈ Umon(S). Since S is
a lower subset of Umon(S) (cf. Proposition 2-1.8), both elements x and 2x belong
to S, and 2x = x⊕ x (orthogonal join within S). Hence d(x) = x∗x = 0, so x = 0.

Since Umon(S) is a conical refinement monoid, additively generated by S, it
follows from Wehrung [115, Lemma 3.11] that every element of Umon(S) has finite
index. It follows then from [115, Proposition 3.13] that Umon(S) is the positive
cone of an Archimedean dimension group. �

Proposition 6-2.2. Let S be a Boolean inverse semigroup. Then there is a
unique involutary semiring structure on Umon(S) whose multiplication and involu-
tion both extend those of S. The pair (S,Umon(S)) satisfies the properties (1)–(4)
stated in Theorem 6-1.6. Furthermore, Umon(S) is proper.

We shall call Umon(S), endowed with the above-mentioned structure of involu-
tary semiring, the tight enveloping semiring of S.

Proof. The uniqueness statement follow trivially from the fact that Umon(S)
is additively generated by S.
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For any x ∈ S, it follows from Proposition 3-1.9 that the left multiplication
S → Umon(S), y 7→ xy is a homomorphism of partial commutative monoids from S
to Umon(S). By the universal property of Umon(S) (cf. Proposition 2-1.7), this map
extends to a unique monoid endomorphism λx of Umon(S). Again by Proposition
3-1.9, the assignment x 7→ λx is a homomorphism of partial commutative monoids
from (S,⊕, 0) to the endomorphism monoid of Umon(S), thus, by the universal
property of Umon(S), it extends to a unique homomorphism λ from Umon(S) to its
endomorphism monoid. Set x · y = λ(x)(y), for all x, y ∈ Umon(S). By construc-
tion, the binary operation · is a monoid bimorphism (cf. Section 2-5). Since the
operation · obviously extends the multiplication of S, we obtain the formula(∑

i∈I
xi

)
·
(∑
j∈J

yj

)
=

∑
(i,j)∈I×J

xiyj , (6-2.1)

for all finite sets I, J and all elements xi, yj ∈ S (for i ∈ I and j ∈ J). Now it
follows easily from (6-2.1), together with Proposition 3-1.9, that the operation · is
both associative and distributive over the addition of Umon(S).

The map S → Umon(S), x 7→ x∗ is a homomorphism of partial commutative
monoids, which extends to a unique monoid endomorphism of Umon(S), which we

shall denote by x 7→ x∗. Observe that
(∑

i∈I xi
)∗

=
∑
i∈I x

∗
i , for every finite set I

and all elements xi, for i ∈ I, of S. By using (6-2.1), the verification that Umon(S) is
an involutary semiring is routine. Now it is obvious that S is an inverse semigroup
in Umon(S). That the property (1), stated in Theorem 6-1.6, is satisfied follows
from Proposition 6-2.1. The verifications of the properties (2)–(4) are trivial.

Let x ∈ Umon(S) such that x∗x = 0. We can write x =
∑
i∈[n] xi, where n ∈ Z+

and each xi ∈ S. It follows that
∑

(i,j)∈[n]×[n] x
∗
i xj = 0, thus, since Umon(S) is

conical, each x∗i xi = 0, and thus, since xi ∈ S, we get xi = xix
∗
i xi = 0. This holds

for each i ∈ [n], so x = 0. �

Recall that the tensor product M⊗N , of two commutative monoids M and N ,
is defined in Section 2-5. The following result extends that construction to either
semirings or involutary semirings.

Lemma 6-2.3. The following statements hold, for any semirings M and N :

(1) There is a unique semiring structure on the commutative monoid M ⊗N such
that

(x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′) , for all x, x′ ∈M and all y, y′ ∈ N . (6-2.2)

(2) Suppose that, in addition, M and N are both involutary semirings. Then there
is a unique involution on M ⊗ N such that (x ⊗ y)∗ = x∗ ⊗ y∗ whenever
(x, y) ∈ M × N . Furthermore, if M and N are both conical and proper, then
so is M ⊗N .

Proof. The proof is similar to the classical proof for rings. Since M ⊗ N is
additively generated by {x⊗ y | (x, y) ∈M ×N}, the uniqueness statements of (1)
and (2) are both trivial.

Now we deal with the existence statements. For each (x, y) ∈ M × N , the
assignment (x′, y′) 7→ (xx′) ⊗ (yy′) defines a bimorphism from M ×N to M ⊗N ,
thus there is a unique monoid endomorphism τx,y of M⊗N such that τx,y(x′⊗y′) =
(xx′)⊗(yy′) for each (x′, y′) ∈M×N . The assignment (x, y) 7→ τx,y is a bimorphism
from M×N to the endomorphism monoid of M⊗N , thus there is a unique monoid
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homomorphism τ from M⊗N to its endomorphism monoid such that τ(x⊗y) = τx,y
for each (x, y) ∈M ×N . Set z · z′ = τ(z)(z′), for all z, z′ ∈M ⊗N .

The construction of the involution is similar, and even easier.
Now suppose that M and N are both conical and proper. By Lemma 2-5.1,

M ⊗N is also conical. Let z ∈M ⊗N such that z∗z = 0. Write z =
∑
i<n(xi⊗yi),

where n ∈ Z+ and each (xi, yi) ∈ (M \ {0}) × (N \ {0}). Then 0 = z∗z =∑
i,j<n

(
(x∗i xj)⊗ (y∗i yj)

)
, thus, since M ⊗N is conical, (x∗i xi)⊗ (y∗i yi) = 0 for each

i < n. Since M and N are both proper, x∗i xi 6= 0 and y∗i yi 6= 0 for each i < n. By
Lemma 2-5.1, it follows that n = 0, that is, z = 0. �

6-3. The tight enveloping K-algebra of a Boolean inverse semigroup

This section presents a preliminary study, for a unital ring K and a Boolean
inverse semigroup S, of the K-algebra K〈S〉 defined by generators S forming a
multiplicative subsemigroup centralizing K, subjected to the relations z = x + y,
within K〈S〉, whenever z = x⊕ y, within S.

Definition 6-3.1. Let K be a unital ring. A K-algebra1 is a ring R, endowed
with a structure of bimodule over K, such that the equations

(λx)y = λ(xy) , (xλ)y = x(λy) , (xy)λ = x(yλ) (6-3.1)

are satisfied for all x, y ∈ R and all λ ∈ K. If, in addition, K and R are both
involutary rings, we say that R is an involutary K-algebra if (λx)∗ = x∗λ∗ whenever
(λ, x) ∈ K ×R.

For a K-algebra R, a subset X in R centralizes K if xλ = λx whenever
(λ, x) ∈ K × X. A map f with values in R centralizes K, if the range of f
centralizes K.

Observe that the definition above does not require K be a subring of R (i.e.,
R may not be unital).

Definition 6-3.2. Let S be a Boolean inverse semigroup and let R be a ring.
A map f : S → R is a tight measure if f is a semigroup embedding from S to
the multiplicative semigroup of R, and f(x ⊕ y) = f(x) + f(y) whenever x and y
are orthogonal elements of S. (In particular, f(0) = 0.) If, in addition, R is an
involutary ring, we say that f is a ∗-tight measure if it is a tight measure and
f(x−1) = f(x)∗ for all x ∈ S.

In particular, in the context of Theorem 6-1.7, the inclusion map from S into R
is a ∗-tight measure. The following result shows that tight measures relate type
theory of Boolean inverse semigroups and nonstable K-theory of rings.

Proposition 6-3.3. Let S be a Boolean inverse semigroup, let R be a ring, and
let f : S → R be a tight measure. Then there is a unique monoid homomorphism
f : TypS → V(R) such that

f
(
typS(a)

)
= [f(a)]R whenever a ∈ IdpS .

Proof. Since TypS is additively generated by all typS(a) for a ∈ IdpS, the
uniqueness statement is trivial.

As to the existence, it follows from the tightness of f that the assignment
ϕ : IdpS → V(R), a 7→ [f(a)]R defines a homomorphism of partial monoids. For

1Such a structure is called a K-ring in Cohn [30, Section 1].
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any idempotent elements a and b of S, it aDS b, that is, a = x−1x and b = xx−1 for
some x ∈ S, then f(a) = f(x−1)f(x) and f(b) = f(x)f(x−1), thus f(a) and f(b)
are Murray - von Neumann equivalent in R, that is, ϕ(a) = ϕ(b). It follows that ϕ
factors, through the map a 7→ typS(a), to a homomorphism f : TypS → V(R). �

Notation 6-3.4. Let K be a unital ring and let S be a Boolean inverse semi-
group. We define the semiring tensor product K〈S〉 = K ⊗ Umon(S) (cf. Lemma
6-2.3).

In a number of cases, K will be endowed with an involution, so K〈S〉 will be
an involutary K-algebra (via Lemma 6-2.3).

Proposition 6-3.5. Let K be a unital ring and let S be a Boolean inverse
semigroup. Then there is a unique structure of K-algebra on K〈S〉 such that

λ(1⊗ x) = (1⊗ x)λ = λ⊗ x for all (λ, x) ∈ K ×Umon(S) . (6-3.2)

Furthermore, the canonical map jS : S → K〈S〉, x 7→ 1⊗ x is a tight measure, and
it centralizes K. If, in addition, K is an involutary ring and K〈S〉 is endowed with
the corresponding involutary ring structure, then jS is a ∗-tight measure.

Proof. By definition, K〈S〉 is a semiring. Since 0 = (λ ⊗ x) +
(
(−λ)⊗ x

)
for each (λ, x) ∈ K × S, the additive monoid of K〈S〉 is a group; whence K〈S〉 is
a ring. A standard argument about universal objects, similar to the one used in
the proof of Lemma 6-2.3, yields the existence of a unique structure of K-bimodule
on K〈S〉 such that

α(β ⊗ x) = (α⊗ x)β = (αβ)⊗ x whenever α, β ∈ K and x ∈ Umon(S) . (6-3.3)

This implies (6-3.2) trivially; in particular, jS centralizes K. The verification of
the equations (6-3.1) in K〈S〉 is straightforward; whence K〈S〉 is a K-algebra.
Conversely, any structure of K-bimodule on K〈S〉 satisfying (6-3.2) also satisfies
(6-3.3): for example, α(β⊗x) = α

(
β(1⊗ x)

)
= (αβ)(1⊗x) = (αβ)⊗x. This yields

the uniqueness statement about the bimodule structure on K〈S〉.
By the definition of the multiplication in K〈S〉 (cf. Lemma 6-2.3), jS defines

a semigroup homomorphism from S to the multiplicative semigroup of K〈S〉. For
all x, y, z ∈ S, if z = x ⊕ y within S, then z = x + y within Umon(S), thus
1⊗ z = (1⊗ x) + (1⊗ y) within K〈S〉. This means that jS is a tight measure. �

By virtue of Proposition 6-3.5, we will call K〈S〉 the tight enveloping K-algebra
of S. The universal property of K〈S〉 is contained in the following result.

Proposition 6-3.6. Let S be a Boolean inverse semigroup and let K be a
unital ring. Then the canonical map jS : S → K〈S〉 is universal among all the tight
measures (resp., ∗-tight measures), centralizing K, from S to a K-algebra (resp.,
to an involutary K-algebra).

Proof. We verify the result forK-algebras; the result for involutiveK-algebras
follows immediately.

Let R be a K-algebra and let f : S → R be a tight measure centralizing K. We
must prove that there is a unique homomorphism g : K〈S〉 → R of K-algebras such
that f = g◦jS . Necessarily, g(λ⊗x) = g(λjS(x)) = λf(x) whenever (λ, x) ∈ K×S;
the uniqueness statement for g follows immediately.
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Since f : S → R turns finite orthogonal sums (within S) to sums (within R),
it extends to a unique monoid homomorphism f : Umon(S)→ R. Since f is a mul-
tiplicative semigroup homomorphism, so is f . The assignment K ×Umon(S)→ R,
(λ, x) 7→ λf(x) defines a monoid bimorphism, thus there is a unique monoid homo-
morphism g : K〈S〉 → R such that g(λ⊗x) = λf(x) whenever (λ, x) ∈ K×Umon(S).
From the assumption that f centralizes K it follows in a routine manner that g is
a homomorphism of K-algebras. �

Notation 6-3.7. For a Boolean inverse semigroup S and a unital ring K, we
shall write λx, or, equivalently, xλ, instead of λ ⊗ x, whenever (λ, x) ∈ K × S.
With this notational convention, every element of K〈S〉 can be written in the form∑
i<n λixi, where n ∈ Z+ and each (λi, xi) ∈ K × S. Such an expression is not

unique, as whenever z = x⊕y in S, the elements z and x+y of K〈S〉 are identical.

Keeping in mind the conventions introduced in Notation 6-3.7, Proposition
6-3.6 says that K〈S〉 is exactly the K-algebra defined by the set of generators S,
subjected to the relations stating that S is a multiplicative subsemigroup centraliz-
ing K, together with the relations z = x+y whenever x, y, z ∈ S such that z = x⊕y
within S. We will see in Theorem 6-4.7 that if K 6= {0}, then jS is one-to-one.

Remark 6-3.8. This material bears close connections with work by Steinberg
[99, 100], as follows. For an ample topological groupoid G and a commutative, uni-
tal ring k, Steinberg defines in [99] a certain k-algebra, called the étale groupoid al-
gebra of G and denoted there by kG . Further, for an inverse semigroup S with zero,
Steinberg defines a topological groupoid called the universal tight groupoid UT(S)
of S. Putting those concepts together, he then defines the étale groupoid alge-
bra k UT (S), and states, in [100, Corollary 5.3], a characterization of k UT (S)
via generators and relations. This characterization is stated under the assumption
that S is a so-called Hausdorff inverse semigroup, which means that (S ↓x)∩(S ↓y)
is a finitely generated lower subset, for any x, y ∈ S. If S is a Boolean inverse semi-
group, then this is equivalent to S being an inverse meet-semigroup (cf. Definition
3-7.7). Hence, for a Boolean inverse semigroup S, Steinberg’s characterization,
given in [100, Corollary 5.3], yields the isomorphism kUT (S) ∼= k〈S〉 (still under
the additional assumption that S be an inverse meet-semigroup).

As the following result shows, bias generation implies ring generation.

Lemma 6-3.9. Let X be a subset in a Boolean inverse semigroup S, and let K
be a unital involutary ring. If X generates S as a bias, then jS [X] generates K〈S〉
as an involutary subring.

Proof. It suffices to prove that jS(s) belongs to the involutary subring ofK〈S〉
generated by X, for any s ∈ S. Since s can be expressed as the evaluation, at a
finite sequence of elements of X, of a term, in the similarity type LBIS (cf. Section
3-2.2), it suffices to prove that all the operations of LBIS can be expressed as terms
of the language of involutary rings. For 0, the product, and the involution, nothing
needs to be done. The skew difference � and the skew join O can be expressed by
the following terms:

x � y = (xx∗ − xx∗yy∗)x(x∗x− x∗xy∗y) ,

x O y = (x � y) + y . �
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Example 6-3.10. If K = Z, then the construction of K〈S〉 can be simpli-
fied. Indeed, by Proposition 6-2.1, Umon(S) is the positive cone of a dimension
group G. Hence, Z〈S〉 is exactly that dimension group G (i.e., the Grothendieck
group of Umon(S)), endowed with the unique ring structure extending the semiring
structure of Umon(S). Since Umon(S) is a conical commutative monoid, it is also the
positive cone of a structure of ordered ring on Z〈S〉. Accordingly, we shall often
emphasize the additional involutary semiring structure on Umon(S), by denoting
it Z+〈S〉 instead. This notation is consistent with the notation Z+〈B〉 introduced
in Example 2-2.7 (view the Boolean ring B as a Boolean inverse semigroup). The
elements of Z+〈S〉 can be recognized, within the ring Z〈S〉, as the finite sums of
elements of S.

Example 6-3.11. The monoid Gt0 (cf. Definition 1-4.1) is a Boolean inverse
meet-semigroup, for any group G. The orthogonal joins in Gt0 are all trivial.
Hence, the tight enveloping K-algebra K〈Gt0〉 of Gt0 is nothing else as the group
algebra K[G], for any unital ring K: in notation, K〈Gt0〉 = K[G].

Example 6-3.12. Let K be a unital ring and let n be a positive integer. Then
K〈In〉 is isomorphic to the K-algebra Mn(K) of all n× n matrices over K. For an
infinite analogue of this result, see Theorem 6-4.5.

6-4. Embedding properties of the tight enveloping algebra

We begin with an example, which shows that the assignment S 7→ K〈S〉 does
not preserve embeddings as a rule.

Example 6-4.1. A finite symmetric inverse monoid T , and a tight Boolean
inverse submonoid S of T , such that the canonical map Z〈S〉 → Z〈T 〉 is not one-
to-one.

Proof. We let T = I4, and we denote by G the Klein subgroup of T with
generators the transpositions g0 =

(
1 2

)
and g1 =

(
3 4

)
. Then S = Gt0 is a tight

Boolean inverse submonoid of T (send 0 to the empty function). Define f0 = 1 (i.e.,
the identity function on [4]) and set f1 = g0g1. The identity functions u and v on
{3, 4} and {1, 2}, respectively, satisfy f0u = g0u, f1u = g1u, f0v = g1v, f1v = g0v,
and 1 = u⊕v. It follows that f0+f1 = g0+g1 within Z〈I4〉. Nevertheless, f0, f1, g0,
g1 are distinct elements of G, whence f0 + f1 6= g0 + g1 within Z〈Gt0〉 = Z[G]. �

We will see that embeddings are nonetheless preserved in many cases. More-
over, the techniques involved to prove this will yield a more precise description of
the algebras K〈S〉. The following notation will be used throughout this section.

Notation 6-4.2. For a Boolean inverse semigroup S, a family ~x = (xi | i ∈ I)
of elements of S with I finite, and e ∈ IdpS, we write

Z~x(e) = {i ∈ I | xie = 0} ,
Θ~x(e) =

{
(i, j) ∈ (I \ Z~x(e))2 | xie = xje

}
,

Υ~x(e) = (I \ Z~x(e))2/Θ~x(e) .

Hence, Θ~x is an equivalence relation on I \Z~x and Υ~x is the associated partition of
I \ Z~x.
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For the remainder of this work, we shall denote by K[S]0 the contracted semi-
group algebra, of a semigroup S with zero, over K, that is, the quotient of the
semigroup algebra K[S] by the two-sided ideal generated by the zero element of S.

Lemma 6-4.3. Let S be a Boolean inverse semigroup, let K be a unital ring,
let (xi | i ∈ I) be a family of elements of S, with I finite, let (αi | i ∈ I) ∈ KI ,
and let e ∈ IdpS. Then

∑
i∈I αixie = 0 within K[S]0 iff

∑
i∈X αi = 0 whenever

X ∈ Υ~x(e).

Proof. Denote by sX the constant value of xie for i ∈ X, whenever
X ∈ Υ~x(e). Then

∑
i∈I αixie =

∑
X∈Υ~x(e)

(∑
i∈X αi

)
sX . Since the sX are pairwise

distinct elements of S \ {0}, the desired conclusion follows. �

We shall now give a “concrete” description of the tight K-algebra K〈IΩ〉, for
any unital ring K and any set Ω. We shall denote by K(Ω) the set of all maps
Ω → K with finite support. On some occasions this set will be viewed as a K-
bimodule, on some others as a right K-module. We will often identify every p ∈ Ω

with the corresponding element of K(Ω). We denote by EndK
(Ω)
K the K-algebra of

all endomorphisms of K(Ω) viewed as a right K-module.

For any x ∈ IΩ, we denote by ρ(x) the unique endomorphism of K
(Ω)
K defined

by

ρ(x)(p) =

{
x(p) , if p ∈ dom(x) ,

0 , otherwise.
(6-4.1)

The proof of the following lemma is trivial and we omit it.

Lemma 6-4.4. The map ρ a tight measure on IΩ, with values in EndK
(Ω)
K .

Using Proposition 6-3.6, it follows that ρ induces a homomorphism

ρK : K〈IΩ〉 → EndK
(Ω)
K of K-algebras. The following result states that this par-

ticular representation of K〈IΩ〉 is faithful.

Theorem 6-4.5. The map ρK : K〈IΩ〉 → EndK
(Ω)
K is an embedding, for any

unital ring K and any set Ω.

Proof. Let (xi | i ∈ I) be a family of elements of IΩ, with I finite, and let
(αi | i ∈ I) be a family of elements of K. We suppose that

∑
i∈I αiρ(xi) = 0, and

we must prove that
∑
i∈I αixi = 0 within K〈IΩ〉. We set

Z~x(p) = {i ∈ I | ρ(xi)(p) = 0} = {i ∈ I | p /∈ dom(xi)} ,
Θ~x(p) =

{
(i, j) ∈ (I \ Z~x(p))2 | xi(p) = xj(p)

}
,

Υ~x(p) = (I \ Z~x(p))2/Θ~x(p) ,

for any p ∈ Ω. Our assumption that
∑
i∈I αiρ(xi) = 0 means that

∑
i∈I αiρ(xi)(p) =

0 for any p ∈ Ω, that is, denoting by p(X) the constant value of xi(p) for i ∈ X,
whenever X ∈ Υ~x(p),∑

X∈Υ~x(p)

(∑
i∈X

αi

)
p(X) = 0 , for each p ∈ Ω .

Since the p(X), for X ∈ Υ~x(p), are distinct elements of Ω, they are linearly inde-
pendent over K, so we get∑

i∈X
αi = 0 , for every p ∈ Ω and every X ∈ Υ~x(p) . (6-4.2)
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Now we set D =
⋃
i∈I dom(xi), and

‖x = y‖D = {p ∈ D ∩ dom(x) ∩ dom(y) | x(p) = y(p)} , for all x, y ∈ IΩ .

The Boolean subalgebra U of PowD generated by {‖xi = xj‖ | (i, j) ∈ I × I} is
finite.

Claim 1. Let U ∈ AtU and let p ∈ U . Then Z~x(idU ) = Z~x(p) and Θ~x(idU ) =
Θ~x(p) (thus also Υ~x(idU ) = Υ~x(p)).

Proof of Claim. It is trivial that Z~x(idU ) ⊆ Z~x(p). Now let i ∈ Z~x(p),
that is, p /∈ dom(xi). Since dom(xi) = ‖xi = xi‖D ∈ U and p ∈ U ∈ AtU, it
follows that U ∩ dom(xi) = ∅, whence xi ◦ idU = 0, that is, i ∈ Z~x(idU ). Hence,
Z~x(idU ) = Z~x(p). Consequently, Θ~x(idU ) ⊆ Θ~x(p). Now let (i, j) ∈ Θ~x(p), that
is, i, j /∈ Z~x(p) and p ∈ ‖xi = xj‖D. Since p ∈ U ∈ AtU and ‖xi = xj‖D ∈ U, it
follows that U ⊆ ‖xi = xj‖D, so (i, j) ∈ Θ~x(idU ). � Claim 1.

Claim 2.
∑
i∈I αixiidU = 0 within K[IΩ]0, for every U ∈ AtU.

Proof of Claim. Pick p ∈ U . It follows from (6-4.2) together with Claim 1
that ∑

i∈X
αi = 0 , for every X ∈ Υ~x(idU ) .

The desired conclusion follows then from Lemma 6-4.3. � Claim 2.

We can now conclude the proof of Theorem 6-4.5. Indeed, since K〈IΩ〉 is,
canonically, a quotient algebra of K[IΩ]0, it follows from Claim 2 that∑

i∈I
αixiidU = 0 within K〈IΩ〉 , for any U ∈ AtU .

By summing up all those equations, over U ∈ AtU, and observing that the union
of all atoms of U is

⋃
i∈I dom(xi), the desired conclusion follows. �

Now let S be a Boolean inverse semigroup and denote by Ω the set of all prime
ideals of S. Exel’s regular representation λ : S ↪→ IΩ of S is a tight embedding
of Boolean inverse semigroups (cf. Section 3-3). This tight embedding lifts to a
homomorphism λK : K〈S〉 → K〈IΩ〉 of K-algebras. The following result is the
main lemma of this section.

Lemma 6-4.6. The homomorphism λK is one-to-one. Furthermore, the fol-
lowing statements are equivalent, for any family ~x = (xi | i ∈ I) of elements of S,
with I finite, and any family (αi | i ∈ I) of elements of K:

(i)
∑
i∈I αixi = 0 within K〈S〉.

(ii)
∑
i∈I αiλ(xi) = 0 within K〈IΩ〉.

(iii) there is a finite Boolean subring U of IdpS such that
∨
i∈I d(xi) ≤ 1U and∑

i∈I αixiu = 0 within K[S]0 whenever u ∈ AtU .

Furthermore, if S is a Boolean meet-semigroup, then any finite Boolean sub-
ring U of IdpS, containing {d(xi ∧ xj) | i, j ∈ I}, satisfies (iii) above.

Proof. The directions (i)⇒(ii) and (iii)⇒(i) are all trivial. Note that by
Theorem 6-4.5, Assumption (ii) is equivalent to saying that

∑
i∈I αi(ρλ)(xi) = 0

within EndK
(Ω)
K , where ρ : IΩ → EndK

(Ω)
K is defined in (6-4.1).

Now we prove (ii)⇒(iii). Set e =
∨
i∈I d(xi) and B = (IdpS) ↓ e, and denote

by Ω the ultrafilter space of B. For each p ∈ Ω, the subset S↑p is a prime filter of S,
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and it follows from our assumption that
∑
i∈I αi(ρλ)(xi)(S ↑ p) = 0 within K(Ω).

By definition of λ and ρ, this means, setting Z~x(p) = {i ∈ I | 0 ∈ xip}, that∑
i∈I\Z~x(p)

αi(S ↑ xip) = 0 within K(Ω) , for any p ∈ Ω . (6-4.3)

Set Θ~x(p) =
{

(i, j) ∈ (I \ Z~x(p))2 | S ↑ xip = S ↑ xjp
}

, Υ~x(p) = (I \Z~x(p))2/Θ~x(p),
and denote by p(X) the constant value of S ↑ xip for i ∈ X, whenever X ∈ Υ~x(p).
Then (6-4.3) is equivalent to∑

X∈Υ~x(p)

(∑
i∈X

αi

)
p(X) = 0 , whenever p ∈ Ω . (6-4.4)

Since the p(X), where X ∈ Υ~x(p), are distinct elements of Ω, they are linearly
independent over K, thus (6-4.4) is equivalent to∑

i∈X
αi = 0 , whenever p ∈ Ω and X ∈ Υ~x(p) . (6-4.5)

For all i, j ∈ I and all p ∈ Ω, S ↑ (xip) = S ↑ (xjp) iff xip = xjp for some p ∈ p.
Hence, Θ~x(p) is the directed union of all Θ~x(p) where p ∈ p. Since Z~x(p) is, trivially,
the directed union of all Z~x(p) where p ∈ p, it follows that

For each p ∈ Ω , there is p ∈ p such that Z~x(p) = Z~x(p) and Θ~x(p) = Θ~x(p) .
(6-4.6)

Set ∆ =
{
p ∈ Ω |

∑
i∈I αixip = 0 within K[S]0

}
. It follows from Lemma 6-4.3

that ∆ =
{
p ∈ Ω |

∑
i∈X αi = 0 whenever X ∈ Υ~x(p)

}
. Moreover, it follows from

(6-4.5) and (6-4.6) that Ω =
⋃
p∈∆ Ω(p) (where we set Ω(p) =

{
p ∈ Ω | p ∈ p

}
).

Since Ω is compact (cf. Theorem 1-3.2), there is a finite subset F of ∆ such that
e =

∨
F . From the definition of ∆ it follows that

∑
i∈I αixip = 0 within K[S]0,

whenever p ∈ F . The Boolean subalgebra U of B generated by F is finite, and
every atom of U is beneath some element of F . Hence,∑

i∈I
αixiu = 0 within K[S]0 , whenever u ∈ AtU .

This completes the proof of the equivalence of (i)–(iii). In particular, from the
equivalence (i)⇔(ii) it follows that λK is one-to-one.

Now suppose, in addition, that S is a Boolean inverse meet-semigroup, and that
(iii) holds at some finite Boolean subring V of IdpS. Let U be a finite Boolean
subring of IdpS such that each d(xi∧xj) ∈ U . We must prove that

∑
i∈I αixiu = 0

within K[S]0, whenever u ∈ AtU . We may replace V by the Boolean subring
of IdpS generated by U ∪ V , and thus assume that U ⊆ V . Hence, for each
u ∈ AtU , there exists v ∈ AtV such that v ≤ u. By assumption,∑

i∈I
αixiv = 0 within K[S]0 ,

that is, by Lemma 6-4.3,
∑
i∈X αi = 0 whenever X ∈ Υ~x(v). Hence, in order to

prove that
∑
i∈I αixiu = 0 within K[S]0, it suffices to prove that Υ~x(u) = Υ~x(v),

that is, Z~x(u) = Z~x(v) and Θ~x(u) = Θ~x(v).
The containment Z~x(u) ⊆ Z~x(v) is trivial. Let i ∈ Z~x(v), that is, d(xi)v = 0.

Since d(xi) ∈ U and 0 < v ≤ u ∈ AtU , it follows that d(xi)u = 0, that is, i ∈ Z~x(u),
thus proving that Z~x(u) = Z~x(v). It follows immediately that Θ~x(u) ⊆ Θ~x(v). Now
let (i, j) ∈ Θ~x(v), that is, v ≤ d(xi) d(xj) and xiv = xjv. From the latter equation
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it follows that xiv ≤ xi ∧xj , whence v = d(xiv) ≤ d(xi ∧xj). Since d(xi ∧xj) ∈ U
and 0 < v ≤ u ∈ AtU , it follows that u ≤ d(xi ∧ xj), whence (i, j) ∈ Θ~x(u). This
completes the proof that Θ~x(u) = Θ~x(v). �

We can now reap the consequences of Lemma 6-4.6.

Theorem 6-4.7. Let S be a Boolean inverse semigroup and let K be a uni-
tal subring of a unital ring K ′. Then the canonical map ϕ : K〈S〉 → K ′〈S〉 is
one-to-one. Furthermore, if K is nontrivial, then the canonical tight measure
jS : S → K〈S〉 is one-to-one.

Proof. Since the contracted semigroup ring K[S]0 is a subring of K ′[S]0 (cf.
Lemma 6-4.3), the equivalence (i)⇔(iii) in Lemma 6-4.6 yields immediately that ϕ
is one-to-one. Now suppose that K is nontrivial and let x, y ∈ S such that jS(x) =
jS(y), that is, jS(x − y) = 0. By the equivalence (i)⇔(iii) in Lemma 6-4.6, there
is a finite Boolean subring U of IdpS such that d(x) ∨ d(y) ≤ 1U and xu = yu,
within K[S]0 (thus, since K is nontrivial, within S), whenever u ∈ AtU . It follows
that x =

⊕
u∈AtU xu =

⊕
u∈AtU yu = y. �

Theorem 6-4.8. Let S be a lower inverse subsemigroup of a Boolean inverse
semigroup T , and let K be a unital ring. Then the canonical map K〈S〉 → K〈T 〉
is one-to-one.

Proof. Let (xi | i ∈ I) be a family of elements of S, with I finite, and let
(αi | i ∈ I) ∈ KI , such that

∑
i∈I αixi = 0 within K〈T 〉. Set e =

∨
i∈I d(xi). By

Lemma 6-4.6, there is a finite Boolean subring U of IdpT such that e ≤ 1U and∑
i∈I αixiu = 0 within K[T ]0 whenever u ∈ AtU . We may replace U by eU and

thus assume that 1U = e. Since S is a lower subset of T , it follows that U ⊆ IdpS,
so
∑
i∈I αixiu = 0 within K[S]0 whenever u ∈ AtU . Therefore,

∑
i∈I αixiu = 0

within K〈S〉. �

Theorem 6-4.9. Let K be a unital ring and let S be a tight Boolean inverse
subsemigroup of a Boolean inverse meet-semigroup T . If S is closed under the meet
operation, then the canonical map K〈S〉 → K〈T 〉 is one-to-one.

Proof. Let ~x = (xi | i ∈ I) be a family of elements of S, with I finite, and
let (αi | i ∈ I) ∈ KI . The Boolean subring U of IdpT , generated by the subset
{d(xi ∧ xj) | i, j ∈ I}, is finite. It follows from our assumption that U is also a
Boolean subring of IdpS. Now it follows from the equivalence (i)⇔(iii) in Lemma
6-4.6 that

∑
i∈I αixi = 0 within K〈S〉 iff

∑
i∈I αixiu = 0 within K[S]0 whenever

u ∈ AtU , iff
∑
i∈I αixi = 0 within K〈T 〉. �

We say that an involutary ring K is positive definite if
∑n
i=1 x

∗
i xi = 0 implies

that all xi = 0, whenever n ∈ N and each xi ∈ K. Every positive definite involutary
ring is proper (cf. Definition 6-1.1), but the converse fails for easy examples.

Theorem 6-4.10. Let S be a Boolean inverse semigroup and let K be a unital
involutary ring. If K is positive definite, then so is K〈S〉.

Proof. By Lemma 6-4.6, it suffices to prove that K〈IΩ〉 is positive definite, for
any set Ω. The range of the map ρK of Theorem 6-4.5 is contained in the involutary

K-algebra B consisting of all endomorphisms of K
(Ω)
K whose matrix is row- and

column-finite. Here the involution on B is defined by applying the involution to
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the transpose matrix. Now ρK becomes an embedding of involutary K-algebras,
so it suffices to prove that B is positive definite. Let xi =

(
xip,q | (p, q) ∈ Ω× Ω

)
be elements of B, for 1 ≤ i ≤ n, such that

∑n
i=1 x

∗
i xi = 0. Since the (p, p)th entry

of x∗i xi is
∑
q∈Ω(xiq,p)

∗xiq,p, it follows that
∑

(i,q)∈[n]×Ω(xiq,p)
∗xiq,p = 0, for every

p ∈ Ω. Since K is positive definite, each xiq,p = 0. �

We can also apply our methods to describe the analogue of the K〈S〉 construc-
tion in the world of C*-algebras. We denote by C∗〈S〉 the universal C*-algebra
containing a copy of S in such a way that S is a multiplicative subsemigroup with
the same zero, x−1 = x∗, and z = x ⊕ y within S implies that z = x + y within
C∗〈S〉, and we call it the tight enveloping C*-algebra of S. Although the exis-
tence of C∗〈S〉 follows from general methods, it will also be a consequence of the
construction described in our next result.

Theorem 6-4.11. Let S be a Boolean inverse semigroup. Then C∗〈S〉 has a
dense involutive subalgebra isomorphic to C〈S〉.

Proof. It follows from Lemma 6-4.6 that Exel’s regular representation
λ : S → IΩ of S extends to an embedding λC : C〈S〉 ↪→ C〈IΩ〉 of involutive C-
algebras. Now we use the method of the proof of Theorem 6-4.5 to embed C〈IΩ〉 into

a C*-algebra, with a twist. Instead of defining ρ(x) as an endomorphism of C(Ω)
C , we

define it, via the same formula (6-4.1), as a bounded endomorphism of the complex
Hilbert space `2(Ω) (of norm 1 if x 6= 0). The proof that ρ extends to an embedding
of involutive C-algebras ρC, from C〈IΩ〉 into the C*-algebra B(Ω) of all bounded
endomorphisms of `2(Ω), is, mutatis mutandis, identical to the one of Theorem
6-4.5. Therefore, ρC ◦ λC is an embedding, of involutive C-algebras, from C〈S〉
into B(Ω).

Define a ∗-representation of S as a ∗-tight measure ψ : S → A, for a C*-
algebra A. For every x ∈ C〈S〉, we define ‖x‖ as the supremum of ‖ψ(x)‖A, where
ψ : S → A ranges over all ∗-representations of S and ψ denotes the canonical
extension of ψ to C〈S〉 given by Proposition 6-3.6. For any s ∈ S and every ∗-
representation ψ : S → A of S, ψ(s) is a partial isometry of A, thus ‖ψ(s)‖A ≤ 1.
Since every x ∈ C〈S〉 is a finite linear combination of elements of S, it follows
that ‖x‖ is a nonnegative real number. Hence, ‖−‖ is a seminorm on C〈S〉. Since
ρC ◦λC is one-to-one, it follows that ‖−‖ is a norm on C〈S〉. Furthermore, it follows
immediately from the definition of that norm that ‖x∗x‖ = ‖x2‖ for every x ∈ C〈S〉.
Hence, the completion CS of C〈S〉, with respect to that norm, is a C*-algebra.

In order to conclude the proof, it thus suffices to verify that CS , together with
the canonical ∗-tight embedding S ↪→ CS , satisfies the universal property defin-
ing C∗〈S〉 (thus proving that CS ∼= C∗〈S〉). The canonical extension ψ : C〈S〉 → A,
of a ∗-representation ψ : S → A of S, is 1-Lipschitz with respect to the norm intro-
duced above on C〈S〉, thus it extends to a unique ∗-homomorphism CS → A. �

Remark 6-4.12. For an arbitrary (not necessarily Boolean) inverse semigroup S,
the universal C*-algebra C∗(S) of S (cf. Duncan and Paterson [35], Paterson [87,
§ 2.1]) can be defined as the C*-algebra defined by generators S, subject to the
relations stating that S, with its inversion map, is an involutary subsemigroup.
The construction C∗〈S〉, for S Boolean, adds all the relations corresponding to the
orthogonal joins in S, thus proving that C∗〈S〉 is a quotient of C∗(S). The ana-
logue of the reduced C*-algebra C∗red(S) would then be the closure C∗red〈S〉, of the
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image of C〈S〉 under ρC ◦ λC, within the C*-algebra B(Ω) introduced in the proof
of Theorem 6-4.11.

6-5. Path algebras as tight enveloping algebras

In this section we shall demonstrate that the tight enveloping algebra construct
K〈S〉 extends classical constructions of path algebras over quivers, such as Leavitt
path algebras. We did not attempt to give an exhaustive enumeration of all the
known algebras that would fall in the class of all K〈S〉, hoping that our chosen
example, namely path algebras, would illustrate the general principle appropriately.

Definition 6-5.1. Let S be an inverse semigroup. An additive equation system
over S is a collection of (formal) equations, each one having the form

m⊕
i=1

xi =
n⊕
j=1

yj , (6-5.1)

where m, n are nonnegative integers and all xi, yj belong to S.

While the equation (6-5.1) can be interpreted, as it stands, in any Boolean
inverse semigroup S′ with a homomorphism S → S′, it can also be interpreted in
any involutary ring R with a ∗-tight measure S → R, by simply interpreting ⊕ as
the orthogonal addition of R.

Allowing m = 1 and n = 0 in (6-5.1), we see that equations of the type x = 0
can be incorporated to additive equation systems.

The above-mentioned general principle is expressed by the following result.

Theorem 6-5.2. Let Σ be an additive equation system over a (not necessarily
Boolean) inverse semigroup S. Then there exists a Boolean inverse semigroup SΣ

such that for every unital involutary ring K, the involutary K-algebra K(S,Σ) de-
fined by generators S, centralizing K, subjected to all equations in Σ, is isomorphic
to K〈SΣ〉.

Proof. We define SΣ as the bias (cf. Section 3-2) defined by generators S,
together with all equations stating that S is an inverse subsemigroup, and the
following relations:

(· · · ((x1 O x2) O x3) O · · · ) O xm = (· · · ((y1 O y2) O y3) O · · · ) O yn , (6-5.2)

x−1
i1
xi2 = xi1x

−1
i2

= 0 whenever i1 6= i2 in [m] , (6-5.3)

y−1
j1
yj2 = yj1y

−1
j2

= 0 whenever j1 6= j2 in [n] , (6-5.4)

for every equation
⊕m

i=1 xi =
⊕n

j=1 yj in Σ. Denote by ε : S → SΣ the canonical
homomorphism of inverse semigroups.

Now let R be an involutary K-algebra and let f : S → R be a homomorphism
of involutary K-algebras, with range centralizing K, such that the images under f
of the elements of S satisfy Σ. The centralizer R′ of K in R is an involutary sub-
ring of R (not necessarily a K-subalgebra!), containing f [S]. By applying Theorem
6-1.7 to f [S] within the ambiant involutary ring R′, we obtain a Boolean inverse
subsemigroup S in R′ containing S, in which finite orthogonal joins specialize fi-
nite orthogonal sums from R′. Since O specializes to orthogonal join on orthogonal
elements, it follows from the assumption on f that all equations (6-5.2)–(6-5.4) are
satisfied within S. By the definition of SΣ, there is a unique bias homomorphism
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(i.e., tight map) π : SΣ → S such that π ◦ ε = f (here we are, of course, identi-
fying f with its range restriction to S). Since π[SΣ] ⊆ S ⊆ R′, it follows from
Proposition 6-3.6 that the ∗-tight measure π : SΣ → R factors, through jSΣ , to a
unique homomorphism ϕ : K〈SΣ〉 → R of involutary K-algebras. By definition,
ϕ ◦ (jSΣ ◦ ε) = f . The situation can be visualized on Figure 6-5.1.

f [S] �
� // S �

� // R′ �
� // R

S

f

OO

ε // SΣ
jSΣ //

π

OO

K〈SΣ〉

ϕ

OO

Figure 6-5.1. The maps f , ε, π, ϕ

Since SΣ is generated, as a bias, by ε[S], it follows from Lemma 6-3.9 that
jSΣ [SΣ] is contained in the involutary subring of K〈SΣ〉 generated by (jSΣ ◦ ε)[S].
It follows that ϕ is the unique homomorphism of involutary K-algebras satisfying
ϕ ◦ (jSΣ ◦ ε) = f .

We have thus proved that K〈SΣ〉, together with the homomorphism
jSΣ ◦ ε : S → K〈SΣ〉, satisfies the universal property defining K(S,Σ). �

The C*-algebra version of Theorem 6-5.2 runs as follows (see Theorem 6-4.11
for the notation C∗〈SΣ〉).

Theorem 6-5.3. Let Σ be an additive equation system over a (not necessarily
Boolean) inverse semigroup S, and denote by SΣ the Boolean inverse semigroup
constructed in the proof of Theorem 6-5.2. Then the C*-algebra C∗(S,Σ), defined
by generators S subjected to all equations in Σ, is isomorphic to C∗〈SΣ〉.

Proof. It suffices to prove that the canonical ∗-tight measure S ↪→ C∗〈SΣ〉
satisfies the universal property defining C∗(S,Σ). The proof runs, mutatis mutan-
dis, like the one of Theorem 6-5.2, actually a bit easier since R′ = R. �

A direct application of Theorems 6-4.11, 6-5.2, and 6-5.3 yields the following.

Corollary 6-5.4. Let Σ be an additive equation system over a (not necessarily
Boolean) inverse semigroup S. Then C(S,Σ) is isomorphic to a dense involutive
subalgebra of C∗(S,Σ).

Let us illustrate the results above on Leavitt path algebras. A quiver (or graph)
is a quadruple E = (E0, E1, s, t), where E0 and E1 are disjoint sets (the vertices
and edges of E, respectively) and s, t : E1 → E0, the source map and the target
map2 of E, respectively.

The traditional definition of the Leavitt path algebra LK(E), formulated for a
ring K (cf. Abrams and Aranda Pino [1, 2] or Ara, Moreno, and Pardo [13]), can
be obviously extended to the context of involutary rings. Namely, for a quiver E
as above and an involutary, unital ring K, we fix a set E−1, disjoint from E0 ∪E1,

2Due to a conflict of notation and intuitive meaning with the notations d and r, for the
domain and the range, in inverse semigroups, we kept “s” for the source but we changed the

usual “r” to “t” for the target.
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together with a bijection (E1 → E−1, x 7→ x∗), and then we define LK(E) as the
involutary K-algebra defined by the generators E0 ∪E1, subjected to the relations

ab = δa,ba , (6-5.5)

a∗ = a , (6-5.6)

x = s(x)x t(x) , (6-5.7)

x∗y = δx,y t(x) , (6-5.8)

a =
∑(

zz∗ | z ∈ s−1 {a}
)

whenever s−1 {a} is finite nonempty , (6-5.9)

for a, b ∈ E0 and x, y ∈ E1. As usual, δx,y denotes the Kronecker symbol.
We shall prove in Theorem 6-5.6 that LK(E) ∼= K〈GB(E)〉, for a suitable

Boolean inverse semigroup GB(E).
To that end, we first consider the graph inverse semigroup G(E) of E. By defi-

nition, G(E) is the involutary semigroup with zero, defined by the set of generators
E0 ∪ E1, subjected to the relations (6-5.5)–(6-5.8). The following result is estab-
lished in Jones and Lawson [58, § 2], extending work from Ash and Hall [16]. See
also Mesyan et al. [77, § 2.2].

Lemma 6-5.5. The involutary semigroup G(E) is an inverse semigroup, where
x−1 = x∗ for every x ∈ G(E).

Further properties of G(E) are established in Jones and Lawson [58], for ex-
ample that it is an inverse meet-semigroup (cf. [58, Corollary 2.16]). We will not
need those additional properties here.

Theorem 6-5.6. For every quiver E, there is a Boolean inverse semigroup
GB(E) such that LK(E) ∼= K〈GB(E)〉 as involutary K-algebras, for every unital
involutary ring K.

Proof. We let S = G(E), and we let the equation system ΣE consist of the
equation 0G(E) = 0, together with all equations of the form

a = z1z
∗
1 ⊕ · · · ⊕ znz∗n , whenever a ∈ E0 , n > 0 , and s−1 {a} = {z1, . . . , zn}

with the zi distinct . (6-5.10)

Using the notation of the proof of Theorem 6-5.2, we define GB(E) = G(E)ΣE . It
is easy to verify that K(G(E),ΣE) = LK(E). Hence, the desired conclusion follows
from Theorem 6-5.2. �

While Theorem 6-5.6 is stated for involutary K-algebras (for a given unital
involutary ring K), a similar result holds for the Leavitt path algebra LK(E),
now without involution, for any unital ring K (without involution): first state
Theorem 6-5.6 for K = Z (with the identity involution), then observe that LK(E) ∼=
K ⊗Z LZ(E) and K〈S〉 ∼= K ⊗Z Z〈S〉.

By using Theorem 6-5.3 instead of Theorem 6-5.2, we can also see that the
analogue of Theorem 6-5.6 for graph C*-algebras (i.e., the C*-analogues of Leavitt
path algebras) applies.

Further generalizations of Theorem 6-5.6 apply to variants of the Leavitt path
algebra, for example the Cohn path algebra of E, defined by the sets of equations
(6-5.5)–(6-5.8). For that construction, we just need to replace GB(E) by the bias
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defined by generators G(E), subjected to all relations stating that G(E) is an invo-
lutary subsemigroup with the same zero (i.e., the enveloping bias of G(E)).

On the other hand, Theorem 6-5.6 does not extend to the Leavitt path algebras
of separated graphs introduced by Ara and Goodearl [9]. For example, the defining
relations of the Leavitt path algebra associated to the separated graph introduced
at the beginning of [9, § 5] are those stating that x1, x2, y1, y2, v are orthogonal
idempotents, together with e∗i ei = f∗i fi = v for i ∈ {1, 2}, e∗i ej = f∗i fj = 0 for
i 6= j, and v = e1e

∗
1 + e2e

∗
2 = f1f

∗
1 + f2f

∗
2 . Those relations do not imply that the

idempotents e1e
∗
1 and f1f

∗
1 commute, so attempting to extend Lemma 6-5.5, to

that example, breaks down.
As pointed to the author by Pere Ara, the latter irregularity is corrected by the

construction, introduced in Ara and Exel [7, Notation 5.8], of the involutary K-
algebra Lab

K (E,C) associated with a separated graph (E,C). Indeed, Lab
K (E,C) ∼=

LK(E,C)/J , where J is the two-sided ideal generated by the commutators between
the sources (or, equivalently, the targets) of finite products of elements of E0 ∪E1.
This definition ensures that Lemma 6-5.5 extends to the involutary subsemigroup
of Lab

K (E,C) generated by E0∪E1. Hence, Lab
K (E,C) ∼= K〈S〉, for a suitable Boolean

inverse semigroup S. Unlike the Boolean inverse semigroup GB(E) constructed in
the proof of Theorem 6-5.6, this semigroup S is not independent of K a priori.

6-6. The Boolean unitization of a Boolean inverse semigroup

The standard unitization of a non-unital ring R is the unital ring R̃, uniquely

determined up to isomorphism, such that R is a two-sided ideal of R̃ and R̃ = Z⊕R
as Abelian groups. It can be realized as R̃ = Z×R, endowed with componentwise
addition, and the multiplication defined by

(m,x) · (n, y) = (mn,mx+ ny + xy) , for all (m,x), (n, y) ∈ Z×R . (6-6.1)

The ring R is then identified with its isomorphic copy {0} × R within R̃. We set

R̃ = R in case R is unital.
If R is non-unital, then R̃ is not Boolean. Hence, for a Boolean ring B, we define

the Boolean unitization of B as B itself if B is unital, and the product (Z/2Z)×B,
endowed with componentwise addition, and multiplication as in (6-6.1), otherwise.
If B is a non-unital Boolean ring, then the Boolean unitization of B is a unital
Boolean ring, in which B is a prime ideal.

The main purpose of the present section is to extend, to arbitrary Boolean
inverse semigroups, the Boolean unitization construction for Boolean rings.

Definition 6-6.1. A Boolean unitization, of a Boolean inverse semigroup S,

consists of a tight embedding from S into a Boolean inverse monoid S̃, such that
the following conditions hold:

(1) If S is unital, then S̃ = S;

(2) Every element of S̃ has the form (1r e)⊕ x, where e ∈ IdpS and x ∈ eSe.

The tight embedding being often understood, we will then identify the Boolean

unitization with its underlying Boolean inverse monoid S̃. Observe that since S̃ is

a Boolean inverse semigroup, S̃ = S ∪ {(1r e)⊕ x | e ∈ IdpS and x ∈ eSe}.

Theorem 6-6.2. Every Boolean inverse semigroup has a Boolean unitization.
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Proof. Let S be a non-unital Boolean inverse semigroup. In particular, B =
IdpS is a Boolean ring without largest element.

Recall from Example 6-3.10 that the ring R = Z〈S〉 is also the enveloping ring
of the enveloping semiring R+ = Z+〈S〉 = Umon(S) on S. We apply the standard

unitization procedure to R, getting the unital ring R̃. The elements of R̃ can be
uniquely written in the form x = n+ y, where (n, y) ∈ Z×R. The involution of R

is extended to an involution of R̃, by setting (n+ y)∗ = n+ y∗.
Furthermore, the Boolean unitization of B can be identified with the subset

B̃ = B ∪ {1− x | x ∈ B} of R̃.

We set S̃ = S ∪ {(1− e) + x | e ∈ B and x ∈ eSe}. Hence S̃ is a subset of R̃.

Observe that for any x ∈ S̃, any e ∈ B and x ∈ eSe such that x = (1− e) + x
determine each other. Furthermore, whenever e′ ≥ e in B, we can also write
x = (1 − e′) + (e′ − e) + x, that is, x = (1 − e′) + x′ where x′ = (e′ r e) ⊕ x
(within S), an element of e′Se′.

Now let x, y ∈ S̃. We must prove that xy ∈ S̃. This is trivial if x ∈ S and y ∈ S.
If x /∈ S and y ∈ S, then x = (1−e)+x, where e ∈ B and x ∈ eSe. By the paragraph
above, we may replace e by e ∨ d(y) ∨ r(y), so y = eye. Then xy = xy ∈ S. The
proof that yx ∈ S is symmetric. Finally, if x /∈ S and y /∈ S, then, by the paragraph
above, there are e ∈ B and x, y ∈ eSe such that x = (1− e) +x and y = (1− e) +y.

It follows that xy = (1−e)+x y, with x y ∈ eSe, so xy ∈ S̃. Moreover, it is obvious

that S̃ is closed under the involution of R̃. For e ∈ B and x ∈ eSe, the element

x = (1−e)+x ∈ S̃ satisfies x∗x = (1−e)+x−1x = (1−e)+d(x) = 1−(erd(x)) ∈ B̃,

thus xx∗x = (1 − e) + xx−1x = (1 − e) + x = x. Since B̃ is a commuting subset

of R̃, it thus follows from Lemma 3-1.1 that S̃ is an inverse semigroup in R̃, with

Idp S̃ = B̃. In particular, Idp S̃ is Boolean.

Let x, y ∈ S̃ be orthogonal; we prove that x + y ∈ S̃. Up to symmetry, there

are only two cases to consider. The first case is {x, y} ⊆ S; then x+y (within R̃) is
identical to x⊕ y (within S), so it belongs to S. The second case is x = (1− e) +x,
where e ∈ B and x ∈ eSe, and y ∈ S. We may replace e by e ∨ d(y) ∨ r(y), and

thus assume that y = eye. Then x + y = (1 − e) + (x ⊕ y) belongs to S̃. Hence,

in any case, x + y ∈ S̃. The same argument as the one at the end of the proof of

Theorem 6-1.7 yields then that x+ y is the join of {x, y} within S̃. Therefore, S̃ is

a Boolean inverse semigroup, and S is a tight ideal of S̃. �

Although Theorem 6-6.2 does not state any uniqueness result about the Boolean

unitization S̃, that result is a consequence of the following universal characterization

of S̃. For a semigroup S and a monoid T , we say that a map f : S → T is unit-
preserving if the image under f of the unit element of S, if it exists, is the unit
element of T .

Proposition 6-6.3. Let S̃ be a Boolean unitization of a Boolean inverse semi-
group S. Then for every Boolean inverse monoid T , every unit-preserving tight

map f : S → T extends to a unique unit-preserving tight map g : S̃ → T .

Proof. We may assume that S is not unital. Set B = IdpS. Necessarily,

g
(
(1r a)⊕ x

)
= (1T rf(a))⊕f(x) whenever a ∈ IdpS and x ∈ aSa . (6-6.2)

In particular, the uniqueness statement about g is obvious. In order to prove that

(6-6.2) defines an extension g : S̃ → T of f , we first need to prove that there is
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no ambiguity in the expression of an element of S̃, that is, we need to prove that
(1 r e) ⊕ x 6= y, for all e ∈ B, x ∈ eSe, and y ∈ S. If (1 r e) ⊕ x = y, then
1r e = (1r e)y = yr ey ∈ S, thus, as e ∈ B, we get 1 ∈ S, a contradiction. Next,
we need to prove the implication

(1r a)⊕ x = (1r b)⊕ y =⇒ (1T r f(a))⊕ f(x) = (1T r f(b))⊕ f(y) ,

whenever a, b ∈ B, x ∈ aSa, and y ∈ bSb. Replacing b by a ∨ b and decreas-
ing y accordingly, we may assume that a ≤ b. In that case, our assumption
(1 r a) ⊕ x = (1 r b) ⊕ y means that y = (b r a) ⊕ x, thus, since f is tight, we
obtain the equation f(y) =

(
f(b)r f(a)

)
⊕f(x), from which the desired conclusion

(1T r f(a)) ⊕ f(x) = (1T r f(b)) ⊕ f(y) follows easily. This proves that (6-6.2)

indeed defines an extension g of f from S̃ to T . The verification that g is both tight
and unit-preserving is routine. �

Corollary 6-6.4. The Boolean unitization of a Boolean inverse semigroup S
is unique up to isomorphism.

Proposition 6-6.5. Let S̃ be the Boolean unitization of a Boolean inverse

semigroup S. Then S is a tight ideal in S̃, and S̃/S is the two-element inverse

semigroup. Furthermore, Z〈S̃〉 is the standard unitization of Z〈S〉 and Idp S̃ is the
Boolean unitization of IdpS.

Proof. By Corollary 6-6.4, it is sufficient to verify Proposition 6-6.5 on the

construct S̃ given by the proof of Theorem 6-6.2. In particular, we keep the notation

of that proof (e.g., R = Z〈S〉 and R̃ is the standard unitization of R). We verified,

in the course of the proof of Theorem 6-6.2, that S is an ideal of S̃ and that

Idp S̃ is the Boolean unitization of IdpS. Define π : S̃ → {0, 1} by π�S = 0 and

π
(
(1r e)⊕ x

)
= 1, whenever e ∈ B and x ∈ eSe. Any x, y ∈ S̃ such that π(x) =

π(y) satisfy the relation x ≡S y introduced in the statement of Proposition 3-4.6
(take z = 0 if x, y ∈ S, and z = 1 r e for large enough e if x, y /∈ S). Hence, π

induces an isomorphism from S̃/S onto {0, 1}.
Finally, we must prove that for any ring Z, any tight measure f : S̃ → Z extends

to a unique ring homomorphism f : R̃ → Z. By Proposition 6-3.6, the restriction
of f to S extends to a unique ring homomorphism f1 : R→ Z. Further, f1 extends

to a unique ring homomorphism f : R̃ → Z such that f(1) = f(1). Since R̃ is

generated by R∪ {1} (as a subring) and R is generated by S, R̃ is generated by S̃;

this proves the uniqueness of f . Therefore, R̃ ∼= Z〈S̃〉. �

6-7. From type monoid to nonstable K-theory

Recall from Proposition 6-3.5 that for any Boolean inverse semigroup S and any
unital ring K, the canonical map jS : S → K〈S〉 is a tight measure. By Proposition
6-3.3, there is a unique monoid homomorphism f : TypS → V(K〈S〉) such that

f
(
typS(x)

)
= [a]R whenever a ∈ IdpS .

We will call f the canonical map from TypS to V(K〈S〉).
By virtue of Example 6-3.11, the following result yields a class of Boolean

inverse meet-semigroups S for which the canonical map TypS → V(k〈S〉), with k
a division ring, is not surjective.
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Proposition 6-7.1. Let k be a division ring, and let G be a group containing a
torsion element of order not a power of the characteristic of k. Then the canonical
map f : TypGt0 → V(k[G]) is one-to-one, but not surjective.

Proof. Since Gt0 is a Boolean inverse semigroup with exactly two idempo-
tents, its type monoid is isomorphic to Z+, with typGt0(1) = 1. The augmen-
tation map π : k[G] � k (i.e., the unique homomorphism of k-algebras sending
every element of G to 1) is a surjective homomorphism of unital rings, thus, for all
m,n ∈ Z+, if f(m) = f(n), that is, m · [1]k[G] = n · [1]k[G], then, applying V(π), we
get m · [1]k = n · [1]k, so km ∼= kn, whence, as k is a division ring, m = n. Hence f
is one-to-one.

Now suppose that f is surjective.

Claim. The group algebra k[G] has no non-trivial idempotents.

Proof of Claim. Let e be a non-trivial idempotent of k[G]. Since f is sur-
jective, [e]k[G] belongs to the range of f , that is, since Gt0 has no non-trivial

idempotents, there exists n ∈ Z+ such that [e]k[G] = n · [1]k[G]. From e 6= 0 it

follows that n ≥ 1. If n ≥ 2, then 2 · [1]k[G] ≤+ [e]k[G] ≤+ [1]k[G] within V(k[G]),

thus, applying again V(π), we get 2 · [1]k ≤+ [1]k within V(k), a contradiction since
V(k) ∼= Z+. Therefore, n = 1, so e ∼k[G] 1.

Now suppose that e 6= 1. By applying the result of the paragraph above to 1−e,
we obtain that 1−e ∼k[G] 1. Since 1 = e⊕ (1−e), it follows that [1]k[G] = 2 · [1]k[G],
a contradiction. � Claim.

So far we have not used our assumption about torsion elements in G. Now we
do so. Our assumption means that there are a prime number q, distinct from the
characteristic of k, and an element g of G of order q. Since q ·1k has a multiplicative
inverse in k, the element e = (1/q)

∑q−1
k=0 g

k is well defined, and distinct from
both 0 and 1. Obviously, e is idempotent. By the Claim above, this leads to a
contradiction. �

Proposition 6-7.1 leads immediately to the following example.

Example 6-7.2. Let G = Z/6Z. Since G has elements of order 2 and 3, it
follows from Proposition 6-7.1 that the canonical map TypGt0 → V(k[G]) is one-
to-one but not surjective, for any division ring k.

As witnessed by the following result, it is not so straightforward to find exam-
ples where the canonical map TypS → V(k〈S〉) is not one-to-one.

Proposition 6-7.3. The following statements hold, for any Boolean inverse
semigroup S, any division ring k, and the canonical map f : TypS → V(k〈S〉):

(1) If S is locally chartable (cf. Definition 5-1.1), then f is an isomorphism.
(2) If S is semisimple (cf. Definition 3-7.5), then f is a coretraction (i.e., it has

a left inverse for the composition of homomorphisms). In particular, f is one-
to-one.

Proof. As a preliminary observation, we claim that the functors Typ, V,
and k〈−〉 all preserve directed colimits and finite direct products. We established
this for the functor Typ in Proposition 4-1.9; for the functor V this is well known;
and for the functor k〈−〉 this is a straightforward categorical argument.
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Now let S be a finite Boolean antigroup. By Lawson [70, Theorem 4.18],
S is a direct product of finitely many finite symmetric inverse semigroups. By
the claim above, this case can be in turn reduced to the one where S is a finite
symmetric inverse semigroup. Now if S = In, where n is a positive integer, then
(TypS, typS(1)) ∼= (Z+, n) (cf. Proposition 5-1.5). Further, from k〈S〉 ∼= Mn(k) it
follows that (V(k〈S〉), [1]k〈S〉) is isomorphic to (Z+, n) as well. Since f(typS(1)) =
[1]k〈S〉, it follows that f is an isomorphism.

By the claim above, the conclusion (1) follows in a straightforward manner in
case S is locally chartable. This holds, in particular, if S is a semisimple Boolean
antigroup, because in such a case, S is the directed union of all subsemigroups aSa,
where a ∈ IdpS, and all the aSa are finite Boolean antigroups.

(2). Now suppose that S is a semisimple Boolean inverse semigroup. Denote
by µ the largest idempotent-separating congruence of S. It follows from Howie [57,
Theorem V.3.4] that S/µ is an antigroup, and it follows from Proposition 3-4.5
that S/µ is a Boolean inverse semigroup, and that the canonical projection from S
onto S/µ, which we shall denote by µ, is a tight map. Further, it follows from
Theorem 4-4.19 that µ is type-preserving. Since S is semisimple and S and S/µ
have the same idempotents, S/µ is also semisimple.

TypS
f //

Typµ

��

V(k〈S〉)

V(g)

��
Typ(S/µ)

fµ // V(k〈S/µ〉)

Figure 6-7.1. A commutative diagram of commutative monoids

By our result established above for semisimple antigroups, the canonical map
fµ : Typ(S/µ)→ V(k〈S/µ〉) is an isomorphism. Denote by g : k〈S〉� k〈S/µ〉 the
canonical map. We obtain the commutative diagram represented in Figure 6-7.1.
Since V(g) ◦ f = fµ ◦ Typµ is an isomorphism, f is a coretraction. �

We shall now introduce a class of examples where f is not one-to-one. The
following construction is a modification of the one of Example 4-9.3.

Notation 6-7.4. For a finite group G, of cardinality N , we set ΩG = Z+ ×G,
and we set

FG = {X ⊆ ΩG | X is finite} ,
UG = {X ⊆ ΩG | X is cofinite} ,
BG = FG ∪ UG .

We denote by κ(G) the set of all x ∈ IΩG , such that dom(x) ∈ BG, and such that
if dom(x) ∈ UG, then there are m ∈ Z+ and (k, g) ∈ Z×G such that

x(n, t) = (n+ k, gt) for all (n, t) ∈ [m,∞)×G . (6-7.1)

For any X ∈ UG, we denote by ρG(X) the constant value of card
(
X ∩ ([0,m)×G)

)
modulo N , for large enough m. This defines a map ρG : UG → Z/NZ.
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Lemma 6-7.5. Let G be a finite group, of cardinality N . Then κ(G) is a tight
Boolean inverse submonoid of IΩG . It is also an inverse meet-antigroup. Further-
more, for any X,Y ∈ BG, if idX Dκ(G) idY , then ρG(X) = ρG(Y ).

Note. It is not hard to prove that idXDκ(G) idY follows from ρG(X) = ρG(Y ),
for any X,Y ∈ UG. We will not need that implication.

Proof. The proofs of the statements about κ(G) being a tight Boolean inverse
submonoid of IΩG , together with a Boolean meet-antigroup, are tedious but routine,
and we leave them to the reader. Now let X,Y ∈ BG such that idX Dκ(G) idY . This
means that there is a bijection x : X → Y belonging to κ(G). We must prove that
ρG(X) = ρG(Y ). If either X or Y is finite, then cardX = cardY and the desired
conclusion is trivial. Suppose now that X and Y are both cofinite. Since X is
cofinite, there are m ∈ Z+, k ∈ Z, and g ∈ G such that (6-7.1) holds. Furthermore,
m can be taken large enough such that [m,∞)×G ⊆ X and [m+ k,∞)×G ⊆ Y .
From (6-7.1) it follows that x

[
[m,∞)×G

]
= [m + k,∞) ×G. Hence, forming set

differences and since x is one-to-one, x
[
X ∩ ([0,m)×G)

]
= Y ∩ ([0,m + k) × G).

By evaluating the cardinalities of the two sides and reducing modulo N , we obtain
ρG(X) = ρG(Y ). �

Lemma 6-7.6. Let G be a finite group, of cardinality N , and let k be a divi-
sion ring. If N is not a power of the characteristic of k, then the canonical map
f : Typκ(G)→ k〈κ(G)〉 is not one-to-one.

Proof. Throughout the proof we set S = κ(G). By assumption, there are a
prime number q, distinct from the characteristic of k, and an element g of G of
order q. In order to make it clear whether we are working in the Boolean inverse
monoid S or in the k-algebra k〈S〉, we shall denote by 1X the canonical image
of idX in k〈S〉, for each finite or cofinite subset X of ΩG. We shall also write 1
instead of 1ΩG .

The self-maps g and s of ΩG defined by the rules g(n, t) = (n, gt) and s(n, t) =
(n+ 1, t), for all (n, t) ∈ ΩG, both belong to S, and s ◦ g = g ◦ s.

Since q is distinct from the characteristic of k, the element e = (1/q)
∑q−1
k=0 g

k is
well defined, and it is an idempotent element of k〈S〉. Furthermore, from s−1s = 1
it follows that e and ses−1 are Murray - von Neumann equivalent within k〈S〉;
hence,

1 = e⊕ (1− e) ∼k〈S〉 ses
−1 ⊕ (1− e) . (6-7.2)

Easy computations show that ses−1 = e · 1N×G = e− e · 1{0}×G. Hence,

ses−1 ⊕ (1− e) = 1− e · 1{0}×G .

By writing 1 = 1{0}×G + 1N×G and setting w = 1{0}×G − e · 1{0}×G, we get

ses−1 ⊕ (1− e) = 1N×G ⊕ w . (6-7.3)

Now the elements id{0}×G and gk ◦ id{0}×G of S, for 0 ≤ k < q, are all finite
orthogonal joins of the matrix units ex,y, for x, y ∈ G, where ex,y denotes the
unique element of S with domain {(0, y)} and range {(0, x)}. It follows that 1{0}×G
and e · 1{0}×G can both be represented as N × N matrices with entries in k, and
hence so can their difference, namely w. Since w is idempotent, and neither equal
to 0 nor to 1{0}×G, it is conjugate to 1{0}×W for some subset W of G distinct
from ∅ and from G. (A closer look at the construction shows actually that the
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rank of w, which is equal to the cardinality of W , is equal to (1− 1/q)N ; however,
we will need nothing more than 0 < cardW < N .) Therefore, by (6-7.3), we obtain

ses−1 ⊕ (1− e) ∼k〈S〉 1W ⊕ 1N×G = 1Wt(N×G) .

By (6-7.2), it follows that, setting X = W t (N×G),

1ΩG ∼k〈G〉 1X ,

that is, f
(
typS(idΩG)

)
= f

(
typS(idX)

)
. However, ρG(ΩG) = 0 and ρG(X) =

cardW mod N 6= 0, thus, by Lemma 6-7.5, typS(idΩG) 6= typS(idX). �

Remark 6-7.7. By mimicking the proof of Proposition 6-7.1, it is not hard to
prove that under the assumptions of Lemma 6-7.6, the canonical map f is also not
surjective.

Example 6-7.8. The order of the finite group G = Z/6Z is not a prime power.
By Lemmas 6-7.5 and 6-7.6, it follows that for the unital Boolean inverse meet-
antigroup κ(G), the canonical map f : Typκ(G) → V(k〈κ(G)〉) is not one-to-one,
for any division ring k.

6-8. The tensor product of two Boolean inverse semigroups

The first step of the construction of the tensor product of two Boolean inverse
semigroups is given by the following lemma, whose straightforward proof we omit.
Recall that the involutary semiring structure on Umon(S) is given by Proposition
6-2.2, while the involutary semiring structure on Umon(S) ⊗ Umon(T ) is given by
Proposition 6-2.3.

Lemma 6-8.1. Let S and T be Boolean inverse semigroups. Then the set
S⊗0T = {x⊗ y | (x, y) ∈ S × T} is an inverse semigroup in the involutary semiring
Umon(S)⊗Umon(T ).

Definition 6-8.2. Let S and T be Boolean inverse semigroups. We define S⊗T
as the closure of S ⊗0 T under finite orthogonal sums, within Umon(S)⊗Umon(T ).

Notation 6-8.3. Denote by JS,T the set of all elements of the free commu-
tative monoid Fmon

(
Umon(S)×Umon(T )

)
of the form

∑n
i=1(xi • yi), where each

(xi, yi) ∈ S×T and the xi⊗ yi are pairwise orthogonal (not only meet-orthogonal)
within the involutary semiring Umon(S)⊗Umon(T ).

Observe, in particular, that S ⊗ T = {u/� | u ∈ JS,T }. By using the earlier
result that every element of S has index at most 1 in Umon(S) (cf. Proposition
6-2.1), it is easy to obtain the following result, by aping the proof of the Claim in
the proof of Lemma 2-5.6. (The point is that whenever z = x ⊕ y in a Boolean
inverse semigroup, x and y are orthogonal — not just meet-orthogonal.)

Lemma 6-8.4. Whenever u ∈ JS,T and v ∈ Fmon

(
Umon(S)×Umon(T )

)
, if

u→∗ v, then v ∈ JS,T .

Theorem 6-8.5. Let S and T be Boolean inverse semigroups. Then S⊗T is an
inverse semigroup in Umon(S)⊗Umon(T ). Furthermore, it is Boolean inverse, and
the properties (1)–(4), stated in Theorem 6-1.6, are all satisfied within the involu-
tary semiring Umon(S)⊗Umon(T ). Furthermore, Umon(S)⊗Umon(T ) is additively
generated by S ⊗ T .
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Proof. Since Umon(S) and Umon(T ) are both conical refinement monoids, so
is Umon(S)⊗Umon(T ) (cf. Wehrung [114, Theorem 2.7]). In particular, by Lemma
6-1.5, S ⊗ T is an inverse semigroup in Umon(S) ⊗ Umon(T ). Further, since, by
Lemma 2-5.6, every pure tensor has index at most 1 in Umon(S) ⊗ Umon(T ), it
follows from Lemma 2-3.8 that this is also the case for every sum of pairwise meet-
orthogonal pure tensors, thus, a fortiori, for every orthogonal sum of pure tensors.
That is, every element of S ⊗ T has index at most 1 in Umon(S)⊗Umon(T ).

Now we prove that S ⊗ T is a lower subset of Umon(S)⊗Umon(T ).
Let u ∈ Umon(S)⊗Umon(T ) and w ∈ S⊗T such that u ≤+ w. We must prove

that u ∈ S ⊗ T . There is v ∈ Umon(S)⊗Umon(T ) such that w = u+ v, and there
is w ∈ JS,T such that w = w/�. Pick u, v ∈ Fmon(Umon(S)× Umon(T )) such that
u = u/� and v = v/�. Since u+ v � w, there is w′ ∈ Fmon(Umon(S)×Umon(T ))
such that u+ v →∗ w′ and w →∗ w′. By Lemma 2-5.2, the first statement implies
the existence of u′, v′ ∈ Fmon(Umon(S) × Umon(T )) such that u →∗ u′, v →∗ v′,
and w′ = u′ + v′. Since w ∈ JS,T and by Lemma 6-8.4, w′ ∈ JS,T , thus u′ ∈ JS,T .
Therefore, u = u′/� ∈ S ⊗ T .

So far, we have verified Conditions (1) and (2) of Theorem 6-1.6, at the inverse
semigroup S ⊗ T within the monoid Umon(S) ⊗ Umon(T ). Further, (4) follows
trivially from the definition of S ⊗ T .

Finally, observe that Umon(S) and Umon(T ) are both conical and proper (cf.
Proposition 6-2.2), thus so is Umon(S)⊗Umon(T ) (cf. Lemma 6-2.3). Every element
z ∈ S⊗T can be written in the form z =

∑
i<n(xi⊗yi), where all (xi, yi) ∈ S⊗T and

the xi ⊗ yi are pairwise orthogonal. It follows from that orthogonality assumption
that z−1z = z∗z =

∑
i<n

(
d(xi)⊗ d(yi)

)
. In particular, the idempotent elements

of S⊗T are exactly the elements of the form c =
∑
i<n(ai⊗bi), where n ∈ Z+, each

ai ∈ IdpS, each bi ∈ IdpT , and the ai ⊗ bi are pairwise orthogonal. The elements
a =

∨
i<n ai and b =

∨
i<n bi are idempotent in S and T , respectively. Since

a⊗ b = (ai ⊗ bi) +
(
(ar ai)⊗ bi

)
+
(
ai ⊗ (br bi)

)
+
(
(ar ai)⊗ (br bi)

)
(within Umon(S) ⊗ Umon(T )), we get ai ⊗ bi ≤+ a ⊗ b, for each i < n. Since the
ai ⊗ bi are pairwise orthogonal, they are, a fortiori, pairwise meet-orthogonal (cf.
Lemmas 6-1.3 and 6-2.3). By Lemma 2-3.9, it follows that c ≤+ a⊗ b. Hence, the
condition (3) of Theorem 6-1.6 follows.

Finally, every element of Umon(S) ⊗ Umon(T ) is a finite sum of pure tensors,
thus, a fortiori, it is a finite sum of elements of S ⊗ T . �

In particular, S ⊗ T , endowed with orthogonal addition, is a lower interval of
Umon(S)⊗Umon(T ). By applying Proposition 2-2.4, we get the following.

Corollary 6-8.6. For any Boolean inverse monoids S and T , there is an
isomorphism from Umon(S)⊗Umon(T ) onto Umon(S ⊗ T ) that fixes all elements of
S ⊗ T . In particular, Umon(S ⊗ T ) ∼= Umon(S)⊗Umon(T ).

Despite the apparent complexity of the construction of the tensor product of
two Boolean inverse semigroups, we shall now see that it is the solution of a rather
easily formulated universal property, similar to the one for the tensor product of
rings.

Definition 6-8.7. Let S, T , and Z be Boolean inverse semigroups. A map
f : S × T → Z is bi-tight if the following conditions hold:

(1) f(x, y)f(x′, y′) = f(xx′, yy′), whenever x, x′ ∈ S and y, y′ ∈ T ;
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(2) f(x, y)
−1

= f(x−1, y−1), whenever x ∈ S and y ∈ T ;
(3) f(x0 ⊕ x1, y) = f(x0, y)⊕ f(x1, y), whenever x0, x1 ∈ S, y ∈ T , and x0 ⊥ x1;
(4) f(x, y0 ⊕ y1) = f(x, y0)⊕ f(x, y1), whenever x ∈ S, y0, y1 ∈ T , and y0 ⊥ y1.

Observe, in particular, that by the last two axioms above, f(0, y) = 0 for each
y ∈ T , and f(x, 0) = 0 for each x ∈ S.

The proof of the following lemma is routine application of our earlier results,
and we omit it.

Lemma 6-8.8. Let S and T be Boolean inverse semigroups. Then the canonical
map S × T → S ⊗ T , (x, y) 7→ x⊗ y is bi-tight.

Lemma 6-8.9. Let S, T , Z be Boolean inverse semigroups and let
f : S×T → Z be bi-tight. Then x0⊗y0 ⊥ x1⊗y1 implies that f(x0, y0) ⊥ f(x1, y1),
for all x0, x1 ∈ S and all y0, y1 ∈ T .

Proof. Our assumption x0 ⊗ y0 ⊥ x1 ⊗ y1 means that

x−1
0 x1 ⊗ y−1

0 y1 = x0x
−1
1 ⊗ y0y

−1
1 = 0 ,

that is,

(either x−1
0 x1 = 0 or y−1

0 y1 = 0) and (either x0x
−1
1 = 0 or y0y

−1
1 = 0) .

The element f(x0, y0)
−1
f(x1, y1) = f(x−1

0 x1, y
−1
0 y1) vanishes if either x−1

0 x1 = 0

or y−1
0 y1 = 0, thus in any case. Symmetrically, the element f(x0, y0)f(x1, y1)

−1

vanishes if either x0x
−1
1 = 0 or y0y

−1
1 = 0, thus in any case. �

Now we can state the universal property of the tensor product of two Boolean
inverse semigroups.

Theorem 6-8.10. Let S and T be Boolean inverse semigroups. Then the canon-
ical map S × T → S ⊗ T is universal among all the bi-tight maps from S × T to a
Boolean inverse semigroup.

Proof. The easy direction is provided by Lemma 6-8.8.
Now let Z be a Boolean inverse semigroup and let f : S × T → Z be bi-tight.

We need to prove that there is a unique tight map f : S ⊗ T → Z such that
f(x, y) = f(x ⊗ y) for all (x, y) ∈ S × T . Since every element of S ⊗ T is a finite
orthogonal sum of elements of the form x ⊗ y, the uniqueness statement follows
easily from Lemma 6-8.9.

Now we deal with the existence part. Standard arguments, involving the uni-
versal properties defining Umon(S) and Umon(T ), show that f extends to a (monoid)
bimorphism f1 : Umon(S)×Umon(T )→ Umon(Z). By the universal property of the
(monoid) tensor product, there is a unique monoid homomorphism

f2 : Umon(S)⊗Umon(T )→ Umon(Z)

such that

f2(x⊗ y) = f1(x, y) for all (x, y) ∈ Umon(S)×Umon(T ) .

Now f2(x ⊗ y) = f(x, y) belongs to Z whenever (x, y) ∈ S × T . By Lemma 6-8.9,
it follows that f2[S ⊗ T ] is contained in Z. Accordingly, we can define the domain-
range restriction f of f2 from S ⊗ T to Z. By Lemma 6-8.9, f preserves all finite
orthogonal sums of pure tensors. Thus, f preserves finite orthogonal sums. By the
first two axioms defining bi-tight maps, the proof that f is a homomorphism of
inverse semigroups is routine. �
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6-9. The type monoid of a tensor product

For a Boolean inverse semigroup S, Green’s relation DS is an additive, conical
V-equivalence on S (cf. Lemma 4-1.1), thus, by Theorem 2-4.6, it extends to a
unique additive V-equivalence D+

S = Umon(DS) on Umon(S). Moreover, still by
using Theorem 2-4.6,

TypS = Umon(S/DS) ∼= Umon(S)/D+
S ,

thus expressing TypS as the quotient of a conical refinement monoid under a conical
V-congruence.

We shall now pursue this idea on tensor products of Boolean inverse semigroups.
Recall that the tensor product of two congruences (of commutative monoids) is in-
troduced in Notation 2-6.3. For Boolean inverse semigroups S and T , the enveloping
monoids Umon(S) and Umon(T ) are both conical refinement monoids. Hence, the
binary relation γ = D+

S ⊗ D+
T is, by Corollary 2-6.4, a conical V-congruence of

the monoid Umon(S) ⊗ Umon(T ). Since the tensor product S ⊗ T (of Boolean in-
verse semigroups) is constructed as a subset of the monoid Umon(S)⊗Umon(T ), the
restriction of γ to S ⊗ T is well defined. It turns out that much more is true.

Lemma 6-9.1. The restriction of γ to S ⊗ T is equal to DS⊗T .

Proof. Throughout the proof we shall set M = Umon(S), N = Umon(T ),
α = D+

S , β = D+
T , and we shall denote by α : M � M/α and β : N � N/β the

associated canonical projections. We shall use the notation of Sections 2-5 and 2-6,
in particular viewing the elements of M ⊗N as equivalence classes of elements of
Fmon(M × N) with respect to the binary relation denoted there by �. We shall
also use the set JS,T introduced in Notation 6-8.3.

Let u,v ∈ S ⊗ T , we must prove that u ≡γ v iff uDS⊗T v.
Suppose first that (u,v) ∈ γ, that is, (u,v) ∈ α⊗β. Pick u, v ∈ JS,T such that

u = u/� and v = v/�. Our assumption means that (α•β)(u)� (α•β)(v), that is,
there is w ∈ Fmon

(
(M/α)× (N/β)

)
such that (α•β)(u)→∗ w and (α•β)(v)→∗ w.

By Lemma 2-6.1, there are u′, v′ ∈ Fmon(M ×N) such that u→∗ u′, v →∗ v′, and
(α • β)(u′) = (α • β)(v′) = w. By Lemma 6-8.4, u′ and v′ both belong to JS,T .

Writing u′ =
∑n
i=1(xi •yi) and v′ =

∑n′

i=1(x′i •y′i), both orthogonal sums, it follows
that

w =

n∑
i=1

(
α(xi) • β(yi)

)
=

n′∑
i=1

(
α(x′i) • β(y′i)

)
,

thus n = n′ and there is a permutation σ of [n] such that(
α(x′i), β(y′i)

)
=
(
α(xσ(i)), β(yσ(i))

)
for all i ∈ [n] ,

that is,
x′i DS xσ(i) and y′i DT yσ(i) , for all i ∈ [n] .

Picking si ∈ S and ti ∈ T such that d(si) = x′i, r(si) = xσ(i), d(ti) = y′i, and
r(ti) = yσ(i), it follows that d(si⊗ ti) = x′i⊗y′i and r(si⊗ ti) = xσ(i)⊗yσ(i), whence

(x′i ⊗ y′i) DS⊗T (xσ(i) ⊗ yσ(i)) , for all i ∈ [n] .

By forming the (orthogonal) joins of all those relations in S⊗T and observing that
u = u′/� and v = v′/�, it follows that uDS⊗T v.

Let, conversely, (u,v) ∈ DS⊗T . This means that there is z ∈ S ⊗ T such that
u = d(z) and v = r(z). Write z = z/�, with z =

∑n
i=1(xi • yi) ∈ JS,T . Since
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the elements xi ⊗ yi are pairwise orthogonal, we get u =
⊕n

i=1

(
d(xi)⊗ d(yi)

)
and v =

⊕n
i=1

(
r(xi)⊗ r(yi)

)
. By the definition of α and β, d(xi) ≡α r(xi) and

d(yi) ≡β r(yi) for each i ∈ [n], thus d(xi) ⊗ d(yi) ≡γ r(xi) ⊗ r(yi), and thus,
forming the (orthogonal) joins of those relations, u ≡γ v. �

Theorem 6-9.2. Let S and T be Boolean inverse semigroups. There is a unique
monoid isomorphism η : (TypS)⊗ (TypT )→ Typ(S ⊗ T ) such that

η
(
typS(x)⊗ typT (y)

)
= typS⊗T (x⊗ y) for every (x, y) ∈ S × T . (6-9.1)

Proof. Since (TypS)⊗ (TypT ) is additively generated by the elements of the
form typS(x)⊗ typT (y), the uniqueness of η is trivial. Let us deal with existence.

Throughout the proof we shall identify the monoids Umon(S) ⊗ Umon(T ) and
Umon(S ⊗ T ), via Corollary 6-8.6.

The binary relation γ = D+
S ⊗D+

T is a conical V-congruence of the commuta-
tive monoid Umon(S)⊗Umon(T ), and further, by using the definition of the tensor
product of two congruences,

(TypS)⊗ (TypT ) =
(
Umon(S)/D+

S

)
⊗
(
Umon(T )/D+

T

)
∼= Umon(S)⊗Umon(T )/γ = Umon(S ⊗ T )/γ . (6-9.2)

Since S⊗T , endowed with its orthogonal addition, is a lower interval of Umon(S⊗T ),
it follows from Lemma 6-9.1, together with Theorem 2-4.6, that γ = Umon(DS⊗T ).
By using again Theorem 2-4.6, it follows that

Umon(S ⊗ T )/γ ∼= Umon

(
S ⊗ T/DS⊗T

)
= Typ(S ⊗ T ) . (6-9.3)

Further, it is straightforward to verify that the composition η of the isomorphisms
given by (6-9.2) and (6-9.3) satisfies (6-9.1). �





CHAPTER 7

Discussion

Problem 1. Let M be a countable conical refinement monoid and let k be
a countable field. Is there a countable Boolean antigroup S such that TypS ∼=
V(k〈S〉) ∼= M?

By Theorem 4-8.9, there is a countable Boolean antigroup S such that
TypS ∼= M . However, we have seen with Example 6-7.8 that the canonical map
TypS → V(k〈S〉) may not be one-to-one.

Problem 2. Let S be a Boolean inverse semigroup. Is the canonical map
TypS → V(Z〈S〉) an isomorphism?

By Examples 6-7.2 and 6-7.8, the canonical map TypS → V(k〈S〉) (cf. Sec-
tion 6-7) may be neither one-to-one, nor surjective, for any division ring k. However,
the constructions of the idempotents introduced to establish this, in the proofs of
Proposition 6-7.1 and Lemma 6-7.6, depend of the characteristic of k. For a con-
venient description of Z〈S〉, see Example 6-3.10.

It follows immediately from Passman [86, Theorem 22.7] (which is also men-
tioned without proof in Kaplansky [62, p. 123]) that the group ring Z[G] has no
nontrivial idempotents. (Any nontrivial idempotent of Z[G] is a nontrivial idem-
potent of C[G], thus its trace lies strictly between 0 and 1; but that trace is also
an integer.) This suggests, without proving it (matrix rings over Z[G] may have
nontrivial idempotents), that the specialization of Problem 2 to the case where
S = Gt0, for a group G (cf. Definition 1-4.1), may indeed have a positive solution.

Problem 3. Is every conical refinement monoid M of cardinality ℵ1 group-
measurable? That is, is there a Boolean ring B, with an action of a group G, such
that M ∼= Z+〈B〉//G? Equivalently, does M ∼= TypS for some Boolean inverse
semigroup S?

Some evidence for a positive solution to Problem 3 is the following. By Theorem
4-8.9, every countable conical refinement monoid is group-measurable. Also, by
Dobbertin’s Theorem (cf. Theorem 4-6.7), every conical refinement monoid of
cardinality at most ℵ1 is V-measurable. Nevertheless, not every V-measure is group-
induced, or even groupoid-induced (cf. Examples 4-7.8 and 5-4.3). Also, there are
conical refinement monoids of cardinality ℵ2 that are not group-measurable (cf.
Theorem 4-6.9).

Problem 4. Let G be an Abelian lattice-ordered group. Is there a Boolean
meet-antigroup S such that TypS ∼= G+?

By Theorems 5-1.10 and 5-2.9, any counterexample to Problem 4 would need
to be non-projectable with at least ℵ2 elements. A countable conical refinement
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monoid, not isomorphic to the type monoid of any Boolean meet-antigroup, is given
in Example 4-9.4.

We may state, similarly, the following problem.

Problem 5. Let G be an Abelian lattice-ordered group. Is there a locally
chartable inverse semigroup S such that G+ ∼= TypS?

By Theorem 5-1.10, any counterexample to Problem 5 would need to have at
least ℵ2 elements. The group action constructed in Theorem 5-2.9 has underlying
group G, which is not locally finite unless G is trivial.

The apparent conflicts between Theorem 5-4.1, Example 5-4.3, and Example
5-4.4 suggest the following problem.

Problem 6. Let M be a conical commutative monoid. Can M be embedded
into a conical refinement monoid N , such that there are a complete atomic Boolean
ring B and a V-measure µ : B → N with range generating N as a submonoid?

Some evidence, for a positive solution of Problem 6, is given in Theorems 5-4.7
and 5-4.8.

For the statement of the following problem, we first recall that an embedding
f : M ↪→ N of monoids is pure if every finite equation system, with parameters
from f [M ], which has a solution in N , also has a solution in f [M ].

Problem 7. Does every refinement algebra have a pure embedding into the
commutative monoid Z+〈B〉//G, for some action of a group G on a complete
Boolean ring B?

By Theorem 5-4.10, if B is complete, then Z+〈B〉//G is a refinement algebra.
Moreover, it is obvious that every pure submonoid of a refinement algebra is a
refinement algebra.

The following problem is motivated by the realization problem of conical re-
finement monoids, with at most ℵ1 elements, as V(R) for rings R satisfying various
conditions (e.g., regular, exchange, C*-algebra of real rank zero). For a survey
about some of those problems, see Ara [6].

Problem 8. Find sufficient conditions, as general as possible, ensuring that
the ring K〈S〉 is an exchange ring (resp., a regular ring), for a unital ring K and a
Boolean inverse semigroup S. Similarly, find sufficient conditions for the C*-algebra
C∗〈S〉 to have real rank zero. Same question for C∗red〈S〉 (cf. Remark 6-4.12).

Recall that C〈S〉 is isomorphic to a dense involutive subalgebra of both C∗〈S〉
and C∗red〈S〉 (cf. Theorem 6-4.11 and Remark 6-4.12).

Problem 9. Is the category of all Boolean antigroups, with tight homomor-
phisms, a variety of algebras?

We have seen in Section 3-2 that the category of all Boolean inverse semigroups,
with tight homomorphisms, is a variety, namely the variety of all biases. A sim-
ilar result holds for Boolean inverse meet-semigroups with meet-preserving tight
homomorphisms: just add to the axioms defining biases (cf. Definition 3-2.3) the
identities stating that (S,∧) is a semilattice, together with the identities

x ∧ y = xd(x ∧ y) ; xd(y) = xd(y) ∧ x .

For more detail about the categorical aspects of varieties of algebras, see Adámek
and Rosický [3, Chapter 3].
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Problem 10. Let H be a (real or complex) Hilbert space. Is the enveloping
monoid Umon(SubH) of SubH cancellative?

As observed in Example 2-7.15, the partial commutative monoid (SubH,⊕, {0})
embeds into the full cancellative monoid Proj+H of all operators on H that can
be expressed as finite sums of projections of H. Nevertheless, it is also observed
there that if H is at least two-dimensional, then Proj+H is a proper quotient of
the enveloping monoid Umon(SubH). Further, we observe, at the end of Example
2-7.15, that Problem 10 has a positive solution in case H is two-dimensional, so
this problem is interesting only in case H is at least three-dimensional.
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41. Michael Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen

mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249. MR 1544613

42. Peter A. Fillmore, On sums of projections, J. Functional Analysis 4 (1969), 146–152.
MR 0246150 (39 #7455)

43. Alfred L. Foster, The idempotent elements of a commutative ring form a Boolean algebra;
ring-duality and transformation theory, Duke Math. J. 12 (1945), 143–152. MR 0012264
(7,1c)

44. David J. Foulis and Mary K. Bennett, Effect algebras and unsharp quantum logics, Found.

Phys. 24 (1994), no. 10, 1331–1352, Special issue dedicated to Constantin Piron on the
occasion of his sixtieth birthday. MR 1304942 (95k:06020)



BIBLIOGRAPHY 195

45. Ralph Freese and James B. Nation, Congruence lattices of semilattices, Pacific J. Math. 49

(1973), 51–58. MR 0332590 (48 #10916)

46. Kenneth R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Mathematical
Surveys and Monographs, vol. 20, American Mathematical Society, Providence, RI, 1986.

MR 845783 (88f:06013)

47. , von Neumann Regular Rings, second ed., Robert E. Krieger Publishing Co., Inc.,
Malabar, FL, 1991. MR 1150975 (93m:16006)

48. , von Neumann regular rings and direct sum decomposition problems, Abelian groups

and modules (Padova, 1994), Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995,
pp. 249–255. MR 1378203

49. Kenneth R. Goodearl and David E. Handelman, Tensor products of dimension groups and

K0 of unit-regular rings, Canad. J. Math. 38 (1986), no. 3, 633–658. MR 845669 (87i:16043)
50. George Grätzer, Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel, 2011.
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Terminology index

additive binary relation, 33

additive closure, 33

additive equation system, 174

algebraic preordering (on a partial

commutative monoid), 15, 22

antigroup, 64, 90

antitone map, 11

Archimedean (commutative monoid), 163

arity, 72

atom (of a poset), 11

augmentation map, 180

back and forth system, 114

bi-measurable (partial function), 107

bi-tight map, 184

bias, 8, 73

bimorphism, 36

Boolean algebra, 14

generalized, 13

cancellable (element), 30

canonical map (TypS → V(K〈S〉)), 179

canonical V-measure (on a Boolean inverse

semigroup), 116

centralizing subset, 165

Cohn path algebra, 176

compatible

elements, 66

subset, 66

conditionally σ-complete poset, 11

congruence-modular, 64, 84

congruence-permutable, 8, 84

conical

binary relation, 33

left-− binary relation, 32

map, 22

monoid, 5, 15

partial monoid, 24

right-− binary relation, 33

constant (in universal algebra), 72

coretraction, 180

corner (in a Boolean inverse semigroup), 97

countably closed (Boolean inverse
semigroup), 155

crossed product

of a Boolean inverse semigroup, 9, 89

of a ring, 48

D-closed ideal, 83

defined (finite sum
⊕
i∈I xi), 23

difference operation (in a Boolean inverse

semigroup), 69

difference operation (in a generalized

Boolean algebra), 13

dimension function, 101

dimension monoid (of a lattice), 97, 140

directly finite

element, 15

ring, 45

disjoint sum (in a Boolean ring), 28

disjunctive addition), 29

distributive

lattice, 13

semilattice, 16

domain (of an element, in an inverse
semigroup), 65

effect algebra, 46

elementary generators (of BR(D)), 139

`-ideal (in lattice-ordered groups), 142

enlargement, 72

additive −, 71

enveloping Boolean ring, 139

enveloping monoid, 9, 24

equidecomposability, 5, 7

≡I (ideal-induced congruence), 82

étale groupoid algebra, 167

µ-exhaustive, 122

exponentially bounded

group, 6, 12

factorizable (inverse monoid), 144

filter

prime − of a distributive lattice, 13

prime − of an inverse semigroup, 77

proper −, 13

filter (of a distributive lattice), 13

filter (of an inverse semigroup), 77

fork (in a Boolean inverse semigroup), 145

fork-nilpotent, 10, 145

α-paradoxical, G-paradoxical, 11

generalized cardinal algebra (GCA), 155
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generalized rook matrix, 9, 85

generating subset (in a partial commutative

monoid), 22

α-equidecomposable, G-equidecomposable,

11, 48

Green’s relations, 65

group

dimension −, 17

interpolation −, 16

partially ordered discrete −, 17

simplicial −, 17

supramenable −, 5, 12

group-induced (measure), 97, 120

group-measurable, 98, 124, 125

groupoid, 77, 99

groupoid-induced (measure), 120

groupoid-measurable, 98, 124

G-trace, 51

homomorphism of partial monoids, 22

ideal (of a distributive lattice), 13

ideal (of an inverse semigroup), 70

ideal-induced congruence, 84

idempotent-separating congruence, 81

identity (in universal algebra), 14, 73

index

finite −, 18

of an element, 18, 30

inner automorphism (of a Boolean inverse
semigroup), 64, 95

inverse (in a semigroup), 64

inverse meet-antigroup, 92

inverse meet-semigroup, 64, 92

inverse semigroup in a semiring, 8, 159

inversion map (on an inverse semigroup),
64

involutary ring, 8

isotone map, 11

K-algebra, 8, 165

K-algebra

involutary −, 165

kernel (of a function), 11

Kronecker symbol, 68

lattice-ordered group, 7

Leavitt path algebra, 9, 175

left orthogonal, 66

lower interval (in a partial commutative

monoid), 23

lower inverse subsemigroup, 71

lower subset, 11

Mal’cev term, 8, 85

matrix units (of a symmetric inverse
monoid), 68

B-measurable (action), 109

measure, 6, 115

invariant −, 12

measure space, 118

measure-preserving, 6, 118

meet-orthogonal, 29

modular

lattice, 8

monoid (commutative)

m-power cancellative −, 15

Foulis −, 132, 144

partial −, 22

partially preordered

m-unperforated −, 15

cancellative −, 15

directed −, 15

partially preordered −, 14

pointed −, 15

primitive −, 120

simplicial −, 17

strictly m-unperforated −, 20

multiple-free

part, 30

partial commutative monoid, 30

Murray - von Neumann equivalence, 6, 12

MV-algebra, 29

natural ordering

on a Boolean ring, 14

on an inverse semigroup, 65

nilpotent (fork), 145

nonstable K-theory, 6, 13

normalized (measure), 116

o-ideal, 10, 15, 22

one point completion (of a partial

commutative monoid), 23

⊕-closed, 22

order-separative (partial monoid), 43

order-unit, 15

orthocomplementation, 46

orthogonal

addition (in an involutary semiring), 159

elements (in an inverse semigroup), 66

elements (in an involutary semiring), 159

join (in an inverse semigroup), 63, 67

subset (in an inverse semigroup), 66

orthogonally separating (inverse
semigroup), 100

orthomodular lattice, 46

partial

automorphism, 6, 108

bijection, 63

homeomorphism, 108

isomorphism, 114

submonoid, 22

pedestal, 90

piecewise in G (bijection), 109

positive cone
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strict − (of a partially preordered

commutative monoid), 15

positive cone (of a partially preordered

commutative monoid), 15

positive definite (involutary ring), 172

premeasure, 12, 115

premeasure space, 118

prime spectrum (of a distributive lattice),
13

prime spectrum (of an inverse semigroup),

77

projectable (lattice-ordered group), 131,
142

projection (in a Hilbert space), 47

pure tensor, 36

quasi-ideal (of an inverse semigroup), 70

quasi-inverse (in a semigroup), 64

quiver, 157, 175

range (of an element, in an inverse

semigroup), 65

refinement algebra, 132

refinement matrix, 16

refinement monoid, 7, 15

partial −, 25

refinement-spreading, 40

regular representation (of an inverse

semigroup), 9, 79

Riesz decomposition property, 16

right orthogonal, 66

ring

Boolean −, 13

exchange −, 6, 88

regular −, 6

ring of subsets of a set, 11

self-adjoint element, 159

semigroup

AF inverse −, 131, 132

Boolean inverse −, 6, 67

continuous inverse −, 79

distributive inverse −, 63, 67

Exel-Boolean inverse −, 79

fundamental inverse −, 64, 90

graph inverse −, 176

Hausdorff inverse −, 167

inverse −, 6, 64

locally chartable −, 132

regular −, 16, 64

semigroup algebra, 169

contracted −, 9, 169

semilattice

(∨, 0)-−, 16

semiring, 8, 159

involutary −, 159

involutary proper −, 159

tight enveloping −, 163

semisimple (Boolean inverse semigroup), 90

separated graph, 7, 177

separative

partial monoid, 6, 43

σ-complete poset, 11

similarity type (in universal algebra), 72

socle, 91

source map (of a quiver), 175

stably finite

monoid, 15

partial monoid, 44

ring, 45

strongly separative

partial monoid, 5, 41

support (of a piecewise bijection), 109

symmetric inverse monoid, 10, 68

target map (of a quiver), 175

tensor product

of Boolean inverse semigroups, 10, 183

of commutative monoids, 9, 36

of monoid congruences, 21, 40

of monoid homomorphisms, 39

of semirings, 164

term (in universal algebra), 8, 73

tight

congruence, 81

enveloping K-algebra, 157, 166

enveloping C*-algebra, 173

ideal, 71

inverse subsemigroup, 71

map, 8, 70

measure, 165

∗-tight measure, 165

trace product, 99

groupoid, 99

type interval (of a Boolean inverse

semigroup), 99

type monoid (of a Boolean inverse

semigroup), 2, 100

type-expanding (tight map), 103

type-preserving (tight map), 103

ultrafilter

of a distributive inverse semigroup, 79

of a distributive lattice, 14

unitary embedding, 45

unitization

Boolean − (of a Boolean inverse

semigroup), 95, 177

Boolean − (of a Boolean ring), 177

standard − (of a ring), 177

universal bimorphism, 36

upper subset, 11

V-congruence, 2, 39

V-embedding, 23

V-equivalence, 33

V-homomorphism, 9, 23

V-measurable
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commutative monoid, 115

element, 115

pointed commutative monoid, 115
V-measure, 6, 115

V-premeasure, 115

V-relation, 9, 33
left −, 33

right −, 33

variety (in universal algebra), 8, 73

weak comparability, 18, 19

set, 18

zero-dimensional, 14



Notation index

0P , 1P , 11

a
x−→ b, 99

|x| (in lattice-ordered groups), 142

adg (inner endomorphism), 94

a⊥ (in lattice-ordered groups), 142

x ≈N y, 15

→ (on Fmon(P )), 24

→ (on Fmon(M ×N)), 37

→∗ (on Fmon(M ×N)), 37

� (on Fmon(M ×N)), 37

AtP , 11

Aut(B), 118

Aut(B,µ), 118

B(Ω), 173

I : A∼=p B, A∼=p B (back and forth
system), 114

B⊕Ω (S) (generalized rook matrices), 86

� (skew difference), 8, 73

O (skew addition), 8, 73

x • y (on monoid elements), 37

f • g (on monoid homomorphisms), 39

c = a � b (disjunctive addition), 29

BR(D) (enveloping Boolean ring), 139

B ↓ ¬c, 140

‖f = g‖, 107

C, 15

comp(a : b) (weak comparability set), 18

R oG (R ring), 48

S oG (S Boolean inverse semigroup), 89

C∗red〈S〉 (reduced tight enveloping

C*-algebra), 173

C∗〈S〉 (tight enveloping C*-algebra), 173

d(x) (domain), 65

∆(x, y) (generators of the dimension

monoid), 140

δx,y (Kronecker symbol), 68

D[2], 139

D (Green’s relation), 7, 65

yr x (in a generalized Boolean algebra), 13

y r x (in a Boolean inverse semigroup), 69

DimG (dimension monoid), 140

dom f (domain), 10

ẋ (in Fmon(P )), 24

D+
S , 186

EG,n, EG, 54

εP (embedding P ↪→ Umon(P )), 24

[u] (in Fmon(P )), 24

a 'gp
µ b, 119

a ∼gp
µ b, 119

a ∼gpd
µ b, 119

≡ (on Fmon(P )), 24

$ (on Fmon(P )), 24

f [X], 10

f−1[X], 10

〈g1, g2〉−n(c), 145

Fmon(X) (free commutative monoid), 24

f�X (restriction), 10

G(E) (graph inverse semigroup), 176

Γ0 ◦ Γ1 (composition of relations), 11

γS(n) (growth function), 12

Γ−1 (inverse of a relation), 11

GM(S) (ultrafilters), 79

GP(S) (prime filters), 77

Υ~x(e), 168

H (Green’s relation), 65

IdpS (idempotents), 64

rng f (range), 10

A ≡∞,ω B (L∞,ω-elementary equivalence),

114

inng (inner automorphism), 95

InnS (inner automorphisms), 95

Int f , 101

IntS (type interval), 99

Inv(B) (partial automorphisms), 108

Inv(B, η), Inv(B,G), 98, 110

Inv(B,µ), 118

Invσ(B,G), 155

IX (symmetric inverse monoid), 68

x−1, 64

J (Green’s relation), 65

jS (map S → K〈S〉), 166

JS,T , 183

K[S] (semigroup algebra), 169
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K[S]0 (contracted semigroup algebra), 9,

169

K〈S〉 (tight enveloping algebra), 8, 166

Ker f (equivalence relation), 11

ker f (tight ideal), 84

κ(G), 181

λa (left translation in a semigroup), 66

λ(S) (growth constant), 12

x ≤⊕ y, 22

x ≤+ y, x <+ y, 15

L (Green’s relation), 65

L∞,ω (infinitary language), 114

LIS (similarity type), 73

LBIS (similarity type), 73

LK(E) (Leavitt path algebra), 9, 176

Lab
K (E,C), 177

a� b, a� b, 17

M+ (positive cone), 15

M++ (strict positive cone), 15

M//α, M//G, 5, 48

M/N , 15

M⊕Ω (S) (generalized rook matrices), 86

M |e, 15

µ (largest idempotent-separating

congruence), 82

µα, µG, 48

[n], 10

N, 15

NSubG (normal subgroups), 84

Ω(a), 13

Ωe (domain in prime ideal representation),

77

1a (in Z+〈B〉), 28

⊕ (orthogonal join), 8, 67⊕
(Bi | i ∈ I) (for Boolean rings), 116

x⊕ y (in a Boolean ring), 28

M ⊗N (for commutative monoids), 36

x⊗ y (for monoid elements), 36

f ⊗ g (for monoid homomorphisms), 39

α⊗ β (for monoid congruences), 40

M ⊗N (for semirings), 164

S ⊗0 T (for Boolean inverse semigroups),
183

S ⊗ T (for Boolean inverse semigroups),
183

PedS (pedestal), 90

x ⊥ y (orthogonality), 66

x ⊥lt y (left orthogonality), 66

x ⊥rt y (right orthogonality), 66

pHomeo(Ω), 108

pHomeo(Ω, η), pHomeo(Ω, G), 110

Pt∞ (one point completion), 23

pMeas(B), 107

pMeas(B, η), pMeas(B, G), 109

Pow Ω (powerset), 11

ProjH (projections), 47

Proj+H (finite sums of projections), 47

a ∝ b, a � b, 15

Q, 15

Θ~x(e), 168

R⊕Ω (S) (generalized rook matrices), 86

R (Green’s relation), 65

ρa (right translation in a semigroup), 66

ρG, 55

R, 15

r(x) (range), 65

S/I (quotient semigroup), 83

sAdjH (self-adjoint operators), 47

S ·G (generating subset of crossed

product), 89

Self S, 95

σG, 55

x ∼ y (compatibility), 66

'α, 'G (equidecomposability), 7, 48

∼ (on Fmon(P )), 24

∼α, ∼G, 48

∼+
G, 51

a ∼ b, a ∼R b (Murray - von Neumann), 12

Gs, 17

Sµ, 111

S(Ω,Z+), 151

S(n), 12

t (disjoint union), 2

St0, 16

S̃ (Boolean unitization), 95, 177

SubH (closed subspaces), 47

τG (G-trace), 51

τG, 52

T, 150

Typ f , 101

TypS (type monoid), 7, 100

typ(x), typS(x) (generators of TypS), 100

universal tight groupoid, 167

Umon(f), 27

Umon(P ) (enveloping monoid), 9, 24

V(R) (nonstable K-theory), 6, 12

x/Γ (equivalence class), 11

x/I (equivalence class), 83

x 〈y〉 (conjugate in inverse semigroup), 81

x · g (element in crossed product), 89

X ↓ Y , X ↑ Y , 11

[x]α, [x]G, 48

x Γ y, x ≡Γ y, x ≡ y (mod Γ), 11

x(i,j) (generalized rook matrix), 88

xµ, 111

X⊕, 22

XY , aX, Xa, X−1 (X, Y sets), 65
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Z~x(e), 168

Z, 15

Z+〈B〉 (B Boolean ring), 5, 28
Z+〈S〉 (S Boolean inverse semigroup), 168


