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Abstract:  

 

Coherent control of quantum states has been demonstrated in a variety of superconducting 

devices. In all these devices, the variables that are manipulated are collective electromagnetic 

degrees of freedom: charge, superconducting phase, or flux. Here, we demonstrate the 

coherent manipulation of a quantum system based on Andreev bound states, which are 

microscopic quasiparticle states inherent to superconducting weak links. Using a circuit 

quantum electrodynamics setup we perform single-shot readout of this “Andreev qubit”. We 

determine its excited state lifetime and coherence time to be in the microsecond range. 

Quantum jumps and parity switchings are observed in continuous measurements. In addition 

to possible quantum information applications, such Andreev qubits are a testbed for the 

physics of single elementary excitations in superconductors. 
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The ground state of a uniform superconductor is a many-body coherent state. Microscopic 

excitations of this superconducting condensate, which can be created for example by the 

absorption of photons of high enough energy, are delocalized and incoherent because they 

have energies in a continuum of states. Localized states arise in situations where the 

superconducting gap Δ or the superconducting phase undergo strong spatial variations: 

examples include Shiba states around magnetic impurities (1), Andreev states in vortices (2) 

or in weak links between two superconductors (3). Because they have discrete energies 

within the gap, Andreev states are expected to be amenable to coherent manipulation 

(4,5,6,7,8). In the simplest weak link, a single conduction channel shorter than the 

superconducting coherence length  , there are only two Andreev levels 

  2, 1 sin ( / 2)AE        , governed by the transmission probability   of electrons 

through the channel and the phase difference   between the two superconducting 

condensates (3). Despite the absence of actual barriers, quasiparticles (bogoliubons) 

occupying these Andreev levels are localized over a distance   around the weak link by the 

gradient of the superconducting phase, and the system can be considered an “Andreev 

quantum dot” (5,6). Figure 1 shows the energies  iE   of the different states of this dot. In 

the spin-singlet ground state g  only the negative energy Andreev level is occupied and 

 g AE E . If a single quasiparticle is added, the dot reaches a spin-degenerate odd-parity 

state o  with 0oE  (9-12). Adding a second quasiparticle of opposite spin to the dot in 

state o  brings it to a spin-singlet even-parity excited state e  with  e AE E  (13,14). The 

e  state can also be reached directly from g  by absorption of a photon of energy 2 .AE  

Here we demonstrate experimentally the manipulation of coherent superpositions of states 

g  and ,e  even if parasitic transitions to o  are also observed. 
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Atomic-size contacts are suitable systems to address the Andreev physics because 

they accommodate a small number of short conduction channels (15). We create them using 

the microfabricated break-junction technique (16). Figure 2 presents the sample used in the 

experiment. An aluminum loop with a narrow suspended constriction (Fig. 2C) is fabricated 

on a polyimide flexible substrate mounted on a bending mechanism cooled down to 30mK  

(17). The substrate is first bent until the bridge breaks. Subsequent fine-tuning of the bending 

allows creating different atomic contacts and adjusting the transmission probability of their 

channels. The magnetic flux   threading the loop controls the phase drop 02    

across the contact and thereby the Andreev transition frequency ( , ) 2 /A Af E h    ( 0  is the 

flux quantum, h Plank’s constant). To excite and probe the Andreev dot, the loop is 

inductively coupled to a niobium quarter-wavelength microwave resonator (17) (Fig. 2B) in a 

circuit quantum electrodynamics architecture (18,19). The resonator is probed by 

reflectometry at frequency 0f  close to its bare resonance frequency 10.134GHzRf . The 

actual resonator frequency is different for each one of the three Andreev dot states: in the odd 

state, the resonance frequency is unaltered while the two even states lead to opposite shifts 

around Rf  (20). The Andreev transition g e  is driven using a second tone of frequency 

1f . Details of the setup are shown in figures S1 and S2 (20). 

Here we present data obtained on a representative atomic contact containing only one 

high transmission channel. Data from other contacts is shown in figures S6-S8. First, a two-

tone spectroscopy is performed by applying a 13 µs driving pulse of variable frequency, 

immediately followed by a 1 µs-long measurement pulse  0 10.1337 GHzf  probing the 

resonator with an amplitude corresponding to an average number of photons 30n  (see 

Fig. 3A). Apart from the signal at 1 0f f , the spectrum displays a resonance corresponding 
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to the Andreev transition. The spectrum is periodic in flux, with period 0 , which allows 

calibrating the value of   across the contact (Fig. S3). Fits of the measured lines for different 

contacts with the analytical form of ( , )Af    provide the transmission probability   of highly 

transmitting channels with up to five significant digits, as well as the superconducting gap 

/ 44.3 GHzh  of the aluminum electrodes. 

The coupling between the resonator and the Andreev dot is evident from the avoided 

crossing between the two modes observed in single-tone continuous-wave spectroscopy 

(Fig. 3B). Fitting the data with the predictions of a Jaynes-Cummings model (19,20), yields 

the coupling strength / 2 74MHz g  at the two degeneracy points where A Rf f . 

Remarkably, the resonance of the bare resonator is also visible for all values of the phase, 

signaling that on the time scale of the measurement the Andreev dot is frequently in the odd 

state o  (10,12,21). 

Figure 3C shows the histograms of the reflected signal quadratures I,Q for a sequence 

of 8000 measurement pulses taken at  , without and with a  driving pulse. The results 

gather in three separate clouds of points demonstrating that a single measurement pulse 

allows discriminating the dot state. The normalized number of points in each cloud is a direct 

measurement of the populations of the three states. The two panels of Fig 3C show the 

population transfer between the two even states induced by the driving pulse. Continuous 

measurement of the state of the Andreev dot in absence of drive, reveals the quantum jumps 

(22) between the two even states and the changes of parity corresponding to the trapping and 

untrapping of quasiparticles in the dot (Fig. 3D). The analysis (23) of this real-time trace 

yields a parity switching rate of 50kHz  (20). 
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The coherent manipulation at   of the two-level system formed by g  and e  is 

illustrated in Fig. 4. Figure 4A shows the Rabi oscillations between g  and e  obtained by 

varying the duration of a driving pulse at frequency 1 ( , )Af f    (Movie S1). Figure 4B 

shows how the populations of g  and e  change when the driving pulse frequency 1f  is 

swept across the Andreev frequency ( , )Af   . After a  -pulse the populations relax 

exponentially back to equilibrium with a relaxation time  1 4 µsT    (Fig. 4D). The 

Gaussian decay by 1/e of detuned Ramsey fringes (Fig. 4F) provides a measurement of the 

coherence time  2 38ns T   . This short coherence time is mainly due to low-frequency 

(<MHz) fluctuations of the Andreev energy ( , )AE   , as shown by the much longer decay 

time  2 2565ns T T   of a Hahn echo (Fig. 4G). Measurements at    on other 

contacts with the same sample, with transmissions corresponding to a minimal Andreev 

frequency 3GHz ( , ) 8GHzAf    , give 1T  mostly around 4 µs (up to 8.5 µs), 2T 
 around 

40 ns (up to 180 ns) and 2T  around 1 µs (up to 1.8 µs), but no clear dependence of the 

characteristic times on   is observed (Fig. S7 and S8). 

Figure 4E shows the measured relaxation rate 1 11 T   as a function of the phase .  

The expected Purcell relaxation rate arising from the dissipative impedance seen by the 

atomic contact (dotted line in Fig. 4E) matches the experimental results only close to the 

degeneracy points where A Rf f , but is about five times smaller at   . Based on 

existing models we estimate that relaxation rates due to quasiparticles (24-28) and to phonons 

(7,8,21) are negligible. Empirically, we fit the data at    by considering an additional 

phase-independent relaxation mechanism, which remains to be identified. 
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The linewidth of the spectroscopy line, which is a measure of the decoherence rate, 

shows a minimum at    (Fig. 4C). The Gaussian decay of the Ramsey oscillations points 

to 1/f transmission fluctuations as the main source of decoherence at   , where the 

system is insensitive to first order to flux noise (28). Fluctuations of   can arise from 

vibrations in the mechanical setup and from motion of atoms close to the contact. Figure 4C 

also shows the linewidths calculated assuming 1/f transmission noise and both white and 1/f 

flux noise (20). The amplitude of the 1/f transmission noise, 6 -1/22.5 10 Hz  at 1 Hz, was 

adjusted to fit the measurement at   . The amplitudes of the white and 1/f flux noise were 

then obtained from a best fit of the linewidth phase dependence. The extracted 1/f noise 

amplitude (
-1/2

05µ Hz  at 1 Hz) is a typical value for superconducting devices and has a 

negligible effect to second order (29). The source of the apparent white flux noise 

 -1/2

048n Hz  is not yet identified. 

The Andreev quantum dot has been proposed as a new kind of superconducting qubit 

(5,6), which differs markedly from existing ones (30). In qubits based on charge, flux, or 

phase (30) the states encoding quantum information correspond to collective electromagnetic 

modes, while in Andreev qubits they correspond to microscopic degrees of freedom of the 

superconducting condensate. Our results are a proof of concept of this new type of qubit.  

Further work is needed to understand fully the sources of decoherence and to couple several 

qubits in multi-channel contacts (5,8). The Andreev quantum dot, with its parity sensitivity, is 

also a powerful tool to investigate quasiparticle-related limitations on the performance of 

superconducting qubits (28,31,32) and detectors (33). Furthermore, our experimental strategy 

could be used to explore hybrid superconducting devices in the regime where Andreev states 

evolve into Majorana states (33,35,36). 
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Fig.1 Single channel Andreev quantum dot. (A) Energy levels: Two discrete Andreev 

bound levels detach symmetrically from the upper and lower continua of states (light grey 

regions for  E ). Photons of energy 2 AE  can induce transitions between the two Andreev 

levels (magenta arrows). (B) Andreev levels occupation in the four possible quantum states of 

the Andreev dot. Only the lower Andreev level is occupied in the ground state g  (blue 

box). In the excited state e  (red box) only the upper Andreev bound level is occupied. In the 

doubly degenerate odd state o  both Andreev levels are either occupied or empty. (C) 

Energy of the four Andreev dot states for a channel of transmission probability 0.98  , as a 

function of the phase difference   across the weak link. 
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Fig.2. Measurement setup of a superconducting atomic contact in a microwave 

resonator. (A): Simplified 2-tone microwave setup. The measurement (frequency 0f ) and 

drive (frequency 1f ) signals are coupled to the resonator through the same port. After 

amplification the reflected signal at 0f  is homodyne detected by an IQ mixer and its two 

quadratures (I and Q) are digitized. (B): Optical micrograph of the / 4  niobium coplanar 

meander resonator with an interdigitated capacitor 3fFC  at the coupling port. At the 

shorted end an aluminum loop is inductively coupled to the resonator field. The resonator has 

resonance frequency 10.134GHzRf , with total quality factor 2200Q  , close to critical 

coupling (see Fig S4). (C): Detailed view of the aluminum loop. Upon bending the substrate 

the loop breaks at the narrow constriction to create an atomic contact.  
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Fig. 3. Spectroscopy and quantum jumps. (A) Pulsed two-tone spectroscopy: color coded 

amplitude A of one quadrature of reflected signal as a function of   and 1f . Dashed black 

line: theoretical fit of Andreev transition frequency 2 /A Af E h  with 0.99217  . A 

parasitic line, corresponding to a two photon process ( 12 ( , )R Af f f    ), is visible just 

below 10 GHz. (B) Single-tone continuous-wave spectroscopy using a vector network 

analyzer (average number of photons in resonator 0.1n ): resonator reflection amplitude R  

as a function of   and 0f . Red dashed curves: fits of the anti-crossings (20). Data aligned 

with black dashed line correspond to the Andreev dot in state o . (C) Histograms of I, Q 

quadratures at    illustrate single-shot resolution of the quantum state of the dot. Left 

panel: no drive at 1f . Right panel: pulse transfering population from g  to e . (D) 
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Continuous measurement at   , with 100n  and no driving signal. Brown (cyan) time 

trace corresponds to I (Q) quadrature. The color (blue, green, red) of the horizontal bar 

represents an estimate of the state (g, o, e) found using a hidden Markov Model toolbox (23). 

 

 

 
 

Fig. 4. Coherent manipulation of Andreev quantum dot states at   . Color dots show 

measured populations: ground (blue), excited (red) and odd (green) states. Lines are 

theoretical fits. Sketches of pulse sequences for each type of measurement are shown in each 

panel (magenta: drive; black: measurement). (A) Rabi oscillations: populations as a function 
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of the driving pulse duration. (B) Spectroscopy: populations as a function of driving pulse 

frequency 1f . (C) Phase dependence of linewidth (FWHM) of the spectral line. Dots: as 

extracted from a lorentzian fit of the experimental resonances (20). Black curve is best fit to 

the data, including the contributions of 1/f transmission noise (cyan line), and both 1/f 

(orange line) and white flux noise (orange dashed-line). Vertical dotted lines indicate phases 

for which A Rf f . (D) Relaxation of populations after a   driving pulse. (E) Phase 

dependence of relaxation rate 
1 11/T  . Dots: experimental data. Continuous curve is the 

sum of the expected Purcell rate (dotted line) and an empirical phase independent rate 

(180 kHz). (F) Ramsey fringes: populations as a function of delay between the two 2 -

pulses detuned at 1 ( , ) 51MHzAf f    . (G) Hahn echo: populations as a function of delay 

between the two 2 -pulses with a  -pulse in between. 
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Supplementary Materials 

 
Materials and Methods 

 

Theoretical description of the system 

The Hamiltonian of the system can be written as   A R ARH H H H , where the first 

term, the Andreev Hamiltonian, describes the atomic contact; the second one 

describes the electromagnetic resonator; and the third one accounts for the coupling 

between them. The Andreev Hamiltonian in the Andreev basis (5) is given by  

 

ˆ( ) ( )A A zH E     

 

where ˆ
z is a Pauli matrix acting in the | , | g e  space. The electromagnetic resonator 

is treated as a discrete single-mode oscillator described by 
†( 1/ 2) R RH a a  

where 
†( )a a  are the creation (annihilation) photon operators. The term describing the 

coupling between the atomic contact and the resonator (up to first order) is given by 

 

ˆ ˆ ( )AR R AH M I I   

 

where M  is the loop-resonator mutual inductance,  †

0
ˆ / 2 RI L a a is the 

transmission line current operator at the position of the atomic contact loop and ˆ ( )AI  

is the Andreev current operator 

 

 ˆ ˆ ˆ( ) ( , ) 1 tan / 2A A z xI I         
 

 

 

with 
1

0( , ) ( , ) /A AI E         . As a result, in the region close to the degeneracy 

2R Ahf E , where the rotating-wave approximation holds,  the coupling Hamiltonian 

can be reduced to a Jaynes-Cummings model (3) 

 †ˆ ˆ( )ARH g a a      

where | |   e g  and | |   g e . The phase dependent coupling energy  g   is 

given by 

 2( )
( ) sin / 2

2 ( )

A

A

E
g z

E


  




  

 

with  
2

0/ / Qz M L Z R  a constant coupling parameter. Fitting the anti-crossing 

depicted in Fig. 3B we obtain ( ) / 2 95.6 MHz  g  and 
51.910z . 
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Relaxation rate through the resonator (Purcell effect)  

 

Following Desposito and Yeyati (4) the relaxation rate due to the coupling to the 

environment can be estimated by using the expression 

 

    

  

2
2

1 3/ 2
2

(1 ) sin / 2Re ( 2 ( )
.

2 1 sin / 2

   

 


 



env A

Q

Z E

R
 

 

In the phase region were 1T   was measured, the real part of the impedance seen from 

the atomic contact can be approximated by 

 
 

2
2

0

0

Re

1 /
1

/


  

 

  
 

  
 
 

Q

env

z R Q
Z

Q

 

where 0 and Q are the total quality factor and the resonant frequency of the 

resonator far from the anti-crossing. 

 

Fit of the resonances 

In Fig. 4C, we compare with theory the measured linewidth of the Andreev resonance 

as a function of the phase. The experimental data were fitted with Lorentzian 

functions appropriate for white noise. However, for 1/f noise theory predicts Gaussian 

resonances. The combination of the contributions of the three considered noise 

sources (1/f transmission noise, white and 1/f flux noise) leads to a lineshape which is 

a convolution of a Lorentzian and a Gaussian function. In order to compare with 

experiment, we proceeded as for the experimental data and fitted the calculated 

resonance with a Lorentzian function on a 300 MHz interval, to extract a linewidth.   
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Fig. S1: Microwave setup at room temperature. There are two lines to inject driving 

(“µwave1”) and measurement (“µwave0”) pulses, and one line (“µwaveOUT”) that 

carries the reflected signal at the measurement frequency. Microwave pulses are 

shaped by mixing continuous waves from the microwave sources with DC pulses 

from a 2-port arbitrary function generator. The latter and the acquisition board (ADC) 

are synchronized and triggered by an arbitrary waveform generator (Agilent AWG 

33250, not represented). In order to improve the ON-OFF contrast of the microwave 

pulses, a second AWG (not represented) is used to pulse the 1f  microwave source 

itself. 
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Fig. S2: Low temperature wiring. The three lines “µwave1”, “µwave0” and 

“µwaveOUT” correspond to those of Fig. S1. The sample is enclosed in four shields: 

the inner one is made out of epoxy loaded with brass and carbon powder, the 2
nd

 one 

out of aluminum, the 3
rd

 one out of Cryoperm, the 4
th

 one out of copper. The sample 

and the shields are thermally anchored to the mixing chamber of base temperature 

30 mK. The cryogenic microwave amplifier is a commercial HEMT (CITCRYO1-

12A-1 from Caltech) with nominal gain 32 dB and noise temperature 7 K at 10 GHz. 

A DC magnetic field is applied perpendicular to the chip using a small 

superconducting coil placed a few mm above the aluminum loop containing the 

atomic contact. Biasing is performed using a voltage source (iTest BILT BE2102) in 

series with a 200 k resistor. Filtering is provided partly by a 1  resistor placed at 

0.7 K in parallel with the coil. 
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Fig. S3: Periodicity of VNA measurements with flux. Modulus R  of reflected 

signal as a function of the current coilI  through the superconducting coil for a contact 

with several channels. The period allows calibrating the current associated with one 

flux quantum in the aluminum loop, i.e. with a 2  change in the phase   across the 

contact. The currents at which the resonance frequency (dark) presents broad maxima 

correspond to 0   modulo 2 . 
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Fig. S4: Vector network analyser (VNA) measurements of the resonator for the 

contact with 0.99217  described in the manuscript. (A) Amplitude R  of reflexion 

coefficient as a function of the probe frequency 0f  when the resonator and the 

Andreev doublet are far detuned ( 0.9  , 15.9GHzAf ), corresponding to a 

vertical cut on the left edge of Fig. 3B.  Symbols: measurement acquired at low 

power, corresponding to 0.1n  photons in the resonator and a 10Hz  acquisition 

bandwidth. Solid line: fit using 
1

2

2

1
R 1

/ 4

q

Qx q


 


 with 0 / 1Rx f f   and 

/extq Q Q . The dip signals the resonance frequency 10.134GHzRf , with total 

quality factor 2200Q   and external quality factor 4800extQ   associated with the 

coupling capacitor. (B) R  measured at   . Black curve is taken at low power (

0.1n  photons in resonator) and a 10Hz  acquisition bandwidth (corresponds to a 

cut in the middle of Fig. 3B). Image in the background is a two-dimensional 

histogram of 32000 data points taken in a single frequency sweep with a 600kHz  

bandwidth, and a larger power ( 40n  at resonance). We observe three replicas of 

the resonance as measured at 0.9   (brown symbols, same data as (A)). The 

central one corresponds to odd state o , the rightmost to g  and the leftmost (barely 

visible) to e . 
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Fig. S5: Time-resolved response of the resonator to a 2 µs-long probe pulse. Black: 

0.1 GHz-detuned pulse: complete reflection. Red: pulse at resonance frequency. After 

a loading time 2/  of the cavity, wave exiting the cavity interferes destructively 

with reflected wave. The negative signal after t=2µs corresponds to photons exiting 

the cavity after the end of the pulse. Blue: exponential fit, with decay time 

2/ 69 ns  . Total quality factor of the cavity is / 2200  Q  in agreement 

with fit of cavity resonance (see Fig. S4A). 
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Fig. S6: Data for an atomic contact different from the one in the main text. (A) Pulsed 

two-tone spectroscopy: color coded amplitude A of one quadrature of reflected signal 

as a function of   and 1f . Dashed black line: theoretical fit of Andreev transition 

frequency 2 /A Af E h  with 0.99806  . Two-photon processes (dash-dotted line 

labelled fA/2) are observed because a higher excitation power than the one used for 

Fig. 3. (B) Single-tone continuous-wave spectroscopy using a vector network analyzer 

( 0.1n ): resonator reflection amplitude R  as a function of   and 0f . Red dashed 

curves: fits of the anti-crossings using ( ) / 2 72 MHz  g . Compared to Fig. 3, this 

data was taken on a different cool-down of the sample, and the bare resonator 

frequency was 10.121 GHz. (C) Density plots of I, Q quadratures at    illustrate 

single-shot resolution of the quantum state of the dot. Top panel: no drive at 1f . 

Bottom panel: pulse results in a population transfer from g  to e .  
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Fig. S7: Data for same contact as in Fig. S6, to be compared with Fig. 4. (A) 

Spectroscopy. (B) relaxation after a -pulse. (C) Rabi oscillations (note break and 

change in scale of x-axis). (D) Ramsey fringes with 50 MHz detuning. (E) Hahn echo. 
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Fig. S8: Data for contact with channel transmission 0.99647  , to be compared 

with Fig. 4. (A) Spectroscopy. (B) relaxation after a -pulse. (C) Ramsey fringes with 

95 MHz detuning. (D) Hahn echo. 
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Fig.  S9 (snapshot from Movie S1): (Left) Density plot of I and Q quadratures for a 

380 ns-long Rabi pulse. (Right) Evolution of the populations of states g  (blue), e  

(red) and o  (green) for Rabi pulse lengths up to 380 ns. 

 

 

Movie S1: (animated Gif image, available on the Science website) Rabi oscillations 

seen in the I,Q plane, and corresponding evolution of the populations: the populations 

of the ground state ( g ) and the excited state ( e ) swap, whereas the population of 

the odd state ( o ) remains constant. Data correspond to Fig. 3C of paper, with a 

rotation in the I,Q plane. 

http://www.sciencemag.org/content/suppl/2015/09/09/349.6253.1199.DC1/aab2179s1.mov

