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Coherent manipulation of Andreev states in superconducting atomic contacts

The ground state of a uniform superconductor is a many-body coherent state. Microscopic excitations of this superconducting condensate, which can be created for example by the absorption of photons of high enough energy, are delocalized and incoherent because they have energies in a continuum of states. Localized states arise in situations where the superconducting gap Δ or the superconducting phase undergo strong spatial variations: examples include Shiba states around magnetic impurities [START_REF] Franke | Competition of Superconducting Phenomena and Kondo Screening at the Nanoscale[END_REF], Andreev states in vortices [START_REF] Caroli | Bound Fermion states on a vortex line in a type II superconductor[END_REF] or in weak links between two superconductors [START_REF] Beenakker | Josephson current through a superconducting quantum point contact shorter than the coherence length[END_REF]. Because they have discrete energies within the gap, Andreev states are expected to be amenable to coherent manipulation [START_REF] Despósito | Controlled dephasing of Andreev states in superconducting quantum point contacts[END_REF][START_REF] Zazunov | Andreev Level Qubit[END_REF][START_REF] Chtchelkatchev | Andreev Quantum Dots for Spin Manipulation[END_REF][START_REF] Zazunov | Dynamics and phononinduced decoherence of Andreev level qubit[END_REF][START_REF] Padurariu | Spin blockade qubit in a superconducting junction[END_REF]. In the simplest weak link, a single conduction channel shorter than the superconducting coherence length  , there are only two Andreev levels
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, governed by the transmission probability  of electrons through the channel and the phase difference  between the two superconducting condensates [START_REF] Beenakker | Josephson current through a superconducting quantum point contact shorter than the coherence length[END_REF]. Despite the absence of actual barriers, quasiparticles (bogoliubons) occupying these Andreev levels are localized over a distance  around the weak link by the gradient of the superconducting phase, and the system can be considered an "Andreev quantum dot" [START_REF] Zazunov | Andreev Level Qubit[END_REF][START_REF] Chtchelkatchev | Andreev Quantum Dots for Spin Manipulation[END_REF]. Figure 1 [START_REF] Pillet | Andreev bound states in supercurrent-carrying carbon nanotubes revealed[END_REF][START_REF] Zgirski | Evidence for Long-Lived Quasiparticles Trapped in Superconducting Point Contacts[END_REF][START_REF] Levenson-Falk | Single-Quasiparticle Trapping in Aluminum Nanobridge Josephson Junctions[END_REF][START_REF] Zazunov | Quasiparticle trapping, Andreev level population dynamics, and charge imbalance in superconducting weak links[END_REF]. Adding a second quasiparticle of opposite spin to the dot in state o brings it to a spin-singlet even-parity excited state e with  eA EE [START_REF] Bretheau | Exciting Andreev pairs in a superconducting atomic contact[END_REF][START_REF] Bretheau | Supercurrent Spectroscopy of Andreev States[END_REF]. The e state can also be reached directly from g by absorption of a photon of energy 2. A E

Here we demonstrate experimentally the manipulation of coherent superpositions of states g and , e even if parasitic transitions to o are also observed.

Atomic-size contacts are suitable systems to address the Andreev physics because they accommodate a small number of short conduction channels [START_REF] Scheer | Conduction Channel Transmissions of Atomic-Size Aluminum Contacts[END_REF]. We create them using the microfabricated break-junction technique [START_REF] Van Ruitenbeek | Adjustable nanofabricated atomic size contacts[END_REF]. Figure 2 presents the sample used in the experiment. An aluminum loop with a narrow suspended constriction (Fig. 2C) is fabricated on a polyimide flexible substrate mounted on a bending mechanism cooled down to 30mK [START_REF] Janvier | Superconducting atomic contacts inductively coupled to a microwave resonator[END_REF]. The substrate is first bent until the bridge breaks. Subsequent fine-tuning of the bending allows creating different atomic contacts and adjusting the transmission probability of their channels. The magnetic flux  threading the loop controls the phase drop Here we present data obtained on a representative atomic contact containing only one high transmission channel. Data from other contacts is shown in figures S6-S8. First, a twotone spectroscopy is performed by applying a 13 µs driving pulse of variable frequency, immediately followed by a 1 µs-long measurement pulse   0 10.1337 GHz f probing the resonator with an amplitude corresponding to an average number of photons 30 n (see Fig. 3A). Apart from the signal at 10 ff , the spectrum displays a resonance corresponding to the Andreev transition. The spectrum is periodic in flux, with period 0  , which allows calibrating the value of  across the contact (Fig. S3). Fits of the measured lines for different contacts with the analytical form of ( , )

A f  provide the transmission probability  of highly transmitting channels with up to five significant digits, as well as the superconducting gap

/ 44.3 GHz h 
of the aluminum electrodes.

The coupling between the resonator and the Andreev dot is evident from the avoided crossing between the two modes observed in single-tone continuous-wave spectroscopy (Fig. 3B). Fitting the data with the predictions of a Jaynes-Cummings model [START_REF] Romero | Circuit quantum electrodynamics with a superconducting quantum point contact[END_REF]20) 

 AR ff .
Remarkably, the resonance of the bare resonator is also visible for all values of the phase, signaling that on the time scale of the measurement the Andreev dot is frequently in the odd state o [START_REF] Zgirski | Evidence for Long-Lived Quasiparticles Trapped in Superconducting Point Contacts[END_REF][START_REF] Zazunov | Quasiparticle trapping, Andreev level population dynamics, and charge imbalance in superconducting weak links[END_REF][START_REF] Olivares | Dynamics of quasiparticle trapping in Andreev levels[END_REF]. [START_REF] Vijay | Observation of Quantum Jumps in a Superconducting Artificial Atom[END_REF] between the two even states and the changes of parity corresponding to the trapping and untrapping of quasiparticles in the dot (Fig. 3D). The analysis [START_REF] Greenfeld | Single Molecule Analysis Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule Data[END_REF] of this real-time trace yields a parity switching rate of 50kHz (20).

The coherent manipulation at   of the two-level system formed by g and e is illustrated in Fig. 4. Figure 4A shows the Rabi oscillations between g and e obtained by varying the duration of a driving pulse at frequency 1 ( , ) 

A ff   (Movie S1).



The expected Purcell relaxation rate arising from the dissipative impedance seen by the atomic contact (dotted line in Fig. 4E) matches the experimental results only close to the degeneracy points where

 A R
ff , but is about five times smaller at   . Based on existing models we estimate that relaxation rates due to quasiparticles [START_REF] Martinis | Energy Decay in Superconducting Josephson-Junction Qubits from Nonequilibrium Quasiparticle Excitations[END_REF][START_REF] Catelani | Relaxation and frequency shifts induced by quasiparticles in superconducting qubits[END_REF][START_REF] Kos | Frequency-dependent admittance of a short superconducting weak link[END_REF][START_REF] Pop | Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles[END_REF][START_REF] Wang | Measurement and Control of Quasiparticle Dynamics in a Superconducting Qubit[END_REF] and to phonons [START_REF] Zazunov | Dynamics and phononinduced decoherence of Andreev level qubit[END_REF][START_REF] Padurariu | Spin blockade qubit in a superconducting junction[END_REF][START_REF] Olivares | Dynamics of quasiparticle trapping in Andreev levels[END_REF] are negligible. Empirically, we fit the data at   by considering an additional phase-independent relaxation mechanism, which remains to be identified.

The linewidth of the spectroscopy line, which is a measure of the decoherence rate,

shows a minimum at   (Fig. 4C). The Gaussian decay of the Ramsey oscillations points to 1/f transmission fluctuations as the main source of decoherence at   , where the system is insensitive to first order to flux noise [START_REF] Wang | Measurement and Control of Quasiparticle Dynamics in a Superconducting Qubit[END_REF]. Fluctuations of  can arise from vibrations in the mechanical setup and from motion of atoms close to the contact. 



is not yet identified.

The Andreev quantum dot has been proposed as a new kind of superconducting qubit [START_REF] Zazunov | Andreev Level Qubit[END_REF][START_REF] Chtchelkatchev | Andreev Quantum Dots for Spin Manipulation[END_REF], which differs markedly from existing ones [START_REF] Clarke | Superconducting quantum bits[END_REF]. In qubits based on charge, flux, or phase [START_REF] Clarke | Superconducting quantum bits[END_REF] the states encoding quantum information correspond to collective electromagnetic modes, while in Andreev qubits they correspond to microscopic degrees of freedom of the superconducting condensate. Our results are a proof of concept of this new type of qubit.

Further work is needed to understand fully the sources of decoherence and to couple several qubits in multi-channel contacts [START_REF] Zazunov | Andreev Level Qubit[END_REF][START_REF] Padurariu | Spin blockade qubit in a superconducting junction[END_REF]. The Andreev quantum dot, with its parity sensitivity, is also a powerful tool to investigate quasiparticle-related limitations on the performance of superconducting qubits [START_REF] Wang | Measurement and Control of Quasiparticle Dynamics in a Superconducting Qubit[END_REF][START_REF] Vool | Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations[END_REF][START_REF] Ristè | Millisecond charge-parity fluctuations and induced decoherence in a superconducting qubit[END_REF] and detectors [START_REF] Visser | Number Fluctuations of Sparse Quasiparticles in a Superconductor[END_REF]. Furthermore, our experimental strategy could be used to explore hybrid superconducting devices in the regime where Andreev states evolve into Majorana states [START_REF] Visser | Number Fluctuations of Sparse Quasiparticles in a Superconductor[END_REF][START_REF] Mourik | Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices[END_REF][START_REF] Chevallier | From Andreev bound states to Majorana fermions in topological wires on superconducting substrates: A story of mutation[END_REF]. 

Supplementary Materials Materials and Methods

Theoretical description of the system The Hamiltonian of the system can be written as

   A R AR
H H H H , where the first term, the Andreev Hamiltonian, describes the atomic contact; the second one describes the electromagnetic resonator; and the third one accounts for the coupling between them. The Andreev Hamiltonian in the Andreev basis ( 5) is given by ( ) ( ) 
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As a result, in the region close to the degeneracy 2
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, where the rotating-wave approximation holds, the coupling Hamiltonian can be reduced to a Jaynes-Cummings model (3) Following Desposito and Yeyati (4) the relaxation rate due to the coupling to the environment can be estimated by using the expression
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In the phase region were 1

T was measured, the real part of the impedance seen from the atomic contact can be approximated by

    2 2 0 0 Re 1/ 1 /              Q env zR Q Z Q
where 0 and  Q are the total quality factor and the resonant frequency of the resonator far from the anti-crossing.

Fit of the resonances

In Fig. 4C, we compare with theory the measured linewidth of the Andreev resonance as a function of the phase. The experimental data were fitted with Lorentzian functions appropriate for white noise. However, for 1/f noise theory predicts Gaussian resonances. The combination of the contributions of the three considered noise sources (1/f transmission noise, white and 1/f flux noise) leads to a lineshape which is a convolution of a Lorentzian and a Gaussian function. In order to compare with experiment, we proceeded as for the experimental data and fitted the calculated resonance with a Lorentzian function on a 300 MHz interval, to extract a linewidth. Fig. S1: Microwave setup at room temperature. There are two lines to inject driving ("µwave1") and measurement ("µwave0") pulses, and one line ("µwaveOUT") that carries the reflected signal at the measurement frequency. Microwave pulses are shaped by mixing continuous waves from the microwave sources with DC pulses from a 2-port arbitrary function generator. The latter and the acquisition board (ADC) are synchronized and triggered by an arbitrary waveform generator (Agilent AWG 33250, not represented). In order to improve the ON-OFF contrast of the microwave pulses, a second AWG (not represented) is used to pulse the 1 f microwave source itself.

Fig. S2: Low temperature wiring. The three lines "µwave1", "µwave0" and "µwaveOUT" correspond to those of Fig. S1. The sample is enclosed in four shields: the inner one is made out of epoxy loaded with brass and carbon powder, the 2 nd one out of aluminum, the 3 rd one out of Cryoperm, the 4 th one out of copper. The sample and the shields are thermally anchored to the mixing chamber of base temperature 30 mK. The cryogenic microwave amplifier is a commercial HEMT (CITCRYO1-12A-1 from Caltech) with nominal gain 32 dB and noise temperature 7 K at 10 GHz. A DC magnetic field is applied perpendicular to the chip using a small superconducting coil placed a few mm above the aluminum loop containing the atomic contact. Biasing is performed using a voltage source (iTest BILT BE2102) in series with a 200 k resistor. Filtering is provided partly by a 1  resistor placed at 0.7 K in parallel with the coil. photons in resonator) and a 10 Hz acquisition bandwidth (corresponds to a cut in the middle of Fig. 3B). Image in the background is a two-dimensional histogram of 32000 data points taken in a single frequency sweep with a 600 kHz bandwidth, and a larger power ( 40 n at resonance). We observe three replicas of the resonance as measured at 0.9

 

(brown symbols, same data as (A)). The central one corresponds to odd state o , the rightmost to g and the leftmost (barely visible) to e . Fig. S5: Time-resolved response of the resonator to a 2 µs-long probe pulse. Black: 0.1 GHz-detuned pulse: complete reflection. Red: pulse at resonance frequency. After a loading time 2/ of the cavity, wave exiting the cavity interferes destructively with reflected wave. The negative signal after t=2µs corresponds to photons exiting the cavity after the end of the pulse. Blue: exponential fit, with decay time . Two-photon processes (dash-dotted line labelled f A /2) are observed because a higher excitation power than the one used for 

  and thereby the Andreev transition frequency ( , ) 2 / flux quantum, h Plank's constant). To excite and probe the Andreev dot, the loop is inductively coupled to a niobium quarter-wavelength microwave resonator (17) (Fig.2B) in a circuit quantum electrodynamics architecture[START_REF] Wallraff | Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[END_REF][START_REF] Romero | Circuit quantum electrodynamics with a superconducting quantum point contact[END_REF]. The resonator is probed by reflectometry at frequency 0 f close to its bare resonance frequency 10is different for each one of the three Andreev dot states: in the odd state, the resonance frequency is unaltered while the two even states lead to opposite shifts around R f (20). The Andreev transition  ge is driven using a second tone of frequency 1 f . Details of the setup are shown in figures S1 and S2 (20).

Figure

  Figure3Cshows the histograms of the reflected signal quadratures I,Q for a sequence

f. 1 T

 1 Figure 4B shows how the populations of g and e change when the driving pulse frequency 1  . After a  -pulse the populations relax exponentially back to equilibrium with a relaxation time   1/e of detuned Ramsey fringes (Fig. 4F) provides a measurement of the coherence time This short coherence time is mainly due to low-frequency (<MHz) fluctuations of the Andreev energy ( , ) A E  , as shown by the much longer decay time Hahn echo (Fig. 4G). Measurements at   on other contacts with the same sample, with transmissions corresponding to a mostly around 4 µs (up to 8.5 µs), 2 T  around 40 ns (up to 180 ns) and 2 T around 1 µs (up to 1.8 µs), but no clear dependence of the characteristic times on  is observed (Fig. S7 and S8).

Figure 4E shows the measured relaxation rate 1 1 1 T

 1 Figure4Eshows the measured relaxation rate 1

  Figure 4Calso shows the linewidths calculated assuming 1/f transmission noise and both white and 1/f flux noise (20). The amplitude of the 1/f transmission noise, adjusted to fit the measurement at   . The amplitudes of the white and 1/f flux noise were then obtained from a best fit of the linewidth phase dependence. The extracted 1/f noise amplitude ( ) is a typical value for superconducting devices and has a negligible effect to second order[START_REF] Makhlin | Dephasing of Solid-State Qubits at Optimal Points[END_REF]. The source of the apparent white flux noise
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 1 Fig.1 Single channel Andreev quantum dot. (A) Energy levels: Two discrete Andreev

Fig. 2 .

 2 Fig.2. Measurement setup of a superconducting atomic contact in a microwave

Fig. 3 .

 3 Fig. 3. Spectroscopy and quantum jumps. (A) Pulsed two-tone spectroscopy: color coded

Fig. 4 . 1 fthe two 2 

 412 Fig. 4. Coherent manipulation of Andreev quantum dot states at   . Color dots show

  where ˆz is a Pauli matrix acting in the | , |  ge space. The electromagnetic resonator is treated as a discrete single-mode oscillator described by † aa are the creation (annihilation) photon operators. The term describing the coupling between the atomic contact and the resonator (up to first order) is given by is the transmission line current operator at the position of the atomic contact and ˆ()

  coupling parameter. Fitting the anti-crossing depicted in Fig.3Bwe obtain ( the resonator (Purcell effect)

Fig. S3 :

 S3 Fig. S3: Periodicity of VNA measurements with flux. Modulus R of reflected signal as a function of the current coil I through the superconducting coil for a contact with several channels. The period allows calibrating the current associated with one flux quantum in the aluminum loop, i.e. with a 2 change in the phase  across the contact. The currents at which the resonance frequency (dark) presents broad maxima correspond to 0   modulo 2 .

Fig. S4 :

 S4 Fig. S4: Vector network analyser (VNA) measurements of the resonator for the contact with 0.99217   described in the manuscript. (A) Amplitude R of reflexion coefficient as a function of the probe frequency 0 f when the resonator and the

  fit of cavity resonance (see Fig.S4A).

Fig. S6 :

 S6 Fig. S6: Data for an atomic contact different from the one in the main text. (A) Pulsed two-tone spectroscopy: color coded amplitude A of one quadrature of reflected signal as a function of  and 1 f . Dashed black line: theoretical fit of Andreev transition

Fig. 3 ..

 3 (B) Single-tone continuous-wave spectroscopy using a vector network analyzer ( 0.1 n ): resonator reflection amplitude R as a function of  and 0 f . Red dashed curves: fits of the anti-crossings using ( ) Compared to Fig.3, this data was taken on a different cool-down of the sample, and the bare resonator frequency was 10.121 GHz. (C) Density plots of I, Q quadratures at   illustrate single-shot resolution of the quantum state of the dot. Top panel: no drive at 1 f . Bottom panel: pulse results in a population transfer from g to e .

Fig. S7 :

 S7 Fig. S7: Data for same contact as in Fig. S6, to be compared with Fig. 4. (A) Spectroscopy. (B) relaxation after a -pulse. (C) Rabi oscillations (note break and change in scale of x-axis). (D) Ramsey fringes with 50 MHz detuning. (E) Hahn echo.

Fig. S8 :

 S8 Fig. S8: Data for contact with channel transmission
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