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Review on the Brownian Dynamics Simulation of
Bead-Rod-Spring Models encountered in Computational
Rheology

C. Cruz · F. Chinesta · G. Régnier

Abstract Kinetic theory is a mathematical framework
intended to relate directly the most relevant charac-
teristics of the molecular structure to the rheological
behaviour of the bulk system. In other words, kinetic
theory is a micro-to-macro approach for solving the
flow of complex fluids that circumvents the use of clo-
sure relations and offers a better physical description of
the phenomena involved in the flow processes. Corner-
stone models in kinetic theory employ beads, rods and
springs for mimicking the molecular structure of the
complex fluid. The generalized bead-rod-spring chain
includes the most basic models in kinetic theory: the
freely jointed bead-spring chain and the freely-jointed
bead-rod chain. Configuration of simple coarse-grained
models can be represented by an equivalent Fokker-
Planck (FP) diffusion equation, which describes the
evolution of the configuration distribution function in
the physical and configurational spaces. FP equation
can be a complex mathematical object, given its mul-
tidimensionality, and solving it explicitly can become a
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difficult task. Even more, in some cases, obtaining an
equivalent FP equation is not possible given the com-
plexity of the coarse-grained molecular model. Brow-
nian dynamics can be employed as an alternative ex-
tensive numerical method for approaching the config-
uration distribution function of a given kinetic-theory
model that avoid obtaining and/or resolving explicitly
an equivalent FP equation. The validity of this discrete
approach is based on the mathematical equivalence be-
tween a continuous diffusion equation and a stochas-
tic differential equation as demonstrated by Itô in the
1940s. This paper presents a review of the fundamental
issues in the BD simulation of the linear viscoelastic
behaviour of bead-rod-spring coarse grained models in
dilute solution. In the first part of this work, the BD
numerical technique is introduced. An overview of the
mathematical framework of the BD and a review of the
scope of applications are presented. Subsequently, the
links between the rheology of complex fluids, the ki-
netic theory and the BD technique are established at
the light of the stochastic nature of the bead-rod-spring
models. Finally, the pertinence of the present state-of-
the-art review is explained in terms of the increasing
interest for the stochastic micro-to-macro approaches
for solving complex fluids problems. In the second part
of this paper, a detailed description of the BD algo-
rithm used for simulating a small-amplitude oscillatory
deformation test is given. Dynamic properties are em-
ployed throughout this work to characterise the linear
viscoelastic behaviour of bead-rod-spring models in di-
lute solution. In the third and fourth part of this ar-
ticle, an extensive discussion about the main issues of
a BD simulation in linear viscoelasticity of diluted sus-
pensions is tackled at the light of the classical multi-
bead-spring chain model and the multi-bead-rod chain
model, respectively. Kinematic formulations, integra-



tion schemes and expressions to calculate the stress ten-
sor are revised for several classical models: Rouse and
Zimm theories in the case of multi-bead-spring chains,
and Kramers chain and semi-flexible filaments in the
case of multi-bead-rod chains. The implemented BD
technique is, on the one hand, validated in front of the
analytical or exact numerical solutions known of the
equivalent FP equations for those classic kinetic theory
models; and, on the other hand, is control-set thanks
to the analysis of the main numerical issues involved in
a BD simulation. Finally, the review paper is closed by
some concluding remarks.

Keywords Brownian dynamics · Kinetic theory ·
Linear viscoelasticity

Notes on Notation

Scalars Lightface
Vectors and Tensors Boldface
(A)ij Component ij of tensor A
(A)t Tensor or vector A at instant t

1 Introduction

This paper presents a state-of-the-art review of the nu-
merical methods in Brownian dynamics used to model
the rheological behaviour of bead-rod-spring models.
Generalized bead-rod-spring models are coarse-grained
representations of the molecular structure of complex
fluids. In addition, bead-rod-spring models are the cor-
nerstone of the kinetic theory; a formal framework that
try to explain the flow dynamics of non-Newtonian flu-
ids by relating the molecular structure with the bulk
flow behaviour. In order to reveal the intrinsic dynamic
response of those coarse-grained models this article fo-
cuses on the linear viscoelastic behaviour of their di-
lute solutions, where inter-molecular interactions are
neglected.

This introductory section is decomposed in three
parts. In the first one, a general view of the Brown-
ian dynamics framework and its scope of applications
are presented. In the second section, a brief outline
about the rheology of complex fluids followed by its
relation with the kinetic theory is presented. The in-
herent stochastic nature of the coarse-grained models
is revealed establishing a connection with the Brown-
ian dynamics technique. Finally, in the third section a
line of argument is developed to show the interest of us-
ing the stochastic approach when solving kinetic theory
problems.

1.1 Brownian Dynamics Modelling

A mathematical representation of all physical phenom-
ena occurring in the physical world cannot be treated
efficiently using only one kind of model. In general, the
choice of a given modelling approach depends on the
time and length scales involved in the phenomenon. For
example, quantum mechanics is a suitable model for
representing the physical phenomena occurring at the
level of quantum particles and atomic sub-particles, but
probably the quantum mechanics framework is not the
more convenient choice to model a tensile relaxation
test in a polyethylene film. Today, quantum mechan-
ics is the finest description of the physical behaviour of
matter. Going up in length and time scales of modelling
requires different mathematical formulations with the
aim of encapsulate the phenomena occurring at finer
scales. For example, between the molecular and macro-
scopic scales, models must contain a mathematical ar-
chitecture taking into account the rapid oscillations oc-
curring at lower scales (i.e. atoms, smaller molecules or
smaller particles). Brownian dynamics (BD) is precisely
one of the mathematical frameworks employed for rep-
resenting the physics at the micro-meso scale (1nm -
10µm). In BD the rapid thermal oscillations at lower
scales are tackled as a stochastic variable [1].

The historical motivation that inspired the develop-
ment the Brownian dynamics framework was the pub-
lication of the Robert Brown’s observations about the
random motion of pollen particles in water. The irreg-
ular path described by those pollen particles was ex-
plained afterwards as the result of random thermal col-
lisions between pollen particles and water molecules. By
the way, a mathematic formalism describing the motion
of a particle submitted to stochastic forces was intro-
duced by the French physicist Paul Langevin [2]. In fact,
a general differential stochastic equation is also known
as a Langevin equation. Considering a Brownian parti-
cle (in the large sense, i.e. a discrete portion of mat-
ter submitted to stochastic forces coming from the sur-
rounding homogeneous media) of mass M , the instan-
taneous general Langevin equation of motion writes:

M r̈ = −∇U (r)− ςM ṙ + ςMκ (r) + F(b) (1)

where r is the particle position, ς is the specific friction
coefficient, κ is the homogenous velocity gradient com-
ing from the suspension at the position of the particle,
U is the sum of all the particle interaction potentials
(e.g. mechanical, electrostatic, magnetic) and F(b) is the
Brownian force acting on the particle. This last variable
confers to the differential equation its stochastic nature.
Keeping in mind that F(b) is originated from indepen-
dent thermal collisions with the surrounding particles;



the central limit theorem conduct intuitively to think
that F(b) behaves following a Gaussian process. A for-
mal definition of F(b) in coherence with the stochastic
calculus framework writes as follows:

F(b)
t =

√
2kBTςM

d (W)t
dt

(2)

where kB is the Boltzman’s constant, T is the absolute
temperature and (W)t is a Wiener process at instant
t. (W)t is a well-defined Gaussian process itself, hence
can be defined by the first and second moments of its
distribution:

〈(W)t〉 = 0 (3)〈
(W)t1 ⊗ (W)t2

〉
= min (t1, t2) δ (4)

where 〈. . .〉 represents an ensemble average and δ is the
unit tensor. In a BD simulation, we are rather interested
in the numerical implementation of a multi-dimensional
increment of a Wiener process ∆Wtt′ = (W)t− (W)t′ .
Using the central limit theorem, it can be demonstrated
that those increments are independent and follow also
a Gaussian distribution with the next moments:

〈(W)t − (W)t′〉 = 0 (5)

〈((W)t − (W)t′)⊗ ((W)t − (W)t′)〉 = |t− t′| δ (6)

When implementing an explicit integration of a D-
dimensional Wiener process (defined in an orthogonal
basis) in the time interval [0, tn], equi-partitioned in
n intervals of size ∆t = ti − ti−1, it is just neces-
sary to define the initial value of the Wiener process,
(W)0 = 0, and calculate iteratively the increments as
follows: (W)ti = (W)ti−1

+ (∆W)ti ti−1
, where each

component of ∆Wti ti−1 is obtained from an indepen-
dent one-dimension normal distribution N (0, ∆t).

Definition of the stochastic Brownian force given in
(2) is coherent with the principle of equi-partition of en-
ergy, the fluctuation-dissipation theorem (in the sense
that frictional force depends only on the instantaneous
local velocity) and the formalisms of stochastic calculus
[3].

Brownian dynamics is a limit case of the Langevin
dynamics framework. In BD the inertial effects are ne-
glected; in other words, BD supposes that no aver-
age acceleration takes place on the Brownian particle.
In some physical sciences Brownian dynamics is also
known as overdamped Langevin dynamics. Non-inertia
assumption is justified in the insignificance of the in-
ertial forces coming from small-mass particles in front
of the viscous and thermal forces acting on the same
particle. Brownian dynamics equation of motion for a
Brownian particle writes therefore as follows:

0 = −∇U (r)− ςM ṙ + ςMκ (r) +√
2kBTςM

d (W)t
dt

(7)

Defining ζ = Mς as the friction coefficient and D =
kBT/ζ as the diffusion coefficient of the particle, the
instantaneous velocity of the Brownian particle can be
written as follows:

ṙ =
−∇U (r)

ζ
+ κ (r) +

√
2D

d (W)t
dt

(8)

Brownian dynamics simulations have been used in-
tensively to study the physics of different kind of macro-
molecules and soft matter systems [4], as for example,
the rheological behaviour of polymer [5,6,7,8,9,10], the
dynamics of proteins and DNA [11,12,13,14], the flow
behaviour of colloids [15,16,17,18,19,20,21], the struc-
tural dynamics of liquid-crystals [22,23] and the dy-
namics of carbon nanotubes [24,25,26,27].

1.2 Rheology of Complex Fluids and Kinetic Theory

A comprehensive theoretical modelling of the problems
in fluid dynamics requires a suitable formulation of the
constitutive equation for the momentum flux or stress
tensor. Flow of complex fluids differs from that one
occurring in classical Newtonian fluids because it can-
not be described by using a simple viscous constitutive
equation. In fact, the mechanical response of a complex
fluid to a given deformation appears to be viscoelas-
tic, in other words, the complex fluid exhibits a me-
chanical behaviour intermediate between perfect elas-
tic solid and a perfect viscous liquid. Two viscoelastic
regimes can be identified in function of the imposed
strain. If the viscoelastic response is independent of the
applied strain then we assist to the linear viscoelastic
behaviour. This mechanical regime is typically associ-
ated with very small deformations. On the other hand,
when the viscoelastic response depends on the applied
strain, then we fall in the non-linear viscoelastic regime.
This paper is particularly focused on linear viscoelas-
ticity because this mechanical regime constitutes the
natural first approach in a rheological modelling frame-
work.

The main aim of rheology consists to establish a
suitable constitutive equation that relates stress and
strain tensors for a given fluid and, sometimes, for a
particular kind of flow. Kinetic theory in complex flu-
ids is an exhaustive mathematical framework that looks
for explaining the bulk flow phenomena based on the
molecular structure of the fluid system. In that sense,



kinetic theory is one of the tools employed by rheolo-
gists for generating suitable constitutive equations for
non-Newtonian fluids. Formal framework in kinetic the-
ory is built on coarse-grained representations of the
molecular structure involved in the flow phenomena.
Historically, the former coarse-grained molecular mod-
els appeared to emulate the polymer molecular struc-
ture. That explains why frequently the literature makes
reference to polymer kinetic theory.

The coarse-grained molecular models in kinetic the-
ory constitute a first attempt to relate the molecu-
lar structure to the bulk flow mechanics. Basic coarse-
grained models emulate the most relevant character-
istics of the molecular structure using beads, rods and
springs as constitutive blocks. In what follows, an overview
about the origins of bead-rod and the bead-spring mod-
els is illustrated based on the descriptions made by Bird
et al elsewhere [28].

1.2.1 Bead-Rod Model

Bead-rod models were proposed to emulate the struc-
ture of linear polymer chains. The first natural repre-
sentation consisted in neglecting the pendant atoms or
groups linked to the central chain and replacing this
central chain by a series of beads and mass-less rods,
where beads represent the constitutive atoms of the
central chain and rods represent the chemical bonds be-
tween them. At this level of representation, the stochas-
tic nature of the coarse-grained model emerges because
all possible thermal interactions with the solvent molecules
are reduced to an instantaneous stochastic force acting
on each bead. Adjacent bonds in a linear polymer chain
are restricted to very narrow intervals of solid angle val-
ues due to sterical hindering [29]. Based on this physical
argument bead-rod chain model with fixed solid angles
and restricted bond-rotation was proposed.

A simpler model considers that the rotational hin-
drances can be neglected, but the solid angles between
adjacent rods are maintained. This representation is
known as the freely rotating chain model. A complete
series of articles about the non-equilibrium dynamics
of the freely rotating chain model has been published
before [30].

An even coarse-grained bead-rod model neglect any
rotating and bending hindering between adjacent rods.
This model is known as the freely jointed multi-bead-rod
chain or, simply, Kramers chain. In this case, beads do
not represent central chain atoms, but a portion of the
polymer chain, typically 10-20 monomer units. In short,
a Kramers chain can be described as an ensemble of n
beads linked by n−1 rods of length a (see Fig. 1), where
each bead is characterised by a drag coefficient ζ.

Fig. 1 Freely-jointed multi-bead-rod model composed of n
beads and n− 1 rods of length a

It has been demonstrated that supposing a random-
walk distribution for the Kramers chain configuration
the mean-square end-to-end distance of the chain at
equilibrium writes (see for example [31]):〈
r2
〉
eq

= a2 (n− 1) (9)

On the other hand, using a thermodynamic approach,
it was shown that the average tension in a Kramers
chain suspended in a solvent bath at temperature T
and extended to a fixed end-to-end vector r (whose
norm does not exceed one half of the contour length
of the bead-rod chain) writes as follows [28]:

F(c) (r) =
3kBT

a2 (n− 1)
r (10)

It is important to point out that previous expression
is only exact when supposing a random-walk distribu-
tion for the configuration distribution function of the
constitutive rods. In fact, this condition is only true
for a large number of beads n [28]. It means that a
3-dimensional freely-jointed multi-bead-rod model be-
haves mechanically as a Hookean spring of null natural
length with a spring constant H equals to:

H =
3kBT

a2 (n− 1)
=

3kBT
〈r2〉eq

(11)

1.2.2 Bead-Spring Model

Based on the characteristics of the mechanical behaviour
of a freely-jointed multi-bead-rod chain, it seemed nat-
ural to propose another up-level of coarse-graining for
representing the structure of linear polymer chains. Ac-
tually, a linear polymer chain can be modelled as a
series of springs, where each spring represents several
hundreds of central chain atoms. Springs are linked by
beads that concentrate masses and friction effects asso-
ciated to the replaced central chain atoms. This model
is called the freely-jointed multi-bead-spring chain (see



Fig. 2). In principle, constitutive springs have null natu-
ral length, but simulations with non-zero natural length
springs (e.g. Fraenkel-type) are also frequently employed.
Several disadvantages appear at this level of coarse-
graining; for instance, contour length is no more con-
stant and, furthermore, if the spring potential is sup-
posed Hookean, the chain can be infinitely extended,
something that is physically unrealistic.

Fig. 2 Freely-jointed multi-bead-spring model composed of
n beads and n− 1 springs (T > 0 K)

Considering a freely-jointed multi-bead-spring chain
constituted of n beads linked by n−1 springs, it results
not surprising that the average end-to-end distance at
equilibrium be an extension of the analogue expression
derived for the freely-jointed multi-bead-rod model:〈
r2
〉
eq

=
3kBT (n− 1)

H
(12)

In spite of the multi-bead-rod-spring models were ini-
tially developed in the framework of the polymer kinetic
theory, those coarse-grained representations has been
extended to model a vast kind of systems, including
proteins, DNA, virus and carbon nanotubes. As men-
tioned before, this article will be focused on the BD
simulation of the linear viscoelastic behaviour of the
bead-rod-spring models in absence of inter-molecular
interactions (hypothesis of infinitely diluted solution).

One can consider two different approaches when tack-
ling with kinetic theory models in micro-to-macro sim-
ulations: a deterministic and a stochastic one. On the
one hand, the deterministic approach deals with the
direct solving of the FP equation at the expense of
that the FP equation can be effectively formulated. FP
or diffusion equation is a deterministic partial differ-
ential equation describing the evolution of the proba-
bility density function (in configurational space) of a

given coarse-grained model. On the other hand, the
stochastic approach proposes an extensive analysis of
a representative population of coarse-grained models
and the estimation of macroscopic properties by prop-
erly averaging the physical state of the population un-
der consideration. Stochastic approach is conceivable
for all coarse-grained kinetic theory models, even for
those that do not have an equivalent FP equation. This
paper presents the main issues of the latter approach by
using a BD simulation tool for predicting the dynamic
behaviour of bead-rod-spring models in solution.

1.3 The Interest of the Stochastic Approach

A natural question that appears when dealing with
flows of complex fluids is why to prefer using an ex-
tensive (and probably costly) method for integrating
the FP diffusion equation of a given molecular model.
An immediate answer to such question is simply that
in some cases a FP diffusion equation is not available
given the complexity of the coarse-grained model and,
hence, the stochastic approach is the only method for
accessing to the dynamic behaviour of the molecular
model.

On the other hand, in the classical framework of the
kinetic theory, the equations of motion for the differ-
ent constitutive blocks in a given coarse-grained model
(beads, rods, springs) added to the continuity equation
for the configurational distribution function can be used
to build a FP diffusion equation. The common utility of
this deterministic diffusion equation consists in recover
the exact physical response of the system when sub-
mitted to a given external flow field by integrating the
FP equation in the configurational space and in time (if
looking for dynamic properties) in order to develop con-
stitutive equations. Normally, those constitutive equa-
tions are employed a posteriori to calculate more com-
plex flows by using a continuum mechanics framework.
The crucial point in the previously described process
lies on the mathematical method employed for integrat-
ing the diffusion equation given its multidimensional
character. FP equation is a multidimensional function
that depends on time and all the space coordinates cho-
sen to define the configuration of the coarse-grained
molecular model. It is necessary to point out that there
is a vast collection of numerical strategies developed to
solve this problematic integration [32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49].

However, it appears that the stochastic approach for
solving the dynamics of coarse-grained models (even for
those that have an equivalent FP diffusion equation) is
employed more and more. In this case, we deal directly
with the stochastic differential equation of motion for



each coarse-grained system. In order to evaluate a given
physical property, an average over a finite population of
model systems has to be performed (in analogy to the
integration of an equivalent FP equation in the config-
urational space). The main difficulties emerging with
this approach are the associated stochastic noise, the
low convergence order and the computational cost re-
quired to overcome the first two mentioned issues. Nev-
ertheless, the growing-up leaning for tackling with the
stochastic approach is due mainly to four reasons: 1)
the dealing with complex coarse-grained structural de-
scriptions that have not an equivalent FP formulation,
2) the enhanced possibility of enrich a given coarse-
grained model by analyzing its configurational evolu-
tion under designed flow conditions, 3) the raising ca-
pacities of the computational tools that reduce simu-
lation times, and 4) the interesting idea of resolving
viscoelastic flow engineering problems without resort-
ing to closed-forms of the constitutive equations for the
stress tensor. This last idea means to establish micro-
to-macro simulations where the configuration state of
a population of coarsed-grained systems lets to calcu-
late the stress field, allowing to compute the evolution
of the flow field and, subsequently, to update the con-
figurational space of coarse-grained models by solving
the stochastic differential equations of motion [50,51,
52,53,54,55,56].

Given the actual interest in the stochastic approach
for solving the micro-to-macro modelling of viscoelastic
flows, it is pertinent to review the fundamental numer-
ical aspects associated with the solution of the differen-
tial stochastic equations for the simplest models in the
kinetic theory framework. In that way, this paper anal-
yses the main issues about the implementation of BD
simulations for the bead-spring and bead-rod models.
BD simulations in this paper are focused on predict-
ing the dynamic response of dilute solutions of those
coarse-grained kinetic theory models in the framework
of linear viscoelasticity.

2 A Brownian Dynamics Algorithm for
Simulating Linear Viscoelastic Behaviour

From now on, an extensive Brownian dynamics mod-
elling is systematically used to predict the dynamic re-
sponse of a given bead-rod-spring chain model highly
diluted within a Newtonian solvent. A classical rheo-
logical test used in linear viscoelasticity is simulated:
a dynamic test of small-amplitude oscillatory deforma-
tion. Suspension is supposed confined between two par-
allel infinite-plates in the case of 3D simulations (see
Fig. 3). In the case of 2D simulations, bead-rod-spring

chain models are supposed confined in a plane xz of
Fig. 3.

Fig. 3 Parallel infinite plates where BD simulations in shear
rheology are carried out. Upper plate slides in relation to the
lower one along the x axis for homogeneously shearing the
fluid confined in between

Oscillatory strain function is imposed by the rela-
tive sliding movement of the plates (or bars); inducing
a homogeneous deformation within the suspension con-
fined between the plates (or bars). Rheological response
is supposed coming mainly from the bulk of the suspen-
sion, therefore wall and free-surface effects are ignored.
Rheological properties are calculated from a properly
defined average over N chain models, where N is the
number of bead-rod-spring elements in the stochastic
simulation. By the way, number of freedom degrees in
the Brownian dynamics simulation is proportional to
N . As suspension is supposed highly diluted, no inter-
action effects are considered between chain models and,
hence, no computational storage of the relative posi-
tions between chains is necessary. A general flowchart
of the algorithm intended to simulate a frequency sweep
test in linear regime is presented in Fig. 4.

The first step consists to obtain a configuration in
thermal equilibrium. No external flow is imposed. Con-
figuration of the BD system (N bead-rod-spring mod-
els) evolves in time under the action of the forces com-
ing from the friction with the solvent, the internal en-
ergy potentials and the thermal interaction with the
solvent molecules (Brownian effect). Time integration
in this equilibrium stage is carried out until at least
one of two criteria is satisfied: stabilization of the stored
internal energy (when it can be estimated) or integra-
tion during at least three times the longest characteris-
tic time associated with an equivalent bead-rod-spring
chain whose FP equation has an analytical solution. For
instance, as internal energy is not accessible for freely-
jointed bead-rod models, equilibrium step is carried out



Fig. 4 Flowchart of the general BD algorithm
for simulating a small-amplitude oscillatory de-
formation test

during three times the rotational time of an equivalent
multi-bead rigid-rod with the same length.

Once the equilibrium configuration of the BD sys-
tem has been obtained, the dynamic strain function
γ = γ0 sinωt can be applied, where γ0 is a deforma-
tion within the linear regime. Frequency sweep test is
carried out on a finite number of frequencies homo-
geneously distributed in logarithmic scale between the
lowest frequency ω1 and the highest frequency ωn. The
BD prediction of the complex modulus at each tested
frequency is composed of two steps. First, a dynamic
stabilisation of the BD system is carried out either un-
til internal energy dynamic stabilization or during at
least three times the longest characteristic time of an
equivalent bead-rod-spring model before starting the
second stage, called analytical step, in which the BD-
calculated shear-stress signal is stored during one-and-
a-half periodic oscillations. This signal is used as entry
variable in a fitting toolbox with the aim to determine
the parameters (τ0, δ) of a smooth shear-stress func-
tion τ = τ0 sin (ωt+ δ) by using a Newton-based error-
minimization methodology. Dynamic complex modulus
at each frequency is then computed easily in the next
way:

G∗ (ω) = G′ (ω) + iG′′ (ω) =
τ0
γ0

cos δ + i
τ0
γ0

sin δ (13)

where G′ is the storage modulus and G′′ is the loss
modulus.

3 BD of Generalized Bead-Spring Models

Even though the multi-bead-rod model appeared chro-
nologically earlier than the multi-bead-spring model,
this latter is tackled preliminarily here because it offers
a simpler mathematical structure that is reflected im-
mediately on the simplicity of the BD numerical meth-
ods associated with. In addition, due probably to the
simpler mathematic formalisms, the multi-spring-bead
model has been more recurrently employed to model
the dynamics of complex fluids.

3.1 Kinematic and Dynamic Formulation

Let consider the multi-bead-spring chain model in Fig.
2. In what follows, a multi-bead-spring chain is consti-
tuted of n beads joined by n− 1 non-bendable springs.
The instantaneous position of each bead is defined in a
coordinate reference system by the vector ri. An alter-
native way for describing the position and the orienta-
tion of the multi-bead-spring chain is possible defining
the centre of masses of the chain, rc and the connector
vector Qi between consecutive beads:

rc =
1
n

n∑
i=1

ri (14)

Qi = ri+1 − ri (15)



Multi-bead-spring chain is supposed suspended into
a solvent at temperature T . Solvent is considered a
Newtonian fluid with viscosity ηs. Concentration of the
multi-bead-spring chain is defined in terms of the den-
sity of chains, c chains per volume unit. As the solution
is supposed highly diluted no interaction between multi-
bead-spring chains is considered. Moreover, flow field in
the overall suspension is supposed homogeneous, in the
meaning that the rate-of-strain tensor is the same in all
points of the flow field or, at least, in the scale of twice
the contour length of the multi-bead-spring chain [28].

In the kinematic formulation of this kind of coarse-
grained model is presumed that all changes of momen-
tum are concentrated on beads. Furthermore, an as-
sumption of inertia-less is employed; due to the insignif-
icance of inertial forces (small masses) with respect to
friction and thermal forces acting on them. In what fol-
lows a detailed description of the forces acting on beads
is presented.

• Hydrodynamic drag force acting on bead i, F(h)
i

This force describes the resistance experienced by
the bead as it moves through the fluid. One of the
simplest ways to express this force is given by the
Stoke’s law, which considers the hydrodynamic drag
force proportional to the difference between the fluid
velocity at the bead position and the averaged bead
velocity. A more general expression takes into ac-
count a hydrodynamic interaction component that
comes from the physical perturbation of the local
flow field due to the global chain movement. Hy-
drodynamic drag force acting on bead i writes as
follows:

F(h)
i = ζ

(
κ (ri) · ri + v

′

i − ṙi
)

(16)

where ζ is a second-order friction tensor, κ is the
gradient of the bulk velocity field and ṙi is the av-
eraged instantaneous bead velocity. On the other
hand, v

′

i accounts for the variation in the local flow
field around ri due to the motion of the other beads
in the same chain.
In polymer kinetic theory, Rouse model neglects this
intra-molecular interaction (i.e. v

′

i = 0); resorting
to the well-known free draining motion hypothesis
[57]. On the other hand, theories taking into account
the hydrodynamic interaction suppose that the bead
velocity v

′

i depends linearly on the hydrodynamic
forces acting on the others beads inside the chain:

v
′

i = −
∑
j

Ωij · F(h)
j (17)

where Ωij is the Oseen-Burgers hydrodynamic in-
teraction tensor associated with a given pair of beads

i and j. Say that the perturbation of a velocity field
in a given point of the space depends linearly on the
hydrodynamic forces acting in the surroundings of
that point presupposes a Maxwellian velocity dis-
tribution [28]. Oseen-Burgers hydrodynamic tensor
writes as follows:

Ωij =
1

8πηsrji

(
δ +

rji ⊗ rji
r2ji

)
for i 6= j (18)

where rji = ri − rj and rji = ‖rji‖. On the other
hand, Ωii = 0. Zimm model, in the context of poly-
mer kinetic theory, takes into account the hydro-
dynamic interaction effect using the equilibrium-
averaged Oseen-Burgers tensor [58]:

〈Ωij〉eq =
1− δij
6πηs

〈
1
rji

〉
eq

δ for i 6= j (19)

where δij is the Kronecker delta.
• Intra-molecular force acting on bead i, F(φ)

i

This force corresponds to the sum of all the spring
forces acting on bead i. In a multi-bead-spring chain,
total intra-molecular force on bead i writes as fol-
lows:

F(φ)
i =

n−1∑
j=1

(δij − δi j+1) F(c)
j (20)

where F(c)
j = ∂φj/∂Qj is the connector force acting

on bead j along spring j, defined as the gradient of
the spring potential energy φj . Linear force law is
the simplest connector force:

F(H)
i =

∂φ
(LIN)
i

∂Qi

=
∂

∂Qi

(
1
2
H
(√

Qi ·Qi

)2
)

= HQi (21)

Previous Hookean-type law force is based on the en-
tropic analysis over a tighten random-walk polymer
chain. H is a Hookean spring constant that can be
related to temperature and some molecular struc-
tural parameters (see §1.2.1). The linear law force
is only valid for large polymer chains and small
strain regimes. Hence, Hookean law force is inad-
equate for processes involving large deformations.
This fact motivated the use of non-linear force laws,
for instance:
− Finite extensible non-linear elastic (FENE) force

law [59]

F(FENE)
i =

HQi

1− (Qi/Qi,0)2
(22)

where Qi = ‖Qi‖ and Qi,0 is the maximal ex-
tension of the spring.



− Inverse Langevin (IL) force law [60]

F(IL)
i =

kBT

a
L−1

[
Qi

Qi,0

]
(23)

where a is typically twice the persistence length
lp and the Langevin function L is given by L (x) =
coth (x) − x−1. Persistence length in a polymer
molecule is a measure of the flexibility of the
chain; in other terms, the direction of the chain-
axis in a quiescent polymer molecule is uncorre-
lated only along contour length distances equal
or higher than 2lp.

− Worm-like chain (WLC) force law [61]

F(WLC)
i =

kBT

a

[
1
2

1
(1−Qi/Qi,0)2

− 1
2 + 2Qi

Qi,0

]
Qi

Qi,0
(24)

A comparison of the various spring-force laws is
presented in Fig. 5. Observe that FENE-like force
laws are linear at small extensions and tends to infi-
nite when extension approaches the finite maximal
length.

Fig. 5 Curves of the spring connector force
∣∣F(φ)

∣∣ in func-
tion of the reduced spring extension for several spring force
laws employed in polymer kinetic theory

• Brownian force acting on bead i, F(b)
i

The Brownian force accounts for the change of mo-
mentum at each bead (supposed as Brownian par-
ticles) due to the ensemble of instantaneous col-
lisions of the solvent molecules against it. In na-
ture, those collisions are faster than the bead mo-
tion, that is why Brownian forces are considered as
stochastic variables in the BD time scale. Due to
the isotropic condition of those collisions, Brownian
force is treated mathematically as a quantity with
zero mean in time and space (ergodicity principle).

On the other hand, the second-moment of the dis-
tribution of Brownian forces must equilibrate the
dissipative forces [3]. In short, an “instantaneous”
Brownian force distribution in a BD simulation is
characterised as a Gaussian process with the next
first and second moments:〈
F(b)
i (t)

〉
= 0 (25)

〈
F(b)
i (t)⊗ F(b)

j (t+∆t)
〉

=
2kBT
∆t

ζ (26)

where ∆t is a discrete approximation of a differen-
tial in time. It is important to mention that in an or-
thogonal basis ofD dimensions the multi-dimensional
Gaussian process can be decoupled in D indepen-
dent uni-dimensional Gaussian processes [3].
• External forces acting on bead i, F(e)

i

Gravitational and electromagnetic fields can induce
non-negligible external forces over the beads of the
system. In what follows these forces are not consid-
ered.

Taking into account that beads are considered as Brow-
nian particles, the inertial effects are neglected. In such
context, the force balance must to be satisfied at each
time and at each bead i:

F(h)
i + F(φ)

i + F(b)
i + F(e)

i = 0 (27)

Using the definition of the hydrodynamic drag force,
previous differential stochastic equation can be trans-
formed to explicit the bead velocity:

dri
dt

= v
′

i + [κ (ri) · ri] + ζ−1F(φ)
i +

ζ−1F(b)
i + ζ−1F(e)

i (28)

Integration in time of previous stochastic equation
governs the kinematic evolution of the bead-spring sys-
tem. As any numerical method, in a BD simulation time
is treated as a discrete variable and, hence, different nu-
merical integration schemes can be proposed.

3.2 Integration Schemes

Given the structure of Eq. (28) a simple explicit inte-
gration scheme inspired by the numerical resolution of
ordinary differential equations appears as a natural in-
tegration scheme. In fact, the Euler-Maruyama method
is the simplest way to integrate numerically Eq. (28).
Given an initial configuration at time t, (ri)t, it is pos-
sible to estimate (ri)t+∆t by using the next formula:



(ri)t+∆t = (ri)t +
(
v
′

i + [κ (ri) · ri] + ζ−1F(φ)
i

)
t
∆t

+
(√

2kBTζ−1

)
∆Wi (29)

where ∆W is a random increment following a multi-
dimensional Wiener process. This random Wiener pro-
cess follows a normal distribution with the next first
and second moments:

〈∆Wi〉 = 0 (30)〈
(∆Wi)t ⊗ (∆Wj)t+∆t

〉
= ∆t δ (31)

Rewriting Eq. (29) only in terms of the time step
∆t we have:

(ri)t+∆t = (ri)t +
(
v
′

i + [κ (ri) · ri] + ζ−1F(φ)
i

)
t
∆t

+
(√

2kBTζ−1∆t

)
∆Ni (0, 1) (32)

where ∆Ni (0, 1) is a multi-dimensional Gaussian in-
crement of mean 0 and variance 1. Performance of the
Euler-Maruyama method is extremely sensitive to the
time step employed. In fact, convergence of the inte-
gration scheme is only guaranteed when ∆t → 0 [62].
Suppose a stochastic differential equation with the next
general form:

dX = A (X) dt+B (X) dW (33)

An integration scheme converges strongly with order
υ at time tmax if the next condition is satisfied:〈
|X (tmax)−Xtrue (tmax)|2

〉1/2

≤ C (∆t)υ (34)

for all time step lengths equal or inferior to ∆t and C
being a positive constant. It has been proven that the
Euler-Maruyama method exhibit a low order of strong
convergence υ = 1/2 [3]. Identification of the maximal
time step satisfying the strong convergence criteria for
a specific C value is normally done by trial and error
and plotting the error in function of the time step. In
spite of the low order of convergence, when the drift and
diffusive coefficients (A (X) and B (X) in Eq. (33) re-
spectively) are almost constants, the Euler-Maruyama
method is the most frequently used integration scheme.
Thus, this explicit integration scheme is widely used in
BD simulations for bead-spring systems with Hookean-
springs.

Now, when the drift and diffusion coefficients be-
come more complex, the fully explicit method is not

satisfying and high order integration schemes are re-
quired. Such is the case when non-linear spring poten-
tials are employed to guarantee a finite spring exten-
sibility. In fact, the main difficulty appearing with the
numerical temporal integration of this kind of bead-
spring systems is that the bead displacements have to
be bounded in order to not exceed the maximal spring
extension. For describing those high-order integration
algorithms is better to express the bead-spring chain
dynamics (given in the Eq. (28)) in terms of the con-
nector vector Qi:

dQi

dt
=
(
v
′

i+1 − v
′

i

)
+ [κ (ri) ·Qi] + ζ−1

(
F(φ)
i+1 − F(φ)

i

)
+ζ−1

(
F(b)
i+1 − F(b)

i

)
(35)

A first approximation to solve the previous equation
containing non-linear spring forces consists in use a con-
ventional explicit scheme (Euler-Maruyama method) and
just reject the updating step that produces a not-physical
displacement (maximal spring extension exceeded). Some
practical rejection criteria and useful advices for the
choice of the time step are given elsewhere [3].

More appropriate methods to integrate Eq. (35) are
based on implicit schemes. For example, Somasi et al.
[63] proposed a fully implicit scheme inspired in the
two-step semi-implicit algorithm proposed by Öttinger
for FENE dumbbells [3]. In general, at each time step,
those implicit methods are composed of a predictor step
followed by a corrector one. Given a bead-spring con-
figuration at the time t, (Qi)t, the configuration after
one time step is generated as follows:

• Predictor step. Using a conventional explicit scheme
a test configuration Q∗i is calculated as follows:

Q∗i = (Qi)t +



(
v
′

i+1 − v
′

i

)
t

+ [κ (ri) · (Qi)t]

+ζ−1
(
F(φ)
i+1 − F(φ)

i

)
t

+ζ−1
(
F(b)
i+1 − F(b)

i

)
t

∆t (36)

• Corrector step. Rewriting the spring potential forces
in terms of the connector forces (Eq. (20)) and using
the test configuration obtained in the predictor step
to average the flow-field contribution to the drag
forces is possible to write a corrector step as follows:

Qi + 2ζ−1F
(c)

i ∆t = (Qi)t
+ 1

2 [κ (ri) · (Qi)t + κ (ri) ·Q∗i ]∆t
+ζ−1

(
F

(c)

i−1 +
(
F(c)
i+1

)
t

)
∆t

+ζ−1
(
F(b)
i+1 − F(b)

i

)
t
∆t

(37)



where spring forces for connectors i and i − 1 are
treated implicitly when solving for Qi. Rearreange-
ment of Eq. (37) generates a cubic equation for the
magnitude of Qi, whose unique root is inferior to
the maximal spring extensibility. In the final stage
of the corrector step, spring force of the connector
i+ 1 is given by Eq. (37) and spring forces for con-
nectors i and i− 1 are tackled implicitly again:

Q
[n]

i + 2ζ−1
(
F

(c)

i

)[n]

∆t = (Qi)t
+ 1

2

[
κ (ri) · (Qi)t + κ (ri) ·Q

[n−1]

i

]
∆t

+ζ−1

((
F

(c)

i−1

)[n]

+ F(c)
i+1

)
∆t

+ζ−1
(
F(b)
i+1 − F(b)

i

)
t
∆t

(38)

Previous equation gives also a cubic equation for the
nth approximation of Q

[n]

i and, hence, an iterative
process can be formulated (doing Q

[n−1]

i equal to
Q

[n]

i ) until difference between consecutive solutions
is inferior to a specified tolerance ε:√√√√n−1∑

i=1

(
Q

[n]

i −Q
[n−1]

i

)2

≤ ε (39)

Once the iterative process converges, Q
[n]

i is said to
be the spring configuration at time t+∆t, (Qi)t+∆t,
with the guarantee that the lengths of the connector
vectors are allowed physical ones.

In spite of the heavier calculus involved at each time
step in relation to the explicit algorithm, the advantage
of the implicit schemes is that larger time steps can be
employed. For such reason, each modelling requires a
particular analysis for determining which integration
method produces a more efficient BD simulation.

Several studies about the numerical integration of
non-linear stochastic equations and time step width
control are found elsewhere, as well as, relevant ex-
amples of BD simulations of bead-spring systems with
finite-extensibility spring potentials [64,65,66].

3.3 Stress Tensor Calculation

In order to obtain the rheological behaviour of any
coarse-grained molecular model it is necessary to ex-
tract the stress tensor information from its mechanical
balance at each instant. Total shear-stress tensor τ in
a suspension is supposed to be the sum of the con-
tribution coming from the solvent τ s and another one
coming from the suspended entities τ p (in this case, the
multi-bead-spring chains) [28]:

τ = τ s + τ p (40)

It is important to notice that at equilibrium (i.e.
no external forces and no external-flow field), the total
shear stress tensor τ is zero. Assuming that the solvent
is a Newtonian fluid, then previous Eq. (40) can be
rewritten as follows:

τ = ηsγ̇ + τ p (41)

where ηs is the solvent viscosity and γ̇ is the homoge-
neous rate-of-strain tensor. Anyway, to model the in-
trinsic rheological response of the bead-spring chain,
one is particularly interested on the shear stress con-
tribution coming from the suspended particles τ p. In
the early literature of polymer kinetic theory there are
several formal derivations of expressions accounting for
the shear stress tensor contribution coming from multi-
bead-spring chains suspended in liquid media [67,68].
According to those developments in a bead-spring chain
there are three principal physical effects contributing
to the total shear stress tensor: 1) the intra-molecular
forces across the connector vectors; 2) the external forces
acting on beads and 3) the transport of momentum
caused by the displacement of the beads. Those are not
the only sources contributing to the physical mechani-
cal state of the system, but in the framework of a stan-
dard rheological test those described mechanisms are
definitively the most important.

Based on this deduction guideline, the Kramers ex-
pression for the shear-stress tensor contribution coming
from a multi-bead-spring chain writes as follows:

τ p = c
n−1∑
k=1

〈
Qk ⊗ F(c)

k

〉
− c

n∑
v=1

n−1∑
k=1

Bvk

〈
Qk ⊗ F(e)

v

〉
− (n− 1) ckBTδ (42)

where Bvk is a scalar operator associated with bead v
and spring k given by [28]:

Bvk =
{

k
n k < n

−
[
1− k

n

]
k ≥ n (43)

In fact, the configuration of a bead-spring chain can
be specified alternatively by the position of the centre
of mass of the chain rc and the n− 1 connector vectors
Qk as follows:

rv = rc +
n−1∑
k=1

BvkQk (44)

In the right side of Kramers expression in Eq. (42)
are easily identifiable the three mentioned physical ef-
fects contributing to the shear-stress tensor: the first
term corresponds to the intra-molecular forces contri-
bution, the second one represents the contribution of
the external forces and the third one accounts for the



momentum transfer of beads (Brownian contribution).
This last term is an isotropic contribution to the shear
stress tensor based on the supposition of a Maxwellian
velocity distribution.

Kramers expression can be slightly transformed by
writing the spring-bead chain conformation in terms of
the distance of each bead to the centre of mass of the
chain, Rv = rv−rc, and by using the expression relating
the intra-molecular force acting on bead v, F(φ)

v , with
the connector force F(c)

k associated to spring k (Eq. 20).
Such form is known as the modified-Kramers expression
for the shear-stress tensor contribution of a bead-spring
chain:

τ p = −c
n∑
v=1

〈
Rv ⊗

(
F(φ)
v + F(e)

v

)〉
− (n− 1) ckBTδ (45)

Now, combining previous equation with the bead
force balance in a multi-bead-spring chain given in Eq.
(27) and neglecting any external force a much simpler
expression for the shear stress tensor can be obtained:

τ p = c

n∑
v=1

〈
Rv ⊗ F(h)

v

〉
(46)

where the result,
n∑
v=1

〈
Rv ⊗ F(b)

v

〉
= (n− 1) kBTδ (47)

has been employed supposing again a Maxwellian ve-
locity distribution. Shear-stress tensor contribution in
Eq. (46) is known as the Kramers-Kirkwood expression
[67,30].

Non intuitively, BD simulations with bead-spring mod-
els in 2D and 3D produced the same results. In what
follows of the current section 3, only the predictions in
3D are given.

3.4 The Rouse Model

Rouse model is a polymer kinetic theory model that
mimics the structure of a linear polymer chain using
a multi-bead-spring chain, where intra-molecular inter-
actions are neglected. Springs in the Rouse model fol-
lows a Hookean law, based on the results of the end-to-
end entropic tension experimented by a freely-jointed
Kramers chain (following a Gaussian distribution con-
figuration) suspended in an isothermal solvent bath (see
§1.2.1). No external forces are considered. A formal
compendium of the theory can be found in the recog-
nized publication of Rouse in 1953 [57].

3.4.1 The Hookean-Dumbbell

The simplest version of the Rouse model is the (two-
beads)-(one-spring) system or, better known as, the
elastic-dumbbell model. It has been found that the me-
chanical response of the dumbbell model is equivalent
to that one of a Maxwell element (spring-dashpot in
series) used by rheologists to model a general linear
viscoelastic behaviour [69].

Given the simplicity of the dumbbell model, it will
be used to study the main numerical issues of the BD
simulations for bead-spring models. An explicit integra-
tion scheme has been employed in a three-dimensional
BD simulation. In what follows, the equilibrium prop-
erties and dynamical behaviour are analysed in detail.

Equilibrium Properties A (two-beads)-(Hookean-spring)
system at thermal equilibrium and in absence of an
external-flow field has an average square end-to-end dis-
tance

〈
r2
〉
eq

equal to:〈
r2
〉
eq

=
3kBT
H

(48)

An important aspect in BD simulations is the num-
ber of entities (or trajectories) required to converge to
the central values with satisfactory statistics. In Fig.
6 the BD performance to estimate the square end-to-
end distance in function of the population considered is
presented.

Fig. 6 Statistics of the square end-to-end distance of a
Hookean dumbbell in thermal equilibrium (during 1500 time
steps) in function of the BD population. H, ζ and ckBT are
fixed to 1 in a consistent system of units. Square end-to-end
distance at equilibrium is equal to 3 according to the kinetic
theory. A time step equal to λH/250 has been employed

The simulated Hookean dumbbell has a square end-
to-end distance at equilibrium equal to 3 (given by



Eq. 48) and a relaxation time of λH = 0.25 accord-
ing to the kinetic theory framework. A short time step
(∆t = λH/250) was employed in the simulation in or-
der to marginalize the effect of the integration scheme
convergence. BD performance is measured as the dis-
persion of the average square end-to-end distance (95%
of confidence) for 1500 time steps once the system has
reached an equilibrium configuration (i.e. after at least
3 times the relaxation time). A reduction of the rela-
tive dispersion with respect to the central value is ob-
served from 18.5% for a population of 102 dumbbells to
1.1% for a population of 104 dumbbells. As expected,
a linear evolution of the computational time (Intel R©
CoreTM T7300 2.00 GHz) in function of the number
of dumbbells simulated is noticed. For this particular
case, a good compromise between simulation accuracy
and computational time is obtained for populations be-
tween of 103 and 5× 103 dumbbells.

Another important issue in BD simulations, espe-
cially when employing an explicit integration scheme,
is time step. In Fig. 7 the influence of the time step on
the convergence of the integration scheme is revealed.
In this case a population of 104 dumbbells is employed
with the aim to attenuate the noise coming from the
random number generation of statistical distributions
and isolate the effects originated by the integration scheme.

Fig. 7 Evolution of the reduced square end-to-end distance
of a dumbbell after sudden thermal activation for different
time steps in the BD simulation. H, ζ and ckBT are fixed to
1 in a consistent system of units. Square end-to-end distance
is made dimensionless using the equilibrium value given by
the kinetic theory. A population of 104 dumbbells has been
employed

In the Fig. 7 the evolution of the squared end-to-end
distance of a Hookean dumbbell, after a sudden ther-

mal activation, is presented for different time steps. In
absence of temperature, the end-to-end distance of a
dumbbell is null. That is the reason why all curves be-
gin at the origin. According to the kinetic theory, a time
equal to four times the relaxation time is enough for a
Hookean dumbbell model to reach the equilibrium end-
to-end distance at constant temperature. From Fig. 7,
a complete divergence of the integration scheme is ob-
served when a time step bigger than the main relax-
ation time is employed. For a time step equal to the
relaxation time and equal to a quarter of the relax-
ation time integration scheme does not diverge, but the
steady values are inaccurate regarding the exact solu-
tion. On the other hand, a finer convergence towards the
central values is observed as the time step gets smaller
than a tenth of the relaxation time.

At thermal equilibrium the shear-stress tensor is
zero, so for a Hookean dumbbell Kramers expression
(Eq. (42)) writes:

τ p, eq = c
〈
Q⊗ F(c)

〉
− ckBTδ = 0 (49)

which could be written also as:〈
Q⊗ F(c)

〉
eq

kBT
= δ (50)

Using a time step equal to λH/100 and an equili-
brated population of 103 dumbbells (i.e. a BD system
equilibrated during a time equal to three times the main
relaxation time), the simulation produces a stable shear
stress tensor. Third of the trace of the tensor in the left
member of Eq. (50) has a mean value equal to 0.99±0.03
(95% confidence) during 600 times steps. On the other
hand, the out-of-diagonal components of the same ten-
sor have an absolute mean value equal to 0.005± 0.063
(95% confidence) during 600 iterations.

Dynamic Properties The linear viscoelastic behaviour
of a Hookean-dumbbell dilute solution can be obtained
analytically. The constitutive equation of such system
has a well-known solution, that results to be the same of
a convected Jeffreys model, also known as the Oldroyd-
B model [28]. Using such constitutive equation, the com-
plex modulus of a Hookean-dumbbell dilute solution
writes as follows:

G′ =
ckBTλ

2
Hω

2

1 + (λHω)2
(51)

G′′ − ηsω =
ckBTλHω

1 + (λHω)2
(52)

The BD algorithm employed to estimate the dy-
namic response of a suspension submitted to a small-
amplitude oscillatory strain was previously described



in §2. An explicit integration scheme is implemented in
the BD simulation and the Kramers expression is em-
ployed to compute the shear stress tensor. Using a time
step equal to λH/100 and a population of 103 dumb-
bells (convergent simulation parameters at no-flow con-
ditions), the BD performance is checked in Fig. 8 by
plotting the loss modulus at the characteristic frequency
(ω = λ−1

H ) in function of the maximal imposed strain.

Fig. 8 BD prediction of the loss modulus at the character-
istic frequency for a Hookean dumbbell model in function of
the maximal shear strain applied. Maximal shear strain is nor-
malized by the equilibrium end-to-end distance of a Hookean
dumbbell model. H, ζ and ckBT are fixed to 1 in a consistent
system of units. A population of 103 dumbbells and a time
step equal to λH/100 have been employed

Bead-spring models are not able to describe the de-
crease of viscosity when shear rate is enhanced [28].
This fact is confirmed by Fig. 8 where the BD estima-
tion of the loss modulus at the characteristic frequency
appears independent of the maximal shear strain ap-
plied. However, a huge numerical dispersion is observed
at low strains. This numerical noise is given by the
stochastic nature of the Brownian forces when the mag-
nitude of those ones is equal or higher than the magni-
tude of the flow-induced forces. In fact a narrower dis-
persion was obtained when implementing a more precise
random number generation algorithm.

At low frequencies the convergence of the integra-
tion scheme is guaranteed by the criteria obtained for
the no-flow conditions. That is truth because at low
frequencies, system motion is controlled essentially by
the thermal activity. At high frequencies, nevertheless,
additional considerations are needed in order to sat-
isfy the convergence of the integration scheme. In fact,
at higher frequencies than the characteristic one, flow-

induced forces become the controlling factor of the kine-
matics of the system and the relative importance of the
stochastic forces is progressively reduced. For that rea-
son at high frequencies, as the intensity of the flow field
increases time step must to be gradually refined in or-
der to guarantee convergence towards the central val-
ues. To show this fact, in Fig. 9 the BD convergence
at two high frequencies (ωR = 10 and ωR = 102) is
deployed by plotting the relative error of the loss mod-
ulus estimation for a population of 103 dumbbells with
respect to the time step implemented.

Fig. 9 Relative error of the BD prediction for the loss mod-
ulus at high frequencies in function of the time step. H, ζ and
ckBT are fixed to 1 in a consistent system of units. A popu-
lation of 103 dumbbells has been employed. Relative error is
defined as follows:

∣∣(logG′′BD (ωR)− logG′′th (ωR)
)
/ logΘ

∣∣,
where Θ = G′th (ωR = 102) /G′′th (ωR = 102) is the maximal
interval of complex modulus variation in the tested frequency
interval

From Fig. 9, at a reciprocal frequency equal to 101,
a diminution of the relative error from 16% to 0.7% is
appreciated when the time step is reduced from λH/100
to λH/104. An even more pronounced effect of the time
step is observed for a reciprocal frequency of 102, given
the high sensitivity of the sine function around zero
(phase angle tends to zero as frequency increases). In
that case, a diminution of the relative error from 84%
to 4% is noticed for the same refining of the time step.
On the other hand, storage modulus is much less sen-
sitive to the time step than the loss modulus in the
high frequency regime because of the less variability of
the cosine function with respect to the sine function
around zero. For example, at ωR = 102, a reduction of
the relative error going from 1.6% to less than 0.1% is



observed when the time step is diminished from λH/100
to λH/104.

In Fig. 10 the global BD performance to predict the
complex modulus in a frequency sweep test within a
representative frequency interval is presented.

Fig. 10 Mean relative error of the BD prediction of the
storage and loss modulus (for a Hookean dumbbell model)
and total computational time in function of the time step
implemented. Mean relative errors are calculated as the av-
erage of 34 points distributed homogenously in a reduced
frequency range going from 10−2 to 102. Relative error is
defined as follows:

∣∣(logG′BD (ωR)− logG′th (ωR)
)
/ logΘ

∣∣,
where Θ = G′th (ωR = 102) /G′th

(
ωR = 10−2

)
is the maxi-

mal interval of complex modulus variation in the tested fre-
quency interval. H, ζ and ckBT are fixed to 1 in a consistent
system of units. A population of 5000 dumbbells has been
employed

BD performance is depicted by plotting the mean
relative error for the storage and loss modulus for 34 fre-
quencies homogenously distributed within an interval of
reduced frequencies going from 10−2 to 102 in function
of the time step. A population of 5000 dumbbells is
used in the BD simulations. In all the sweep frequency
tests a practically constant mean relative error for the
storage modulus is obtained (∼ 2%). This inaccuracy in
the prediction of the storage modulus is coming mainly
from the low frequencies regime (10−2 ≤ ωR ≤ 10−1)
given the high variability of the cosine function ap-
proaching π/2 (phase angle tends to this value as fre-
quency diminishes). No improvement in convergence to
the central values is appreciated when refining the time
step because the origin of the dispersion is not associ-
ated with the integration scheme, but with the natu-
ral fluctuations of the stochastic forces that control the
kinematics of the dumbbell at low velocities. Implemen-

tation of a more sophisticated algorithm for generating
random numbers is required to improve the convergence
of the storage modulus at low frequencies. In fact, the
list of pseudo-random numbers generators is continu-
ously growing as reflect of the remaining challenges in
this computational art [3,70]. On the contrary, a con-
siderable improvement in the loss modulus prediction
is checked as smaller time steps are employed. A re-
duction of the mean relative error from 3.0% to 0.6%
is obtained when time step is shortened from λH/100
to λH/103. This improvement in convergence for the
loss modulus is related directly to the better accuracy
at high frequencies, as showed before in Fig. 9. As ex-
pected, a linear increment on the computational time
(4× Intel Itanium R© 2 Monticito 1400 MHz) is observed
as the time step is shortened.

3.4.2 The Multi-Bead-Spring Chain

The analytical expression of the constitutive equation
for the Rouse model (composed of n−1 Hookean springs)
is well-known. It results to be the linear superposition
of n− 1 Hookean dumbbells with a spectrum of relax-
ation times λj following the next normal modes [28]:

λj =
ζ/2H

4 sin2 (jπ/2n)
(53)

When a dilute solution of Rouse chains is submit-
ted to a small-amplitude oscillatory deformation test,
the complex modulus contribution given by the chains
writes as follows:

G′ = ckBT
n−1∑
j=1

λ2
jω

2

1 + (λjω)2
(54)

G′′ − ηsω = ckBT

n−1∑
j=1

λjω

1 + (λjω)2
(55)

In principle, the numerical considerations extracted
from the BD simulations with Hookean-dumbbells can
be extrapolated to the BD simulations of multi-bead-
spring chains. In Figs. 11 and 12 the BD predictions
for the complex modulus of Rouse chains with 1, 10
and 50 springs are compared. All BD simulations are
carried out using a population of 5000 chains, a number
proved to provide a good compromise between predic-
tion accuracy and computational time (see Fig. 6). A
frequency sweep test is carried out on 34 points homo-
geneously distributed in a reciprocal frequency interval
going from 10−1 to 102. A constant time step equal to
λn−1/500 was implemented, where λn−1 is the short-
est time of the relaxation times spectra. This length of
the time step was demonstrated to provide also a good



compromise between accuracy and computational cost
(see Fig. 10).

From Fig. 11 is observed that the prediction of the
storage modulus is less accurate at low frequencies. It
was already mentioned that the inaccuracy at low fre-
quencies comes from the random number generation;
hence improvement in the accuracy of the BD predic-
tion is subjected to the implementation of more sophis-
ticated algorithms of random number generation. Qual-
ity of the random number generation is only reflected
at low frequencies because, at this regime of flow, the
dynamics of the multi-bead-spring chain is governed by
the randomizing thermal forces; whereas at high fre-
quencies the statistical errors of the computational ran-
dom number generation are masked by the effects of the
external-imposed flow-field.

Fig. 11 BD prediction of the storage modulus in function of
the reduced frequency for three Rouse chains: 1-spring, 10-
springs and 50-springs. Analytical curves are represented by
solid lines. H, ζ and ckBT are fixed to 1 in a consistent system
of units. A population of 5000 chains has been employed

Mean relative errors for the BD prediction of the
storage modulus are 0.9%, 0.2% and 0.1% for the single
Hookean dumbbell, the 10-springs and the 50-springs
chain respectively. BD simulations are capable to pre-
dict the apparition of new relaxation processes when
increasing the number of springs. Notice the elastic en-
hancement at high frequencies, going from the char-
acteristic plateau of the Hookean dumbbell model to
non-zero slopes of the storage modulus in function of
the frequency; for instance 0.6 for the 10-springs and
50-springs chain around a reduced frequency of 10. It
is worth to mention that Rouse theory predicts a stor-
age modulus evolving with ω0.5 for very long chains

(n > 300). Tendency towards this limiting value has
been registered by the BD simulations; a slight reduc-
tion of the storage modulus slope in the high frequency
range is appreciated when going from 0.65 for the 10-
springs chain to 0.61 for the 50-springs one.

In Fig. 12 the BD predictions of the loss modulus
in function of the frequency are plotted for the same
Rouse chains presented in the Fig. 11. For the Hookean
dumbbell system, inaccuracy in the BD prediction is
concentrated at high frequencies, on the contrary of
the storage modulus. In this case, given the low val-
ues of loss modulus at high frequencies, error is coming
from a bad resolution of the integration scheme when
the phase angle approaches 0. Shorter time steps are
required in this frequency window (101 to 102), but it
is important to say that the model response at those
frequencies lacks of physical meaning too.

Fig. 12 BD prediction of the loss modulus in function of
the reduced frequency for three Rouse chains: 1-spring, 10-
springs and 50-springs. Analytical curves are represented in
solid lines. H, ζ and ckBT are fixed to 1 in a consistent system
of units. A population of 5000 chains has been employed

BD simulations are able to correctly predict the evo-
lution of the loss modulus in the high frequency range.
Observe, for instance, the linear decrease of the loss
modulus for the dumbbell system and the linear in-
creases of the loss modulus for the 10-springs and 50-
springs chains at high frequencies. In the high frequency
range, the predicted slopes of 0.42 and 0.49 for the 10-
springs and 50-springs chains respectively, are also con-
sistent with the maximal limiting value of 0.5 given by
the Rouse theory. BD simulations show that when in-
creasing the number of springs, storage and loss moduli
tend converging towards the same values in the high



frequency range, as predicted by Rouse theory for large
number of springs (n > 300).

Mean relative errors for the loss modulus prediction
are 1.6%, 0.3% and 0.7% for the Hookean dumbbell,
the 10-springs and the 50-springs chain respectively.
CPU1 time (4× Intel Itanium R© 2 Monticito 1400 MHz)
goes up from 15 minutes to 10 hours when passing from
1-spring to 10-springs, an impressive increment of the
computational cost. This fact is explained by the longer
main relaxation times when dealing with bigger num-
ber of springs that are traduced in longer stabilization
steps in the BD algorithm given in §2, specially in the
high frequency range. Additionally, the short time steps
required in an explicit integration scheme imply longer
analytical steps in the implemented BD algorithm, spe-
cially in the low frequency range.

3.5 The Zimm Model

Unlike the Rouse model, in Zimm theory hydrodynamic
interaction is taken into account. From a formal point
of view, the kinematic description is exactly the same
as that one of the Rouse model, except for the hydro-
dynamic drag force, where an additional term is con-
sidered to account for the local variation in the bulk
flow field caused by the motion of the other beads in
the multi-bead-spring chain. Pioneer works on hydro-
dynamic interaction inside flexible macromolecules are
attributed to Kirkwood and Riseman [71,30]. Zimm
adapted the Kirkwood’s results in hydrodynamic in-
teraction to the multi-bead-spring model in order to
estimate the viscoelastic, birefringence and dielectric
properties of dilute polymer solutions. Zimm found the
analytical solution of the model by using a transforma-
tion to normal coordinates [58].

The particularities of the implementation of a BD
simulation for a multi-bead-spring model with hydro-
dynamic interaction can be revealed by transforming
the general expression for the bead velocity given in
Eq. (28). Neglecting external forces and supposing an
isotropic friction tensor, the generalized stochastic dif-
ferential equation in Eq. (28) can be rewritten as fol-
lows:

dri
dt

= −
∑
j

Ωij · F(h)
j + [κ (ri) · ri] +

F(φ)
i

ζ
+

F(b)
i

ζ
(56)

where the local hydrodynamic interaction term v
′

i has
been approximated by using the Oseen-Burgers hydro-
dynamic tensor. As the balance of forces over each bead

1 Central Processing Unit

is zero (inertialess Langevin equation) the hydrody-
namic force in Eq. (56) can be written in terms of the
other forces:

dri
dt

=
∑
j

Ωij ·
[
F(φ)
j + F(b)

i

]
+ [κ (ri) · ri]

+
F(φ)
i

ζ
+

F(b)
i

ζ
(57)

Reordering and bringing together common terms:

dri
dt

= [κ (ri) · ri] +
1
ζ

∑
j

HIij · F(φ)
j

+
1
ζ

∑
j

HIij · F(b)
j (58)

where HIij = δij δ + ζΩij is called the Hydrodynamic
Interaction (HI) matrix associated with a given pair
of beads i and j inside the chain. Finally, through the
fluctuation-dissipation theorem the stochastic differen-
tial Eq. (58) for the bead velocity in a multi-bead-spring
chain with hydrodynamic interaction takes the form [1]:

dri
dt

= [κ (ri) · ri] +
1
ζ

∑
j

HIij · F(φ)
j +

√
2kBT
ζ

∑
j

Cij ·
dWj

dt
(59)

where HIij = Cij · CT
ij . Hydrodynamic interaction in

multi-bead-spring chains is tackled rigorously with Eq.
(59), but at present it cannot be solved in closed form
[1]. To circumvent this difficulty, Zimm theory replaces
the variable Oseen-Burgers tensors by their equilibrium
averages. By using the equilibrium-averaged distance
between two beads inside a Rouse chain 〈rij〉eq (see [28])
the equilibrium-averaged Oseen-Burgers hydrodynamic
tensor given in §3.1 can also be expressed as follows [58]:

〈Ωij〉eq =
1− δij
6πηs

√
2H

πkBT |i− j|
δ for i 6= j (60)

When introducing Eq. (60) into Eq. (59) it is found
that HIij = HI and Cij = C where HI = C · CT .
As noticed, in Zimm theory HI tensor becomes a n× n
constant matrix whose components (HI)ij are given by
the next formula:

(HI)ij = δij + (1− δij)h∗
√

2
|i− j|

(61)

where h∗ is the hydrodynamic interaction parameter
according to Thurston and Peterlin [72]:

h∗ =
ζ

ηs

√
H

36π3kBT
(62)



where ζ is the bead friction coefficient, ηs is the sol-
vent viscosity and H is the Hookean-spring constant.
The hydrodynamic interaction parameter h∗ can be ex-
pressed also as the ratio of the bead radius to the root-
mean-square distance between two beads linked by a
spring at equilibrium. In that context, it is expected
that h∗ is lower than 0.5 [1]. From a practical point
of view, experimental viscoelastic data for several poly-
mer solutions are generally well represented by Zimm
chains of several hundreds of beads with hydrodynamic
interaction parameters between 0.1 and 0.2 [73].

From a numerical point of view (BD approach) in-
tegration of the stochastic differential equation for a
Zimm chain (Eq. (59)) does not represent an additional
cost with respect to the Rouse chains (Zimm hydro-
dynamic interaction matrix is constant). In addition,
equations employed to describe the kinematics and to
compute the shear-stress tensor are quite similar for
both models. Hence, the numerical considerations about
the number of trajectories required and the time step
(in an explicit integration scheme) inferred for Rouse
chains can, in principle, be extended to the BD simula-
tions of Zimm chains.

It seems that the calculation of the matrix Cij has
a numerical relevance when general hydrodynamic in-
teraction (i.e. based on the general expression of the
Oseen-Burgers tensor) for chains with large number of
beads (n > 300) is considered, owing to the fact that
the hydrodynamic interaction matrix is recalculated at
each time step. Classical Cholesky decomposition is ex-
pensive, scaling with the cube of the number of beads
[1]. In response, Fixman proposed two alternative nu-
merical methods to calculate the square-root of the hy-
drodynamic interaction matrix: one by Newton itera-
tion and the other one by Chebyshev polynomial de-
composition [74]. Implementation of the last polyno-
mial approximation for the square-root of the hydrody-
namic interaction matrix in a BD framework is detailed
elsewhere [1]; this method roughly scales with n9/4 per
time step. In any case, previous numerical issue has a
reduced impact on the BD simulation of Zimm chains
due to the fact that the equilibrium-averaged hydrody-
namic interaction matrix is constant and the required
decomposition is carried out just one time for all the
simulation.

Given the fact that hydrodynamic interaction is ap-
proximated by the equilibrium averaged Oseen-Burgers
tensor, a close-form of the constitutive equation can be
derived for the Zimm model in total analogy with that
one of the Rouse model [28,3]. For that reason, expres-
sions for the contribution of Zimm chains to the com-
plex modulus of their dilute suspensions have the same

form that the equations for Rouse chains (Eqs. (54) and
(55)):

G′ = ckBT
n−1∑
j=1

λ̃2
jω

2

1 +
(
λ̃jω

)2 (63)

G′′ − ηsω = ckBT
n−1∑
j=1

λ̃jω

1 +
(
λ̃jω

)2 (64)

The only difference lies on the relaxation time spec-
tra. In the Zimm model the time constants are dictated
by:

λ̃j =
ζ

2Hãj
(65)

where ãj are the eigen-values of the modified Rouse

matrix Ã whose components
(
Ã
)ij

are given by:(
Ã
)ij

=
∑
v

∑
u

B̄iv (HI)vu B̄ju (66)

and B̄vu is a scalar operator following the next formula
[28]:

B̄vu = δv+1 u − δv u (67)

This analytical solution allows us to evaluate easily
the performance of the BD simulation predicting the
linear viscoelastic behaviour of multi bead-spring sys-
tems with equilibrium-averaged hydrodynamic interac-
tion. Figures 13 and 14 compare the BD predictions of
the complex modulus for a 50-springs Zimm chain with
two different hydrodynamic interaction parameters. A
frequency sweep test is carried out over 25 points ho-
mogeneously distributed in a reduced frequency interval
going from 10−1 to 102.

From Fig. 13 is observed that the BD prediction of
the storage modulus is more accurate for the high hy-
drodynamic interaction case than the low one. In fact,
the mean relative error for the low value of h∗ is about
2.7% in comparison with the mean relative error of 0.8%
for the case of high h∗. The main source of inaccuracy
is coming from the low frequency range. This is ex-
plained, as in the BD simulations with Rouse chains,
by the statistical deviations originated in the numeri-
cal computation of the stochastic forces coupled with
the relative dominance of the thermal forces as driving
mechanism of the chain kinematics in the low frequency
range. As a consequence, improvement of the accuracy
at low frequencies depends on the implementation of
more sophisticated random numbers generators.

On the other hand, BD simulations correctly predict
the evolution of the storage modulus at high frequen-
cies. Figure 13 shows the increase of the slope of G′ go-
ing from 0.6 for the low hydrodynamic interaction case



Fig. 13 BD prediction of the storage modulus in function of
the reduced frequency for two 50-springs Zimm chains with
high hydrodynamic interaction (h∗ = 0.303) and very low
hydrodynamic interaction (h∗ = 0.003). Analytical curves
are represented in solid lines. H, ζ and ckBT are fixed to 1 in
a consistent system of units. A population of 104 dumbbells
has been employed

(h∗ = 0.003) to 0.7 for the high hydrodynamic inter-
action case (h∗ = 0.303), within the reduced frequency
interval between 101 and 102.

In Fig. 14 the BD prediction of the loss modulus ver-
sus the frequency is plotted for the same Zimm chains
presented in Fig. 13. Again better accuracy is obtained
for the chain with higher hydrodynamic interaction. In
fact, mean relative error goes down from 1.6% to near
0.3% when h∗ is increased from 0.003 to 0.303. As ob-
served for the storage modulus prediction, main source
of error is coming from the low frequency regime.

BD performance at high frequencies is quite better.
Simulations are able to correctly predict the change in
the loss modulus slope when varying the relative im-
portance of the hydrodynamic interaction. At low hy-
drodynamic interaction a Rouse-type slope is observed,
whereas at high hydrodynamic interaction (h∗ = 0.303),
the slope of the loss modulus reaches a maximal value of
0.64 around a reduced frequency of 10. This prediction
is consistent with the Zimm theory for very long chains
(i.e. n > 300) and high hydrodynamic interaction (for
instance, h∗ = 0.3), where storage and loss moduli
evolve linearly with ω2/3 [75]. On the other hand, in
our BD simulation of 50-springs chains with high hy-
drodynamic interaction (h∗ = 0.303) we have found
(G′′ − ηsω) /G′ = 1.67 around a reduced frequency of
10, a result also in coherence with Zimm theory where
a constant ratio (G′′ − ηsω) /G′ =

√
3 is predicted in

the high frequency range.

Fig. 14 BD prediction of the loss modulus in function of
the reduced frequency for two 50-springs Zimm chains with
high hydrodynamic interaction (h∗ = 0.303) and very low
hydrodynamic interaction (h∗ = 0.003). Analytical curves
are represented in solid lines. H, ζ and ckBT are fixed to 1 in
a consistent system of units. A population of 104 dumbbells
has been employed

4 BD of Generalized Bead-Rod Models

The fundamental difference between the bead-rod model
and the bead-spring model lies in that the former has a
finite contour length. This simple, but important fact is
traduced directly in different rheological responses. On
the other hand, a physical model with a finite contour
length imposes subtle, but important numerical issues
that are reflected in the BD implementation.

As mentioned in §1.2.1, historically bead-rod mod-
els were first proposed to emulate the structure of linear
polymers in a coarse-grained fashion. Bead-rod model
with fixed adjacent angles (as proposed by Flory [29])
constitute the first stage of coarse-graining in kinetic
theory. In that model, rods are supposed to represent
the bond length between two consecutive atoms in the
backbone of the polymer chain. Simpler representations
with fewer degrees of freedom have been extensively
proposed. For instance, some polymer chains are quite
bendable along certain number of monomer units, in
those cases from 3 to 5 monomer units can be replaced
by one non-bendable rod. Polymer flexibility is then
mimicked by introducing some kind of bending poten-
tial between consecutive rods. Continuous version of
this model is known as the worm-like chain, in which the
thermal equilibrium configuration is a perfect straight
filament. An even coarser model replaces from 10 to
20 monomer units by one rigid-rod; any notion of flex-
ion hindering at this rod-scale is lost and the poly-



mer chain is represented then by a freely-jointed multi-
rod chain [28]. An ultimate scale in the coarse-graining
process replaces a hundred of backbone atoms (or a
ten of rods from the freely-jointed multi-rod model)
by an entropic spring, so mechanical behaviour of the
macromolecule is represented by a multi-bead-spring
chain model (showed in the previous section §3). De-
spite that the historical motivation for the bead-rod
model is linked to the polymer science, this represen-
tation has been extensible applied to emulate the me-
chanical behaviour of other structures as short DNA,
rod-like virus, collagen fibrils, synthetic polymers and
CNTs.

Bead-rod models have escaped from a deeply devel-
opment in the kinetic theory framework with respect to
the bead-spring counterparts because the inextensibil-
ity condition imposes the use of generalized coordinates
[76]. This mathematical complexity explains why only
some results in zero-shear, steady and linear unsteady
flows have been obtained for this model [77,78].

In the case of bead-rod models, BD simulations ap-
pear as an interesting alternative approach to by-pass
the complex mathematical-treatment of the diffusion
equation. Anyway, the use of constraints also implies
to be careful during a BD implementation, particularly
in terms of the integration scheme and the stochastic
forces generation.

Bead-rod models have been particularly studied for
approaching the mechanical behaviour of bead-spring
chains with very stiff Fraenkel-type springs (non-zero
natural length). Intuitively a very stiff Fraenkel spring
could be replaced by a rigid rod for the sake of mathe-
matical simplicity. However, it is found that this limit is
a very singular one. In fact, bead-rod chains and bead-
spring chains differ even in the limit of infinitely stiff
springs. For instance, the configurational distribution of
a freely-jointed multi-bead-rod chain at thermal equi-
librium is found to be different from a random-walk
distribution, which is typical for a freely-jointed multi-
bead-spring chain [28]. This difference has been con-
firmed by molecular and Brownian dynamics simula-
tions [79,80,81,5] and statistical mechanics calculations
[82,83]. On the other hand, it has been showed that in-
troducing a corrective potential force (function of the
chain configuration) into the multi-bead-rod chain for-
mulation is possible to mimic the behaviour of multi-
bead-spring chains [82,84]. This result strongly pro-
moted the use of BD simulations for studying the dy-
namical behaviour of polymers by using the multi-bead-
rod model and the corrective potential approach [66,74,
85,86,87,88,89]. In this work, the intrinsic behaviour of
multi-bead-rod models is tackled; the bead-spring chain
statistics is not intended to be mimicked.

In what follows, the basis of a BD implementation
for a generalized multi-bead-rod chain with an isotropic
friction tensor and in absence of hydrodynamic inter-
action is presented. We focus in two classical cases:
the freely-jointed chain or Kramers model and the non
freely jointed chain that corresponds to a discrete ver-
sion of the worm-like chain model.

4.1 Kinematic and Dynamic Formulation

Constraints can be treated mathematically in a gener-
alized coordinate system (based on the configuration of
the chain) or in a Cartesian coordinate system, case in
which constraint forces are required to complement the
kinematic description. Going and coming back between
those two frameworks requires a lot of care in order to
conserve a proper equivalence at the levels of the FP
equation and the differential stochastic equation [3].

From a formal point of view a general, expression
of the FP equation for a multi-bead-rod model with no
internal potentials, including hydrodynamic interaction
and anisotropic friction tensor, was given by Curtiss us-
ing generalized coordinates [28]. This diffusion equation
is coherent with the equilibrium statistical mechanics
for a real bead-rod chain with equal bead masses. A
detailed description of the development of an equiva-
lent stochastic differential equation in the strong sense
was given by Öttinger [3]. He also showed a particular
transformation of that differential stochastic equation
from generalized to Cartesian coordinates. In doing so,
not only an explicit definition of the rod inextensibility
is required, but also a metric potential force, depend-
ing on the chain configuration, has to be considered
in order to respect the equivalence (at least in a weak
sense) with the FP equation developed by Curtiss. In-
terestingly, it is found that the negative of such metric
force is equal to the corrective potential force added in
the BD numerical algorithms of multi-bead-rod chains
intended to mimic the behaviour of multi-bead-spring
chains.

For the sake of simplicity, BD implementation in a
Cartesian coordinate system is employed in this paper.
Metric potential forces are neglected without incurring
in error because, in one hand, the drag acting on the
simulated multi-bead-rod chain is supposed character-
ized by an isotropic friction tensor and, on the other
hand, no hydrodynamic interactions are considered.

Let us consider the multi-bead-rod chain model showed
in Fig. 15. Multi-bead-rod chain is constituted of n
beads joined by n−1 non-bendable rigid rods of length
a.

Position of the bead-rod chain can be instantaneously
defined in a Cartesian reference system by the ensem-



Fig. 15 Non-freely jointed multi-bead rod model composed
of n beads and n − 1 rods of length a. Bending potential
between rods in the multi-bead-rod chain model is mimicked
with a hypothetical flexion spring

ble of bead positions ri and the centre of mass of the
chain rc (see Eq. (14)). Orientation of each rod is given
by the vector uj , which is a unit vector collinear to
the rod connecting beads j and j + 1. uj is defined as
follows:

uj = (rj+1 − rj) /a (68)

Rods are supposed infinitely rigid. Physical length
of the system is equivalent to the total length of the
multi-bead-rod chain (n− 1)a. Existence of an internal
bending potential, coming from a hypothetical flexion
spring between each pair of rods, is considered with the
purpose of mimic the bending flexibility of the filament-
like system. Introduction of a non-zero bending poten-
tial complicates the FP formulation and make of the
BD simulation a privileged numerical approach. On the
other hand, multi-bead-rod chains are supposed sus-
pended into a Newtonian solvent (viscosity ηs) at tem-
perature T . Concentration of the bead-rod chains is de-
fined in terms of c chains per volume unit. High dilution
hypothesis is made, so no inter-chain interaction is con-
sidered. Moreover, flow field acting on the suspension
is assumed to be homogeneous. Beads are considered
the centres of hydrodynamic resistance; so all forces are
concentred on beads. In what follows, forces acting on
the multi-bead-rod chains are described in more detail.

• Hydrodynamic drag force acting on bead i, F(h)
i

Physical origin and mathematical description of this
force are the same given for the multi-bead-spring
model (see §3.1). As mentioned before, hydrody-
namic interaction is neglected and an isotropic fric-
tion coefficient is supposed in order to avoid the
calculation of metric potential forces.

• Constraint forces acting on bead i, F(λ)
i

This force takes into account the sum of rod tensions
acting on each bead i. Rod tension λj corresponds to

the module of the instantaneous force emerging on
bead j for maintaining the distance between beads
j and j+1 at a constant value a. This force is trans-
mitted along the rigid-rod and is manifested on bead
j + 1 with an opposite sign. Mathematically, total
constraint force on bead i can be expressed as fol-
lows:

F(λ)
i = −

n−1∑
j=1

nijλj (69)

where nij is a linear operator defined as follows:

nij = uj (δi j+1 − δi j) (70)

• Internal bending potential force acting on bead i,
F(φ)
i

Based on the viscoelastic theory of concentrated so-
lutions of semi-flexible polymers [90], Pasquali and
Morse defined a discrete bending potential for a
multi-bead-rod model based on the worm-like chain
continuous model [87]:

φ = −Kb

a

n−1∑
i=2

ui · ui−1 (71)

where φ is the internal-bending potential andKb is a
bending rigidity constant. The bending potential de-
fined in Eq. (71) can be understood as coming from
the mechanical action of a torsion spring between
two consecutive rods. In this case, local bending en-
ergy is proportional to the cosine of the internal an-
gle between two consecutive rods. In other words,
minimal internal bending energy state is achieved
when all rods are completely aligned. Usually, this
linear relationship is restricted to small flexion an-
gles. Obviously, definitions of non-linear bending po-
tentials are required for large deformation scenarios.
Bending force acting on bead k can be obtained as
the derivate of the bending potential in Eq. (71)
with respect to the position of bead k:

F(φ)
k = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (ui · ui−1)
∂rk

(72)

To simplify the derivate on the right side of Eq. (72),
next identity is employed [87]:

∂

∂rk
ui =

1
a

(δk i+1 − δk i) (δ − ui ⊗ ui) (73)

• Brownian force acting on bead i, F(b)
i

As in all coarse-grained models, Brownian forces ap-
proach the change of momentum of a bead i coming
from the thermal activity of the solvent molecules
surrounding bead i. Accounting for faster processes



than the coarse-grained model motion, Brownian
forces are computed as an stochastic process. In
a model without constraints (free particles, bead-
spring chains), Brownian forces follow a normal dis-
tribution with first and second moments defined pre-
viously by Eqs. (25) and (26), respectively. However,
as the generalized friction of the bead-rod system
is modified by the presence of constraints, random
forces must reflect the inextensibility of rods [86].
An algorithm proposed to tackle properly last is-
sue requires that Brownian forces are geometrically
projected random forces. Geometrical projection of
random forces on bead-rod chains is absolutely nec-
essary when the bead-spring statistics want to be
mimicked (using of corrective potential forces and
a mid-step integration algorithm) or an anisotropic
friction tensor is considered [89].
On the other hand, when dealing with free-draining
bead-rod chains in which each bead is character-
ized by an isotropic friction coefficient ζ, geometrical
projection of Brownian forces is redundant [89] and
same kinematics is obtained by using unprojected
Brownian forces. To show last fact (and present in
parallel the structure of the geometrical projection
algorithm), let us take the example of one single
rigid rod embedded into a solvent bath at temper-
ature T , no external flow is imposed. Supposing an
isotropic friction coefficient, the force balances on
the two mass-less beads write:

−ζ ṙ1 − n11λ1 + F(b)
1 = m1r̈1 = 0 (74)

−ζ ṙ2 − n21λ1 + F(b)
2 = m2r̈2 = 0 (75)

In order to satisfy the inextensibility of the rigid-
rod, next condition has to be imposed over the bead
velocities:

0 =
2∑
i=1

ṙi · ni1 = (ṙ2 − ṙ1) · u1 (76)

Placing the bead velocities from Eqs. (74) and (75)
into Eq. (76) we obtain:

1
ζ

(
−λ1u1 + F(b)

2 − λ1u1 − F(b)
1

)
· u1 = 0 (77)

Equation (77) can be rewritten also as follows:

2λ1 =
2∑
i=1

F(b)
i · ni1 =

(
F(b)

2 − F(b)
1

)
· u1 (78)

Previous equation resumes the conditions imposed
over the Brownian forces in order to satisfy the in-
extensibility condition. Two numerical algorithms
for the random forces generation can be considered

at this point. The first takes into account the con-
tribution of random forces to the rod tensions and
implies to calculate λ1 at each time step from Eq.
(78). In this case, random forces are generated like
in the BD simulations of bead-spring models and
the predictor-corrector integration scheme (§4.2.2)
is required. In the second, contributions of random
forces to the rod tension are neglected (λ1 = 0) and
unconstrained random forces have to be projected in

order to satisfy 0 =
2∑
i=1

F(b)
i · ni1. This last expres-

sion determines the starting point of the geometrical
projection algorithm. In order to obtain projected
random forces F(b)′

i , it is necessary to substrate the
“hard” component of the unconstrained Brownian
forces η̂1 along the rod direction as follows:

F(b)′

i = F(b)
i − ni1η̂1 (79)

The “hard” component of the unconstrained Brow-
nian forces can be obtained from the solution of the
next equation [89]:

Ĝη̂1 =
2∑
i=1

F(b)
i · ni1 (80)

where Ĝ =
∑
i

ni1 ·ni1 = 2. From Eqs. (78) and (80)

is easily inferred that η̂1 = λ1. Hence, projected
Brownian forces are F(b)′

1 = F(b)
1 +λ1u1 and F(b)′

2 =
F(b)

2 − λ1u1. A graphic example of this projection
in a bi-dimensional framework is showed in Fig. 16.
Extension of previous algorithm for a multi-bead-
rod case is straightforward and has been detailed
elsewhere [85,86].
Nevertheless, as mentioned before, geometrical pro-
jection of Brownian forces for a constrained system
with an isotropic friction tensor is redundant be-
cause, as observed for the one-rod example in Fig.
16, projection of random forces has no consequences
on the rod kinematics as hydrodynamic forces and
rod velocity are not altered. In other words, consid-
ering a constant friction coefficient, rod kinematics
depends exclusively on the orthogonal component of
the Brownian forces with respect to the rod vector
and this component is not modified by the geomet-
rical projection algorithm.

• External forces acting on bead i, F(e)
i

As mentioned before, gravitational and electromag-
netic forces can be considered in function of the par-
ticular scenario of modelling. In this work, external
forces are neglected.

Taking into account that inertia is neglected, forces
balance on each bead i writes:

F(h)
i + F(λ)

i + F(φ)
i + F(b)′

i + F(e)
i = 0 (81)



Fig. 16 Example of the geometrical projection of Brown-
ian forces in a quiescent bi-dimensional single rigid-rod (no
external-flow). An isotropic friction coefficient is supposed. In
the upper rod no geometrical projection has been carried out,
hence tension force is considered. In the lower rod, geomet-
rical projection of Brownian forces absorbs the rod tension;
observe that hydrodynamic forces are not modified

Given the definition of the hydrodynamic drag force,
an explicit stochastic expression for the bead velocity
can be obtained:

dri
dt

= [κ (ri) · ri]−
1
ζ


(
n−1∑
j=1

nijλj

)
+ F(φ)

i

+F(b)′

i + F(e)
i

 (82)

Geometrical projected random forces guarantee the
inextensibility condition when no external fields are im-
posed. In other scenario, constraints on the rod lengths
have to be considered. For instance, in a Cartesian co-
ordinates system we have:

0 =
n∑
i=1

ṙi · nij for j = 1 . . . n− 1 (83)

Putting together Eqs. (82) and (83) a linear system
of equations describing the kinematics of a non-freely-
jointed multi-bead-rod model is constituted, where the
unknown variables are n bead velocities ṙi and n − 1
rod tensions λj .

4.2 Integration Schemes

Several numerical integration schemes have been pro-
posed to integrate the differential stochastic equation
equivalent to the FP equation given by Curtiss for the
general multi-bead-rod chain in both generalized coor-
dinate systems and Cartesian reference systems. In the
case of generalized coordinates, the task is feasible if
the number of degrees of freedom is small, otherwise

the numerical complexity makes this option impracti-
cal [3]. Some simulations at equilibrium using a numeri-
cal integration in generalized coordinates were made by
Pear and Weiner [81,5]. The possibilities for integrat-
ing numerically in a Cartesian space are more varied
and, in principle, the numerical methods employed for
the bead-spring models are applicable, but additional
controls are required for satisfying the constraints rig-
orously, specially in simulations for large time intervals
[3].

Another integration numerical method for systems
including constraints was given by Allison and McCam-
mon under the name of SHAKE-HI algorithm [91]. In
the general form of the algorithm, bead positions are
calculated in two steps: an unconstrained step followed
by a constrained one. Two particular versions of the
SHAKE-HI algorithm are the most cited numerical schemes
employed to integrate the differential stochastic equa-
tion for a multi-bead-rod model in a Cartesian space:
the mid-point stepping scheme proposed by Fixman [82,
85] and the predictor-corrector scheme developed by
Liu [76,63].

4.2.1 Mid-Point Algorithm

In 1978 Ermak and McCammon showed that the gra-
dient of the diffusivity must to be incorporated into a
BD algorithm when the bead diffusivity depends on the
configuration of the Brownian system [92]. It has been
shown that the diffusivity of a multi-bead-rod chain is
variable because of the presence of rigid constraints and,
also, as consequence of considering hydrodynamic inter-
action [85]. A clever way to counteract the wrong drift
produced by the variable diffusivity in a BD algorithm
was proposed by Fixman [82]. He suggested employing
a second-order time step to integrate the stochastic dif-
ferential equation. In fact, any higher order time step is
able to handle correctly the variable diffusivity. In this
numerical algorithm the use of potential metric forces
F(m)
i is required and has to be added to the left term of

Eq. (81). In brief, potential metric forces are function
of the constrained configuration of the chain. Extended
descriptions and detailed definitions for this “extra”
metric force can be found elsewhere [84,3,89]. From
a global point of view, this algorithm is able to deal
with hydrodynamic interaction and anisotropic friction
tensors. For the particular multi-bead-rod chain model
presented in this work, the differential stochastic equa-
tion required for the mid-step scheme writes as follows:

ṙi =
1
ζ

(
F(λ)
i + F(uc)

i + F(b)′

i

)
(84)

where F(uc)
i = ζ [κ (ri) · ri] + F(φ)

i + F(e)
i + F(m)

i . Keep-
ing in mind that hydrodynamic interaction is neglected



and an isotropic friction tensor is supposed, then a sin-
gle time step [t, t+∆t] for the mid-step algorithm is
constituted by the following sub-steps:

1. Generation of geometrical projected random forces
at the beginning of the time step F(b)′

i (t) following
the complete algorithm describe by Hinch and co-
workers [84,85,86].

2. Calculate the mid-step position as follows:

ri

(
t+

∆t

2

)
= ri (t) + ṙi (t)

∆t

2
(85)

where the initial-step velocity ṙi (t) is calculated ne-
glecting the constraints on the rod lengths:

ṙi (t) =
1
ζ

(
F(uc)
i (t) + F(b)′

i (t)
)

(86)

3. Calculate the end-step position by using the next
equation:

ri (t+∆t) = ri (t) + ṙi (∗)∆t (87)

where the mid-step velocity is obtained from the
solution of the linear system:

ṙi (∗) =
1
ζ

[
F(λ)
i

(
t+ ∆t

2

)
+

F(uc)
i

(
t+ ∆t

2

)
+ F(b)′

i (t)

]
(88)

0 =
n∑
i=1

ṙi (∗) · nij
(
t+

∆t

2

)
(89)

where ṙi (∗) is the constrained bead velocity at the
mid-step, but calculated with the random stochastic
forces generated at the beginning of the time step.
This procedure is coherent with the Stratonovich
interpretation of the stochastic random forces [3,
93]. This algorithm does not guarantee an invari-
able rod length at the end of the time step, for that
reason a truncation error is employed. Once the rod
length at the end of a given time step exceeds cer-
tain tolerance, the inter-bead distances are reset to
the constant value, conserving the rod orientations.

4.2.2 Predictor-Corrector Scheme

The predictor-corrector scheme is a singular and limit-
ing case of the SHAKE-HI algorithm. One can say that
is singular because it requires absolutely neglecting the
hydrodynamic interaction and dealing with an isotropic
friction tensor. On the other hand, this algorithm is
limiting because the two-step procedure is merged in
an iterative single-step. The predictor-corrector scheme
was employed by Liu for simulating the dynamics of a
Kramers chain submitted to steady potential flows [76].
Doyle demonstrated that both the predictor-corrector

scheme and the Fixman’s mid-step algorithm gener-
ate the same trajectories for a dilute Kramers bead-
rod chain with an isotropic friction tensor and in ab-
sence of hydrodynamic interaction [93]. It is emphasized
that neglecting the hydrodynamic interactions, suppos-
ing an isotropic friction tensor and employing this lim-
iting case of the SHAKE-HI algorithm are necessary
conditions for eliminating the metric potential forces
from the differential stochastic equation in Cartesian
coordinates without incurring in deviations from the
FP equation for the multi-bead-rod model [3].

For a time step [t, t+∆t], displacement of bead i is
obtained in two stages. The first one, called predictor
step, is given by an unconstrained movement:

r∗i (t+∆t) = ri (t) + ṙi (t)∆t (90)

where ṙi (t) = 1
ζ

(
F(uc)
i (t) + F(b)′

i (t)
)

and F(uc)
i = ζ [κ (ri) · ri]+

F(φ)
i + F(e)

i . Subsequently, an iterative corrector step is
required for taking into account the inextensibility of
rods:

ri (t+∆t) = r∗i (t+∆t) +
1
ζ
F(λ)
i ∆t (91)

where F(λ)
i is given by Eq. (69). The Lagrange multi-

pliers λi are calculated so that inter-bead distances are
satisfied within a certain tolerance:

(ri+1 (t+∆t)− ri (t+∆t))2 − a2 = ε2 (92)

Combining Eqs. (91) and (92), a system of quadratic
equations for λi is generated. This system has the gen-
eral form:

2∆t
ζ bi ·

(
λ

[n]
i−1ui−1 − 2λ[n]

i ui + λ
[n]
i+1ui+1

)
=

a2 + ε2 − bi · bi−(
∆t
ζ

)2 (
λ

[n−1]
i−1 ui−1 − 2λ[n−1]

i ui + λ
[n−1]
i+1 ui+1

)2
(93)

where bi = r∗i+1− r∗i and λ[n]
i is the nth approximation

of the Lagrange multiplier associated to rod i. Previous
set of non-linear equations can be solved iteratively by a
Picard’s method by supposing the non-linear term (last
term on the right-hand side) to be small in comparison
with the linear terms (left-hand side). The iterative pro-
cedure is initiated with λ

[0]
i = 0 and is executed until

the constraints are satisfied with regard to a certain
truncation error ε2. Once the iterative procedure has
finished, the bead positions at the end of the time step
are corrected using Eq. (91).

Additional to the Picard’s method invoked to solve
Eq. (93), an iterative Newton’s method can converge
faster than the Picard’s one, but involving the calcula-
tion of a Jacobian matrix every time step [63].



4.3 Stress Tensor Calculation

From a formal point of view, deduction of a stress for-
mula for bead-rod chains is not as straightforward as
in the case of bead-spring models, where the physical
configuration is an intimate reflect of the instantaneous
mechanical state of the system. In the case of bead-rod
chains, the pictorial arguments used for the bead-spring
models are not enough and, in consequence, a deeper
physical explanation is required.

There is a general consensus accepting that the mod-
ified Kramers expression (Eq. (46)) accounts for the
contribution to the total shear stress coming from a di-
luted model system whose total change in momentum
can be discretized on certain points, as is the case for
a general bead-rod-spring model. A detailed derivation
of this stress tensor formula using a general phase-space
kinetic theory can be examined in chapters 17 and 18
of [28].

Care must be taken also when calculating numeri-
cally the stress tensor for systems containing constraints.
Given the numerical singularities originated by the pres-
ence of constraints, one is particularly interested in the
correct implementation of a stress tensor formula into
the BD algorithm. It is found that a correct estima-
tion of the stress tensor must to be closely linked to the
integration scheme used in the simulation.

In order to account rigorously for the Brownian ef-
fects on the stress tensor, the algorithm estimating the
stress tensor must to consider the discontinuity of the
Brownian forces during a given time step [86,93], spe-
cially when no-flow conditions are being simulated. To
do this, the modified Kramers formula has to be inter-
preted as an average in time. For a mid-step algorithm,
for example, the average has to be carried out using the
beginning and the end of the time step [94]:

τ p (t) =
c

2

n∑
v=1

〈
Rv (t)⊗ F(h)

v (t) +
Rv (t+∆t)⊗ F(h)

v (t+∆t)

〉
(94)

Doyle demonstrated that two iterations of the predictor-
corrector scheme producing an increment of∆t are equiv-
alent to one time-step of the mid-step algorithm [93].
Based on the previous fact, it can be easily showed that
Eq. (94) is also a correct interpretation of the virial ten-
sor for the predictor-corrector algorithm.

An alternative way to correctly account for the Brow-
nian contribution in a first order integration scheme (as
the predictor-corrector algorithm), considering a “long-
lasting” action of the random forces, can be envisaged
using the next algorithm:

1. Update the bead-rod position by executing one ex-
plicit time step from t to t+∆t.

2. Using the same Brownian forces used at time t, re-
calculation of the hydrodynamic drag forces
F̃(h)
v (t+∆t) with the updated configuration at t+

∆t.
3. Determination of the shear-stress tensor at time t

by computing:

τ p (t) = c
∑
v

〈
Rv (t+∆t)⊗ F̃(h)

v (t+∆t)
〉

(95)

In previous algorithm Brownian forces are inter-
preted in the Stratonovich sense, which is equivalent
to stating that the stochastic forcing occurs through-
out the entire time step [93]. This interpretation of the
Brownian forces is particularly important in the sys-
tems containing constraints because has direct conse-
quences in both integration schemes (as observed clearly
in the mid-step algorithm) and stress tensor calcula-
tions. A simple example showing the impact of the in-
terpretation of the Brownian nature in the shear-stress
tensor calculation is given next. Consider a diluted 2D
fibre aligned with the x axis at time t as show in Fig. 17.
Friction acting on beads is supposed isotropic. No ex-
ternal flow is considered, only Brownian and drag forces
take place.

Fig. 17 Example of the “long-lasting” action of Brownian
forces over a quiescent 2D single rod throughout a time step.
An isotropic friction coefficient is supposed. Upper rod corre-
sponds to the configuration at time t, lower rod corresponds
to the configuration at time t + ∆t. Observe that hydrody-
namic forces at the end of the time step present non-null
projections on the fibre axis



It can be easily demonstrated, from the example of
the geometrical projection of Brownian forces given in
§4.1, that effective random forces in such configuration
only occurs perpendicularly to the fibre axis, explaining
why Brownian forces depicted in Fig. 17 at time t are
perpendicular to fibre axis. If Brownian forces acting at
time t are interpreted as instantaneous and stress ten-
sor calculation is based exclusively on the mechanical
balance obtained at time t then the contribution of the
fibre to the shear-stress tensor would be null (τp = 0),
as hydrodynamic forces F(h)

v (t) are always perpendic-
ular to the connector vectors Rv (t).

Suppose now that Brownian forces at time t occurs
continuously until the end of the time step t + ∆t as
showed in Fig. 17, where Brownian forces conserve mag-
nitude and direction for the updated fibre configuration
at time t+∆t. In that case, the contribution of the fibre
to the shear-stress must include the configuration and
mechanical balance of the fibre at the end of the time
step. By employing the “long-lasting” Brownian forces
algorithm, the shear-stress tensor contribution of a rep-
resentative ensemble of fibres initially aligned with the
x axis converges to the next form:

τ p = α

(
1 0
0 −1

)
(96)

where α is a constant function of the temperature.
Previous shear-stress tensor is in coherence with the
results in theoretical mechanics for a quiescent rigid
fibre immersed in a solvent, in which fibre experiences
tension along its axis and compression in the normal
direction.

Symmetry is another important issue when using
the Kramers-Kirkwood expression for estimating the
contribution of a given micro-mechanical model to the
shear-stress tensor. Diluted bead-rod chains submitted
to a homogeneous velocity field, in absence of external
forces F(e)

v , are intended to produce a symmetric con-
tribution to the total shear-stress. In a BD approach,
symmetry is reached from the average of progressively
bigger populations of bead-rod chains and/or the use of
improved random number generators. In our BD sim-
ulation, limited by the size of the BD system, the es-
timated shear-stress tensor at each time τp (t), is made
symmetrical in order to calculate the rheological prop-
erties following the next formula:

[τ p (t)]sym =
1
2

(
[τ p (t)] + [τ p (t)]T

)
(97)

As expected, convergence of the previous expression
to the central values of shear-stress strongly depends on
the size of the BD population. For example, consider-
ing the 2D rigid-fibre aligned with the x axis presented

previously, in Fig. 18 the progressively convergence of
the out-of-diagonal component of the shear-stress ten-
sor can be appreciated as the size of the BD population
is increased.

Fig. 18 Ratio between the out-of-diagonal and diagonal
components of the first time step shear-stress tensor in func-
tion of the BD population of 2D rigid-fibres initially aligned
with the x axis. Shear-stress tensor has been made symmet-
rical by Eq. (97). Vertical dotted line marks the minimum
required population for obtaining acceptable convergence to
the central values in absence of external flow. Consider that in
the current case the ratio 〈τ12/τ11〉sym is theoretically equal
to zero

Notice that, in absence of flow, at least a population
of 104 systems is required to converge to the central val-
ues. Otherwise, aberrant values for the out-of-diagonal
component of the shear-stress tensor can be obtained.

4.4 The Trimer Chain

In order to study the generalities of the BD simula-
tions for multi-bead-rod models it was decided to use
the freely-jointed (three-beads)-(two-rods) model, also
known as the trumbbell or trimer system. This model
is composed of three beads with isotropic friction co-
efficient ζ connected by two freely jointed rigid mass-
less rods of length a. Hydrodynamic interaction is ne-
glected.

Trimer chain is a better testing model than the
rigid dumbbell because a more rigorously evaluation
of the integration algorithms can be carried out given
the presence of two adjacent constraints. On the other
hand, an exact numerical expression for the dynamic
response of a dilute solution of trimer systems was ob-
tained separately by Fixman and Hassager [95,77]. This



numerical solution is in coherence with the FP equation
for a multi-bead-rod chain in polymer kinetic theory
[67,28], actually deviated from that one for multi-bead-
spring chains [80]. In the Hassager’s solution, dynamic
modulus of the trimer system is described using four
relaxation times λHi of which the longest one writes:

λH1 =
ζa2

5.4376kBT
(98)

With the aim to compare properly with the BD pre-
dictions, time scales for the theoretical data are rescaled
using λH1 .

In a trimer chain hydrodynamic interaction is ne-
glected and friction is supposed isotropic. For that rea-
son, a first-order integration scheme in coherence with
the predictor corrector algorithm can be implemented
in the BD simulation of trimer chains avoiding the use
of metric potential forces. In this paper, shear-stress
tensor contribution is estimated with the modified Kramers-
Kirkwood expression using the “long-lasting” Brownian
forces algorithm. From now on, bi-dimensional BD sim-
ulations are implemented because we have found that
this modelling correctly approaches the analytic solu-
tion of the FP equation for a trimer system. Time scale
in the BD simulations is made dimensionless using the
longest relaxation time (or rotational diffusion time) of
an equal-length (n-bead)-(rigid-rod) system given by
[28]:

λn =
ζL2n (n+ 1)

72 (n− 1) kBT
(99)

where L = a (n− 1). It means that for a trimer system,
where n = 3, time is scaled using λ3 = ζa2/3kBT .
Time step, instead, needs to be scaled with regard to the
shortest relaxation time; bead diffusion time is normally
employed, λbead = ζa2/kBT .

As showed in the analysis of the Hookean-dumbbell
model (§3.4.1), the BD considerations when estimating
the equilibrium properties (in absence of flow) are ana-
logues to those ones obtained under linear dynamic so-
licitation at the characteristic frequency, i.e. at ωR = 1.
For that reason, no-flow properties are skipped and lin-
ear dynamic response of the system is studied directly.

BD simulations of the small-amplitude oscillatory
deformation tests are carried out according to the algo-
rithm explained in §2. First of all, the limit of the linear
viscoelastic regime needs to be determined. In order to
extract this information from the BD simulations, the
norm of the complex modulus at the characteristic fre-
quency is plotted in function of the maximal applied
strain. In order to marginalize the numerical issues of
the BD simulation, a population of 104 chains and a
time step equivalent to λbead/105 are employed.

Figure 19 shows that the limit of the linear vis-
coelastic regime for a dilute solution of trimer systems
corresponds to a maximal deformation γ0 ≈ 1.33a. At
lower values, dynamic moduli obtained by BD simula-
tions are independent of the maximal deformation im-
posed. On the other hand, Fig. 19 evidences that multi-
bead-rod models exhibit a shear-thinning behaviour,
contrary to the multi-bead-spring counterparts. Using
a constant BD population (104 trimers) and a constant
time step (λbead/105), computational time (2× Quad-
Core AMD OpteronTM 2376 (2300 MHz)) employed to
predict the complex modulus at ωR = 1 was found
8.7 times longer than the computational time used at
ωR = 102. This fact is explained by the higher number
of time steps required at low frequencies for sweeping
one-and-a-half period of oscillation and determining the
maximal shear-stress and phase angle between strain
and stress signals.

Fig. 19 Identification of the limit of the linear viscoelas-
tic regime for a dilute suspension of trimers by BD simula-
tion. Absolute value of the complex modulus in function of
the maximal deformation applied for two reduced frequencies:
ωR = 1 and ωR = 102. Horizontal dotted lines correspond to
the theoretical values calculated by Hassager. Dashed vertical
line marks the limit of the linear viscoelastic regime

In the current BD approach, a first-order integra-
tion scheme was implemented and, therefore, time step
strongly influences the convergence of the simulation
towards the central values. In Fig. 20 the effect of the
time step on the convergence of the BD simulation is
presented (from now on, imposed maximal deforma-
tion is chosen inside the linear viscoelastic regime). 104

trimers were employed as BD system in order to re-
duce the distortions coming from the random number
generation. Convergence of the BD simulation is tested



in three different flow scenarios: ωR = 1, which is rep-
resentative of the thermal-to-flow induced transition,
ωR = 102, which is characteristic of the mild flow-
induced regime, and, ωR = 103, which is typical of a
strongly flow-induced regime.

Fig. 20 Mean relative error of the BD prediction of the
complex modulus for a trimer system in function of the
time step. Mean relative error is the average of the rela-
tive errors for storage and loss modules. Relative error is
defined as follows:

∣∣(logG′BD (ωR)− logG′th (ωR)
)
/ logΘ

∣∣,
where Θ = G′′th (ωR = 103) /G′th (ωR = 1) is the maximal in-
terval of complex modulus variation in the tested frequency
interval. A population of 104 trimers has been employed

In Fig. 20 is clearly observed the strong influence
of the length of the time step in the convergence of
the explicit integration scheme at high frequencies. At
low frequencies (ωR = 1), characteristic of the thermal-
induced regime, BD performance (relative error ∼ 3%)
is nearly independent of the length of the time step.
In this regime, convergence of the integration scheme is
guaranteed with a time step equal to λbead ·10−3. Error
obtained at this flow regime is mainly coming from the
random number generation algorithm; implementation
of a more sophisticated generator is necessary to reduce
this noise. When increasing the frequency, BD perfor-
mance is progressively more affected by the integration
scheme. As showed for the multi-bead-spring models, at
higher frequencies than the characteristic one, the flow-
induced forces control the kinematics of the system; for
that reason, higher velocities require smaller time steps
in order to guarantee a correct numerical integration.
This fact is clearly captured in Fig. 20: in the mild
flow-induced regime, i.e. ωR = 102, mean relative error
of the BD prediction goes from 1% to 12% when the

length of the time step is enlarged from λbead · 10−5 to
λbead · 10−3. In the case of strong flow-induced regime,
i.e. ωR = 103, mean relative error of the BD prediction
explodes from 2% to more than 20% when the length
of the time step is augmented just in one-half order of
magnitude from λbead · 10−5.

Fig. 21 CPU time required to predict complex modulus for
a trimer system at three different frequencies (ωR = 1, ωR =
102 and ωR = 103) in function of the time step. A population
of 104 trimers has been employed

On the other hand, in Fig. 21 is observed that sim-
ulation time is reduced as length of the time step is
enlarged. Moreover, for a given value of time step, com-
putational time used for calculating complex modulus
strongly depends on the tested frequency; for instance,
when implementing ∆t = λbead · 10−5, simulations last
in minutes 62.0, 8.1 and 31.5 for reduced frequencies
of 1, 102 and 103 respectively. Simulation at the char-
acteristic frequency has the biggest computational cost
because it requires the longest analytical step (1.5 peri-
ods of oscillatory deformation at the lowest frequency).
Moreover, simulation at the highest frequency is also
time-consuming because an additional refining of the
nominal time step is required for well describe the os-
cillatory deformation signal.

In what follows, an extended sweep test over 21 fre-
quencies homogeneously distributed within an interval
of reduced frequencies going from 10−2 to 103 was used
to evaluate the global performance of the implemented
BD simulation predicting the linear dynamic response
of a trimer system in dilute solution. A time step equal
to λbead ·10−5 has been employed to guarantee the best
convergence of the integration scheme inside the simu-



lated frequency range. In Fig. 22 the Hassager’s numer-
ical solution is compared with the BD predictions for
the frequency sweep test. Hassager’s complex modulus
is presented in a reduced frequency scale ωR = ωλH1 ,
and BD results are plotted in a reduced frequency scale
ωR = ωλ3, where λ3 is the rotational diffusion time for
a (3-beads)-(rigid-rod) system of equal length.

Fig. 22 Dynamic modulus of a freely jointed (three-beads)-
(two-rods) system in a proper reduced frequency scale: com-
parison between the Hassager’s numerical solution and the
current BD simulation. λH1 is the main relaxation time in the
Hassager’s solution and λ3 is the rotational diffusion time of a
system composed of (3-beads)-(rigid-rod) with equal length.
a and ζ are fixed to 1, ckBT to 0.1 and Kb to 0 in a consistent
system of units

BD algorithm yielded a complex modulus in good
agreement with the Hassager’s numerical solution of
the trimer system as observed in Fig. 22. On the other
hand, this large-sweep simulation demonstrated that a
bi-dimensional modelling is able to correctly approach
the 3D analytical solution given by Hassager and, there-
fore, avoids implementing a three-dimensional modelling,
which would be more expensive in computational time.
Two different regions are clearly differentiated in the
dynamic response of a trimer system: a low frequency
regime exhibiting a typical Maxwell terminal behaviour,
where the thermal activity (or Brownian forces) drives
the kinematic of the system; and a high frequency regime,
where the domination of flow forces over the diffusivity
terms produces a plateau for the storage modulus and
a limiting constant viscosity (G (ω) /ω)−ηs larger than
zero. The existence of a non-zero limiting viscosity is
physically more coherent than the classical responses

of multi-bead-spring chains, where the contribution to
the dynamic viscosity disappears at high frequencies.

As already mentioned in the section devoted to the
bead-spring models, the number of entities (or trajec-
tories) plays a fundamental role in the performance of
the BD simulations. Performance of the global simula-
tion in function of the BD population is presented in
Fig. 23. The performance of the BD simulation is mea-
sured in terms of the mean of the relative errors for 17
storage modulus values homogeneously distributed in
an interval of reduced frequencies going from 10−2 to
102. Loss modulus signature was found practically in-
sensitive to the BD population; mean relative error for
the loss modulus signal was equal to 0.3%.

Fig. 23 Mean relative error of the storage modulus pre-
diction (for a trimer system) and total computational
time in function of the BD population. Mean relative
errors are calculated as the average of 17 points dis-
tributed homogenously in a reduced frequency range go-
ing from 10−2 to 102. Relative error is calculated as fol-
lows:

∣∣(logG′BD (ωR)− logG′th (ωR)
)
/ logΘ

∣∣, where Θ =

G′′th (ωR = 102) /G′th
(
ωR = 10−2

)
is the maximal interval of

complex modulus variation in the tested frequency interval

As expected, a linear evolution of the computational
time (2 × Quad-Core AMD OpteronTM 2376
(2300 MHz)) in function of the number of trimers simu-
lated is checked. It was corroborated that a population
of 104 systems guarantees a good compromise between
computational time and rheological prediction perfor-
mance.



4.5 Non-Freely-Jointed Chains (and Non-Straight
Natural Configurations)

Bending potential defined in Eq. (71) is based on the
worm-like chain continuous model. It this model, the
equilibrium configuration corresponds to a perfectly straight
chain. This fact means that the minimum value of the
internal bending energy is associated with a multi-bead-
rod chain whose unitary rod vectors uj are all the same.
Bending potential force acting on bead k can be easily
deduced as the derivative of the discrete bending poten-
tial with respect to the position of bead k (Eq. (72)).
Total bending force acting on bead k only depends on
the local chain configuration and can be interpreted as
the sum of independent contributions coming from all
the two-rod sub-sections containing bead k. Demonstra-
tion of the previous can be found elsewhere [27].

However, finite-contour-length high-aspect-ratio sys-
tems with naturally non-straight configurations at equi-
librium can be found in the physical world (for example
carbon nanotubes, rod-like virus, genes) and, therefore,
a redefinition of the discrete bending potential taking
into account a natural non-straight configuration is re-
quired to simulate the dynamic response of naturally
bent structures.

In this context, a suitable redefinition of the discrete
bending potential for a multi-bead-rod model with a
naturally bent configuration at equilibrium can be ex-
pressed in the next way:

φ=− Kb

a

n−1∑
i=2

Ziui · ui−1 = −Kb

a

n−1∑
i=2

u′i · ui−1 (100)

where Zi is a linear operator that counter-rotates
vector ui of ∆θ0i,i−1 (interior angle between ui and ui−1

at the equilibrium configuration) and u′i is the rotated
vector Ziui. In an analogous way with the straight case,
bending force coming from the potential in Eq. (100)
takes the next form:

Fφk = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (u′i · ui−1)
∂rk

(101)

Considering that the total bending force in Eq. (101)
can also be interpreted as the sum of independent con-
tributions coming from all the two-rod sub-sections con-
taining bead k, as shown in [27], next algorithm is pro-
posed for computing the total bending forces in coher-
ence with a naturally bent configuration:

1. Decomposition of the multi-bead-rod (n beads) sys-
tem into n − 2 sub-section of two consecutive rods
as shown in Fig. 24 (Note that sub-section p is com-
posed by beads p, p+ 1 and p+ 2).

Fig. 24 Multi bead-rod model of n beads (in black) decom-
posed in n− 2 sub-sections p constituted by two consecutive
rods (in gray)

2. Calculation of the non-zero contributions to the bend-
ing forces over all beads composing each sub-section
p as follows:
• Bending force on bead p of sub-section p as:

F(φ)
p,p = −Kb

a2
(δ − up ⊗ up) · u′p+1 (102)

• Bending force on bead p+ 2 of sub-section p as:
Fφp+2,p =
Z−1
p+1 ·

[
Kb
a2

(
δ − u′p+1 ⊗ u′p+1

)
· up

] (103)

Bending force on bead p+ 2 of sub-section p has
been rotated back (operator Z−1

p+1) in order to
correct the direction of the force, that must to be
in coherence with the actual bent configuration.
• As the bending potential in each sub-section is

locally independent of the adjacent sub-sections,
it must to satisfy mechanical equilibrium and,
hence, bending force on bead p+1 of sub-section
p writes:
F(φ)
p+1,p = −F(φ)

p,p − F(φ)
p+2,p (104)

3. Finally, total bending force acting on bead k is cal-
culated as follows:

F(φ)
k =

n−2∑
p=1

F(φ)
k,p (105)

Given the previous more general definition of the
bending forces for a multi-bead-rod model with any
equilibrium configuration, we can deal with more sci-
entific rigor the effects of the bending flexibility on
the dynamic response of multi-bead-rod chains in di-
lute solution. To show this, bi-dimensional BD sim-
ulations are carried out for several non-freely-jointed
(three-beads)-(two-rods) systems. In this case, hydro-
dynamic interaction is neglected and an isotropic fric-
tion tensor is supposed. Previous premises allowed us
to implement a first-order integration scheme in coher-
ence with the predictor-corrector algorithm; no metric
potential forces are required in the formulation. Shear-
stress tensor contribution coming from the bead-rod



chains is calculated with the modified Kramers Kirk-
wood expression using the “long-lasting” Brownian forces
algorithm.

A large range of dynamic responses in linear vis-
coelasticity is deployed depending on the equilibrium
configuration and the bending rigidity constant. To ex-
plain this, in Fig. 25 the dynamic responses of a freely-
jointed system, two non-freely-jointed systems with nat-
ural straight configuration and a non-freely-jointed sys-
tem with a naturally bent configuration are compared.
Rod misalignment (i.e. the natural bent multi-bead-rod
configuration) is generated following the next formula:

θ0i = θ0i−1 −∆θmax + U (0, 1) · 2∆θmax (106)

where θ0i is the equilibrium director angle of rod i,
∆θmax is the maximal misalignment between two con-
secutive rods and U (0, 1) is a continuous uniform ran-
dom distribution function defined between 0 and 1.

In a general way, when the bending rigidity con-
stant Kb is equal or greater than the thermal coeffi-
cient akBT , the loss modulus is enhanced over the entire
frequency range and the storage modulus is increased
in the low frequency regime. Otherwise, if the bending
rigidity constant is much lower than the thermal coef-
ficient (Kb << akBT ), a dynamic response similar to
that one of a freely jointed system is obtained, showing
just one dominant relaxation time associated with the
thermal-to-flow induced motion transition.

Additionally, in Fig. 25 the apparition of new relax-
ation processes when the bending rigidity constant is
considerably greater than the thermal coefficient (i.e.
Kb >> akBT ) is observed. For instance, the activa-
tion of a mild elasticity at intermediate frequencies is
clearly noticed in the dynamic response of the non-
freely jointed (three-beads)-(two-rods) system with bend-
ing rigidity constant Kb = 10. When comparing the
straight configuration with the bent one, even though
the loss modulus responses are similar, an interesting
difference in the storage modulus is appreciated. In fact,
on the one hand the activation of the mild elasticity
for the system with a natural bent configuration is ob-
served at a lower characteristic frequency than the sys-
tem with a straight configuration; on the other hand,
a more steeped mild elasticity is noticed for the bent
system in comparison with the straight one. In front
of this qualitative feature the equilibrium configuration
appears a priori as an important factor affecting the dy-
namic response under flow of a multi bead-rod system.

In Fig. 26 the BD predictions of the complex mod-
ulus for a non-freely jointed (three-beads)-(two-rods)
system with a natural bent configuration for different
values of the bending rigidity constant are presented.
The typical thermal-to-flow induced relaxation process

Fig. 25 BD predicted complex modulus of different (three-
beads)-(two-rods) systems: freely jointed, non-freely jointed
with natural straight configuration (Kb = 0.1 and Kb = 10
in a consistent system of units) and non-freely-jointed with
natural bent configuration (Kb = 10 in a consistent system
of units and ∆θmax = 30◦). a and ζ are fixed to 1 and ckBT
to 0.1 in a consistent system of units. λ3 is the rotational dif-
fusion time of a (3-beads)-(rigid-rod) system of equal length

Fig. 26 BD predicted complex modulus of a non-freely
jointed (three-beads)-(two-rods) system with a natural bent
configuration (maximal misalignment angle ∆θmax = 30◦)
for different values of the bending rigidity constant Kb.
Freely-jointed system (Kb = 0) is presented as reference. a
and ζ are fixed to 1 and ckBT to 0.1 in a consistent system of
units. λ3 is the rotational diffusion time of a (3-beads)-(rigid-
rod) system of equal length



occurring around the rotational diffusion time λ3 (as
in the equivalent straight systems) is easily identifiable.
Additionally, an interesting second relaxation process
(as showed before) activating a mild elasticity at inter-
mediate frequencies is again appreciated for the natu-
ral bent systems. BD simulations have showed that the
characteristic frequency of this relaxation process and
the magnitude of the storage modulus enhancement are
function of the bending rigidity constant. The activa-
tion frequency of this mild elasticity is increased as the
bending rigidity constant is increased as well. This fea-
ture is physically coherent taking into account that a
higher energy input (i.e. solicitation frequency) is re-
quired for activate the first bending mode of a stiffer
system. On the other hand, it is also noticed that the
storage modulus enhancement and the frequency range
associated to those new relaxation processes also rises
as the bending rigidity increases. This qualitative fea-
ture can be physically explained considering that the
stored internal energy associated with a given bending
mode is directly proportional to the bending rigidity
constant.

5 Summary

Brownian dynamics (BD) is an extensive numerical method
for analyzing the dynamic behaviour of any coarse-
grained structural model. In fact, BD is practically the
only mathematical approach for those structural mod-
els that do not have an equivalent Fokker-Planck (FP)
equation and, in addition, is an alternative approach for
solving in a discrete fashion the FP equation of those
models that have one. This extensive micro-to-macro
approach is purely stochastic and, in consequence, rel-
atively costly in terms of computational resources. A
correct implementation of a BD simulation in compu-
tational rheology for a given structural model depends
particularly on the precise formulation of an equivalent
stochastic differential equation coupled with a coherent
time integration algorithm and a stress tensor calcula-
tion.

This paper tackled the BD simulation of the linear
viscoelastic behaviour of dilute solution of two classical
models in kinetic theory: multi-bead-spring chains and
multi-bead-rod chains. An algorithm for simulating a
dynamic test in linear viscoelasticity (small-amplitude
oscillatory flow) has been developed. The BD approach
in linear viscoelasticity for the generalized bead-spring
model was validated in front of the analytical solu-
tions of the Rouse theory (freely-jointed multi-bead-
(Hookean-springs) chains without hydrodynamic inter-
action) and Zimm theory (freely-jointed multi-bead-
(Hookean-springs) chains with equilibrium-averaged hy-

drodynamic interaction), implementing a simple Euler
time-integration scheme and the Kramers expression for
calculating the shear-stress tensor.

On the other hand, the BD simulation in linear vis-
coelasticity for the generalized bead-rod model was val-
idated with respect to the exact numerical solution for
the freely-jointed (three-beads)-(two-rods) chain given
by Hassager, implementing an explicit time-integration
scheme and the Kramers-Kirkwood expression coupled
with a “long-lasting” Brownian forces algorithm for cal-
culating the shear-stress tensor. Moreover, it was shown
that a bi-dimensional BD modelling allows to correctly
approach the dynamic behaviour of classical 3D bead-
rod-spring chain models.

The dynamic response of non-freely-jointed multi-
bead-rod chains with naturally straight and non-straight
configuration was also simulated. In terms of numeri-
cal implementation of the naturally non-straight con-
figuration, a mechanically coherent re-definition of the
discretized version of the bending potential for natu-
rally straight semi-flexible filaments was necessary in
order to tackle properly the cases of bent configurations.
An algorithm by decomposing the multi-bead-rod chain
in (three-beads)-(two-rods) sub-sections was developed
with the aim of calculating the forces coming from the
internal bending potential.

From the BD simulation results, non-negligible dif-
ferences in the rheological responses were found be-
tween the naturally straight and the naturally bent
models. BD simulation of bead-spring models was demon-
strated to be more straightforward than the simulation
of bead-rod chains. The presence of physical constraints
imposes several restrictions in terms of Brownian forces
generation, time-integration algorithms and stress ten-
sor calculation that are reflected directly on the imple-
mentation of the BD simulation.
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