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Picking the one that does not fit -

A matter of logical proportions

Henri Prade1 Gilles Richard1

1IRIT - University of Toulouse - France

Abstract

Quiz or tests about reasoning capabilities often per-
tain to the perception of similarity and dissimilarity
between situations. Thus, one may be asked to com-
plete a series of entities A, B, C by an appropriate
X, or to pick the one that does not fit in a list. It
has been shown that the first problem can receive
a solution by solving analogical proportion equa-
tions between the representations of the entities in
a logical setting, where we assume that X should
be such that A is to B as C is to X. In this paper,
we focus on the second problem, and we show that
it can be properly handled by means of heteroge-
neous proportions that are the logical dual of the
homogeneous proportions involved in the modeling
of analogical proportions and related proportions.
Thus, the formal setting of logical proportions, to
which homogeneous and heterogeneous proportions
belong, provides an appropriate framework for han-
dling the two problems in a coherent way. As it
already exists for homogeneous proportions, a par-
ticular multiple-valued logic extension of heteroge-
neous proportions is discussed (indeed being an in-
truder in a group may be a matter of degree).

Keywords: Analogy, logical proportions, multiple-
valued semantics.

1. Introduction

Commonsense reasoning often relies on the percep-
tion of similarity as well as dissimilarity between
objects or situations. This is why psychological
quizzes often test the ability to exploit comparisons
in reasoning. There are at least two very differ-
ent kinds of such tests : i) analogy problems which
amount to select some answer X for completing a
series A, B, C such as A is to B as C is to X gives
the best fit, and ii) “find the odd one out” problems
where one has to pick the one that does not fit in a
list of 4 or more items.

In the last past years, a logical model of ana-
logical proportions, i.e. statements of the form A
is to B as C is to D has been proposed [1, 2, 3],
which enables us to compute a representation of X
from the ones of A, B, and C (rather than selecting
X from a set of potential candidates). This model
takes its roots in a relatively recent work of Lepage
[4] who has proposed a set-theoretic view of ana-
logical proportions, and in more ancient works in

formal anthropology by Klein [5] and in psychology
by Piaget [6] (see [1, 3] again for the details of the
links between these different works). Such a logical
view of analogical proportions has been proved to
be also successful for solving more difficult IQ tests
[7]. Moreover, it has been shown that analogical
proportions, which basically express that A (resp.
B) differs from B (resp. A) as C (resp. D) differs
from D (resp. C), are a special case of so-called
logical proportions [8]. Roughly speaking, a logical
proportion between four terms A, B, C, D equates
similarity or dissimilarity evaluations about the pair
(A,B) with similarity or dissimilarity evaluations
about the pair (C,D). Among the set of existing
logical proportions, 4 homogeneous ones (which in-
clude the analogical proportion) enjoy outstanding
properties and seem particularly attractive for com-
pleting missing values in a sequence [3].

In this paper, we introduce and study a set of 4
heterogeneous logical proportions, which are dual in
some sense of the homogeneous ones. These propor-
tions are then shown to be instrumental for picking
out the item that does not fit in a list. The setting
of logical proportions appears to be rich enough for
coping with two different types of reasoning prob-
lems where the ideas of similarity and dissimilar-
ity play a key role. Moreover, a particular graded
version of heterogeneous proportions is proposed,
which is the counterpart of the one for analogical
and related proportions [9]. This gives us some
tool for handling situations whose representation in-
volves properties that are a matter of degree.

The paper is organized as follows: we briefly re-
call the properties of homogeneous proportions and
their range of application. In section 3, we pro-
vide a graphical representation exhibiting different
types of opposition and relationship between ana-
logical proportion, and more generally homogeneous
proportions, and the new heterogeneous ones. In
section 4, we investigate the core properties of the
heterogeneous proportions. Section 5 is devoted to
showcase the use of heterogeneous proportions, be-
fore concluding in section 6.

2. Background on homogeneous proportions

A logical proportion T (a, b, c, d) is a conjunction
of 2 equivalences, involving 4 Boolean variables
[2], denoted by lower case letters. For instance
(ab ≡ cd)∧ (ab ≡ cd) is the expression of analogical



proportion. Here a is a compact notation for the
negation of a, and ab is short for a ∧ b, and so on.

It has been proved that there exist 120 semanti-
cally distinct logical proportions, involving the pair
(a, b) on one side, the pair (c, d) on the other side
of ≡, where each variable may be negated or not.
Moreover, each logical proportion has exactly 6 lines
leading to 1 in its truth table (and the 10 remain-
ing lines lead to 0). Both ab and ab capture the
idea of dissimilarities between a and b, while ab and
ab capture the idea of similarities, positively and
negatively. For instance, analogical proportion uses
only dissimilarities and could be informally read as
what is satisfied by a and not by b is exactly what is
satisfied by c and not by d, and vice versa.

In order to identify the logical proportions that
may be considered as suitable counterparts of the
numerical proportions (which are known as not
depending on the representation of the numbers
in a particular basis), one property is paramount.
This is the so-called code independency property:
T (a, b, c, d) =⇒ T (a, b, c, d) insuring that the pro-
portion T holds whether we encode falsity as 0 (resp.
truth as 1) or vice versa. Only 8 among the 120 pro-
portions satisfy code independency [3] and, in that
perspective, these 8 proportions stand out from the
crowd: they are shown in Table 2. They can be
divided in two groups: the 4 so-called “homoge-
neous” proportions denoted A,R, P, I which have
been deeply investigated and which are briefly re-
called below, and the 4 so-called “heterogeneous”
proportions denoted Ha, Hb, Hc, Hd (for a reason
that will be made clear in the following), which are
considered and studied in section 4 for the first time.

Homogeneous proportions

A R

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd
P I

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd
Heterogeneous proportions

Ha Hb

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd
Hc Hd

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd

Table 1: 8 outstanding proportions

2.1. Properties of homogeneous proportions

Their truth tables (restricted to the 4-tuples lead-
ing to the truth value 1), are derived from their
Boolean expressions, and shown in Table 2.1. We
observe that there are only 8 distinct 4-tuples ap-
pearing in the tables, among 16 candidates, each
one having an even number of 0 and 1, and leaving
out the 8 remaining tuples having an odd number of

0 and 1. This emphasizes their collective coherence
as the whole class of homogeneous proportions. We
observe on these truth tables that any combination
of 2 homogeneous proportions is satisfiable by 4 4-
tuples, any combination of 3 homogeneous propor-
tions is satisfiable by only 2 4-tuples, and that the
conjunction A(a, b, c, d)∧R(a, b, c, d)∧P (a, b, c, d)∧
I(a, b, c, d) is not satisfiable.
A(a, b, c, d) is the analogical proportion which ex-

presses that a (resp. b) differs from b (resp. a) as c
(resp. d) differs from d (resp. c). R(a, b, c, d) is the
reverse analogical proportion, where R(a, b, c, d) =
A(a, b, d, c) (a is to b as d is to c). P (a, b, c, d)
is named paralogy and expresses that what a and
b have in common, c and d have it also. Fi-
nally, I(a, b, c, d) denotes the inverse paralogy and
expresses that what a and b have in common, c
and d do not have it, and vice-versa. Most of the
semantical properties of homogeneous proportions
can be easily checked from their truth tables, and
may be viewed as counterparts of properties of the
numerical (geometrical) proportion a

b
= c
d
. For

instance, the property a
b

=
1

b
1

a

parallels the prop-

erty T (a, b, b, a) (called exchange mirroring) for a
logical proportion T where the negation operator
plays the role of the inverse. It has then been
shown that, among the homogeneous proportions,
only A and I satisfy exchange mirroring. Table
2.1 summarizes the results: the third column enu-
merates the homogeneous proportions satisfying the
property respectively named and described in the
1st and 2nd columns. Note that the 4 homoge-
neous proportions satisfy the symmetry property
T (a, b, c, d) = T (c, d, a, b): the pairs (a, b) and (c, d)
play symmetrical roles.

A R P I

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Table 2: A, R, P, I Boolean truth tables

Property name Formal definition Proportion
full identity T (a, a, a, a) A,R,P

1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) none
0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) none

reflexivity T (a, b, a, b) A,P
reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R
symmetry T (a, b, c, d)→ T (c, d, a, b) A,R,P,I

permut. of means T (a, b, c, d)→ T (a, c, b, d) A,I
permut. of extremes T (a, b, c, d)→ T (d, b, c, a) A,I

all permutations ∀i, j, T (a, b, c, d)→ T (pi,j(a, b, c, d)) I
transitivity T (a, b, c, d) ∧ T (c, d, e, f)→ T (a, b, e, f) A,P

semi-mirroring T (a, b, a, b) R,I

exchange mirroring T (a, b, b, a) A,I

negation compatib. T (a, a, b, b) P,I

Table 3: Properties of homogeneous proportions

As can be seen from Table 2.1, homogeneous pro-
portions, and in particular the analogical propor-
tion A, enjoy properties that parallel properties of
numerical proportions. It makes homogeneous pro-



portions a satisfactory Boolean counterpart of nu-
merical proportions.

2.2. Equation solving

The idea of proportion is closely related to the idea
of extrapolation, i.e. to guess/compute a new value
on the ground of existing values. In other words,
if for some reason, it is believed or known that a
proportion holds between 4 binary items, 3 of them
being known, then one may try to infer the value
of the 4th one, at least in the case this extrapola-
tion leads to a unique value. In our context, the
problem can be stated as follows. Given a logical
proportion T and a 3-tuple (a, b, c), does it exist a
Boolean value x such that T (a, b, c, x) = 1, and in
that case, is this value unique? It is easy to see that
there are always cases where the equation has no so-
lution since the triple a, b, c may take 23 = 8 values,
while any proportion T is true only for 6 distinct
4-tuples. For instance, when we deal with analogy
A, the equations A(1, 0, 0, x) and A(0, 1, 1, x) have
no solution. And it has been proved, for instance
that the analogical equation A(a, b, c, x) is solvable
iff (a ≡ b)∨ (a ≡ c) holds. In that case, the solution
is unique, and is given by x = a ≡ (b ≡ c). Sim-
ilar results hold for the 3 remaining homogeneous
proportions.

2.3. Applications

Homogeneous proportions lead to surprisingly suc-
cessful applications in reasoning and in classifica-
tion tasks. In real world, we generally have to deal
with objects which cannot be simply coded with a
unique Boolean value and it is necessary to extend
what has been done to Boolean vectors. For a given
proportion T , the extension is done componentwise:

T (a, b, c, d) iff ∀i ∈ [1, n], T (ai, bi, ci, di)

All the previous properties still hold for ho-
mogeneous proportions and the equation solv-
ing process, when successful, provides a com-
plete Boolean vector instead of a unique Boolean
value. For instance, let us consider the sim-
ple sequence of Figure 2.3. A basic way
to encode the problem involves the 5 Boolean
predicates hasRectangle(hR), hasBlackDot(hBD),

hasTriangle(hT ), hasCircle(hC), hasEllipse(hE) in
that order. This leads to the code shown in Figure
2.3. Then the equation solving process provides the
expected solution whose code is d = (0, 1, 1, 1, 0).
Sometimes, one can avoid an encoding involving
high level notions such as circle, triangle, etc., by
considering that one has a sequence of 3 bitmap
pictures, each picture being represented as a huge
Boolean vector with much more than 5 components
(if the bitmap are 256*256, each vector belongs to

B
2

16

). In that case, the method may apply and
provide exactly the same solution [7]. Moreover, in
[7], this method has been extended to much more

hR hBD hT hC hE
a 1 1 0 0 1
b 1 1 0 1 0
c 0 1 1 0 1
d ? ? ? ? ?

Figure 1: An analogical sequence of pictures and its

Boolean coding

sophisticated IQ tests known as the Raven Progres-
sive Matrices (RPM) [10], providing exact and com-
plete solutions for 32 out of 36 tests of the Advanced
RPM batch (each time the solution is built rather
than chosen in a set of potential candidates).

3. Structures of opposition among

proportions

The construction of the logical proportions rely on
the interplay of similarity and dissimilarity. When
this interplay is “homogeneous” with respect to the
pairs of binary variables considered, we obtain the
4 homogeneous proportions. The union of the set
of 4-tuples that makes true at least one proportion
(in fact 3 of them) among the 4 homogeneous ones
is made of the 8 4-tuples that have an even number
of 0 (and then an even number of 1). Thus, there
are 8 remaining 4-tuples that are never true for any
homogeneous proportion. Those 8 4-tuples have an
odd number of 0 (and then an odd number of 1).
It turns out that this set of 8 4-tuples (with an odd
number of 0) is also the union of the 4-tuples mak-
ing true at least one (in fact 3 of them) of a set of 4
logical proportions. These 4 logical proportions are
the heterogeneous proportions already mentioned at
the beginning of Section 2. We call them ‘heteroge-
neous’ because of the oddity of their truth tables.

Before further investigating the heterogeneous
proportions, we use an hexagonal device for lay-
ing bare and visualizing the structures of opposition
linking analogical proportion to the heterogeneous
proportions.

In order to do that, let us provide a brief re-
minder about the hexagonal extension of the Aris-
totelian square of opposition proposed and advo-
cated by Blanché [11, 12] (see also [13]). Indeed,
it can be easily checked that three mutually ex-
clusive situations J,K,L (represented by subsets
of a referential) always give birth to a hexagon
as in Figure 2. This hexagon is outstanding for
many reasons. It also exhibits the pairwise union
of these situations and thus gives birth to 3 Aris-
totelian squares of opposition whose vertices are re-
spectively (J,K,K ∪L, J ∪L), (K,L,L∪J,K ∪J),
and (L, J, J ∪ K,L ∪ K). In each of the 3 squares
in Figure 2:

• the diagonals relate disjunct subsets.



• the arrows, e.g. from K to J ∪K, express in-
clusion.
• the thick black lines join vertices which corre-

spond to disjoint sets, whose union does not
cover the referential.
• the double lines join overlapping subsets, whose

union is the referential.

Note also that each of the vertices J,K,L is the
intersection of its 2 neighboring vertices in the
hexagon.

J

J ∪K

K

K ∪ L

L = (J ∪ L) ∩ (K ∪ L)

J ∪ L

Figure 2: Hexagon induced by a tri-partition (J,K,L)

We are going now to apply the fact that a
tri-partition leads to a hexagon of opposition,
by considering tri-partitions of sets of 4-tuples
of binary valuations. It is clear that there is a
unique quaternary connective that makes true a
particular subset of 4-tuples of binary valuations,
and which is false on all the other subsets of
4-tuples of valuations. We start by consider-
ing the whole set of the 16 possible 4-tuples.
The partition that we are going to consider
is the following one J = {0110, 1001}, K =
{0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111},
L = {0000, 1111, 1010, 0101, 1100, 0011}. As can be
seen, in this partition of the 16 possible 4-tuples
into 3 mutually exclusive subsets, L corresponds
to the truth table of the analogy A, K gathers the
8 patterns including an odd number of ‘1’ (and
thus of ‘0’ ), while J gathers the two characteristic
patterns 0110 and 1001 of the reverse analogy.
The corresponding hexagon is pictured in Figure
3. This hexagon has a nice interpretation in
terms of analogical dissimilarity in the sense of
[14]. Indeed the analogical dissimilarity of the 6
valuation patterns in L is 0, since they correspond
to the 6 cases where A holds true; the analogical
dissimilarity of the 8 valuation patterns in K is 1,
since in each case it is enough to switch one bit for
getting a pattern for which proportion A is true;
the analogical dissimilarity of the 2 patterns in J is
2 since one needs to change 2 bits to get a pattern
where proportion A is true. It is also noticeable
that the set of patterns in J ∪L corresponds to the
truth table of a quaternary connective that exactly
corresponds to S. Klein [15, 5]’s view of analogy,
defined as:

Klein(a, b, c, d) , (a ≡ b) ≡ (c ≡ d),

which is closely related to the equation solving
problem for proportions A, R, P . The vertex corre-
sponding to K∪L, named “approximate similarity”
in Figure 3, is associated with an operator which is
true in the cases where the analogical dissimilarity
is not maximal. The hexagon of Figure 3 is clearly
associated with the analogical proportion A. There
are 3 other similar hexagons associated with each of
the 3 other homogeneous proportions, changing L
and J in the appropriate way. The vertex opposite
to Klein’s operator gathers the 8 heterogeneous
4-tuples from which the truth tables of the 4
heterogeneous proportions are made.

0 1 1 0
1 0 0 1

non analogy
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

approximate similarity

1 1 1 1
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

1 1 1 1
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

Klein′s

operator

Figure 3: Hexagon induced by analogical dissimilarity

4. Heterogeneous proportions

As highlighted in the introduction, there are 4 other
outstanding proportions, namely the heterogeneous
proportions, whose truth tables are given in Table
4.

Ha Hb Hc Hd

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Table 4: Ha, Hb, Hc, Hd Boolean truth tables

It is stunning to note that these truth tables ex-
actly involve the 8 missing tuples of the homoge-
neous tables, i.e. those ones having an odd num-
ber of 0 and 1. It is remarkable that they sat-
isfy the same association properties as the homoge-
neous ones: Indeed we observe on their truth tables
that any combination of 2 heterogeneous propor-
tions is satisfiable by 4 4-tuples, any combination
of 3 heterogeneous proportions is satisfiable by only
2 4-tuples, and that the conjunction Ha(a, b, c, d) ∧
Hb(a, b, c, d)∧Hc(a, b, c, d)∧Hd(a, b, c, d) is not sat-
isfiable. This fact contributes to make the hetero-
geneous proportions the perfect dual of the homo-
geneous ones.

4.1. Properties

The formal definitions given in Table 2 lead to im-
mediate equivalences between heterogeneous and



homogeneous proportions that we summarize in Ta-
ble 4.1. Obviously, the heterogeneous proportions

Ha Hb

Ha(a, b, c, d) ≡ I(a, b, c, d) Hb(a, b, c, d) ≡ I(a, b, c, d)
Ha(a, b, c, d) ≡ P (a, b, c, d) Hb(a, b, c, d) ≡ P (a, b, c, d)

Ha(a, b, c, d) ≡ P (a, b, c, d) Hb(a, b, c, d) ≡ P (a, b, c, d)

Hc Hd

Hc(a, b, c, d) ≡ I(a, b, c, d) Hd(a, b, c, d) ≡ I(a, b, c, d)
Hc(a, b, c, d) ≡ P (a, b, c, d) Hd(a, b, c, d) ≡ P (a, b, c, d)

Hc(a, b, c, d) ≡ P (a, b, c, d) Hd(a, b, c, d) ≡ P (a, b, c, d)

Table 5: Equivalences between heterogeneous and ho-

mogeneous proportions

are strongly linked together: for instance, using the
symmetry of I,

Ha(a, b, c, d) ≡ I(a, b, c, d) ≡ I(c, d, a, b) ≡ Hc(c, d, a, b)

In the following we discuss two different ways of
viewing these proportions:

- a semantic viewpoint: the full identity postulate
T (a, a, a, a) asserts that proportion T holds be-
tween identical values. Negating only one variable
position generates an intruder, as in T (a, a, a, a),
T (a, a, a, a), T (a, a, a, a) and T (a, a, a, a), and
leads to new postulates respectively denoted
Inta, Intb, Intc and Intd. For a proportion, sat-
isfying the property Inta means that the first
variable may be an intruder. Since each postulate
Inta, Intb, Intc and Intd is validated by 2 distinct
4-tuples, it is clear that 3 of them are enough to
define a logical proportion having exactly 6 valid
4-tuples. There is no proportion satisfying all these
postulates since it would lead to 8 valid 4-tuples,
which excludes any logical proportion. It can be
easily checked that Ha satisfies Intb, Intc, Intd and
does not satisfy Inta: We can interpret Ha(a, b, c, d)
as the following assertion the first position is not
an intruder and there is an intruder among the
remaining positions. In other words, having Ha
true means “there is an intruder which is not a”.
As a consequence, Ha(a, b, c, d) does not hold when
there is no intruder (i.e. an even number of 0) or
when a is the intruder. The same reasoning applies
to Hb, Hc, Hd.

- a syntactic viewpoint: here we start from the
inverse paralogy I definition: (ab ≡ cd)∧ (ab ≡ cd).
To get the definition of an heterogeneous propor-
tion satisfying postulates where the intruder is in
position 1, 2 or 4 for instance, we add a negation
on the 3rd variable in both equivalences defining I.
Here we get Hc as:

(ab ≡ cd) ∧ (ab ≡ cd)

This process, allowing us to generate the 4 heteroge-
neous proportions, shows that, in some sense, they
are “atomic perturbations” of I: for this reason and
since they are heterogeneous proportions, they have

been respectively denoted Ha, Hb, Hc and Hd where
the subscript corresponds to:

• the postulate which is not satisfied by the cor-
responding proportion or, equivalently,
• the negated variable in the equivalence with I.

For instance, Ha(a, b, c, d) ≡ I(a, b, c, d), Ha sat-
isfies Intb, Intc, Intd and does not satisfy Inta. So,
when Ha(a, b, c, d) = 1, there is an intruder, and a is
the value of the intruder, since a is not the intruder.
The different possible cases where Ha(a, b, c, d) = 1
are as follows:

• (a, b, c, d) = (1, 1, 0, 0) or (0, 0, 1, 1) and the in-
truder is b.
• or (a, b, c, d) = (0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0),

or (1, 0, 0, 1) and the intruder is c in the first
two cases, and d in the two others.

In other words, there is an intruder in (a, b, c, d),
which is not a, iff the properties common to a and b
(positively or negatively) are not those common to
c and d, and conversely.

As in the case of homogeneous proportions, the
semantic properties of heterogeneous proportions
are easily derived from their truth tables, which we
summarize in Table 4.1. It is clear on their truth

Property name Formal definition Proportion
full identity T (a, a, a, a) none

1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) none
0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) none

reflexivity T (a, b, a, b) none
reverse reflexivity T (a, b, b, a) none

sameness T (a, a, b, b) none
symmetry T (a, b, c, d)→ T (c, d, a, b) none

means permut. T (a, b, c, d)→ T (a, c, b, d) Ha, Hd
extremes permut. T (a, b, c, d)→ T (d, b, c, a) Hc, Hb
all permutations ∀i, j, T (a, b, c, d)→ T (pi,j(a, b, c, d)) none

transitivity T (a, b, c, d) ∧ T (c, d, e, f)→ T (a, b, e, f) none
Inta T (a, a, a, a) Hb, Hc, Hd
Intb T (a, a, a, a) Ha, Hc, Hd
Intc T (a, a, a, a) Ha, Hb, Hd
Intd T (a, a, a, a) Ha, Hb, Hc

Table 6: Properties of heterogeneous proportions

tables, that none of the heterogeneous proportions
satisfy neither symmetry nor transitivity. From a
practical viewpoint, these proportions are closely
related with the idea of spotting the odd one out
(the intruder), or if we prefer of picking the one
that doesn’t fit among 4 items. This will be further
discussed in Section 5, but we first consider the ex-
tension of heterogeneous proportions to the case of
graded properties with intermediate truth values.

4.2. Multi-valued semantics

When we have to handle properties whose satis-
faction is a matter of levels, an extension of the
Boolean interpretation to multiple-valued models,
where the truth values belong to [0, 1], is neces-
sary. This has been done for homogeneous propor-
tions in [9, 16] and we study it here for heteroge-
neous proportions. Roughly speaking, in the case



of Ha, we may expect that the graded truth value
of Ha(a, b, c, d) estimates something as the extent
to which there is an intruder other than a.

A simple way to proceed for defining a multiple-
valued extension for the heterogeneous proportions
is to start from the definition given in [9] for
multiple-valued paralogy P , leading to 15 4-tuples
fully true, and 18 fully false. The 48 remaining
patterns get intermediate truth values given by the
general formula (1):

P (a, b, c, d) = min(1− |max(a, b)−max(c, d)|,
1− |min(a, b)−min(c, d)|) (1)

which, thanks to the symmetry of P and stability
w.r.t. the permutation of its two first variables, has
the following behavior

general case case u = v
P (1, 1, u, v) = min(u, v) P (1, 1, u, u) = u

P (1, 0, u, v) = min(max(u,v),1−min(u, v)) P (1, 0, u, u) = min(u,1−u)
P (0, 0, u, v) = 1−max(u, v) P (0, 0, u, u) = 1− u

As a consequence of the equivalences given in
Table 4.1, we get the multiple-valued definition for
Ha (we get similar definitions for Hb, Hc, Hd), still
leading to 15 true patterns, 18 false patterns and
48 with intermediate values:

Ha(a, b, c, d) = min(1−|max(a, 1−b)−max(c, d)|,
1− |min(a, 1− b)−min(c, d)|)

Let us note that Ha(0, 0, u, v) = Ha(1, 1, u, v) due
to the equivalences Ha(0, 0, u, v) = P (0, 1, u, v) =
P (1, 0, u, v).

general case case u = v
Ha(1,1,u,v)=min(max(u, v), 1−min(u, v)) Ha(1,1,u,u)=min(u,1−u)
Ha(1, 0, u, v) = min(u, v) Ha(1, 0, u, u) = u
Ha(0, 1, u, v) = 1−max(u, v) Ha(1, 0, u, u) = 1− u

Let us analyze 2 examples to suggest how our defi-
nition fits with the intuition.

• Considering the general pattern (1, 0, 0, u), its
truth value is:
- u for P : if u is close to 1, we are close to
the fully true paralogical pattern (1, 0, 0, 1) and
the truth value is high. In the opposite case,
u is close to 0 and we are close to a fully false
paralogical pattern (1, 0, 0, 0).
- 1 − u for Hb, Hc, Hd: if u is close to 1, we
are close to the pattern (1, 0, 0, 1) which is def-
initely not a valid pattern for Hb, Hc, Hd: so
1 − u is a low truth value. But if u is close to
0, we are close to the pattern (1, 0, 0, 0) which
is valid for Hb, Hc, Hd and 1−u is a high truth
value.
- finally 0 for Ha whatever the value of u: in-
deed in the 4-tuple (1, 0, 0, u) there is “an in-
truder is in first position, or no intruder at all",
while the semantics of Ha is just the opposite.
• Back to the graded pattern (0.7, 1, 1, 0.9) intro-

duced above:

- regarding P , the truth value as given by the
formula is 0.8, i.e. the pattern is close to be a
true paralogy.
- regarding the heterogeneous proportions, we
understand that we have 2 candidate intrud-
ers namely a = 0.7 and d = 0.9. But they
are not equivalent in terms of intrusion and it
is more likely to be a than d. This is con-
sistent with the fact that the truth value of
Ha(0.7, 1, 1, 0.9) is 0.1 (very low), but the truth
value of Hd(0.7, 1, 1, 0.9) is 0.3 (a bit higher).
- in fact, (0.7,1,1,0.9) does not give a strong
belief that there is an intruder, and it
is not a surprise that Hb(0.7, 1, 1, 0.9) =
Hc(0.7, 1, 1, 0.9) = 0.4.

However there are patterns, where the multiple-
valued extensions of Hx(a, b, c, d) do not behave ex-
actly as expected:

- It can be checked that Ha(0.5, 0.5, 0.5, 0.5) =
Hb(0.5, 0.5, 0.5, 0.5) = Hc(0.5, 0.5, 0.5, 0.5) =
Hd(0.5, 0.5, 0.5, 0.5) = 1, since ∀x ∈ {a,b,c,d},
Hx(u, u, u, u) = 2 min(u, 1 − u). Thus, it is only
in the Boolean case that we get the expected value
0. This behavior appears to be related to the fact
that x ∧ ¬x is no longer a contradiction in gen-
eral. In fact, it can be checked that we also have
Ha(0, u, 0, u) = Ha(0, u, u, 0) = Ha(1, u, 1, u) =
Ha(1, u, u, 1)=2 min(u, 1−u), whileHa(u, 0, u, 0) =
Ha(u, 0, 0, u) = Ha(u, 1, u, 1) = Ha(u, 1, 1, u) =
min(u, 1− u). This indicates that when two values
are close to 0.5, there are situations where the val-
ues of Hx tend to indicate that there is an intruder,
while it is not the case.

- Besides, we have Ha(0.9, 0.9, 0.9, 1) = 0.2,
Hb(0.9, 0.9, 0.9, 1) = 0.2, Hc(0.9, 0.9, 0.9, 1) = 0.1,
Hd(0.9, 0.9, 0.9, 1) = 0.2. Note that c does not be-
have as a and b, as we might expect. More gen-
erally Hc(u, u, u, 1) = 1 − u, while Ha(u, u, u, 1) =
1−u = Hb(u, u, u, 1) if u ≤ 0.5 and Ha(u, u, u, 1) =
min(u, 2(1 − u)) = Hb(u, u, u, 1) if u ≥ 0.5,
Hd(u, u, u, 1) = min(u, 1−|2u−1|). As can be seen,
for the low values of u, Ha = Hb = Hc are high,
while Hd is low, which nicely extends the Boolean
case. For high values of u (less than 1), Ha, Hb,
Hc, and Hd are low (as expected), but their relative
values may be found misleading with regard to a
graded view of intruder.

5. Finding the odd one out

With homogeneous proportions, as recalled in sec-
tion 2, we can solve sophisticated IQ tests where a
missing item has to be found. Namely, a sequence
of items being given and assumed to be incomplete,
the problem is to find the item that completes the
sequence in a “natural" way among a given set of
candidate solutions, or better, to build it. As it
is the case for homogeneous proportions, heteroge-
neous proportions can be also related to the solv-
ing of another type of quiz problem. Namely, the



“Finding the odd one out” problem where a com-
plete sequence of 4 or more items being given, we
have to find the item that does not fit with the
other ones and which is, in some sense, an intruder
or an anomaly. On this basis, a complete battery
of IQ tests has been recently developed in [17]. The
problem of spotting anomalies can be found in other
areas as well, e.g., [18]. Solving Odd One Out tests
(which are visual tests) has been recently tackled
in [19] by using analogical pairing between fractal
representation of the pictures. It is worth noticing
that the approach of these authors takes its root
in the idea of analogical proportion. However, this
method relies on the use of similarity/dissimilarity
measures rather than referring to a formal logical
view of analogical proportion. In the following, we
show that heterogeneous proportions provide a con-
venient way to code and tackle this problem.

Let us first consider the case of 4 items. The
idea of intruder in a set of Boolean values amounts
to have a unique value distinct from all the oth-
ers (which are thus identical). Note that when a
homogeneous proportion holds between 4 Boolean
values, there is no intruder among them. More gen-
erally when dealing with Boolean vectors (describ-
ing items), we may extend this view by requiring
that for at least one component, there is an intruder
value in the previous sense. In that case, the cor-
responding vector (and the associated item) is an
intruder w.r.t. that component. Then the candidate
intruder, if it exists, is the item whose vector is an
intruder w.r.t. a maximum number of components.
As a consequence, there is no intruder when there
is no candidates, or when there are more than one.
Besides, note that although in practical quizzes it is
often the case that the items are identical on many
components, this is not always true in situations
where the notion of intruder makes sense.

Let us consider the simple example
(lorry, bus, bicycle, car) (where the obvious in-
truder is bicycle) shown in Figure 4, with an
encoding in terms of 5 binary attributes having
a straightforward meaning (‘specLicense’ is short
for ‘requires a specific driving license’). When

Figure 4: A simple quiz and its Boolean coding

canMove hasEngine specLicense has4Wheel canFly
lorry 1 1 1 1 0
bus 1 1 1 1 0

bicycle 1 0 0 0 0
car 1 1 0 1 0

considering the item componentwise, we see that:

• for i=1,3,5, Ha(ai, bi, ci, di)=Hb(ai, bi, ci, di)=
Hc(ai, bi, ci, di) = Hd(ai, bi, ci, di) = 0.
• for i = 2, 4, Ha(ai, bi, ci, di) = Hb(ai, bi, ci, di)=
Hd(ai, bi, ci, di) = 1.
• for i = 2, 4, Hc(ai, bi, ci, di) = 0

The indices 1, 3 and 5 are not useful to pick up
the intruder because all the heterogeneous propor-
tions have the same truth value. This is not the

case for the indices 2 and 4: Ha for instance, be-
ing equal to 1, insures that there is an intruder
(which is not the first element). The intruder is
then given by the proportion having the value 0:
for instance, Ha(aj , bj , cj , dj) = 1 together with
Hc(aj , bj , cj , dj) = 0 mean that the assertion c is
not an intruder is false, which implies that c is the
intruder w.r.t. component j. In our example, c =
bicycle is the unique intruder w.r.t. components 2
and 4, and is thus the global intruder. Note that it
could be the case that the values of the proportions
refer to distinct items as potential intruders. Then,
a special procedure is needed to identify a global
intruder, when possible, as explained now.

Let us assume that each item a is represented
as a Boolean vector (a1, . . . , an) where n is the
number of attributes and ai ∈ {0, 1}. For each
x ∈ {a, b, c, d}, we compute the number Nx of com-
ponents where Hx is equal to 0 (rather than 1),
namely

Nx = |{i ∈ {1, · · · , n} s.t. Hx(ai, bi, ci, di) = 0}|

In case where Na = Nb = Nc = Nd = n, it means
that homogeneous proportions hold for each compo-
nent, and obviously, there is no intruder. More gen-
erally, in case where Na = Nb = Nc = Nd = p < n,
it means that on n − p components, heterogeneous
proportions hold for each of the items a, b, c, d.
Thus, a, b, c, d are equally referred to as potential in-
truders (they are intruders w.r.t. the same number
of components), and there is no intruder. Lastly, x
is an intruder only if Nx > Ny for each y Ó= x. Oth-
erwise, ∃u, v ∈ {a, b, c, d} s.t. u Ó= v and Nu = Nv,
and there is no clear intruder.

In the case where we have to find the odd one out
among more than 4 items, an option is to consider
all the subsets of 4 items. For each such subset, we
apply the previous method to exhibit an intruder (if
any). Then the global intruder will be the one which
is intruder for the maximum number of subsets.

Thanks to the multiple-valued extension, we
may think of generalizing this method to the non
Boolean case where each item a is represented as a
real vector (a1, . . . , an) and ai ∈ [0, 1]. According to
the end of section 4.2, we are in position to detect an
intruder w.r.t. a component, only if 3 heterogeneous
proportions are high, and the remaining one is low.
When such a condition is satisfied to some extent
on one or several components, and if all these com-
ponents identify the same intruder x, this x is the
global intruder as in the Boolean case. When the
considered components refer to different intruders,
it would be necessary to take into account the degree
to which each of these components points out a can-
didate as an intruder. This degree may be estimated
as an increasing function of the difference between
the two smallest truth-values among Ha, Hb, Hc, Hd
(the smallest referring to the intruder). Vectors of
intruder degrees associated with each candidate are
then compared on a leximax basis.



6. Concluding remarks

The Boolean modeling of analogical proportions
leads to a set of 120 derived proportions: the logi-
cal proportions. Among this set, 4 proportions, the
homogeneous ones, have already been deeply inves-
tigated, not only in terms of formal properties but
also in terms of practical applications. In this paper,
we have shown that 4 other proportions stand out
from the set of logical proportions, namely the het-
erogeneous proportions, because of their syntactic
definitions and their semantics. From a syntactic
viewpoint, they differ from the homogeneous ones
with the addition of a negation in their definition,
which leads to heterogeneous truth tables where an
odd number of 1 is necessary for such a propor-
tion to hold. From a semantic viewpoint, they sat-
isfy properties which are not satisfied by any of the
homogeneous proportions. More than that, while
the use of homogeneous proportions leads to mech-
anisms allowing to deal with IQ tests of the type
“Find the Missing One", heterogeneous proportions
underlies a mechanism allowing us to deal with quiz
of the type “Find the Odd One Out". Thus, both
from a formal viewpoint and from an applicative
viewpoint, heterogeneous proportions appear as a
perfect dual of the homogeneous ones. Ultimately,
logical proportions provide an elegant framework to
deal with IQ tests, from Raven Progressive Matri-
ces to Find the Odd One Out quizzes, in a uniform
way. Still the investigation of the most appropri-
ate multiple-valued extension(s) for heterogeneous
proportions remains an open question.
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