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Abstract. The notion of homogeneous logical proportions has been re-
cently introduced in close relation with the idea of analogical proportion.
The four homogeneous proportions have intuitive meanings, which can
be related with classification tasks. In this paper, we proposed a su-
pervised classification algorithm using homogeneous logical proportions
and provide results for all. A final comparison with previous works using
similar methodologies and with other classifiers is provided.

Keywords: supervised classification, analogical proportion, analogical
dissimilarity.

1 Introduction

Numerical as well as analogical proportions are used since the ancient Greeks.
However, this is only recently that logical models for analogical proportions
were laid bare [14]. Analogical proportion was proposed first and reverse analog-

ical proportion and paralogical proportion came after (proposed for Boolean [10]
and multiple-valued [12] features). The last logical proportion we consider here,
named inverse paralogical proportion, and the characterization of those four pro-
portions as homogeneous logical proportions were presented recently [14] for the
Boolean case.

A particular instance of analogical reasoning is based on the notion of ana-
logical proportion (or analogy, or for short A) linking four situations or items
a, b, c, d. It focuses on the differences between a and b and between c and d

that are the same. The reverse analogical proportion (or reverse analogy, or for
short R) does the same, but reverses the directions of changes, i.e. differences
between a and b, are the same as between d and c. The paralogical proportion
(or paralogy, or for short P) focuses on similarities, unlike previous proportions.
It points out that similarities between a and b and between c and d are the same.
The inverse paralogical proportion (or inverse paralogy, or for short I) focuses
on similarities also, and expresses that what a and b have in common, c and



d do not have it, and vice versa. Those proportions have intuitive meanings,
which can be related with classification tasks. However, in the recent literature,
only one (analogical proportion) was studied for classification tasks and has
been shown as a competitive supervised classifier [7], which, from descriptions
of known objects (their features and classes), classifies another object, whose
class is unknown. This reasoning is similar to the one used by k-NN classifiers
[3] or in case-based reasoning [5]. For instance, in general pattern recognition
terms, and using analogical proportions, from three objects (obj1, obj2, obj3),
whose descriptions are made of a finite number of features (desc1, desc2, desc3),
we want to classify a fourth object (obj4), with description desc4. Then, if an
analogical proportion A(desc1, desc2, desc3, desc4) holds, it may be possible to
suggest a class for obj4. Besides, an analogical dissimilarity (AD) measure was
proposed by [2], which can be used on Boolean and also multi-valued features.
This measure is able to assess the truthfulness of an analogical proportion [7].

In this paper, using a modified version of analogical dissimilarity, we provide
some relations among analogy, reverse analogy, paralogy and inverse paralogy. It
is shown that, using those relations, all those proportions can be computed in a
simplified way and an algorithm for supervised classification is provided. More-
over, we present some results for binary and/or nominal classification tasks, using
databases from UCI repository and also a comparison with other methodologies.

2 Characterization of Homogeneous Proportions

Analogy, reverse analogy, paralogy and inverse paralogy are formal relations T in-
volving 4 items a, b, c and d. In this study, T is a Boolean proportion. This means
that a, b, c, d are Boolean variables and can be pointwisely generalized by vectors
of Boolean variables. A detailed investigation with respect to the basic semantics
has been done in [10] [11] [14]. They obey different characteristic postulated [12].
For a, b, c, d ∈ {0, 1} the considered properties are: a) Reflexivity, which validates
the proportion T (a, b, a, b); b) Reverse reflexivity, which validates the proportion
T (a, b, b, a); c) Identity, which validates the proportion T (a, a, b, b); d) Full iden-
tity, which validates the proportion T (a, a, a, a); e) Symmetry, which requires the
equivalence between T (a, b, c, d) ⇔ T (c, d, a, b); f) Central permutation, which
requires the equivalence between T (a, b, c, d) ⇔ T (a, c, b, d); g) Code indepen-

dency, which requires the equivalence between T (a, b, c, d) ⇔ T (¬a,¬b,¬c,¬d).
It should be noted that all homogeneous proportions satisfy the symmetry and
code independency properties [14]. However, some of the other properties are
not satisfied by all four proportions (see Table 1). As shown in [13], there is
close relation among three of those proportions:

Proposition 1: R(a, b, c, d) is a reverse analogy if and only if A(a, b, d, c) is
an analogy, i. e. R(a, b, c, d) ⇔ A(a, b, d, c); P (a, b, c, d) is a paralogy if and only
if A(a, d, c, b) is an analogy, i. e. P (a, b, c, d) ⇔ A(a, d, c, b).



Prade and Richard [14] established further relations among those four pro-
portions, with respect to analogy, through permutations and negation:

Proposition 2: R(a, b, c, d) is a reverse analogy if and only if A(a, b,¬c,¬d)
is an analogy, i. e. R(a, b, c, d) ⇔ A(a, b,¬c,¬d); P (a, b, c, d) is a paralogy if and
only if A(a,¬b, c,¬d) is an analogy, i. e. P (a, b, c, d) ⇔ A(a,¬b, c,¬d); I(a, b, c, d)
is an inverse paralogy if and only ifA(a,¬b,¬c, d) is an analogy, i. e. I(a, b, c, d) ⇔
A(a,¬b,¬c, d).

Table 1. Homogeneous proportions and their properties

Properties A R P I

Reflexivity X − X −
Reverse reflexivity − X X −

Identity X X − −
Full identity X X X −
Symmetry X X X X

Central permutation X − − X

Code independency X X X X

To introduce formally the four proportions, let us consider the items a, b, c, d
as described by sets of binary features, which belong to the universe X , i. e. each
item is viewed as a subset ofX . An analogical proportion, denoted by A(a, b, c, d)
focuses on the differences and should hold when the differences between a and
b, and c and d are the same [8]:

a ∧ ¬b = c ∧ ¬d and ¬a ∧ b = ¬c ∧ d (1)

Reverse analogy, denoted by R(a, b, c, d) exchanges c and d, with respect to
analogy and expresses that the changes from a to b in relation to c to d (if any)
are now in opposite directions:

a ∧ ¬b = ¬c ∧ d and ¬a ∧ b = c ∧ ¬d (2)

If instead of differences, we focus on similarities, we have a different propor-
tion, denoted by P (a, b, c, d) and named paralogy, which expresses that a and b

have in common, c and d have it too:

a ∧ b = c ∧ d and ¬a ∧ ¬b = ¬c ∧ ¬d (3)

The inverse paralogy [14], denoted by I(a, b, c, d) focuses on similarities also
and expresses a and b have in common, c and d do not have it, and vice versa:

a ∧ b = ¬c ∧ ¬d and ¬a ∧ ¬b = c ∧ d (4)

Table 2 presents the Boolean truth table for each logical proportion presented
above. We can note that there are only 6 situations in which the logical value
is true for each proportion. Observing this Table, it is easy to see that there is
no situation where analogy, reverse analogy, paralogy and inverse paralogy hold
true together. However, there are some cases in which all proportions hold false.
These relations will be discussed in details in Section 4, after we provide some
relevant details about the measure of analogical dissimilarity.



Table 2. Boolean truth tables for Proportions: A, R, P and I:

A R P I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

These four logical proportions are called homogeneous proportions because
they are true only for patterns having an even number of 1 (and thus an even
number of 0), due to the fact they are strongly linked together by the relations:

A(a, b, c, d) ≡ R(a, b, d, c) ≡ P (a, d, c, b) ≡ I(a, b, c, d), (5)

Their semantical properties have been extensively investigated in [14].

3 Analogical Dissimilarity Measure and an

Approximation Function

An analogical dissimilarity (AD) measure was proposed by [6] for binary and by
[2][7] for nominal data, using a binary encoding. So, for both cases the binary
definition is appropriate and for this reason we present the definition for AD
only for this case.

Definition 1. The analogical dissimilarity among four binary values (u, v, w,
x ∈ {0, 1}) is given by the following truth table [7]:

u 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
v 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
w 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

AD(u, v, w, x) 0 1 1 0 1 0 2 1 1 2 0 1 0 1 1 0

As can be seen, AD is a function whose domain is {0, 1}4, but its range
is {0, 1, 2}. This is not completely in agreement with the homogeneous logical
proportions, whose domains and ranges are Boolean. However, AD is consistent
with the analogical proportion when we have AD(u, v, w, x) = 0 [6].

Definition 2. The AD measure among four objects (u, v, w, t ∈ {0, 1}n) of a
finite set X defined by binary features is the sum of the values of analogical
dissimilarities for each feature [7].

Using the Definition 2 and encoding nominal variables as binary ones, it is
possible to use AD for nominal variables as well. In [6][7] procedures to compute
binary analogical proportions on R

n and on sequences, are presented. However,
in order to obtain an efficient algorithm for AD computing that fits with all
the homogeneous proportions mentioned in Section 2, it is necessary to use
a mathematical function which approximates and replaces the AD definition.



The algorithm should also use the relationships given above in order to provide
the values of all proportions from the values given by computing an approxima-
tion function for AD for each one. Thus, let the function AD∗ : {0, 1}4 ⇒ {0, 1}:

AD∗(a, b, c, d) =
[

(a− b− c+ d)2
]1/2

, for a, b, c, d ∈ {0, 1} (6)

be an approximation for computing the function AD, according to Definition
1. Obviously, AD∗ can also be written: AD∗(a, b, c, d) = |a − b − c + d|. That
function has interesting properties: The codomain for AD∗ is {0, 1}. Using the
binary values {0, 1} as truth values, the function AD∗ given by (6) is able to
provide exact estimation for 14 values among 16 values of the AD table for the
binary case. The exceptions are the cases in which AD = 2. Moreover, even if
AD∗ is less discriminating, it is closely related to the value of the proportions.

4 Relations

As mentioned before, each logical proportion holds true in only 6 situations,
which can be seen in the Table 2. However, they are not true in the same situ-
ations. As pointed out by [13], in the Boolean interpretation and according to
their intuitive meaning, the pattern T (a, b, b, a) is false for analogy; T (a, b, a, b)
is false for reverse analogy, T(a,a,b,b) is false for paralogy and T (a, a, a, a) is
false for inverse paralogy. For any of these proportions in the binary case, it is
possible to find a relationship between the values provided by the proportions
and the value provided by AD measure. In the case of Analogy and AD, it was
announced as a property of AD [6]. More precisely, we have AD = 0 ⇔ AD∗ = 0
and AD ∈ {1, 2} ⇔ AD∗ = 1, and besides, we have the relationship with respect
to analogical proportion:

A(a, b, c, d) = 1−AD∗(a, b, c, d) (7)

For the Reverse Analogy and Paralogy we use Proposition 1 for finding the
following relations:

R(a, b, c, d) = 1−AD∗(a, b, d, c) (8)

P (a, b, c, d) = 1−AD∗(a, d, c, b) (9)

The same can be done for Inverse Paralogy, using Proposition 2:

I(a, b, c, d) = 1−AD∗(a,¬b,¬c, d) (10)

These relations allow us to implement an algorithm using AD∗ for computing
to what extent the four proportions hold, in a new and simpler way than in [2].

5 Algorithm for Supervised Classification Using AD
∗

The algorithm presented in this paper partly relies on a previous work [2]. The
first difference of what is proposed here is the possibility to use any of the four



proportions mentioned above. The second one is a change the ordering of exe-
cution of the steps of the previous algorithm, in order to take advantage of AD∗

and to avoid the step of sorting the partial results. It improves the computa-
tional performance of the proposed classifier, with respect to [2]. It is important
to remark that the algorithm proposed by [2] uses AD to implement analogical
proportion only. The task is to classify m objects (obji), whose descriptions are
made in terms of a finite numberNf of binary features (desci), where i = 1, ...,m,
using AD∗, into a finite and known number of classes in set C. A collection S

of such objects is available, with their descriptions and respective classes in C,
for the training of the classifier. Let x be a new object, not belonging to set
S, and for which we desire to assign a class. The algorithm depends on a pa-
rameter p, with 0 ≤ p ≤ Nf , which means that for each 4-tuple of description
vectors analyzed, we accept that the proportion is false for at most p features. In
other words, among the total number of features Nf , it is intended that for each
4-tuple (triple in S3 and x) analyzed, at least (Nf − p) features yield perfect
proportions. We call this rule “Rule of maximum p dissimilar 4-tuples”. The
algorithm consists in the following steps:

Step 1: Given a vector x, find all triples in S3 which satisfies the sum of
AD∗≤p and 0≤p≤Nf . Store those n triplets (aj , bj, cj), with j = 1, ..., n < m).

Step 2: Solve the proportion equations (for A, R, P or I) on the label of the
class of x and the n triples. Compute the solution as a vote for a class c ∈ C,
obtained by solving the logical proportion on the classes (when there is solution,
which means that the objects corresponding to a triple should belong to 1 or 2
classes only in order to have a useful triple for predicting the class).

Step 3: Assign the winner of votes among the n results, as the class for x.
It is worth noting when using AD∗ and changing one step in the algorithm of

[2], that it is no longer necessary to sort partial results anymore. So, the param-
eter k used in the algorithm in [2] does not have any role here. A new parameter
p was added in the Step 1 to control the maximum number of dissimilar 4-tuples
which the user can accept in each processing.

6 Results

In order to analyze the behaviour of the proposed algorithm, we applied it to
some databases from UCI Repository [1]. These databases were used also by
[7] and for this reason are used here to provide a comparison with the results
obtained in this paper: The SPECT (SP.) database is related to heart data,
with 22 binary features and contained with 80 samples for training and 187 for
test. The databases MONK 1,2 and 3 (MO.1, MO.2 and MO.3) are related to
classification problems with six nominal features. The databases contains 124,
169 and 122 samples for training, respectively and all of them 432 samples for
test. The MO.3 database is corrupted with noise. All three MONK databases
were binarized using standard techniques, i. e., replacing a nominal feature with
n different values with n binary features. The results are summarized in Table
3. The first five lines give some characteristics of the databases used. In the



following we indicate the best percentage of correct classification obtained for
each proportion and for which value of p this is obtained. The last line shows
the best results presented by [7] for comparison. It is worth noting in Table 3, all
results for A, R and P are the same for all databases and all of them using the
same value for p. In fact this is due to a property of three of the homogeneous
proportions (A, P and R) which can be seen in equation (5). The difference
among them is just a permutation of the elements in the 4-tuple. So, any of
these three proportions proportions can be used for classification and it provides
the same final results. However, this is not valid for proportion I, because beyond
the permutation of elements, it is necessary also to perform negation for two of
them [9].

Table 3. Results

SP. MO.1 MO.2 MO.3

number of nominal attributes 22 7 7 7

number of binary attributes 22 15 15 15

number of training instances 80 169 122 124

number of test instances 172 432 432 432

number. of class 2 2 2 2

Best results (%)

Analogy (A): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Reverse Analogy (R): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Paralogy (P): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Inverse Paralogy (I): 11(p = 8) 79(p = 8) 62(p = 6) 83(p = 6)

Comparisons (%)

Miclet et al. [7] 58(k = 100) 98(k = 100) 100(k = 100) 96(k = 100)

Decision Table 72 98 67 98

PART 82 93 75 99

Multilayer Perceptron 73 100 100 94

IBk (k=1) 59 91 69 89

Naive Bayes 75 72 61 98

J48 (C4.5) 76 100 71 100

It is possible to see in Table 3, that proportion I achieved results of lower
quality than the other proportions and with values of p higher. In comparison
with results provided by [7], for three among the four databases, the results
obtained by the new algorithm were the same. However, the new algorithm pro-
vided better results for the MO.3 database, which is corrupted by noise. We
made some comparisons with classifiers found in the literature and we used the
Weka package [4] with default values. It is possible to note the Multilayer Percep-
tron provides best classification for MO.1 and MO.2. J48 Decesion Tree achieved
the complete accuracy for MO.1 and MO.3. PART provides best classification
for SP. However, our algorithm provides competitive results for three of those
databases.



7 Conclusion and Future Works

This paper proposes a new algorithm for supervised classification using homo-
geneous logical proportions. The algorithm was presented and we provided a
short discussion in relation to the previous one proposed by [2], which imple-
mented only one of those proportions. Implementation results are presented for
all homogeneous proportions, as well as a final comparison with a previous pa-
per using similar methodologies and other classifiers too. The results achieved
showed that proportions A, R and P provide the same results when it is used
with the same value for p. This way, they yielded the same best results in com-
parison with results reported in [7] (which used AD and analogical proportion).
The new algorithm provides results as good as the previous one or better, as it
was the case of MO.3 (which is a database corrupted with noise).

As future works, we intent to improve comparisons using other classifiers and
by considering more databases in order to extend our study about the relative
performance of our approach with respect to other classifiers. Another issue is
to determine how value p influences classification results.
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