A phase transition in the distribution of the length of integer partitions - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2012

A phase transition in the distribution of the length of integer partitions

Résumé

We assign a uniform probability to the set consisting of partitions of a positive integer $n$ such that the multiplicity of each summand is less than a given number $d$ and we study the limiting distribution of the number of summands in a random partition. It is known from a result by Erdős and Lehner published in 1941 that the distributions of the length in random restricted $(d=2)$ and random unrestricted $(d \geq n+1)$ partitions behave very differently. In this paper we show that as the bound $d$ increases we observe a phase transition in which the distribution goes from the Gaussian distribution of the restricted case to the Gumbel distribution of the unrestricted case.
Fichier principal
Vignette du fichier
dmAQ0121.pdf (331.8 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01197255 , version 1 (11-09-2015)

Identifiants

Citer

Dimbinaina Ralaivaosaona. A phase transition in the distribution of the length of integer partitions. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. pp.265-282, ⟨10.46298/dmtcs.2999⟩. ⟨hal-01197255⟩

Collections

TDS-MACS
110 Consultations
1048 Téléchargements

Altmetric

Partager

More