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REPRESENTATIONS OF CROSSED MODULES

AND OTHER GENERALIZED YETTER-DRINFEL′D MODULES

VICTORIA LEBED AND FRIEDRICH WAGEMANN

ABSTRACT. The Yang-Baxter equation plays a fundamental role in var-

ious areas of mathematics. Its solutions, called braidings, are built,

among others, from Yetter-Drinfel′d modules over a Hopf algebra, from

self-distributive structures, and from crossed modules of groups. In

the present paper these three sources of solutions are unified inside the

framework of Yetter-Drinfel′d modules over a braided system. A sys-

tematic construction of braiding structures on such modules is provided.

Some general categorical methods of obtaining such generalized Yetter-

Drinfel′d (=GYD) modules are described. Among the braidings recov-

ered using these constructions are the Woronowicz and the Hennings

braidings on a Hopf algebra. We also introduce the notions of crossed

modules of shelves / Leibniz algebras, and interpret them as GYD mod-

ules. This yields new sources of braidings. We discuss whether these

braidings stem from a braided monoidal category, and discover several

non-strict pre-tensor categories with interesting associators.

1. INTRODUCTION

A Yang-Baxter operator, or a braiding, is a map σ : V ⊗ V → V ⊗ V

providing a solution to the Yang-Baxter equation

(σ ⊗ V ) ◦ (V ⊗ σ) ◦ (σ ⊗ V ) = (V ⊗ σ) ◦ (σ ⊗ V ) ◦ (V ⊗ σ);(YBE)

here and below we use notations of type V := IdV . This equation makes

sense in any strict monoidal category, but in this paper we mainly work

in the category Vectk of vector spaces over a field k and in the category

Set of sets (with the symbol ⊗ meaning the tensor product over k and

the Cartesian product respectively). The term “braiding” comes from the

graphical interpretation of (YBE), illustrated in Fig. 1; here the braiding σ

is denoted by , and all diagrams should be read from bottom to top.
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=

FIGURE 1. The YBE as the third Reidemeister move

The YBE plays a fundamental role in such apparently distant fields as

statistical mechanics, particle physics, quantum field theory, quantum group

theory, and low-dimensional topology; see for instance [30] for a brief in-

troduction. The study of its solutions has been a vivid research area for the

last half of a century. Two sources of braidings proved to be of particular

importance:

Source 1: A (right-right)1 Yetter-Drinfel′d module over a Hopf algebra H

is a vector space M endowed with a right H-action ρ and a right H-

coaction δ, compatible in the following sense:

(m ∗ h)(0) ⊗ (m ∗ h)(1) = m(0) ∗ h(2) ⊗ s(h(1))m(1)h(3)(1)

(we use the symbol ∗ for the action ρ, and M.E. Sweedler’s formal no-

tations δ(m) = m(0) ⊗m(1), ∆(h) = h(1) ⊗ h(2), with the summation

sign omitted). These structures were introduced by D. Yetter [33] un-

der the name “crossed bimodules”, and repeatedly rediscovered under

different names. They are known to be at the origin of a very vast fam-

ily of invertible braidings, which is complete in the category vectk of

finite-dimensional vector spaces [10, 11, 31]. Concretely, the map

σY D(m⊗ n) = n(0) ⊗m ∗ n(1)(2)

endows a YD module M with a braiding. One can say more: the cat-

egory YDH
H of YD modules over H is braided monoidal, and even

modular when H is a group algebra of a finite group. This rich cat-

egorical structure is at the heart of powerful invariants of links and 3-

dimensional manifolds.

Source 2: A self-distributive set, or briefly shelf, is a set S endowed with a

binary operation ⊳ which is self-distributive, in the sense of

(a ⊳ b) ⊳ c = (a ⊳ c) ⊳ (b ⊳ c).(3)

Major examples are

• groups with the conjugation operation g ⊳ g′ = (g′)−1gg′;

• sets S with a preferred map f : S → S, their shelf operation de-

fined by s ⊳ s′ = f(s).

1In this paper all the (co)actions are on the right, so the term right is systematically

omitted in what follows.
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A shelf carries the following braiding:

σSD(a, b) = (b, a ⊳ b),(4)

which is the key ingredient of an extremely strong and efficiently com-

putable class of invariants of links, knotted surfaces, knotted graphs,

and other topological objects. The self-distributive approach to knot

theory originated from the work of D. Joyce and S.V. Matveev [14, 28];

see also [8] for a formulation in terms of braidings.

A new source of braidings was recently found by P. Bantay [2]:

Source 3: A crossed module of groups is the data of a group morphism

π : K → G and a (right) G-action · on K by group automorphisms,

compatible in the sense of

k · π(k′) = (k′)−1kk′, k, k′ ∈ K,(5)

π(k · g) = g−1π(k)g, k ∈ K, g ∈ G.(6)

A K-graded G-module (M = ⊕k∈KMk, ∗) with the action of any g ∈
G sending Mk onto Mk·g is called a representation of (K,G, π, ·). The

map

σCrMod(m⊗ n) =
∑

k∈K
nk ⊗m ∗ π(k)(7)

defines a braiding on such an M ; here nk is the component of n living

in the grading k. Again, there is much more structure in the story: the

representations of a crossed module form a braided monoidal category

M(K,G, π, ·) (often abusively denoted by M(K,G)), which is pre-

modular if G and K are finite, and modular if moreover π is a group

isomorphism (in which case one recovers the category YDkG
kG). See

[2, 27] for more details.

In these three cases, the braidings share the same form:

σ = (M ⊗ ρ) ◦ (τ ⊗ π) ◦ (M ⊗ δ)(8)

(see Fig. 2 for a graphical version). Here τ is the flip

τ(a⊗ b) = b⊗ a;

π is the identity in the first two examples; for a shelf we put δ(a) = a ⊗ a

and ρ(a⊗ b) = a⊳ b; and in the last example, δ(m) =
∑

k∈K mk ⊗ k.

π

δ

ρ

τ

FIGURE 2. The general form of braidings
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In this paper we introduce the category YDC
A of generalized Yetter-Drin-

fel′d modules, where A and C are braided objects (i.e., objects endowed

with braidings) in a symmetric monoidal category C, related via an entwin-

ing map C ⊗A→ A⊗C (Section 2). Under certain conditions on the map

π : C → A, formula (8) (with the map τ replaced with the underlying cate-

gorical braiding of C) yields a braiding2 on any generalized YD module M

(Theorem 1). This abstract setting unifies the three braiding constructions

above. Sections 3-4 treat some original ones, based on

• twisted crossed modules of shelves, which generalize crossed mod-

ules of racks, defined by A. Crans and the second author [7];

• non-normalized crossed modules of Leibniz algebras, which gener-

alize classical crossed modules of Lie algebras.

In particular, we introduce the notion of representations of a crossed mod-

ule of shelves / Leibniz algebras, and endow them with braidings (Theo-

rems 2-3). Section 5 describes a vast source of generalized YD modules.

At its heart is a categorical-center-like construction, close in spirit to the

factorisations of a distributive law of U. Krähmer and P. Slevin [15]. Var-

ious generalized YD module structures on a Hopf algebra are presented as

an illustration, the associated braidings recovering those of S.L. Woronow-

icz and M.A. Hennings [32, 13]. Possible (pre-)tensor structures on YDC
A

are discussed for our major examples. In the case of crossed modules of

racks / Leibniz algebras, we discover pre-tensor categories (i.e., categories

with a tensor product but without a unit object) with interesting non-trivial

associativity morphisms (Theorems 4 and 5).

The idea of mixing compatible acting and coacting structures can be

found in the literature under various guises: J. Beck’s mixed distributive

laws [3], the AC-bialgebras of T.F. Fox and M. Markl [12], the algebra-

coalgebra entwining structures of T. Brzeziński and S. Majid [4], J.-L. Lo-

day’s generalized bialgebras [25] interpreted in terms of bimodules over a

bimonad by M. Livernet, B. Mesablishvili, and R. Wisbauer [29, 22], to cite

just a few. The framework chosen in each case depends on the classical con-

structions and results one wants to extend to a generalized setting: the triple-

cotriple philosophy of [12] is well adapted for (co)homology constructions,

the category of vector spaces is sufficient for developing quantum principal

bundle theory and generalized gauge theory in [4], while operads provide a

convenient setting for generalizing Poincaré-Birkhoff-Witt, Cartier-Milnor-

Moore, and the Rigidity theorems in [25]. The braided framework (with a

2The Reader should be careful with the various braidings entering our construction at

different levels: the global symmetric braiding defined on the whole category C, the local

braidings the objects A and C come with, and the braiding σ we aim to constructs for our

generalized YD module.
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“braided-distributive” law relating the action and coaction by braided ob-

jects) is adopted in the present paper for the following reasons:

• as shown in [19, 17], it includes all the basic structures we are inter-

ested in: (co)associative (co)algebras, bialgebras, Leibniz algebras,

shelves, etc.;

• it allows one to treat both structural and entwining maps for acting

and coacting structures in a uniform way;

• technical verifications can often be substituted with the more user-

friendly and transparent diagrammatic calculus;

• the map (8) is well defined and remains a reasonable candidate for

being a braiding on our modules.

The connections with the framework of entwining structures are discussed

in Remark 2.9.

Acknowledgements. This work was supported by Henri Lebesgue Cen-

tre (University of Nantes), and by the program ANR-11-LABX-0020-01.

We thank Peter Schauenburg, Ulrich Krähmer, and Yaël Frégier for fruitful

discussions.

2. GENERALIZED YETTER-DRINFEL′D MODULES

Fix a strict monoidal category (C,⊗, I). In order to introduce the no-

tion of generalized Yetter-Drinfel′d modules, we first recall some definitions

from [17]:

Definition 2.1 (Braided vocabulary).

• A rank r braided system in C is a family V1, V2, . . . , Vr of objects

of C endowed with a (multi-)braiding, i.e., morphisms

σi,j = σVi,Vj
: Vi ⊗ Vj → Vj ⊗ Vi, 1 ≤ i ≤ j ≤ r,

satisfying the colored Yang-Baxter equation

(σj,k ⊗ Vi) ◦ (Vj ⊗ σi,k) ◦ (σi,j ⊗ Vk) =(cYBE)

(Vk ⊗ σi,j) ◦ (σi,k ⊗ Vj) ◦ (Vi ⊗ σj,k)

on all the tensor products Vi⊗Vj⊗Vk with 1 ≤ i ≤ j ≤ k ≤ r. Such

a system is denoted by ((Vi)1≤i≤r; (σi,j)1≤i≤j≤r) or briefly (V , σ).
• Rank 1 braided systems are called braided objects in C.

• A (right) braided module over a braided system (V , σ) is an ob-

ject M equipped with morphisms ρ := (ρi : M ⊗ Vi → M)1≤i≤r

satisfying, for all 1 ≤ i ≤ j ≤ r,

ρj ◦ (ρi ⊗ Vj) = ρi ◦ (ρj ⊗ Vi) ◦ (M ⊗ σi,j).(9)

Here both morphisms go from M ⊗ Vi ⊗ Vj to M .
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• A morphism between braided modules (M, ρ) and (M ′, ρ′) over

(V , σ) is a morphism ϕ ∈ MorC(M,M ′) respecting the module

structures, in the sense of

ϕ ◦ ρi = ρ′i ◦ (ϕ⊗ Vi).(10)

• The category of braided modules and their morphisms is denoted

by Mod(V ,σ). (Right) braided comodules, their morphisms, and the

category Mod
(V ,σ) are defined in an analogous way.

• A braided (co)module structure on the unit object I is referred to as

a braided (co)character.

Note that our braidings are not necessarily invertible.

The defining relations (cYBE) and (9) can be expressed in the language

of colored knotted graphs, as shown in Fig. 3.

Vi Vj Vk

=

Vi Vj Vk

ρj
ρi

VjViM

=
ρj

ρi

VjViM

σi,j

FIGURE 3. Braided systems and braided modules

The following basic examples from [19] will be used in what follows:

Example 2.2 (Unital associative algebras).

A unital associative algebra (A, µ, ν) in C carries the braiding

σAss = ν ⊗ µ,(11)

which in the category Vectk becomes σAss(v⊗v
′) = 1⊗vv′. The YBE for

σAss is equivalent to the associativity of µ. The notion of braided module

over (A; σAss) is slightly broader that the usual notion of module over the

algebra A: it involves the mixed relation

ρ ◦ (ρ⊗ A) ◦ (M ⊗ ν ⊗ µ) = ρ ◦ (ρ⊗ A)

instead of the usual separate relations

ρ ◦ (M ⊗ µ) = ρ ◦ (ρ⊗ A), ρ ◦ (M ⊗ ν) =M.

The category of such non-normalized algebra modules, with the usual no-

tion of morphisms, is denoted by Mod
nn
A . The notation Mod

n
A is reserved

for usual, or normalized, algebra modules.

Example 2.3 (Counital coassociative coalgebras).

Dually, a counital coassociative algebra (C,∆, ε) in C is a braided object,

with the braiding

σcoAss = ε⊗∆,(12)
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or, in Vectk, σcoAss(v⊗ v′) = ε(v)∆(v′). The YBE for σcoAss is equivalent

to the coassociativity of ∆. Similarly to the algebra case, braided comodules

over (C; σcoAss) form a category Mod
C
nn which extends the category Mod

C
n

of usual C-comodules.

Example 2.4 (Shelves).

A shelf (S,⊳) is a braided object in Set, with the braiding σSD from (4).

The YBE is equivalent to the self-distributivity (3) here, and braided mod-

ules over (S; σSD) are the usual modules over S (also called S-sets, or S-

shadows; see Definition 3.3 for details).

Example 2.5 (Leibniz algebras).

Recall that a right (unital) Leibniz algebra in a symmetric preadditive

monoidal category (C,⊗, I, c) is an object g with morphisms [, ] : g⊗g → g

(and ν : I → g) satisfying the Leibniz (and the Lie unit) conditions

[, ] ◦ (g⊗ [, ]) = [, ] ◦ ([, ]⊗ g)− [, ] ◦ ([, ]⊗ g) ◦ (g⊗ cg,g),

[, ] ◦ (g⊗ ν) = [, ] ◦ (ν ⊗ g) = 0,

which in Vectk become [v, [w, u]] = [[v, w], u] − [[v, u], w] and [v, 1] =
[1, v] = 0. An example of a unital Leibniz algebra in Vectk is given by

the endomorphism algebra Endk(M) of a vector space M , with [f, g] =
fg − gf and 1 = IdM . This generalization of Lie algebras appeared, in its

non-unital version, in the work of C. Cuvier and J.-L. Loday [9, 23, 24]. To

such data one can associate the braiding

σLei = cg,g + ν ⊗ [, ],(13)

which in Vectk reads σLei(v⊗v
′) = v′⊗v+1⊗ [v, v′]. The YBE for σLei is

equivalent to the Leibniz condition for [, ]. Braided modules over (g; σLei)
are identified with non-normalized anti-symmetric modules over our Leib-

niz algebra; the corresponding module category is denoted by Mod
as,nn
g .

See [26] for more details on the representation theory of Leibniz algebras.

Example 2.6 (Bialgebras).

Take a finite-dimensional Hopf algebra H over k. Two braided system

structures on (H,H∗) were described in [16, 17]. Braided modules over

these systems include, respectively, Hopf modules and YD modules overH .

A rank 4 braided system from [17] allows one to recover Hopf bimodules.

Remark 2.7. A rank 2 braided system (C,A; σC,C, σA,A, σC,A) decomposes

as two braided objects (C; σC,C) and (A; σA,A), connected by an entwining

map C ⊗ A → A ⊗ C satisfying two compatibility conditions, namely,

(cYBE) on C ⊗ C ⊗A and on C ⊗A⊗A.

Definition 2.8 (Generalized YD modules).
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• Let (C,A; σC,C , σA,A, σC,A) be a braided system in C. A (right-

right) Yetter-Drinfel′d module over this system is an object M of C
with a right (A; σA,A)-module structure ρ and a right (C; σC,C)-
comodule structure δ, compatible in the sense of

δ ◦ ρ = (ρ⊗ C) ◦ (M ⊗ σC,A) ◦ (δ ⊗ A).(14)

• A morphism between two YD modules over the same braided sys-

tem is a morphism in C preserving the module and the comodule

structures (cf. (10)).

• The category of YD modules over (C,A; σ) and their morphisms is

denoted by YDC
A .

Condition (14) is graphically represented in Fig. 4. It can be interpreted

as the requirement for δ to be a morphism in Mod(A;σA,A), or equivalently

the requirement for ρ to be a morphism in Mod
(C;σC,C) (Remark 5.4). It can

also be regarded as a braided-distributive law, which allows the action and

the coaction to switch places in a composition with the help of the entwining

braiding component. In Vectk, (14) becomes

(m ∗ a)(0) ⊗ (m ∗ a)(1) = m(0) ∗ ã⊗ m̃(1),

using Sweedler’s notations and another formal notation σC,A(c⊗a) = ã⊗ c̃.

δ
ρ

C

AM

M

=
δ

ρ

C

AM

M

σC,A

FIGURE 4. Generalized YD modules

Remark 2.9 (An alternative viewpoint: entwining structures).

In a sufficiently nice category (for instance in Vectk or Set), an (A; σA,A)-
module structure is the same thing as a module structure over the unital

associative algebra

Tσ(A) = T (A)
/
〈σA,A − IdA⊗A〉,

where T (A) is the tensor algebra ofA, 〈σA,A−IdA⊗A〉 is its two-sided ideal

generated by the image of σA,A − IdA⊗A, and the product on Tσ(A) is in-

duced by the concatenation. Dually, a (C; σC,C)-comodule can be regarded

as a comodule over the counital coassociative coalgebra Tσ(C), with the co-

product induced by the deconcatenation. Further, the entwining map σC,A

extends to a map σT (C),T (A) in the standard way, which then descends to a

map σTσ(C),Tσ(A) since σC,A respects σA,A and σC,C (in the sense of (cYBE)).

One obtains an entwining map σTσ(C),Tσ(A) between the algebra Tσ(A) and
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the coalgebra Tσ(C), in the sense of [4]. Moreover, a comparison of the

respective action-coaction compatibility conditions yields a category iso-

morphism

YDC
A ≃ Mod

Tσ(C)
Tσ(A),

with the category of Tσ(A)-Tσ(C)-bimodules in the sense of [12] on the

right. On the other hand, such algebra-coalgebra-bimodules form a partic-

ular case of our generalized YD modules, since (co)associative structures

can be regarded as braided ones, as described in Examples 2.2-2.3. In what

follows we stick to the braided approach, more efficient and convenient for

our goals. The algebra-coalgebra viewpoint will only re-emerge in Exam-

ples 3.6 and 3.11.

We now show how to endow YD modules over (C,A; σ) with a braiding,

provided that our category C is symmetric, and our braided system comes

with a “nice” connecting morphism π : C → A.

Theorem 1 (Braiding for generalized YD modules).

Take a braided system (C,A; σ) and a morphism π : C → A in a sym-

metric strict monoidal category (C,⊗, I, c). Suppose that for some non-

negative integers α1, α2, γ1, γ2 the following technical condition is satisfied:

(A⊗ σα1

A,A) ◦ (cA,A ⊗ π) ◦ (π ⊗ σC,A) ◦ (cC,C ⊗ π) ◦ (C ⊗ σ
γ1
C,C)(15)

= (A⊗ σα2

A,A) ◦ (A⊗ π ⊗ A) ◦ (cC,A ⊗ π) ◦ (C ⊗ π ⊗ C) ◦ (C ⊗ σ
γ2
C,C)

(Fig. 5). Then any Yetter-Drinfel′d modules (Mi, ρi, δi) over (C,A; σ) form

a braided system in C, with the braiding on Mi ⊗Mj defined by

σgY D = (Mj ⊗ ρi) ◦ (cMi,Mj
⊗ π) ◦ (Mi ⊗ δj).(16)

C C C

A A A

σC,A

cC,C

cA,A

σ
γ1
C,C

σα1

A,A

π

π

π =

C C C

A A A

cC,A

σ
γ2
C,C

σα2

A,A

π

π

π

FIGURE 5. Technical condition on the connecting morphism

Fig. 2 contains a diagrammatic version of this braiding. In Vectk, it can

be written using Sweedler’s notations as

σgY D(m⊗ n) = n(0) ⊗m ∗ π(n(1)).

Remark 2.10. Note that in concrete examples, π is rarely a morphism of

braided objects.
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Remark 2.11. In the examples we are interested in, the morphisms σC,C

and/or σA,A are often idempotent. In this case, condition (15) holds for all

sufficiently large values of the γ’s and/or the α’s.

Proof of Theorem 1. We verify Equation (cYBE) for σgY D graphically. The

naturality and the symmetry of the categorical braiding c (depicted by a

solid crossing ) is repeatedly used: it allows one to move any strand

across any part of a diagram. The desired equation is depicted on Fig. 6.

Mi MkMj

π

C

A

π

C

A

π

C

A

?
=

Mi MjMk

π

C

A

π

C

A

π

C

A

FIGURE 6. Claim of the theorem

We work on both sides of the equality in order to save space. Using the

naturality and the symmetry of c, one moves all the blue-red coaction-action

circuits to the bottom of the diagrams. Fig. 7 contains the resulting picture.

?
=

FIGURE 7. Dragging down the coaction-action circuits

The YBE for the braiding c allows one to identify the upper parts of the

diagrams. To compare the lower parts, recall that “coacting” blue strands or

“acting” red strands can be twisted near a thick green strand any number of

times thanks to the defining property (9) of braided (co-)modules (Fig. 3);

we display these multiple twists by solid boxes. Moreover, acting and coact-

ing strands can be switched using the defining property (14) of generalized

YD modules (Fig. 4); we apply this to the middle strand of the diagram on

the right. The lower parts of our diagrams can thus be transformed to the

ones on Fig. 8.
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α2

γ2

?
=

γ1

α1

FIGURE 8. Transformed lower parts of the diagrams

This last assertion follows from our technical hypothesis (15) (Fig. 5). �

To illustrate the unifying nature of the notion of generalized YD modules

and of the braidings provided by the theorem, we now interpret usual YD

modules and representations of a crossed module of groups as YD modules

over carefully chosen braided systems. The braidings given by our theo-

rem in these two settings recover the usual braidings for these structures,

recalled in the Introduction. Original examples will be treated in the fol-

lowing sections.

Example 2.12 (Generalized YD modules generalize usual YD modules).

To a Hopf algebra (H, µ, ν, ε,∆, S) in a symmetric monoidal category

(C,⊗, I, c), one can associate the following rank 2 braided system in C:

• its components are two copies of H: C = A = H;

• the braiding is defined by

σC,C = σcoAss, σA,A = σAss,

σC,A = (H ⊗ µ2) ◦ (cH,H ⊗H ⊗H) ◦ (S ⊗ cH,H ⊗H)◦

(cH,H ⊗H ⊗H) ◦ (H ⊗∆2)

(where µ2 = µ ◦ (µ⊗H), ∆2 = (∆⊗H) ◦∆).

In Vectk, the morphism σC,A takes the familiar form

σC,A(h⊗ h′) = h′(2) ⊗ S(h′(1))hh
′
(3).

Note that it is not a braiding onH in general. As mentioned in Examples 2.2

and 2.3, the cYBE on C ⊗ C ⊗ C and on A ⊗ A ⊗ A follows from the

coassociativity of ∆ and, respectively, from the associativity of µ. The

verification of the remaining instances of the cYBE (on C ⊗ C ⊗A and on

C ⊗A⊗A) is lengthy but straightforward.

Recall the braided module analysis from Examples 2.2 and 2.3. Together

with a comparison of the definition of σC,A with the defining relation (1)

for usual YD modules, this identifies YDC
A as the category nnYDH

Hof non-

normalized (in the sense of Examples 2.2 and 2.3) YD modules over H
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in C. The category nYDH
H = YDH

H of usual, or normalized, YD modules is

its full subcategory:

YDH
H = nYDH

H →֒ nnYDH
H = YDC

A .

Now, consider the morphism π = IdH . A direct verification shows that

it satisfies condition (15) with α1 = α2 = γ1 = γ2 = 1. Thus Theo-

rem 1 applies here. For C = Vectk, the braiding obtained is precisely the

braiding σY D from (2).

More generally, an analogous rank 2 braided system can be constructed

for anH-bimodule coalgebra C and anH-bicomodule algebraA. YD mod-

ules over this system yield a non-normalized version of (H,A,C)-crossed

H-modules, as defined by S. Caenepeel, G. Militaru, and S. Zhu [5]. These

modules can thus be endowed with braidings, provided that additionally one

has a connecting morphism π : C → A.

Example 2.13 (Representations of a crossed module of groups as general-

ized YD modules).

To a crossed module of groups (K,G, π, ·) (see the Introduction), one

can associate the following rank 2 braided system in Vectk (or analogously

in ModR for a unital commutative ring R):

• as components, take C = kK and A = kG;

• the braiding is defined by

σC,C = σcoAss, σA,A = σAss,

σC,A(k ⊗ g) = g ⊗ (k · g),

where kK and kG are endowed with the usual Hopf algebras struc-

ture (given by a linearization of the maps ∆(g) = g ⊗ g, ε(g) = 1,

µ(g ⊗ g′) = gg′, ν(1) = e, S(g) = g−1).

As usual, the cYBE on C ⊗ C ⊗ C and on A ⊗ A ⊗ A follows from the

coassociativity of ∆ and, respectively, from the associativity of µ. The

cYBE on C ⊗C ⊗A is obvious, and on C ⊗A⊗A it is a consequence of ·
being a group action.

Now, consider a kK-coaction δ on M which is counital, in the sense of

(M ⊗ ε) ◦ δ = M , where ε(k) = 1 ∈ k for all k ∈ K. Such a coaction is

the same thing as a K-grading: the correspondence is given by

δ(m) =
∑

k∈K
mk ⊗ k, and mk = (M ⊗ ∂k) ◦ δ(m),

where ∂k is the linearization of the Kronecker delta map ∂k(k
′) = δk,k′.

Moreover, a map M → M ′ is compatible with kK-coactions if and only

if it preserves the corresponding K-gradings. Further, condition (14) defin-

ing a generalized YD module is equivalent here to all g ∈ G sending Mk
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onto Mk·g. Thus Bantay’s representation category M(K,G) is the full sub-

category of YDkK
kG consisting of all normalized modules (in the sense of

Examples 2.2 and 2.3). In other words, one has a category inclusion

M(K,G) = nYDkK
kG →֒ nnYDkK

kG = YDkK
kG .

Condition (15) for π holds true with α1 = α2 = γ1 = γ2 = 1; this

follows from (5) and from π being a group morphism. The braiding from

Theorem 1 coincides here with σCrMod from (7).

Remark 2.14 (Generalized YD modules as braided modules).

If the object C admits a dual C∗ in C, then the braided system (C,A; σ)
can be partially dualized to (A,C∗; σ∗), with a category isomorphism

YDC
A ≃ Mod(A,C∗;σ∗).(17)

In the context of Example 2.12, the dualC∗ exists ifH is a finite-dimensional

Hopf algebra over k (or at least is graded and of finite dimension in every

degree). In this case (17) can be continued as

YDH
H = nYDH

H →֒ nnYDH
H ≃ Mod(H,H∗;σ∗) ≃ Mod

nn
D(H),(18)

where the algebra D(H) is the Drinfel′d double of H . In Example 2.13, the

dual exists if K is a finite group, in which case (17) can be continued as

M(K,G) →֒ nnYDkK
kG ≃ Mod(kG,(kK)∗;σ∗) ≃ Mod

nn
(kK)∗⋊kG.(19)

Explicitly, (kK)∗ has a standard k-linear basis given by the delta maps ∂k,

k ∈ K, which form a complete orthogonal system of idempotents, and G

acts on (kK)∗ by algebra automorphisms according to the rule

g · ∂k = ∂k·g−1.

Note that originally Bantay defined M(K,G) as the categoryMod
n
(kK)∗⋊kG.

See [16, 17, 20] for a general treatment of the situations in which category

isomorphisms of type (18)-(19) emerge.

3. REPRESENTATIONS OF A CROSSED MODULE OF SHELVES

In [7], A. Crans and the second author generalized the notion of crossed

module of groups to that of crossed module of racks, and studied its proper-

ties. We now recall their definition, and extend it to the case of shelves (see

Source 2 in the Introduction for definitions). We further propose a notion

of representations of such crossed modules, include it into the framework

of generalized YD modules, and, using Theorem 1, obtain a new source of

braidings. This source comprises both the self-distributivity braiding σSD
and Bantay’s braiding σCrMod.
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Definition 3.1. A rack is a shelf (R,⊳) for which all the right translations

tr : r
′ 7→ r′ ⊳ r

are bijective; their inverses are denoted by r′ 7→ r′ ⊳̃ r.

Example 3.2. A groupGwith the conjugation operation g ⊳ g′ = (g′)−1gg′

is a rack, called the conjugation rack of G, and denoted by Conj(G).

Definition 3.3 (Crossed modules of shelves and racks).

• A shelf/rack morphism between shelves/racks (R,⊳) and (S,⊳) is

a map f : R → S intertwining their shelf operations:

f(r ⊳ r′) = f(r) ⊳ f(r′).

Shelf/rack iso-, endo- and automorphisms are defined analogously.

• Given a shelf (S,⊳), an S-set is a set M with a map ◭ : M × S →
M (sometimes seen as a map ϕ : S → EndSet(M)) satisfying

(m ◭ s) ◭ s′ = (m ◭ s′) ◭ (s ⊳ s′), m ∈M, s, s′ ∈ S.(20)

• Given a rack (R,⊳), an R-rack-set is an R-set M on which R acts

by bijections, i.e., the mapsm 7→ m ◭ r are invertible for all r ∈ R.

• The maps ◭ above are called shelf/rack actions.

• S-modules (or R-rack-modules) in an arbitrary category C are de-

fined as maps ϕ : S → EndC(M) (or ϕ : R → AutSet(M)) satisfy-

ing ϕ(s)ϕ(s′) = ϕ(s′)ϕ(s ⊳ s′).
• A crossed module of shelves is the data of a shelf morphism π : R →
S and a shelf action · of S on R by shelf morphisms, compatible in

the sense of

r · π(r′) = r ⊳ r′, r, r′ ∈ R,(21)

π(r · s) = π(r) ⊳ s, r ∈ R, s ∈ S.(22)

• If R and S above are racks, with S acting by rack automorphisms,

one talks about a crossed module of racks.

• An augmented rack is the data of a group G, a G-set R, and a G-

equivariant map π : R→ G, in the sense of (6).

Remark 3.4 (An alternative definition).

The definition of a crossed module of shelves/racks is redundant: it suf-

fices to have a generalized augmented shelf/rack, that is, a shelf/rack S, an

S-set or S-rack-set R, and an S-equivariant map π : R → S (in the sense

of (22)). For this data, relation (21) can be taken as the definition of a

shelf/rack operation on R, called the induced operation; with this choice,

π becomes a shelf morphism, and S acts on R by shelf (auto)morphisms.

See [7] for more details. We keep the original definition in order to better
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see its analogy with that of a crossed module of groups, but in practice often

turn to the lighter one.

Remark 3.5 (An augmented rack as a crossed module of racks).

Take an augmented rack (R,G, π, ·). Since a group action by G can be

viewed as a rack action by Conj(G), one obtains a generalized augmented

rack (R,Conj(G), π, ·), which is in fact a crossed module of racks (Re-

mark 3.4). In particular, R can be endowed with the induced rack structure

r ⊳ r′ = r · π(r′), which justifies the term augmented rack.

Example 3.6 (Augmentation over the associated group of a rack).

The associated group Ass(R) of a rack (R,⊳) is the free group on R

modulo the relations

rr′ = r′(r ⊳ r′), r, r′ ∈ R.(23)

This construction actually defines a functor Ass from the category of racks

to that of groups; its right adjoint Conj stems from the conjugation rack

construction. The group Ass(R) acts on R via

r · r′ = r ⊳ r′, r · (r′)−1 = r ⊳̃ r′.(24)

The tautological map πAss : R → Ass(R), r 7→ r is Ass(R)-equivariant.

Thus every rack can be augmented over Ass(R). This augmentation is uni-

versal, in the sense that for any augmented rack structure (R,G, π, ·) with

the same R, the map π : R → G factors through πAss. Note also that πAss

induces a bijection between Ass(R)-modules and R-rack-modules in any

category (its inverse is given by formulas analogous to (24)). Our last ob-

servation concerns the case when (R,⊳) is simply a shelf: R is then acted

on by its associated monoid only, i.e, the free monoid on R modulo (23).

Example 3.7 (Augmentation over the automorphism group of a rack).

Another augmentation of a rack (R,⊳) is given by the map π : R →
Aut(R) sending an r ∈ R to the right translation map tr, which is indeed a

rack automorphism of R. By definition, R carries an Aut(R)-action. The

map πAut : R → Aut(R), r 7→ tr is easily shown to be Aut(R)-equivariant,

completing our augmented structure.

Note that in both examples above, the induced operation onR is in fact its

original rack operation. According to Remark 3.5, one thus obtains crossed

modules of racks with an arbitrary rack as the “R-part” of the structure.

We now mimic the development of the representation theory of a crossed

module of groups in the generalized setting of a crossed module of shelves.

Definition 3.8 (Representations of a crossed module of shelves/racks).



16 VICTORIA LEBED AND FRIEDRICH WAGEMANN

• A set-theoretic / linear representation of a crossed module of shelves

(R, S, π, ·) is an S-module (M,◭) in Set / in Vectk, endowed with

an R-grading satisfying the compatibility condition

Mr ◭ s ⊆Mr·s.

The category of such representations (with the obvious notion of

morphisms) is denoted by MSet(R, S, π, ·), or simply MSet(R, S)
when this does not lead to confusion. The notation Mk(. . .) is used

in the linear setting.

• If (R, S, π, ·) above is a crossed module of racks and (M,◭) is an S-

rack-module, then we talk about representations of a crossed mod-

ule of racks and use the notations MR
• (. . .).

Note that a representation of a crossed module of racks satisfies a stronger

compatibility condition Mr ◭ s =Mr·s.

Example 3.9 (Adjoint representations).

Given a shelf/rack (S,⊳), the map π = IdS : S → S together with s·s′ =
s ⊳ s′ define a crossed module of shelves/racks, for which S itself is a

representation (called adjoint), with s ◭ s′ = s ⊳ s′ and Ss = {s}.

Example 3.10 (A crossed module of groups as a crossed module of racks).

A crossed module of groups (K,G, π, ·) is in particular an augmented

rack, and thus (Remark 3.5) gives rise to the crossed modules of racks

(K,Conj(G), π, ·), with the induced rack operation k ⊳ k′ = k · π(k′)
on K. Relation (5) transforms it into k ⊳ k′ = (k′)−1kk′, so our crossed

modules of racks can be written as (Conj(K), Conj(G), π, ·). Observe the

tautological inclusion of the set-theoretic / linear representation categories

M•(K,G) →֒ MR
• (Conj(K), Conj(G)).(25)

It is in general strict. Indeed, taking as K the trivial group, one identi-

fies M•({1}, G) with the category of G-modules, and MR
• ({1}, Conj(G))

with the category ofConj(G)-rack-modules. Now, take aG-module (M, ∗)
with an inversionm 7→ m satisfyingm∗g = m ∗ g (e.g., the mapm 7→ −m
in the linear setting). The operation m ◭ g = m ∗ g defines a Conj(G)-
rack-module structure on M which is not necessarily aG-module structure.

Example 3.11 (A crossed module of racks as a crossed module of groups).

A crossed module of racks (R, S, π, ·) induces a crossed modules struc-

ture (Ass(R), Ass(S), π̃, ·̃) for the associated groups. An S-rack-module

structure on M is equivalent to an Ass(S)-module structure on M , and

an R-grading M = ⊕r∈RMr induces an Ass(R)-grading: put MπAss(r) =



GENERALIZED YETTER-DRINFEL′D MODULES 17

⊕r′ |πAss(r′)=πAss(r)Mr′ , and declare Mr trivial for r outside πAss(R). Ana-

lyzing the compatibility conditions, one sees that this yields a map

MR
• (R, S) → M•(Ass(R), Ass(S))(26)

between the corresponding set-theoretic / linear representation categories.

This map is neither injective nor surjective in general. Indeed, for the cyclic

rack Rcycl = (Z, r ⊳c r
′ = r+1), the associated group is the free group 〈t〉

on one element (since rr = r(r ⊳c r) implies here r = r + 1 for all r).

The representations of the crossed module of racks (Rcycl, Rcycl, IdZ,⊳c)
(cf. Example 3.9) are Z-graded sets / vector spaces M endowed with a

bijection f : M → M such that f(Mr) = Mr+1 (the Rcycl-action being

defined by m ◭ r = f(m) for all r), whereas the representations of the

associated crossed module of groups (〈t〉, 〈t〉, Id〈t〉, g ⊳ g′ = g) are 〈t〉-
graded M endowed with a bijection f : M → M preserving the grading

(and inducing the 〈t〉-action m ∗ tα = fα(m)). The correspondence (26)

sends a representation (M, f, gr) to (M, f, gr0 : m 7→ t). On the one

hand, it totally forgets the grading gr and is thus not injective; on the other

hand, in its image everyone lives in degree t, hence the non-surjectivity.

Example 3.12 (Crossed modules of racks versus crossed modules of shelves).

A crossed module of racks is in particular a crossed module of shelves,

thus accepting two types of representation theories, corresponding to the

categories MR
• and M•. The second category is strictly larger in gen-

eral. Indeed, one can transform a representation (M = ⊕r∈RMr,◭) ∈
M•(R, S) into the following one:

(M⊕M, (m⊕m′) ◭ s = (m ◭ s+m′
◭ s)⊕0, (M ⊕M)r =Mr⊕Mr)

(with the obvious modifications in the set-theoretic setting). It does not

belong to MR
• (R, S), since the action of any s ∈ S is non-invertible.

Proposition 3.13 (Crossed modules of shelves as braided systems).

For a crossed module of shelves (R, S, π, ·), the following data define a

rank 2 braided system in Set:

• as components, take C = R and A = S;

• the braiding is defined by

σC,C = σcoAss : r ⊗ r′ 7→ r′ ⊗ r′,

σA,A = σSD : s⊗ s′ → s′ ⊗ (s ⊳ s′),

σC,A : r ⊗ s 7→ s⊗ (r · s).

By linearization, this braided system can be transformed into one in Vectk.

Proof. The cYBE on C ⊗ C ⊗ C and A ⊗ A ⊗ A are taken care of by

Examples 2.3 and 2.4. The cYBE onC⊗C⊗A is obvious, and onC⊗A⊗A
it follows from the fact that · is an S-action. �
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Remark 3.14. In fact the component σC,C of the braiding above can also

be seen as a self-distributivity braiding, by considering the shelf operation

r ⊳0 r′ = r′ on R. Even better: the shelf operations ⊳ on S and ⊳0

on R can be extended to a shelf operation ⊳ on T = S ⊔ R ⊔ {e} by

putting r ⊳ s = r · s, s ⊳ r = e, e ⊳ t = e, and t ⊳ e = t for all

s ∈ S, r ∈ R, t ∈ T . All the braiding components from the proposition are

now particular cases of the braiding σSD on (T,⊳).

Remark 3.15. Another rank 2 braided system in Set can be defined by the

same data as in the proposition except for σC,C , which becomes

σC,C = σSD : r ⊗ r′ → r′ ⊗ (r ⊳ r′).

The instances of the cYBE changed with respect to the previous structure

are those on C ⊗ C ⊗ C, which is an application of Example 2.4, and

on C ⊗ C ⊗ A, where it follows from the fact that S acts on R by shelf

morphisms. Once again, all the braided components of this system can be

seen as parts of a single self-distributivity braiding on (T = S ⊔ R,⊳),
where ⊳ extends the shelf operations on S and R by r ⊳ s = r · s and

s ⊳ r = s ⊳ π(r).

Proposition 3.16 (Representations of a crossed module of shelves as gen-

eralized YD modules).

In the settings of the previous proposition, one has category inclusions

MSet(R, S) →֒ YDR
S , Mk(R, S) →֒ YDkR

kS .

Proof. As recalled in Examples 2.3 and 2.4, an S-module is the same thing

as a braided module over (S; σSD), and a comodule over (R,∆: r 7→ r ⊗
r, ε : r 7→ 1) is automatically a braided comodule over (R; σcoAss). One

then interprets an R-grading as the R-comodule structure

m 7→ m× gr(m), or m 7→
∑

r∈R
mr ⊗ r

(depending on the context), and identifies the compatibility conditionMr ◭

s ⊆Mr·s with (14) for our σC,A. �

More precisely, these generalized YD modules can be viewed as deco-

rated versions of the representations from M•(R, S):

Proposition 3.17 (Twisted representations).

Take a crossed module of shelves (R, S, π, ·).

(1) The category YDR
S is isomorphic to the category of set-theoretic

representations (M,◭, gr) of (R, S, π, ·) endowed with an addi-

tional map f : M →M which

• respects the R-grading gr, and

• intertwines the S-action ◭ (i.e., f(m ◭ s) = f(m) ◭ s).
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(2) The category YDkR
kS is isomorphic to the category of k-linear S-

modules (M,◭) with the following additional data:

(a) a distinguished S-stable subspace M ′ with a compatible R-

grading, in the sense of
∑

r′ | r′·s=r
m′

r′ ◭ s ∈M ′
r, m′ ∈M ′, r ∈ R, s ∈ S,

(b) and a surjection f : M ։M ′ which

• respects the R-grading when restricted to M ′, and

• intertwines the S-actions.

For both categories, morphisms are defined in the usual way.

The category inclusions from Proposition 3.16 are realized by taking f =
IdM or, respectively, M ′ =M and f = IdM .

Proof. One follows the proof of Proposition 3.16, treating braided comod-

ules over (R; σcoAss) with more care. One sees that the R-coaction has to

be of the form

m 7→ f(m)× gr(m), or m 7→
∑

r∈R
f(m)r ⊗ r.

The compatibility relation (14) is then translated into a list of requirements

for the map f and for the behavior of theR-grading under the S-action. �

Definition 3.18. The categories described in the proposition are denoted

by Mtw
• (R, S), or MR;tw

• (R, S) in the rack case. Their objects are called

twisted representations of the corresponding crossed module of shelves/

racks, and the maps f are referred to as the twisting maps.

Proposition 3.17 thus establishes category equivalences

Mtw
Set

(R, S) ≃ YDR
S , Mtw

k
(R, S) ≃ YDkR

kS .

In what follows we will freely switch between the generalized YD and the

twisted viewpoints.

Using the S-equivariance relation (22) for π, one readily checks condi-

tion (15) with α2 = γ1 = γ2 = 1 and α1 = 0 (observe that σA,A is in general

not idempotent in this setting, and the choice α1 = 1 from the previous ex-

amples would not work; cf. Remark 2.11). Theorem 1 is thus applicable

here, yielding

Theorem 2 (Representations of a crossed module of shelves are braided).

Any representations (Mi,◭i, gri)of a crossed module of shelves (R, S, π, ·)
in Set (where gri : Mi → R are the grading maps) form a braided system,

with the braidings

σCrModSh(m⊗ n) = n⊗m ◭i π(grj(n))(27)

on Mi ⊗Mj . Similar braidings exist for representations in Vectk.
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Example 3.19. In the settings of Example 3.10, one recovers Bantay’s

braiding σCrMod for crossed modules of groups (see (7) for the definition).

Example 3.20. In the settings of Example 3.11, the braidings σCrModSh

and σCrMod for a representation of a crossed module of racks considered in

the categories MR
• (R, S) and, respectively, M•(Ass(R), Ass(S)) (via the

functor (26)) coincide.

Example 3.21. For a shelf (S,⊳) seen as the adjoint representation of

(S, S, IdS,⊳) (Example 3.9), σgY D is the usual self-distributivity braid-

ing σSD from (4). More generally, a crossed module of shelves (R, S, π, ·)
has a representation (R, ·, IdR), for which σgY D recovers once again the

self-distributivity braiding σSD.

Remark 3.22. For twisted representations (Mi,◭i, gri, fi) ∈ Mtw
• (R, S),

Theorem 1 yields the braidings

σTwCrModSh(m⊗ n) = fj(n)⊗m ◭i π(grj(n))

onMi⊗Mj , and similar formulas in the linear setting. They can be regarded

as the braidings (27) with extra “f -twists”.

4. REPRESENTATIONS OF A CROSSED MODULE OF LEIBNIZ ALGEBRAS

In this section we recall the notion of crossed module of Leibniz algebras

(cf. Example 2.5) and interpret it in terms of a rank 2 braided system. YD

modules over such a system are then natural candidates for being called

representations of the corresponding crossed module. We describe them

explicitly, and endow them with braidings, supplied as usual by Theorem 1.

This yields a new source of braidings, comprising σLei from Example 2.5.

Here we work in Vectk for simplicity, but everything remains valid in a

general symmetric additive monoidal category.

Definition 4.1 (Crossed modules of Leibniz algebras).

• A unital Leibniz algebra morphism between unital Leibniz algebras

(k, [, ]k , 1k) and (g, [, ]g , 1g) is a linear map f : k → g intertwining

their structures:

f([k, k′]k) = [f(k), f(k′)]g, f(1k) = 1g.

• A derivation of a unital Leibniz algebra (k, [, ]k , 1k) is a linear map

f : k → k satisfying

f([k, k′]k) = [k, f(k′)]k + [f(k), k′]k, f(1k) = 0.

• A representation of (k, [, ]k , 1k) is a vector space M together with

a unital Leibniz algebra morphism ϕ : k → Endk(M) (cf. Exam-

ple 2.5 for the Leibniz structure on Endk(M)). One says that k acts

on M , and writes m · k = ϕ(k)(m).
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• All the definitions above admit obvious non-unital versions.

• A crossed module of Leibniz algebras is the data of a Leibniz alge-

bra morphism π : k → g and a (right) g-action · on k by derivations,

compatible in the sense of

k · π(k′) = [k, k′]k, k, k′ ∈ k,(28)

π(k · g) = [π(k), g]g, k ∈ k, g ∈ g.(29)

The simplest examples of crossed modules of Leibniz algebras are:

• the identity map Idk : k → k for a Leibniz algebra k, with the adjoint

action k · k′ = [k, k′]k, and

• the zero map 0: k → g between an abelian Leibniz algebra k (i.e.,

the bracket [, ]k is zero) and an arbitrary Leibniz algebra g acting

on k.

Our definition of crossed modules is an anti-symmetric version of the

Loday-Pirashvili one [26]: they make g act on k on the left and on the right,

with additional compatibility conditions, whereas we restrict ourselves to

trivial left actions.

Remark 4.2 (An alternative definition).

Similarly to the case of shelves, the definition of a crossed module of

Leibniz algebras is redundant: it suffices to have a Leibniz algebra g act-

ing on a vector space k, and a g-equivariant map π : k → g (in the sense

of (29)). Relation (28) then defines a Leibniz structure on k, on which g acts

by derivations, and π becomes a Leibniz algebra morphism.

It is natural to ask how to define crossed modules for unital Leibniz alge-

bras. The naive definition does not work: condition (28) implies

k = k · 1g = k · π(1k) = [k, 1k]k = 0

for all k ∈ k, so this definition is empty. However, the unitality is essential

for a braided interpretation of crossed modules: the braiding σLei encoding

the Leibniz relation does involve the unit. The following classical construc-

tion provides a switch between non-unital and unital settings:

Lemma 4.3 (Unitarization).

Take a Leibniz algebra (k, [, ]k ) in Vectk.

(1) A unital Leibniz algebra structure on k+ = k⊕ k1 is defined via

[k, k′]k+ = [k, k′]k, [k, 1]k+ = [1, k′]k+ = 0, k, k′ ∈ k.

(2) A cocommutative coassociative counital algebra structure on k+ is

defined by putting

∆(k) = k ⊗ 1 + 1⊗ k, ε(k) = 0, k ∈ k,

∆(1) = 1⊗ 1, ε(1) = 1.
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(3) A Leibniz algebra morphism f : k → g extends to a unital Leibniz

algebra morphism f : k+ → g+ by putting f(1) = 1.

(4) A derivation f of a Leibniz algebra k extends to a derivation of k+

via f(1) = 0.

(5) A k-action · on a vector space M extends to a k+-action via m · 1 =
m.

Take now a crossed module of Leibniz algebras (k, g, π, ·). Consider the

adjoint action k · k′ = [k, k′]k of k on itself. Extend it first into an action

of k on k+ by derivations, and then into an action of k+ on k+ as explained

above. Explicitly, put k·1 = k, 1·k = ε(k)1, k ∈ k+. Similarly, unitarize the

adjoint action of g on itself and the g-action on k from the crossed module

structure. Denote by · all these unitarized actions. Further, extend the

connecting map π into π : k+ → g+. Then one has

k · π(k′) = k · k′, k, k′ ∈ k+,(30)

π(k · g) = π(k) · g, k ∈ k+, g ∈ g+,(31)

π(k · k′) = π(k) · π(k′), k, k′ ∈ k+,(32)

∆ ◦ π = (π ⊗ π) ◦∆: k+ → g+ ⊗ g+.(33)

The proof is straightforward. The comultiplication ∆ previously ap-

peared in [6, 19]. Note that if a non-abelian Leibniz algebra g carries a

k-action by derivations, the extended k+-action from the lemma is no longer

by derivations: the action by 1 behaves in the wrong way.

Notation 4.4. We use the same notation for a Leibniz algebra morphism / a

derivation / an action and their unitarized versions from the lemma.

Proposition 4.5 (Crossed modules of Leibniz algebras as braided systems).

For a crossed module of Leibniz algebras (k, g, π, ·), the following data

define a rank 2 braided system in Vectk:

• as components, take C = k+ and A = g+;

• the braiding is defined by

σC,C = σcoAss : 1⊗ 1 7→ 1⊗ 1, 1⊗ k 7→ 1⊗ k + k ⊗ 1,

k ⊗ k′ 7→ 0, k ∈ k, k′ ∈ k+,

σA,A = σLei : g ⊗ g′ 7→ g′ ⊗ g + 1⊗ [g, g′], g, g′ ∈ g+,

σC,A : k ⊗ g 7→ g ⊗ k if k = 1 or g = 1,

k ⊗ g 7→ g ⊗ k + 1⊗ k · g, k ∈ k, g ∈ g.
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Remark 4.6. The unitarization procedure from Lemma 4.3 allows one to

write the maps σA,A and σC,A in a uniform way:

σA,A(g
′ ⊗ g) = g(1) ⊗ g′ · g(2), g, g′ ∈ g+,

σC,A(k ⊗ g) = g(1) ⊗ k · g(2), k ∈ k+, g ∈ g+,

using Sweedler’s notation ∆(g) = g(1) ⊗ g(2).

Proof. The cYBE on C ⊗ C ⊗ C and A ⊗ A ⊗ A are taken care of by

Examples 2.3 and 2.5. Both sides of the cYBE on C ⊗ C ⊗ A equal

• g ⊗ 1⊗ 1 on 1⊗ 1⊗ g, g ∈ g+;

• 1⊗ (1⊗ k + k ⊗ 1) on 1⊗ k ⊗ 1, k ∈ k;

• g ⊗ (1 ⊗ k + k ⊗ 1) + 1 ⊗ (1 ⊗ k · g + k · g ⊗ 1) on 1 ⊗ k ⊗ g,

k ∈ k, g ∈ g;

• 0 on k ⊗ k′ ⊗ g, k ∈ k, k′ ∈ k+, g ∈ g+.

The cYBE on C ⊗ A⊗ A is equivalent to

(k · g) · g′ = (k · g′) · g + k · [g, g′], k ∈ k+, g, g′ ∈ g+,

which follows from the fact that the unitarization of the g-action · on k is a

g+-action on k+. �

Lemma 4.7. Take a YD module (M, ∗, δ) over the braided system above.

Recall Sweedler’s notations δ(m) = m(0)⊗m(1), (δ⊗ k+)◦ δ(m) = m(0)⊗
m(1)⊗m(2). Consider also the map f(m) = ε(m(1))m(0). Then one has the

following relations:

(m ∗ g′) ∗ g = (m ∗ g(1)) ∗ (g
′ · g(2)), m ∈M, g, g′ ∈ g+,(34)

δ(m ∗ g) = m(0) ∗ g(1) ⊗m(1) · g(2), m ∈M, g ∈ g+,(35)

m(0) ⊗m(1) ⊗m(2) = f(m(0))⊗∆(m(1)), m ∈M,(36)

(m ∗ 1) ∗ g = (m ∗ g) ∗ 1, m ∈M, g ∈ g+,(37)

f(m)(0) ⊗ f(m)(1) = f(m(0))⊗m(1), m ∈M.(38)

Proof. The first three equations are the defining relations of generalized YD

modules, with the braiding components written as suggested in Remark 4.6.

The penultimate relation follows from the first one by taking g′ = 1, and

the last one from (36) by applying ε to the last component. �

We now propose a notion of representation of a crossed module of Leib-

niz algebras. It is tailored for admitting an interpretation in terms of gener-

alized YD modules.

Definition 4.8 (Representations of a crossed module of Leibniz algebras).

A representation of a crossed module of Leibniz algebras (k, g, π, ·) is a

vector spaceM endowed with a g-action ∗ and a linear map δ0 : M →M⊗k

which is
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• of square zero, i.e. (δ0 ⊗ k) ◦ δ0 = 0, and

• g-equivariant, in the sense of δ0(m∗g) = δ0(m)∗g, where g acts on

M⊗k according to the Leibniz rule: (m⊗k)∗g = m⊗k·g+m∗g⊗k.

The category of such representations (with the obvious notion of morphisms)

is denoted by M(k, g, π, ·), or simply M(k, g).

Remark 4.9. If k has a basis ki, i ∈ I , then the map δ0 can be written

as δ0(m) =
∑

i∈I θi(m) ⊗ ki for some linear maps θi : M → M . The

square-zero property for δ0 then reads θiθj = 0 for all i, j ∈ I . Moreover,

in the finite-dimensional case, the g-equivariance yields an expression of

θi(m ∗ g)− θi(m) ∗ g in terms of the θs and the structural constants of the

action of g on k.

Proposition 4.10 (Representations of a crossed module of Leibniz algebras

as generalized YD modules).

In the settings of the previous proposition, one has category inclusions

M(k, g) →֒ YDk+

g+ ,

(M, ∗, δ0) 7→ (M, ∗, δ),

where the g-action ∗ on M is extended to a g+-action as explained in

Lemma 4.3, and the k+-coaction δ is given by δ(m) = δ0(m) +m⊗ 1.

Proof. As recalled in Example 2.5, the g+-action ∗ onM is also a (g+; σLei)-
action. Further, one verifies that a linear map δ : M → M ⊗ k+ defines a

(k+; σcoAss)-coaction δ, normalized in the sense of (M ⊗ ε) ◦ δ = M , if

and only if it has the form δ(m) = δ0(m) +m ⊗ 1, with δ0 : M → M ⊗ k

of square zero. At last, the YD property (14) for our σC,A is equivalent to

the g-equivariance of δ0. Thus the functor from the theorem is well defined

on objects. One easily sees that it is well defined, full and faithful on mor-

phisms. Finally, the g-action on M can be restored from the g+-action, and

the map δ0 from δ, hence our functor is indeed a category inclusion. �

As usual, one can interpret the whole category YDk+

g+
in terms of non-

normalized representations; the details are left to the Reader.

Now, Theorem 1 allows one to construct braidings:

Theorem 3 (Representations of a crossed module of Leibniz algebras are

braided).

Any representations (Mi, ∗i, (δ0)i) of a crossed module of Leibniz alge-

bras (k, g, π, ·) form a braided system, with the braidings on Mi⊗Mj given

by

σCrModLA(m⊗ n) = n⊗m+ n(0) ⊗m ∗i π(n(1)),(39)

using Sweedler’s notation (δ0)j(n) = n(0) ⊗ n(1).
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Proof. We will check the technical condition (15) for our map π, with α2 =
γ1 = γ2 = 1 and α1 = 0. It reads

π(k′(2))⊗ π(k′(1))⊗ π(k · π(k′(3))) =

π(k′(1))⊗ (π(k′(2)))(1) ⊗ π(k) · (π(k′(2)))(2)

for k, k′ ∈ k+, using the usual Sweedler’s notation for the comultiplications

on k+ and on g+. Since these comultiplications are cocommutative and are

entwined by π (relation (33)), it suffices to show that

π(k · π(k′)) = π(k) · π(k′),

which follows from (31). �

Example 4.11 (Adjoint representations).

Recall that, for a Leibniz algebra k, the identity map Idk : k → k and the

adjoint action k · k′ = [k, k′]k define a crossed module structure. Moreover,

k itself with the map δ0 and again the adjoint action ∗ is a representation of

this crossed module. Theorem 3 then endows k with a braiding, which turns

out to be the flip k ⊗ k′ 7→ k′ ⊗ k. Further, k+ with δ0 defined by δ0(1) = 0
and δ0(k) = 1⊗ k for k ∈ k is also a representation of this crossed module.

The braiding recovered in this latter case is the Leibniz braiding σLei.

5. CATEGORICAL ASPECTS

This section is devoted to a systematic construction of families of gener-

alized YD modules, and to a study of the categories YDC
A . We return here

to the general setting of a strict monoidal category C.

First we describe a method for transforming generalized YD modules

into more complicated ones.

Proposition 5.1 (Enrichment of YD modules).

Take a YD module (N, ρ, δ) over a braided system (C,A; σ) in C. Sup-

pose that this system can be enriched into a rank 3 system (C,M,A; σ, σC,M ,

σM,M , σM,A). Then N ⊗M can be endowed with the following YD module

structure over (C,A; σ) (Fig. 9):

δ′ = (N ⊗ σC,M ) ◦ (δ ⊗M), ρ′ = (ρ⊗M) ◦ (N ⊗ σM,A).

NM

NM C

δ
σC,M

NM

NM

A

ρ
σM,A

FIGURE 9. Enriched YD modules
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Proof. We have to show the braided module and comodule property for

N ⊗M and the Yetter-Drinfel′d property.

1) The claim of the braided module property is the equality of

(ρ⊗M) ◦ (N ⊗σM,A) ◦ (ρ⊗M ⊗A) ◦ (N ⊗σM,A⊗A) ◦ (N ⊗M ⊗σA,A)

and

(ρ⊗M) ◦ (N ⊗ σM,A) ◦ (ρ⊗M ⊗A) ◦ (N ⊗ σM,A ⊗A).

For this, one uses first Equation (cYBE) for M ⊗ A ⊗ A, and then the

defining property (9) for the braided A-module (N, ρ).
2) One argues similarly for the braided comodule property (using (cYBE)

for C ⊗ C ⊗M).

3) The YD property (14) reads

(N ⊗ σC,M) ◦ (δ ⊗M) ◦ (ρ⊗M) ◦ (N ⊗ σM,A) =

(ρ⊗M⊗C)◦(N⊗σM,A⊗C)◦(N⊗M⊗σC,A)◦(N⊗σC,M⊗A)◦(δ⊗M⊗A).

It follows from the cYBE for C ⊗M ⊗ A, and then Equation (14) for the

YD module (N, ρ, δ).
The reader is invited to draw the corresponding diagrams. �

Note that the datum of σM,M is completely irrelevant for the YD module

structure on N ⊗M , and can be replaced, for instance, with IdM⊗M (which

trivially forces all the instances of the cYBE involving at least two copies

of M). This motivates the following

Definition 5.2 (Enriching structures).

Take a braided system (C,A; σ) in C. Denote by ZC
A the category whose

• objects are the enriching structures for (C,A; σ), i.e., objects M

together with morphisms σC,M and σM,A in C such that (C,M,A;
σ, σC,M , IdM⊗M , σM,A) is a braided system;

• morphisms are those morphisms ϕ : M → M ′ in C which satisfy

the naturality conditions

(ϕ⊗ C) ◦ σC,M = σC,M ′ ◦ (C ⊗ ϕ),(40)

(A⊗ ϕ) ◦ σM,A = σM ′,A ◦ (ϕ⊗ A).(41)

This notion is related to the categorical center (hence the notation), and to

factorisations of a distributive law, introduced by U. Krähmer and P. Slevin

[15] as a tool for constructing new cyclic homology theories.

We now show that the category ZC
A is far from being empty:

Proposition 5.3 (Categorical aspects of the enrichment).
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(1) The category ZC
A is strict monoidal: the tensor product structure is

given by the tensor product of C, together with

σC,M⊗M ′ = (M ⊗ σC,M ′) ◦ (σC,M ⊗M ′),

σM⊗M ′,A = (σM,A ⊗M ′) ◦ (M ⊗ σM ′,A),

and the unit object is I with σC,I = IdC and σI,A = IdA (Fig. 10).

(2) The category ZC
A contains (A, σC,A, σA,A) and (C, σC,C , σC,A), as

well as all their mixed tensor products.

(3) Proposition 5.1 yields a bifunctor

EC
A : YDC

A × ZC
A → YDC

A ;

on morphisms, it is defined by ϕ× ψ 7→ ϕ⊗ ψ.

C MM ′

MM ′ C

AMM ′

MM ′A

FIGURE 10. Tensor product of two enriching structures

Proof. (1) Equation (cYBE) on C ⊗ (M ⊗M ′)⊗ A reads

(σM,A ⊗M ′ ⊗A) ◦ (M ⊗ σM ′,A ⊗ C) ◦ (M ⊗M ′ ⊗ σC,A) ◦ A

(M ⊗ σC,M ′ ⊗ A) ◦ (σC,M ⊗M ′ ⊗A) =

(A⊗M ⊗ σC,M ′) ◦ (A⊗ σC,M ⊗M ′) ◦ (σC,A ⊗M ⊗M ′) ◦ A

(C ⊗ σM,A ⊗M ′) ◦ (C ⊗M ⊗ σM ′,A).

In these two expressions, one recognizes in the interior by leaving apart

both exterior σ-expressions an expression involving only σM ′,A, σC,A, and

σC,M ′ (respectively, only σC,M , σC,A, and σM,A). On these expressions, one

may apply (cYBE) for C ⊗M ′ ⊗ A (or C ⊗M ⊗ A). The resulting total

expressions are identical. Equation (cYBE) on C ⊗ C ⊗ (M ⊗M ′) and on

(M ⊗M ′)⊗ A⊗ A is treated similarly. As usual, drawing pictures can be

helpful for following the arguments above. One concludes that M ⊗M ′ is

an enriching structure. Strict associativity and strict unitality are clear.

Claims (2) and (3) are immediate. �

Remark 5.4. When saying that condition (14) means that δ is a morphism

in Mod(A;σA,A) or, equivalently, ρ is a morphism in Mod
(C;σC,C), we en-

dowedM⊗C andM⊗A with the structures from Propositions 5.1 and 5.3.

We next present a toy type of YD modules often encountered in practice;

enriched according to Proposition 5.1, they yield an important source of

meaningful examples of generalized YD modules.
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Definition 5.5. The unit object I of C endowed with a YD module structure

over a rank 2 braided system in C is called a Yetter-Drinfel′d character of

the system.

Concretely, a YD character structure over (C,A; σ) includes a braided

character εA : A → I over (A; σA,A) and a braided cocharacter νC : I → C

over (C; σC,C), compatible in the sense of

νC ◦ εA = (εA ⊗ C) ◦ σC,A ◦ (νC ⊗A).(42)

According to Proposition 5.3, a YD character permits to endowA, C, and

all their mixed tensor products with a YD module structure over (C,A; σ),
which we call adjoint because of the following examples.

Example 5.6 (Woronowicz and Hennings braidings for a Hopf algebra).

Consider the braided system from Example 2.12. In this case, a usual

character of the algebra (H, µ, ν) (i.e., a morphism ζ : H → I satisfying

ζ ◦ µ = ζ ⊗ ζ and ζ ◦ ν = IdI) is automatically a braided character over

(A; σA,A). Similarly, a usual cocharacter η : I → H of (H, ε,∆) is a braided

cocharacter over (C; σC,C). The compatibility condition (42) becomes here

µ2 ◦ (S ⊗ (η ◦ ζ)⊗H) ◦∆2 = η ◦ ζ.(43)

In the case ζ = ε and η = ν, it follows from the definition of the antipode.

Feeding the YD character (ε, ν) and the objectH viewed either as C or asA

into Proposition 5.1, one obtains two generalized YD module structures

on H . We have seen that π = IdH satisfies condition (15). Theorem 1 thus

yields two different braidings on H:

σH = (H ⊗ µ2) ◦ (H ⊗ cH,H ⊗H) ◦ (cH,H ⊗ S ⊗H) ◦ (H ⊗∆2),

σ′
H = (H ⊗ µ2) ◦ (cH,H ⊗ S ⊗H) ◦ (H ⊗ cH,H ⊗H) ◦ (H ⊗∆2).

These braidings are in categorical duality (note that the axioms defining a

Hopf algebra, as well as the cYBE, are self-dual). Pictorially, this dual-

ity is reflected in the horizontal symmetry of the corresponding diagrams.

In Vectk, these braidings read

σH(h⊗ h′) = h′(1) ⊗ S(h′(2))hh
′
(3),

σ′
H(h⊗ h′) = h′(2) ⊗ hS(h′(1))h

′
(3),

which are precisely the formulas discovered by S.L. Woronowicz in [32].

We thus include the results of [32], which seemed mysterious at the time,

into a general conceptual framework.

For a general character-cocharacter pair (ζ, η), condition (43) may fail.

However, it becomes true when pre-composed with ν or post-composed

with ε. Hence condition (42) (tensored with IdH on the right) holds true

when pre-composed with σA,A = σAss or post-composed with σC,C =
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σcoAss. But this is sufficient for Proposition 5.1 to produce generalized YD

module structures on H—and hence for Theorem 1 to produce braidings

on H . These braidings are obtained from σH and σ′
H by replacing ∆2 with

(H ⊗ H ⊗ ((ζ ⊗ H) ◦ ∆)) ◦ ∆2—or, respectively, by replacing µ2 with

µ2 ◦ (H ⊗ H ⊗ (µ ◦ (η ⊗ H))). In Vectk, we recover the braidings of

M.A. Hennings [13]:

σH(h⊗ h′) = ζ(h′(3))h
′
(1) ⊗ S(h′(2))hh

′
(4),

σ′
H(h⊗ h′) = h′(2) ⊗ hS(h′(1))ηh

′
(3).

Note that all modules and comodules appearing in these constructions are

normalized, and so one actually gets usual YD module structures on H .

We now show that in our favourite examples, all generalized YD modules

can be found inside the category ZC
A .

Proposition 5.7 (YD modules as enriching structures).

Take a Hopf algebra (H, µ, ν, ε,∆, S) in a symmetric monoidal category

(C,⊗, I, c), and consider the braided system (H,H ; σ) from Example 2.12.

Then the (non-normalized) YD modules over H can be seen as a full sub-

category of ZH
H via the functor

ZY D : YDH
H →֒ ZH

H ,

(M, ρ, δ) 7→ (M,σH,M , σM,H),

where σH,M = (M ⊗ µ) ◦ (cH,M ⊗H) ◦ (H ⊗ δ),

σM,H = (H ⊗ ρ) ◦ (cM,H ⊗H) ◦ (M ⊗∆).

The braided systems thus obtained are related to, but different from, those

studied in [16, 20].

Proof. In order to show that one indeed gets enriching structures, one has to

check 3 instances of the cYBE. The graphical calculus works well here; we

leave the tedious but straightforward verifications to the Reader. Further,

note that the YD structure on M can be reconstructed from the σ’s via

ρ = (ε⊗M) ◦ σM,H , δ = σH,M ◦ (ν ⊗M).(44)

This proves that ZY D is injective on objects. These formulas also show that

the naturality condition (40) for a morphism ϕ : M → M ′ in C is equivalent

to ϕ being a morphism of comodules, while (41) is equivalent to ϕ being

a morphism of modules. Thus the functor ZY D is well-defined and fully

faithful on morphisms. �

Remark 5.8. In fact, formulas (44) define a functor MY D : ZH
H → YDH

H

such thatMY D◦ZY D is the identity functor on YDH
H . It would be interesting

to understand how far these functors are from category equivalences.
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Combining ZY D with the functorEH
H : YDH

H×ZH
H → YDH

H from Propo-

sition 5.3, one obtains a bifunctor YDH
H × YDH

H → YDH
H . Together with

the YD character (I, ε, ν) (Example 5.6), they define a tensor structure

on YDH
H , extending the classical tensor structure on nYDH

H to the non-

normalized setting. (The vocabulary of tensor categories is recalled in Def-

inition 5.13.) Concretely, the tensor product of two YD modules (M, ρ, δ)
and (M ′, ρ′, δ′) in YDH

H is the object M ⊗M ′ with

ρM⊗M ′ = (ρ⊗ ρ′) ◦ (M ⊗ cM ′,H ⊗H) ◦ (M ⊗M ′ ⊗∆),(45)

δM⊗M ′ = (M ⊗M ′ ⊗ µ) ◦ (M ⊗ cH,M ′ ⊗H) ◦ (δ ⊗ δ′).(46)

The maps σgY D become morphisms in this category. Even better: they

provide a braided structure on YDH
H .

Proposition 5.9 (Representations of a crossed module of groups as enrich-

ing structures).

Take a crossed module of groups (K,G, π, ·), and consider the braided

system (kK, kG; σ) from Example 2.13. Then the YD modules over this

system (and, in particular, Bantay’s representations of our crossed module)

can be seen as a full subcategory of ZkK
kG via the functor

ZCrMod : YDkK
kG →֒ ZkK

kG ,

(M, ρ, δ) 7→ (M,σkK,M , σM,kG),

where σkK,M(k,m) =
∑

k′∈K
mk′ ⊗ kk′,

σM,kG(m, g) = (g,m ∗ g),

the coaction δ is written as δ(m) =
∑

k∈K mk ⊗ k, and ∗ denotes the

action ρ.

The proof is similar to that of Proposition 5.7. The functor ZCrMod ad-

mits a left inverseMCrMod, defined by formulas analogous to (44). Combin-

ingZCrMod with the functorEkK
kG , one obtains a bifunctor YDkK

kG×YDkK
kG →

YDkK
kG , yielding a monoidal structure on YDkK

kG . Explicitly, the tensor prod-

uct of two YD modules over (kK, kG; σ) is endowed with diagonal action

and coaction, in the spirit of (45)-(46). The braidings σgY D enrich this

monoidal category into a braided one.

Proposition 5.10 (Twisted representations of a crossed module of shelves

as enriching structures).

Take a crossed module of shelves (R, S, π, ·), and consider the braided

system (R, S; σ) from Proposition 3.13.
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(1) The twisted representations of our crossed module can be seen as a

full subcategory of ZR
S via the functor

ZSD : Mtw
Set

(R, S) ≃ YDR
S →֒ ZR

S ,

(M,◭, gr, f) 7→ (M,σR,M , σM,S),

where σR,M (r ⊗m) = f(m)⊗ gr(m),

σM,S(m⊗ s) = s⊗m ◭ s.

(2) Alternatively, enriching structures can be constructed out of twisted

representations via the functor

Z̃SD : Mtw
Set

(R, S) ≃ YDR
S → ZR

S ,

(M,◭, gr, f) 7→ (M,σR,M , σM,S),

where σR,M(r ⊗m) = f(m)⊗ r ⊳ gr(m),

σM,S(m⊗ s) = s⊗m ◭ s.

Similar functors exist in the linear setting.

Proof. We treat only the set-theoretic case here; the linear case is similar.

(1) As usual, one has to check 3 instances of the cYBE. We do it here

by explicit calculations.

• On R⊗ R⊗M , the cYBE takes the form

f 2(m)⊗ gr(f(m))⊗ gr(m) = f 2(m)⊗ gr(m)⊗ gr(m),

which is equivalent to f preserving the R-grading.

• On R⊗M ⊗ S, the cYBE becomes

s⊗ f(m) ◭ s⊗ gr(m) · s = s⊗ f(m ◭ s)⊗ gr(m ◭ s),

which is equivalent to the S-actions intertwining both f and gr.

• On M ⊗ S ⊗ S, the cYBE reads

s′ ⊗ s ⊳ s′ ⊗ (m ◭ s) ◭ s′ = s′ ⊗ s ⊳ s′ ⊗ (m ◭ s′) ◭ (s ⊳ s′),

which is equivalent to ◭ being an S-action.

Further, the maps f and gr can be reconstructed from σR,M , and

the S-action ◭ from σM,S . Moreover, the naturality condition (40)

for a morphism ϕ : M → M ′ in C is equivalent to ϕ respecting the

R-grading and intertwining f and f ′, while (41) is equivalent to ϕ

being a morphism of S-modules. Thus the functor ZSD is well-

defined and fully faithful on morphisms, and injective on objects.

(2) The cYBE on R ⊗R ⊗M and R⊗M ⊗ S become here

f 2(m)⊗ r ⊳ gr(f(m))⊗ r ⊳ gr(m) = f 2(m)⊗ r ⊳ gr(m)⊗ r ⊳ gr(m),

s⊗ f(m) ◭ s⊗ (r ⊳ gr(m)) · s = s⊗ f(m ◭ s)⊗ (r · s) ⊳ gr(m ◭ s).
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They follow from the defining properties of a twisted representation.

OnM⊗S⊗S, the cYBE is the same as in the previous case. Further,

the naturality condition (40) for a morphism ϕ : M → M ′ in C
follows from (but is not equivalent to!) ϕ respecting the R-gradings

and intertwining f and f ′, while (41) is equivalent to ϕ being a

morphism of S-modules. One thus has a well-defined functor. �

The existence of two braided system structures on (R,M, S) is a general

phenomenon in the world of shelves; we already met it when observing two

braided system structures on (R, S) (Remark 3.15).

Remark 5.11. The map σR,M used for constructing Z̃SD is in fact the braid-

ing σTwCrModSh for the twisted representations (R, ·, IdR, IdR) and (M,◭,

gr, f) of the crossed module of shelves (R, S, π, ·), since one has

r ⊳ gr(m) = r · π(gr(m)).

Combining ZSD or Z̃SD with the functor ER
S from Proposition 5.3, one

obtains two bifunctors

⊗ = ER
S ◦ (Id×ZSD), ⊗̃ = ER

S ◦ (Id×Z̃SD)(47)

from Mtw
Set

(R, S)×Mtw
Set

(R, S) to Mtw
Set

(R, S). The corresponding prod-

uct structures are explicitly written as follows:

Proposition 5.12 (Products of twisted representations of a crossed module

of shelves).

Given two twisted representations (M,◭, gr, f) and (M ′,◭′, gr′, f ′) in

Mtw
Set

(R, S), their productM ⊗M ′ can be seen as a twisted representation

in two different ways. In both cases the S-actions and the twisting maps are

assembled diagonally:

(m⊗m′) ◭⊗ s = (m⊗m′) ◭⊗̃ s = m ◭ s⊗m′
◭

′ s,

f⊗(m⊗m′) = f⊗̃(m⊗m′) = f(m)⊗ f ′(m′).

The R-gradings can be assembled either peripherally or diagonally:

gr⊗(m⊗m′) = gr′(m′), gr⊗̃(m⊗m′) = gr(m) ⊳ gr′(m′).

Similar structures exist in the linear setting.

It is natural to ask if any of these functors is a part of a monoidal structure

on Mtw
Set

(R, S). This question is more subtle here than in the case of usual

YD modules or representations of a crossed module of groups. We now

show that one gets something close to a monoidal category, and study the

place of the braidings σTwCrModSh (Remark 3.22) in this category. To give

precise assertions, some definitions from category theory are first due.

Definition 5.13 (Categorical vocabulary).
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• A pre-tensor category is a category C endowed with a tensor prod-

uct, i.e., a bifunctor ⊗ : C × C → C and natural isomorphisms

(
αU,V,W : (U ⊗ V )⊗W

∼
→ U ⊗ (V ⊗W )

)
U,V,W∈Ob(C)

,

called associator, or associativity constraint, satisfying the penta-

gon axiom

(48)

((U ⊗ V )⊗W )⊗X
αU,V,W⊗X

rrfffff
fff

αU⊗V,W,X

))RR
RR

RR
RR

RR
RR

RR
RR

RR

(U ⊗ (V ⊗W ))⊗X

αU,V ⊗W,X

��

(U ⊗ V )⊗ (W ⊗X)

αU,V,W⊗X

vvlll
ll
ll
ll
ll
ll
ll
ll
l

U ⊗ ((V ⊗W )⊗X)

U⊗αV,W,X
,,YYYY

YYY
Y

U ⊗ (V ⊗ (W ⊗X))

• A pre-tensor category is called tensor, or monoidal, if endowed with

a unit, i.e., an object I in C and natural isomorphisms

(
λV : I ⊗ V

∼
→ V, ρV : V ⊗ I

∼
→ V

)
V ∈Ob(C)

,

called left and right unitors, or a unit constraint, satisfying the tri-

angle axiom

(49) (V ⊗ I)⊗W
αV,I,W

//

ρV ⊗W
**UU

UU
UU

V ⊗ (I ⊗W )

V⊗λW
ttiiii

ii

V ⊗W

• A (pre-)tensor category is called strict if all the constraints are the

identity morphisms.

• A (pre-)tensor category is called braided if it is endowed with a

braiding, or commutativity constraint, i.e. natural isomorphisms

(
cV,W : V ⊗W

∼
→ W ⊗ V

)
V,W∈Ob(C)

respecting the tensor product, in the sense of the hexagon axioms

(50)

U ⊗ (V ⊗W )
cU,V⊗W

// (V ⊗W )⊗ U
αV,W,U

++VVV
VV

V

(U ⊗ V )⊗W

cU,V ⊗W
++VVV

VV
V

αU,V,W 33hhhhhh

V ⊗ (W ⊗ U)

(V ⊗ U)⊗W
αV,U,W

// V ⊗ (U ⊗W )
V⊗cU,W

33hhhhhh
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(51)

(U ⊗ V )⊗W
cU⊗V,W

// W ⊗ (U ⊗ V ) α−1

W,U,V

++VVV
VV

V

U ⊗ (V ⊗W )

U⊗cV,W
++VVV

VV
V

α−1

U,V,W 33hhhhhh

(W ⊗ U)⊗ V

U ⊗ (W ⊗ V )
α−1

U,W,V

// (U ⊗W )⊗ V
cU,W⊗V

33hhhhhh

This terminology is classical except for pre-tensor categories, which were

first considered by F. Li [21].

In a braided monoidal category, any family of objects Vi equipped with

the morphisms σi,j = cVi,Vj
form a braided system: the cYBE on Vi⊗Vj⊗Vk

follows from the naturality of c with respect to σi,j and IdVk
, together with

the hexagon axiom (51). This is one of the reasons for the long-standing

interest in such categories.

Let us now see how close our twisted representation categories of crossed

modules of shelves are to braided monoidal categories.

Theorem 4 (Pre-tensor categories (Mtw
• (R, S),⊗) and (MR;tw

• (R, S), ⊗̃)).

(1) Take a crossed module of shelves (R, S, π, ·). The tensor product ⊗
from (47) defines a strict pre-tensor structure on its twisted repre-

sentation category Mtw
• (R, S).

(2) Take a crossed module of racks (R, S, π, ·). The tensor product ⊗̃
from (47) and the maps

αM,M ′,M ′′ : (M ⊗M ′)⊗M ′′ ∼
→ M ⊗ (M ′ ⊗M ′′),

(m⊗m′)⊗m′′ 7→ m ◭ π(gr(m′′))⊗ (m′ ⊗m′′)

define a pre-tensor structure on MR;tw
• (R, S).

Remark 5.14. For both pre-tensor structures, usual (i.e., non-twisted) rep-

resentations form pre-tensor subcategories M
(R)
• (R, S).

Proof. The verifications for the tensor product ⊗ are straightforward. The

tensor product ⊗̃ deserves more attention. We have seen that it is a bifunc-

tor. Further, the maps αM,M ′,M ′′

• intertwine the S-actions, since

(m ◭π(gr(m′′))) ◭ s = (m ◭ s) ◭ (π(gr(m′′)) ⊳ s)

= (m ◭ s) ◭ π(gr(m′′) · s) = (m ◭ s) ◭ π(gr(m′′
◭ s));

• intertwine the twisting maps, because of

f(m ◭ π(gr(m′′))) = f(m) ◭ π(gr(m′′)) = f(m) ◭ π(gr(f(m′′)));
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• respect the R-gradings:

gr(m ◭π(gr(m′′))) ⊳ (gr(m′) ⊳ gr(m′′))

= (gr(m) · π(gr(m′′))) ⊳ (gr(m′) ⊳ gr(m′′))

= (gr(m) ⊳ gr(m′′)) ⊳ (gr(m′) ⊳ gr(m′′))

= (gr(m) ⊳ gr(m′)) ⊳ gr(m′′);

• are bijective, since the maps M → M , m 7→ m ◭ π(gr(m′′)) are

so for the S-rack-module (M,◭).

Hence the αM,M ′,M ′′ are invertible morphisms in Mtw
Set

(R, S). The natural-

ity of α follows from the fact that morphisms in Mtw
Set

(R, S) preserve the

R-gradings and intertwine the S-actions. It remains to check the pentagon

axiom (48). Explicitly, its right-hand side sends an element ((m ⊗ m′) ⊗
m′′)⊗m′′′ ∈ ((M ⊗M ′)⊗M ′′)⊗M ′′′ to

(m ◭ π(gr(m′′′))) ◭ π(gr⊗̃(m
′′⊗m′′′))⊗(m′

◭ π(gr(m′′′))⊗(m′′⊗m′′′)),

while the left-hand side sends it to

(m ◭ π(gr(m′′))) ◭ π(gr(m′′′))⊗ (m′
◭ π(gr(m′′′))⊗ (m′′ ⊗m′′′)).

Recalling that π is a shelf morphism, one obtains

π(gr⊗̃(m
′′ ⊗m′′′)) = π(gr(m′′) ⊳ gr(m′′′)) = π(gr(m′′)) ⊳ π(gr(m′′′)),

and the defining property of a rack action for ◭ yields

(m ◭ π(gr(m′′′))) ◭ (π(gr(m′′)) ⊳π(gr(m′′′))) =

(m ◭ π(gr(m′′))) ◭ π(gr(m′′′)),

hence our pentagon axiom is satisfied. �

Remark 5.15. For the twisted representation category Mtw
• (R, S) of a

crossed module of shelves, the tensor product ⊗̃ and the αM,M ′,M ′′ above

satisfy all the pre-tensor structure axioms except for the invertibility of α.

Let us next study the unitality of our categories. In order to admit an iso-

morphism I⊗V
∼
→ V or V ⊗I

∼
→ V , the unit I has to be a one-element set

with a twisted representation structure over (R, S, π, ·), or, in other words,

a Yetter-Drinfel′d character (Definition 5.5) for the corresponding rank 2
braided system (Proposition 3.13). The S-action and the twisting have to

be the unique maps S → I and I → I respectively. Further, the single

element of I should be graded by an S-invariant element r0 ∈ R, in the

sense of r0 · s = r0 for all s ∈ S. Summarizing, one gets

Proposition 5.16 (YD characters in YDR
S ).
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For a crossed module of shelves (R, S, π, ·), a complete list of Yetter-

Drinfel′d characters in YDR
S (up to isomorphism) is indexed by S-invariant

elements r0 ∈ R, and given by the structures

Ir0 =
(
{∗}, ρr0 : s 7→ ∗, δr0 : ∗ 7→ r0

)
.

Example 5.17. A shelf (S,⊳) is called pointed if it contains a preferred

element e satisfying e ⊳ s = e, s ⊳ e = s for all s ∈ S. A conjugation

rack yields a classical example, with the neutral element of the underlying

group chosen as e. The crossed module of shelves (S, S, IdS,⊳) associated

to a pointed shelf (Example 3.9) comes with the YD character Ie in YDS
S .

A YD character Ir0 can be seen as a left unit for the tensor structure ⊗ on

Mtw
• (R, S), since the maps λM : Ir0⊗M

∼
→M , ∗⊗m 7→ m define a natural

isomorphism. On the other hand, Ir0 can be seen as a right unit for the tensor

structure ⊗̃, since the maps ρM : M ⊗̃ Ir0
∼
→ M , m ⊗̃ ∗ 7→ m · π(r0)

define a natural morphism, which becomes an isomorphism in the case of

rack-modules. Unfortunately, the authors do not know how to complete at

least one of these structures into a whole unit constraint.

Finally, recall the braidings σTwCrModSh for objects in Mtw
• (R, S) (Re-

mark 3.22). They are natural candidates for forming a commutativity con-

straint for (Mtw
• (R, S),⊗) or (MR;tw

• (R, S), ⊗̃). However, these maps do

not respect the R-gradings, so they are not even morphisms in the corre-

sponding categories! On the other hand, they intertwine the S-actions and

the twistings, form a natural family, and in the rack case admit inverses.

The representation category of a crossed module of Leibniz algebras is

also pre-tensor with an interesting associator, as we now establish.

Proposition 5.18 (Representations of a crossed module of Leibniz algebras

as enriching structures).

Take a crossed module of Leibniz algebras (k, g, π, ·), and consider the

braided system (k+, g+; σ) from Proposition 4.5. Then one has a functor

ZCrModLA : YDk+

g+ → Z k+

g+ ,

(M, ∗, δ) 7→ (M,σk+,M , σM,g+),

where σk+,M(k ⊗m) = m(0) ⊗ k ·m(1),

σM,g+(m⊗ g) = g(1) ⊗m ∗ g(2),

using the usual Sweedler’s notations for the k+-coaction δ onM and for the

comultiplication ∆ on g+, as well as the unitarized adjoint action · of k+ on

itself (Lemma 4.3).

The proof is similar to that of Proposition 5.7. Note that, in contrast to the

situation there, one has no hope of having a category inclusion here, since

the map σk+,M is not sufficient for reconstructing the coaction δ in general.
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As usual, combining ZCrModLA with the functor Ek+

g+
(Proposition 5.3),

one obtains a bifunctor ⊗ = Ek+

g+
◦ (Id×ZCrModLA) on YDk+

g+
, restricting

to a bifunctor on the representation category M(k, g). The corresponding

product structure is explicitly written as follows:

Proposition 5.19 (Product of representations of a crossed module of Leib-

niz algebras).

Given a crossed module of Leibniz algebras (k, g, π, ·) and two YD mod-

ules (M, ∗, δ) and (M ′, ∗′, δ′) over the braided system (k+, g+; σ) (Propo-

sition 4.5), their product M ⊗M ′ can be endowed with the following YD

module structure:

• the unit 1 ∈ g+ acts on M ⊗M ′ by the identity, and elements g ∈ g

according to the Leibniz rule:

(m⊗m′) ∗⊗ g = m⊗m′ ∗′ g +m ∗ g ⊗m′;

• the k+-coaction is given by

δ⊗(m⊗m′) = m(0) ⊗m′
(0) ⊗m(1) ·m

′
(1),

with the same notations as in Proposition 5.18.

Theorem 5 (Pre-tensor structure on M(k, g)).
Take a crossed module of Leibniz algebras (k, g, π, ·). Consider the tensor

product ⊗ from Proposition 5.19 and, for M,M ′,M ′′ ∈ YDk+

g+
, the maps

αM,M ′,M ′′ : (M ⊗M ′)⊗M ′′ →M ⊗ (M ′ ⊗M ′′),

(m⊗m′)⊗m′′ 7→ m ∗ π(m′′
(1))⊗ (m′ ⊗m′′

(0)).

(1) These data satisfy all the pre-tensor structure axioms except for the

invertibility of α.

(2) The YD module (k, ε, ν), with ν(1) = 1 ∈ k+, is a strict right unit

for this structure.

(3) Restricted to the representation category M(k, g), this yields a gen-

uine pre-tensor structure with a right unit.

Proof. (1) We first show that αM,M ′,M ′′ is a morphism in YDk+

g+
. To

show that it intertwines g+-actions, one needs to check that

(m ∗ g(1)) ∗ π((m
′′ ∗ g(3))(1))⊗ (m′ ∗ g(2) ⊗ (m′′ ∗ g(3))(0)) =

(m ∗ π(m′′
(1))) ∗ g(1) ⊗ (m′ ∗ g(2) ⊗m′′

(0) ∗ g(3))

for all g ∈ g+. Using the cocommutativity of the comultiplication

on g+ and the compatibility relation (35) between δ and ∗, the first

expression rewrites as

(m ∗ g(1)) ∗ π(m
′′
(1) · g(2))⊗ (m′ ∗ g(3) ⊗m′′

(0) ∗ g(4)).
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Due to (31) and (34), one has

(m ∗ g(1)) ∗ π(m
′′
(1) · g(2)) = (m ∗ g(1)) ∗ (π(m

′′
(1)) · g(2))

= (m ∗ π(m′′
(1)) ∗ g(1),

so the desired expressions coincide.

We next verify that αM,M ′,M ′′ intertwines k+-coactions. One cal-

culates

δ(m ∗ π(m′′
(1)))

(35)
= m(0) ∗ (π(m

′′
(1)))(1) ⊗m(1) · (π(m

′′
(1)))(2)

(33)
= m(0) ∗ π((m

′′
(1))(1))⊗m(1) · π((m

′′
(1))(2))

(30)
= m(0) ∗ π((m

′′
(1))(1))⊗m(1) · (m

′′
(1))(2),

The desired intertwining relation then rewrites as

(m ∗ π(m′′
(1))⊗ (m′ ⊗m′′

(0)))⊗ (m(1) ·m
′
(1)) ·m

′
(2) =

(m(0) ∗ π((m
′′
(2))(1))⊗ (m′

(0) ⊗m′′
(0)))⊗ (m(1) · (m

′′
(2))(2)) · (m

′
(1) ·m

′′
(1)).

Using relation 36 and the cocommutativity of the comultiplication

on k+, the latter expression equals

(m(0) ∗ π((m
′′
(1))(1))⊗ (m′

(0) ⊗ f(m′′
(0))))⊗ (m(1) · (m

′′
(1))(2)) · (m

′
(1) · (m

′′
(1))(3)),

which using (34) for the adjoint action on k+ becomes

(m(0) ∗ π((m
′′
(1))(1))⊗ (m′

(0) ⊗ f(m′′
(0))))⊗ (m(1) ·m

′
(1)) · (m

′′
(1))(2)).

One more application of 36 transforms our expression into the de-

sired form.

The naturality of α is straightforward. It remains to verify the

pentagon axiom, which here reads

(m ∗ π(m′′
(1))) ∗ π(m

′′′
(2))⊗ (m′ ∗ π(m′′′

(1))⊗ (m′′
(0) ⊗m′′′

(0))) =

(m∗π((m′′′
(2))(1))) ∗ π(m

′′
(1) ·m

′′′
(1))⊗ (m′ ∗ π((m′′′

(2))(2))⊗ (m′′
(0) ⊗m′′′

(0))).

It is done by an argument similar to those used for intertwining

properties, juggling relations from Lemmas 4.3 and 4.7.

(2) Straightforward verifications.

(3) One easily checks that the inverse of αM,M ′,M ′′ is given by the map

m⊗ (m′ ⊗m′′) 7→ (m ∗ S(π(m′′
(1)))⊗m′)⊗m′′

(0),

where S : g+ → g+ is the “antipode-like” map defined by S(1) = 1
and S(g) = −g for g ∈ g. �

Remark 5.20. The associators from Theorems 4 and 5 can be written in

a uniform way as (m ⊗ m′) ⊗ m′′ 7→ m ⊗ (m′ ⊗ m′′), using the formal

notation σgenY D(m ⊗ m′′) = m′′ ⊗ m. The resemblance between the two

pre-tensor structures is more than a simple coincidence: crossed modules
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of both shelves and Leibniz algebras can be unified in the framework of

categorical shelves, developed in [6, 18, 1].

As in the case of representations of crossed modules of shelves, the braid-

ings σCrModLA from Theorem 3 are not k+-comodule maps in general, and

thus do not provide a braided structure on our pre-tensor category M(k, g).
Summing up, we have constructed several new pre-tensor categories with

global braidings (in the Yang-Baxter sense) which do not stem from a braid-

ing structure on the category. It would be interesting to determine whether

our braidings can be rendered categorical for a different (pre-)tensor struc-

ture on M
(R;)tw
• (R, S) or M(k, g), or there is a conceptual reason prevent-

ing such a structure to exist.
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