Adaptive compression against a countable alphabet - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2012

Adaptive compression against a countable alphabet

Résumé

This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring (AC) code introduced by Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on the tight characterization of universal redundancy rate in terms of metric entropy by Haussler and Opper (1997) and on a careful analysis of the performance of the AC-coding algorithm. The latter relies on non-asymptotic bounds for maxima of samples from discrete distributions with finite and non-decreasing hazard rate.
Fichier principal
Vignette du fichier
dmAQ0117.pdf (379.18 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01197243 , version 1 (11-09-2015)

Identifiants

Citer

Dominique Bontemps, Stephane Boucheron, Elisabeth Gassiat. Adaptive compression against a countable alphabet. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. pp.201-218, ⟨10.46298/dmtcs.2995⟩. ⟨hal-01197243⟩
309 Consultations
641 Téléchargements

Altmetric

Partager

More