Analysis of Digital Expansions of Minimal Weight - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2012

Analysis of Digital Expansions of Minimal Weight

Résumé

Extending an idea of Suppakitpaisarn, Edahiro and Imai, a dynamic programming approach for computing digital expansions of minimal weight is transformed into an asymptotic analysis of minimal weight expansions. The minimal weight of an optimal expansion of a random input of length $\ell$ is shown to be asymptotically normally distributed under suitable conditions. After discussing the general framework, we focus on expansions to the base of $\tau$, where $\tau$ is a root of the polynomial $X^2- \mu X + 2$ for $\mu \in \{ \pm 1\}$. As the Frobenius endomorphism on a binary Koblitz curve fulfils the same equation, digit expansions to the base of this $\tau$ can be used for scalar multiplication and linear combination in elliptic curve cryptosystems over these curves.
Fichier principal
Vignette du fichier
dmAQ0131.pdf (371.23 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01197230 , version 1 (11-09-2015)

Identifiants

Citer

Florian Heigl, Clemens Heuberger. Analysis of Digital Expansions of Minimal Weight. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. pp.399-412, ⟨10.46298/dmtcs.3009⟩. ⟨hal-01197230⟩

Collections

TDS-MACS
186 Consultations
639 Téléchargements

Altmetric

Partager

More