Stokes polyhedra for $X$-shaped polyminos - Archive ouverte HAL
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2012

Stokes polyhedra for $X$-shaped polyminos

Abstract

Consider a pair of $\textit{interlacing regular convex polygons}$, each with $2(n + 2)$ vertices, which we will be referring to as $\textit{red}$ and $\textit{black}$ ones. One can place these vertices on the unit circle $|z | = 1$ in the complex plane; the vertices of the red polygon at $\epsilon^{2k}, k = 0, \ldots , 2n − 1$, of the black polygon at $\epsilon^{2k+1}, k = 0, \ldots , 2n − 1$; here $\epsilon = \exp(i \pi /(2n + 2))$. We assign to the vertices of each polygon alternating (within each polygon) signs. Note that all the pairwise intersections of red and black sides are oriented consistently. We declare the corresponding orientation positive.
Fichier principal
Vignette du fichier
dmAQ0127.pdf (194.62 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01197226 , version 1 (11-09-2015)

Identifiers

Cite

Yu. Baryshnikov, L. Hickok, N. Orlow, S. Son. Stokes polyhedra for $X$-shaped polyminos. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. pp.361-364, ⟨10.46298/dmtcs.3005⟩. ⟨hal-01197226⟩

Collections

TDS-MACS
87 View
804 Download

Altmetric

Share

More