Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract) - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2012

Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract)

Résumé

Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that the $d_2$-distance is of order between $n^{-1} \log{n}$ and $n^{-1/2}$, and another by Neininger and Ruschendorf (2002) found that the Zolotarev $\zeta _3$-distance is of exact order $n^{-1} \log{n}$. Our expression reveals that the $L^2$-distance is asymptotically equivalent to $(2 n^{-1} \ln{n})^{1/2}$.
Fichier principal
Vignette du fichier
dmAQ0125.pdf (315.6 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01197222 , version 1 (11-09-2015)

Licence

Identifiants

Citer

Patrick Bindjeme, James Allen Fill. Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract). 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. pp.339-348, ⟨10.46298/dmtcs.3003⟩. ⟨hal-01197222⟩

Collections

TDS-MACS
70 Consultations
704 Téléchargements

Altmetric

Partager

More